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Abstract

The author studies on a hedging problem for an European contin-
gent claim in a certain incomplete market model by using a homoge-
neous filtered value measure. He considers the minimal hedging risk
in discrete time model and its continuous limit. As a result, he shows
that this limit is described by a viscosity solution of some Hamilton-
Jacobi-Bellman equation.

1 Introduction

Hedging of a contingent claim is an important problem in the mathemat-
ical finance. It is well known that every contingent claim can be perfectly
hedged in a complete financial market. In incomplete markets, it is still
possible to stay on the safe side by “superhedging”. However, the cost of su-
perhedging is often too high in many situations. If the investor is unwilling to
put up the initial amount of capital requirement by a superhedging strategy,
he/she is exposed to some risk and needs a “partial hedging” strategy.

Artzner et al. [1] proposed the concept of “coherent risk measure” to assess
the risk of such financial positions by an axiomatic approach. Föllmer and
Schied [12] defined the class of “convex risk measures”, which are extensions
of coherent risk measures, by relaxing the axiom of homogeneity. Cheridito

∗This research is supported by the 21 century COE program at Graduate School of
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1



et al. [5] introduced coherent/convex risk measures for stochastic processes.
These papers considered only single-period settings. Many authors such as
Artzner et al. [2], Detlefsen, Scandolo [9], and Kusuoka, Morimoto [13] in-
troduced the concept of dynamic risk measure in discrete settings by various
ways. Delbaen [8] proposed the concept of dynamic risk measure in a con-
tinuous setting.

On partial hedging, Föllmer and Leukert [10],[11] introduced the con-
cept of “quantile hedging” and more generally “Efficient hedging”. Also,
Roorda [15], Barrieu and El Karoui [4] studied partial hedging by using a
coherent/convex risk measure. However their results on hedging with a risk
measure still remain in single-period settings.

In this paper, we study on hedging with a risk measure in a multi-period
setting. Concretely, we study on a hedging problem for an European con-
tingent claim in incomplete markets by using a homogeneous filtered value
measure. We consider the minimal hedging risk in discrete multi-period time
market model and its continuous limit. As a result, we prove that this limit is
describe by a viscosity solution of some Hamilton-Jacobi-Bellman equation.

This paper is organized as follows. In this section, we introduce the notion
of homogeneous filtered value measure, and state our main theorem. In
Section 2, we show a result on the representation of a law invariant coherent
value measure. In Section 3, we consider a discrete time model and show
a kind of Bellman’s principle. In Section 4, we give the proof of our main
theorem. In Appendix, we remark some brief introduction and results on the
viscosity solution theory for readers who are unfamiliar with this theory.

1.1 Definition

Let L be the set of all probability measures on (R,B(R)), L∞ the set of
ν ∈ L which satisfies ν(R \ [−M,M ]) = 0 for some M > 0, and M the
set of all probability measures on ([0, 1],B[0, 1]). For ν ∈ L, we denote the
distribution function of ν by Fν , i.e., Fν(z) = ν((−∞, z]), z ∈ R. We define
Z : [0, 1) × L → R by Z(x, ν) = inf{z; Fν(z) > x}, x ∈ [0, 1), ν ∈ L. For
α ∈ (0, 1], We define ηα : L∞ → R by

ηα(ν) = α−1
∫ α

0
Z(x, ν)dx, ν ∈ L∞, (1)

and η0 : L∞ → R by

η0(ν) = inf{z ∈ R | ν((−∞, z]) > 0}, ν ∈ L∞. (2)
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Definition 1.1. We say that the mapping η : L∞ → R is a mild value
measure if there exists a subset M0 ⊂ M such that

η(ν) = inf
m∈M0

∫ 1

0
ηα(ν)m(dα), ν ∈ L∞.

Definition 1.2. Let η : L∞ → R be a mild value measure and (Ω,F , P ) a
standard probability space.
(1) For any X ∈ L∞(Ω,F , P ) and any sub σ-algebra G ⊂ F , we define a
G-measurable random variable η(X|G) by η(X|G) = η(P (X ∈ dx|G)), where
P (X ∈ dx|G) is a regular conditional probability law of X given a sub σ-
algebra G.
(2) For any X ∈ L∞(Ω,F , P ) and a filtration {Fk}n

k=0, we inductively define
a {Fk}-adapted process {Uk}n

k=0 by

Un = η(X|Fn),

Uk−1 = η(Uk|Fk−1), k = n, n − 1, . . . , 1. (3)

We call Uk, k = 0, 1, . . . , n a homogeneous filtered value measure for X ∈ L∞

at k. Also we denote U0 by η(X|{Fk}n
k=0).

The basic properties of a mild value measure and a homogeneous filtered
value measure are shown in [13].

1.2 Main Theorem

Let Z = {z1, z2, . . . , zN} ⊂ RM , equipped with the discrete topology, and
B(Z) the Borel algebra with respect to this. We define a probability P̂ on
(Z,B(Z)) by P̂ [{zj}] = pj, j = 1, 2, . . . , N , where pj > 0, j = 1, 2, . . . , N

and
∑N

j=1 pj = 1. Also we define M -dimensional random variables Ẑ and

Ŷ (n), n ∈ N on (Z,B(Z)) by

Ẑ(z) = (Ẑ1(z), Ẑ2(z), . . . , ẐM(z)) = z, z ∈ Z, (4)

Ŷ (n)(z) = (Ŷ
(n)
1 (z), Ŷ

(n)
2 (z), . . . , Ŷ

(n)
M (z)),

Ŷ
(n)
i (z) = exp(Ẑi(z)

√
T

n
+ bi

T

n
), i = 1, 2, . . . ,M, n ∈ N, (5)

where bi, i = 1, 2, . . . ,M and T are positive numbers. We denote by P̂ the
set of all probability measures on (Z,B(Z)). We identify P̂ as the hyperplane
{(q1, q2, . . . , qN)| qj ≥ 0, j = 1, 2, . . . , N,

∑N
j=1 qj = 1} on RN .
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Let (Ω,F , P ) be the direct product probability space of countably infinite
copies of (Z,B(Z), P̂ ). We define M -dimensional random variables Zk and

Y
(n)
k , k, n ∈ N on (Ω,F) by

Zk(ω) = Ẑ(ωk), (6)

Y
(n)
k (ω) = Ŷ (n)(ωk), (7)

where ω = (ω1, ω2, . . .) ∈ Ω. We give a filtration {Fk}k=0,1,2,... on (Ω,F) by

F0 = σ(∅, Ω),

Fk = σ(Z1, Z2, . . . , Zk), k = 1, 2, . . . . (8)

Note that the process (Y (n)
· ) is {Fk}-adapted, and Y

(n)
k , k = 1, 2, . . . is

independent of Fl, l = 1, 2, . . . , k − 1 for each n ∈ N. We denote by P the
set of all probability measures which is absolutely continuous with respect to
P .

We define an {Fk}-adapted M -dimensional process {S(n)
k }k=1,2,...,n for

each n ∈ N by

S
(n)
k = (S

(n)
1,k , S

(n)
2,k , . . . , S

(n)
M,k), k = 1, 2, . . . , n

S
(n)
i,k = Si,0

k∏
l=1

Y
(n)
i,l , i = 1, 2, . . .M. (9)

where S0 = (S1,0, S2,0, . . . , SM,0) ∈ (0,∞)M is a constant vector. S
(n)
k is

interpreted as the price vector of M risky assets at time k. We call a {Fk}-
predictable M dimensional process ξ = (ξk)k=1,2... a self-financing strategy,
and denote by SF the set of all self-financing strategy. Then we define a
random variable V

(n)
k (v, ξ) for v ≥ 0, and ξ ∈ SF by V

(n)
0 (v, ξ) = v and

V
(n)
k (v, ξ) = v +

k∑
l=1

ξl · (S(n)
l − S

(n)
l−1). (10)

V
(n)
k (v, ξ) represents the discount value of self-financing portfolio (v, ξ) at

time k.

Hereafter we use the following type of mild value measure:

η(ν) =
∫ 1

0
ηα(ν)µ(dα), ν ∈ L∞, µ ∈ M, (11)
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and fix it. We define Q̂ by

Q̂ = {Q̂ ∈ P̂| EQ̂[X̂] ≥ 0, for all random variables X̂ on (Z,B(Z))

such that η(νX̂) ≥ 0 holds.},

where νX̂ is the probability distribution on X̂.

Let Ĉ([0,∞)M : R) be the set of functions g : [0,∞)M → R such that

|g(x) − g(x′)| ≤ K|x − x′|, x, x′ ∈ [0,∞)M ,

|g(x)| ≤ K(1 + |x|2m), x ∈ [0,∞)M , (12)

hold for some K > 0, m ∈ N. Take f ∈ Ĉ([0,∞)M : R) and fix it.

We assume the following in what follows.

Assumption 1.3. M + 1 < N .

Remark . This assumption indicates that the market model which we con-
sider here is incomplete.

Assumption 1.4. the set Q̂ ∩ ∩M
i=1{Q̂ ∈ P̂ | EQ̂[Ẑi] = 0} contains at least

one inner point, where we consider the relative topology of the usual topology
on RN to the hyperplane P̂.

Let us define Γ ∈ RM×M by

Γ = {γ = (γii′)i,i′=1,2,...,M | γii′ = EQ̂[ẐiẐi′ ],

for some Q̂ ∈ Q̂ ∩
M∩
i=1

{Q̂ ∈ P̂ | EQ̂[Ẑi] = 0}.}.

Note that γ ∈ Γ is nonnegative definite. Also we can easily see that Γ is
compact with respect to the usual topology on RM×M .

Our main theorem is the following.

Theorem 1.5.

We have limn→∞ supξ∈SF η(V (n)
n (v, ξ) + f(S(n)

n )|{Fk}n
k=0) = v + U(0, S0),

where U : [0, T ]× [0,∞)M → R is the unique viscosity solution of the follow-
ing Hamilton-Jacobi-Bellman equation:

∂U

∂t
+ inf

γ=(γii′ )i,i′∈Γ

M∑
i,i′=1

1

2
γii′xixi′

∂2U

∂xixi′
= 0,

U(T, x) = f(x), x ∈ [0,∞)M , (13)

satisfying U(t, ·) ∈ Ĉ([0,∞)M : R) for each t ∈ [0, T ].
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We give a proof of Theorem 1.5 in Section 4.

Example 1.6. We consider the case where M = 1, N = 3, and η = ηα, α ∈
(0, 1). We also assume that EP̂ [Ẑ] =

∑3
j=1 pjzj = 0. In this case, we have

Q̂ = {Q̂ ∈ P̂ | q̂j = Q̂[Ẑ = zj] ≤ pj/α, j = 1, 2, 3}.

We see that the condition “ Q̂ ∈ Q̂∩{Q̂ ∈ P̂ | EQ̂[Ẑ] = 0} ” is equivalent
to the following:

q̂1 ∈ [q, q], q̂2 = − z3

z2 − z3

− z1 − z3

z2 − z3

q̂1, q̂3 =
z2

z2 − z3

+
z1 − z2

z2 − z3

q̂1,

where

q = 0 ∨ −αz3 − p2(z2 − z3)

α(z1 − z3)
∨ −z2

z1 − z2

,

q =
p1

α
∧ −z3

z1 − z3

∧ −αz2 + p3(z2 − z3)

α(z1 − z2)
.

Also we have Γ = [q(z1 − z2)(z1 − z3)− z2z3, q(z1 − z2)(z1 − z3)− z2z3]. We
can easily see that q < q. Hence Assumption 1.4 holds.

2 Result on a Law invariant coherent value

measure

We consider a general probability space in this section. Let (Ω,F , P ) be a
probability space, and P be the set of probability measures on (Ω,F) that
are absolutely continuous with respect to P . We denote by M the set of all
probability measures on ([0, 1],B[0, 1]).

We consider a coherent value measure η : L∞(Ω) → R that has the
following form:

η(X) = inf
µ∈M0

∫ 1

0
ηα(X)µ(dα), X ∈ L∞, M0 ⊂ M, (14)

where

ηα(X) =
1

α
{E[X1{X≤qα(X)}] + qα(X)(α − P [X ≤ qα(X)])},

η0(X) = ess.inf(X),

qα(X) = inf{x ∈ R | P [X ≤ x] > α}, α ∈ [0, 1), α ∈ [0, 1),

q1(X) = ess.sup(X). (15)
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ηα(X) has various definitions. We can also define ηα(X) by

ηα(X) =
1

α
E[X ∧ qα(X)] + (1 − 1

α
)qα(X). (16)

We can easily see that the both definitions are equivalent by direct calcula-
tion (see also [3]).

Let Φµ : [0, 1] → [0, 1], µ ∈ M be a mapping defined by

Φµ(x) =
∫
[1−x,1]

(1 − 1 − x

α
)µ(dα), x ∈ [0, 1),

Φ(1) = 1. (17)

We can easily see that 0 ≤ Φ(x) ≤ x, since {1−(1 − x/α)} ≤ {1−(1−x)} = x
holds for any α ∈ (0, 1].

Our main result in this section is the following.

Proposition 2.1. we have η(X) = infQ∈Q0 EQ[X], X ∈ L∞, where

Q0 = conv (
∪

µ∈M0

Qµ),

Qµ = {Q ∈ P | Q[A] ≥ Φµ(P [A]), A ∈ F}, µ ∈ M. (18)

Here conv means the closed convex hull in L1(Ω,F , P ). We show a brief
lemma to prove Proposition 2.1.

Lemma 2.2. Let X ∈ L∞, a ≥ ess.inf X, and Q ∈ P. Then we have∫ a

ess.inf X
Q[X > x]dx = EQ[X ∧ a] − ess.inf X.

Proof. Using Fubini’s theorem, we have∫ a

ess.inf X
Q[X > x]dx =

∫ a

ess.inf X
(
∫
Ω

1{X>x}(ω)Q(dω))dx

=
∫
Ω
(
∫ X(ω)∧a

ess.inf X
dx)Q(dω) = EQ[X ∧ a] − ess.inf X.
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Now we prove Proposition 2.1. Let A = {X ∈ L∞ | η(X) ≥ 0}. Theorem
6 in [7] shows that η(X) = infQ∈Q EQ[X] holds for X ∈ L∞, where Q = {Q ∈
P | EQ[X] ≥ 0, X ∈ A}. So it is sufficient to show that Q = Q0. Also it is
sufficient to show the assertion in the case where η(X) =

∫ 1
0 ηα(X)µ(dα), X ∈

L∞, m ∈ M. Indeed, if the claim holds in this case, we see that

A =
∩

µ∈M0

{X ∈ L∞ |
∫ 1

0
ηα(X)µ(dα) ≥ 0}

=
∩

µ∈M0

{X ∈ L∞ | EQ[X] ≥ 0, Q ∈ Qµ}

= {X ∈ L∞ | EQ[X] ≥ 0, Q ∈ Q0}.

by bipolar theorem. Then using bipolar theorem again, we have Q = Q0.

So we consider the case where η(X) =
∫ 1
0 ηα(X)µ(dα), X ∈ L∞, µ ∈ M.

We show that Q ⊂ Qµ. Take Q ∈ Q. Since 1A ∈ A for A ∈ F , we have
Q[A] ≥ η(1A) =

∫ 1
0 ηα(1A)µ(dα). We see that

ηα(1A) =

{
0, 0 ≤ α < P [Ac]
1 − (P [Ac]/α), P [Ac] ≤ α ≤ 1,

by direct calculations. Hence we have Q ∈ Qµ.

Next we show that Qµ ⊂ Q. Take Q ∈ Qµ. Then

∫ ess.sup X

ess.inf X
Q[X > x]dx ≥

∫ ess.sup X

ess.inf X
{
∫
[P [X≤x],1]

(1 − P [X ≤ x]

α
)µ(dα)}dx,

holds for X ∈ L∞. We can easily see that the left term equals EQ[X] −
ess.inf X by Lemma 2.2. We calculate the right term. Note that P [X ≤ x] >
0, for any x > ess.inf X. We see that∫

(ess.inf X, ess.sup X]
{
∫
[P [X≤x],1]

(1 − P [X ≤ x]

α
)µ(dα)}dx

=
∫
(0,1]

{
∫ qα(X)

ess.inf X
(1 − P [X ≤ x]

α
)dx}µ(dα)

=
∫
(0,1]

{ 1

α
E[X ∧ qα(X)] + (1 − 1

α
)qα(X)}µ(dα)

− (1 − µ[{0}]) ess.inf X

=
∫
[0,1]

ηα(X)µ(dα) − ess.inf X,
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by Fubini’s theorem and Lemma 2.2. Hence we have

EQ[X] ≥
∫
[0,1]

ηα(X)µ(dα) = η(X) ≥ 0, X ∈ A,

and this implies that Q ∈ Q. This completes the proof.

3 Discrete Model

From now to the end of this paper, we use the following notation:

xy = (x1y1, x2y2, . . . , xMyM) ∈ RM , (19)

for x = (x1, x2, . . . , xM), y = (y1, y2, . . . , yM) ∈ RM .

We consider some maximization problem on hedging with a homogeneous
filtered value measure in a discrete time market model. The following setting
is parallel to that of Section 1. Let (Ω,F , P ) be a standard probability space
with a filtration {Fk}k=0,1,...,n. Also, let be Yk = (Y1,k, Y2,k, . . . , YM,k), k =
1, 2, . . . , n be identically distributed M -dimensional random variables such
that Yk is {Fk}-measurable and independent of Fl, l = 1, 2, . . . , k − 1. We
assume that Yi,k(ω) > 0, ω ∈ Ω, Y = min

i=1,2,...,M
ess.inf

ω
Yi,1(ω) > 0, and

Y = max
i=1,2,...,M

ess.sup
ω

Yi,1(ω) < ∞. We denote by P the set of all probability

measures on (Ω,F) which are absolutely continuous with respect to P .

We define M dimensional {Fk}-adapted process {Sk}k=1,2,...,n by

Sk = (S1,k, S2,k, . . . , SM,k),

Si,k = Si,0

k∏
l=1

Yi,l, i = 1, 2, . . .M, (20)

where S0 = (S1,0, S2,0, . . . , SM,0) ∈ (0,∞)M is a constant vector.

We call an M dimensional {Fk}-predictable process ξ = (ξk)k=1,2,... a
self-financing strategy, and denote by SF the set of all self-financing strat-
egy. Then we define a random variable Vk(v, ξ) for v ∈ (0,∞), ξ ∈ SF by

V0(v, ξ) = v and Vk(v, ξ) = v +
k∑

l=1

ξl · (Sl − Sl−1), k ∈ N.

As in section 1, we use the following type of mild value measure:

η(ν) =
∫ 1

0
ηα(ν)µ(dα), ν ∈ L∞, µ ∈ M, (21)
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and fix it. Let Φµ : [0, 1] → [0, 1], µ ∈ M be a mapping defined by (17). We
also define

Q = {Q ∈ P | EQ[X] ≥ 0 for all X ∈ L∞(Ω,F1, P )

such that η(νX) ≥ 0 hold }.

We assume the following.

Assumption 3.1. Q∩ ∩M
i=1{Q ∈ P | EQ[Yi,1] = 1} ̸= ∅.

Let us denote η(νX) by η̄(X) for X ∈ L∞(Ω,F , P ), where νX is the dis-
tribution of X. Obviously we have η̄(X) = infQ∈Q EQ[X], X ∈ L∞(Ω,F , P ).
Also we see that Q = {Q ∈ P | Q[A] ≥ Φµ(P [A]), A ∈ F} by Proposition
2.1. We denote

ψg(x, y) = η̄((xy) · (Y1 − 1) + g(xY1)), 1 = (1, 1, . . . , 1) ∈ RM , (22)

for x ∈ [0,∞)M , y ∈ RM , and g ∈ Ĉ([0,∞)M : R). Since

|{(xy) · (Y1 − 1) + g(xY1)} − {(x′y′) · (Y1 − 1) + g(x′Y1)}|
≤ K{(Y + 1)|xy − x′y′| + Y |x − x′|},

x, x′ ∈ [0,∞)M , y, y′ ∈ RM , for some K > 0, and η̄ is monotone, i.e.,
η̄(X) ≤ η̄(X ′), for X,X ′ ∈ L∞(Ω) such that X ≤ X ′, then we have

|ψg(x, y) − ψg(x
′, y′)| ≤ K{(Y + 1)|xy − x′y′| + Y |x − x′|}.

Hence (x, y) 7→ ψg(x, y) is continuous. Next we define

φg(x) = sup
y∈RM

ψg(x, y). (23)

Note that φg(x) < +∞, x ∈ [0,∞)M . Indeed, there exists Q̄ ∈ Q ∩
M∩
i=1

{Q ∈ P | EQ[Yi,1] = 1} by Assumption 3.1, and then we see that φg(x) ≤

EQ̄[g(xY1)] ≤ K(1 + |x|2m), for some K > 0. Also we have

φg(x) = sup
y∈RM

inf
Q∈Q

EQ[(xy) · (Y1 − 1) + g(xY1)]

= inf
Q∈Q

sup
y∈RM

EQ[(xy) · (Y1 − 1) + g(xY1)]

= inf
Q∈Q∩

∩M

i=1
{Q∈P | EQ[Yi,1]=1}

EQ[g(xY1)],
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by Takahashi’s Minimax Theorem in [16]. Since |g(xY1)−g(x′Y1)| ≤ KY |x−
x′| and |g(xY1)| ≤ K(1 + Y

2m|x|2m) holds for x, x′ ∈ [0,∞)M and g ∈
Ĉ([0,∞)M : R), where K > 0 is a constant which is independent of x, x′, Q,
the mapping φg : [0,∞)M → R belongs to Ĉ([0,∞)M : R). Then we can

define an operator H on Ĉ([0,∞)M : R) by Hg = φg. Also we inductively

define Hkg = H(Hk−1g), k = 1, 2, . . . and H0g = g for g ∈ Ĉ([0,∞)M : R).

Now we fix n ∈ N. We define random variables Lk(v, ξ), k = 0, 1, . . . , n,
v ∈ (0,∞), and ξ ∈ SF inductively by Ln(v, ξ) = Vn(v, ξ) + f(Sn) and

Lk−1(v, ξ) = η(Lk(v, ξ)|Fk−1), k = n, n − 1, . . . , 1, (24)

where f ∈ Ĉ([0,∞)M ;R). Obviously Lk(v, ξ), k = 0, 1, . . . , n equals the
homogeneous value measure for Vn(v, ξ) + f(Sn) at k.

We prove the following theorem, which is our main result in this section.

Theorem 3.2 (Bellman’s Principle). We have

sup
ξ′∈SF

Lk(v, (ξ1, ξ2, . . . , ξk, ξ
′
k+1, ξ

′
k+2, . . . , ξ

′
n)))

= Vk(v, ξ) + Hn−kf(Sk), k = 0, 1, . . . , n,

for any v ∈ (0,∞) and ξ ∈ SF .

We show a lemma to prove Theorem 3.2.

Lemma 3.3. For any g ∈ Ĉ([0,∞)M : R) and ε > 0, there exists a Borel
measurable function γε(x) = γε

g(x) = (γε
1(x), γε

2(x), . . . , γε
M(x)) on [0,∞)M

such that Hg(x) − ε ≤ η̄((xγε(x)) · (Y1 − 1) + g(xY1)) , x ∈ [0,∞)M holds.

Proof. First we define a multivalued mapping Γε : ([0,∞)M ,B[0,∞)M) ⇒
(RM ,B(RM)) by Γε(x) = {y ∈ RM | Hg(x) − ε ≤ ψg(x, y)}. Obviously
the set on the right side is nonempty, so it is sufficient to show that this
multivalued mapping is measurable, i.e.,

Γ−w,ε(A) = {x ∈ [0,∞)M | Γϵ(x) ∩ A ̸= ∅} ∈ B[0,∞)M , (25)

for any closed set A ⊂ RM . If Γε is measurable, there exists a measurable se-
lection γε(x) ∈ Γε(x) and this mapping satisfies the condition. Also, we may
assume that A is compact. Indeed, if Γ−w,ε(A′) ∈ B[0,∞)M for any compact

set A′, we see that Γ−w,ε(A) =
∞∪

m=1

Γ−w,ε(A ∩ [−m,m]M) ∈ B[0,∞)M .

11



We show that Γ−w,ε(A) is closed for any compact set A. Take a sequence
(xm)m∈N of Γ−w,ε(A) such that limm→∞ xm = x ∈ [0,∞)M . Then there
exists a ym ∈ Γε(xm) ∩ A for each m. Since A is compact, we can choose
a subsequence (ym(l))l∈N of (ym)m∈N such that ym(l) converges to some y ∈
A as l → ∞. Taking liml→∞ in both sides of the equation Hg(xm(l)) −
ε ≤ ψg(xm(l), ym(l)), we have Hg(x) − ε ≤ ψg(x, y) because ψg and Hg are
continuous. This implies that y ∈ Γε(x) ∩ A and x ∈ Γ−w,ε(A).

Now we give the proof of Theorem 3.2. First we show that

Lk(v, ξ) ≤ Vk(v, ξ) + Hn−kf(Sk),

by mathematical induction on k. Obviously, the claim holds when k = n.
Suppose that the claim holds for some k, Then we have

Lk−1(v, ξ) = η(Lk(v, ξ)|Fk−1)

≤ η(Vk(v, ξ) + Hn−kf(Sk)|Fk−1)

= Vk−1(v, ξ) + η((Sk−1ξk) · (Yk − 1) + Hn−kf(Sk−1Yk)|Fk−1)

≤ Vk−1(v, ξ) + Hn−(k−1)f(Sk−1).

Hence we have the claim.

Next we show that there exists ξε ∈ SF for ε > 0 such that

Vk(v, ξ) + Hn−kf(Sk) −
kε

n
≤ Lk(v, (ξ1, ξ2, . . . , ξk, ξ

ε
k+1, ξ

ε
k+2, . . . , ξ

ε
n)), k = n, n − 1, . . . , 1

for any ξ ∈ SF . Applying Lemma 3.3 for g = f , we see that there exists
some Borel measurable function γε on [0,∞)M such that

(Hf)(x) − ε

n
≤ η̄((xγε(x)) · (Y1 − 1) + f(xY1)),

for x ∈ [0,∞)M . Then, ξε
n = γε(Sn−1) is an {Fn−1}-measurable random

variable such that

Vn−1(v, ξ) + (Hf)(Sn−1) −
ε

n
≤ Vn−1(v, ξ) + η̄((xγε(x)) · (Y1 − 1) + f(xY1))|x=Sn−1

≤ Vn−1(v, ξ) + η((Sn−1ξ
ε
n) · (Yn − 1) + f(Sn−1Yn)|Fn−1)

≤ η(Vn(v, ξ) + f(Sn)|Fn−1)

≤ Ln−1(v, ξ1, ξ2, . . . , ξn−1, ξ
ε
n).

Using induction, we can construct ξε such that the condition holds by the
same way. This completes the proof of Theorem 3.2.
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4 Proof of Theorem 1.5

4.1 Preparations

Let (Ω,F , P ) be the probability space defined in Section 1.2. For k ∈ N, we
denote by Lk the set of measurable mappings ρ : Ω × Z → R which satisfy
the following:

ρ(·, z) is {Fk−1} measurable for each z ∈ Z,
N∑

j=1

ρ(ω, zj)pj = 1, ω ∈ Ω,

∑
j∈J

ρ(·, zj)pj ≥ Φµ(
∑
j∈J

pj), J ⊂ {1, 2, . . . ,M}, zj ∈ Z, j ∈ J.

Also we denote by Q(n), n ∈ N the set of probability measures Q ∈ P which
satisfy the following:

E[
dQ

dP
|Fn] =

n∏
k=1

ρk(·, Zk), ρk ∈ Lk,∫
Ω

ρk(ω
′, Zk(ω))Y

(n)
i,k (ω)P (dω) = 1, ω′ ∈ Ω, k = 1, 2, . . . , n.

Let us denote X
(n)
i,k =

k∏
l=1

Y
(n)
i,l for n ∈ N, i = 1, 2, . . . ,M, and k = 1, 2, . . . , n.

We also denote X
(n)
k = (X

(n)
1,k , X

(n)
2,k . . . X

(n)
M,k), k = 1, 2, . . . , n. We define

a
(n)
ij = exp(zij

√
T/n + biT/n), i = 1, 2, . . . ,M, j = 1, 2, . . . , N , where

zj = (z1j, z2j, . . . , zMj) ∈ Z.

Our purpose in this subsection is to prove the following.

Lemma 4.1.
(1) (H(n))kg(x) = inf

Q∈Q(n)
EQ[g(xX

(n)
k )], n ∈ N, g ∈ Ĉ([0,∞)M : R),

where H(n), n ∈ N are operators on Ĉ([0,∞)M : R) that correspond to H
in Section 3.
(2) sup

n∈N
sup

Q∈Q(n)

EQ[ max
k=1,2,...,n

|X(n)
k |2m] < ∞, m ∈ N.

(3) There exists a positive number L, which only depends on M , such that

EQ[|X(n)
k+l − X

(n)
k |4] ≤ L(lT/n)2 holds for any k, l = 0, 1, . . . , n, k + l ≤ n,

and Q ∈ Q(n).
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Proof. We show assertion (1). We see by Proposition 2.1 that η̄(X) =
inf

Q∈Q(n)
1

EQ[X], for X ∈ L∞(Ω,F1, P ), where

Q(n)

1 = {Q ∈ P | Q[A] ≥ Φµ(P [A]), A ∈ F1}

= {Q ∈ P | E[
dQ

dP
|F1] = ρ1(·, Z1) ∈ L1} (26)

Then we have H(n)g(x) = inf
Q∈Q(n)

1
EQ[g(xY

(n)
1 )], where Q(n)

1 = Q(n)
1 ∩∩M

i=1{Q ∈ P | E[ρ1(ω
′, Z1)Y

(n)
i,1 ] = 1, ω′ ∈ Ω}, by a way similar to that in

Section 3. We can easily see that Q(n) ⊂ Q(n)
1 . We show the inverse imple-

ment. Take Q ∈ Q(n)
1 and define Q̃ ∈ P(n) by E[dQ̃/dP |Fn] =

∏n
k=1 ρ̃k(·, Zk),

where ρ̃k(ω, z) = E[
dQ

dP
|F1](ω), ω ∈ Ω, z ∈ Z, k = 1, 2, . . . , n. Then we

see that Q̃ ∈ Q(n) and EQ[g(xY
(n)
1 )] = EQ̃[g(xY

(n)
1 )]. This implies that

H(n)g(x) = inf
Q∈Q(n)

EQ[g(xY
(n)
1 )].

Suppose that (H(n))lg(x) = inf
Q∈Q(n)

EQ[g(xX
(n)
l )], l ≤ k, g ∈ Ĉ([0,∞)M)

holds for some k ∈ {1, 2, . . . , n − 1}. First we show that

(H(n))k+1g(x) ≤ inf
Q∈Q(n)

EQ[g(xX
(n)
k+1)]. (27)

Take Q ∈ Q(n) and ρl ∈ Ll, l ≤ n such that E[dQ/dP |Fn] =
∏n

l=1 ρl(·, Zl)
holds. We define Qω̃ ∈ P for each ω̃ ∈ Ω by E[dQω̃/dP |Fn] =

∏n
l=1 ρ′

l(·, Zl),
where ρ′

l(ω, z) = ρ′
k+1(ω̃, z), ω ∈ Ω, z ∈ Z. Then we see that Qω̃ ∈ Q(n) and

EQ[g(xX
(n)
k+1)|Fk](ω̃) = EQ[g(yY

(n)
k+1)|Fk](ω̃)|

y=xX
(n)
k

= EQω̃

[g(yY
(n)
1 )]|

y=xX
(n)
k

≥ H(n)g(xX
(n)
k ).

Also we have

EQ[g(xX
(n)
k+1)] = EQ[EQ[g(xX

(n)
k+1)|Fk]]

≥ EQ[H(n)g(xX
(n)
k )] ≥ (H(n))kH(n)g(x) = (H(n))k+1g(x).

This implies that (27) holds.

Next we show that

(H(n))k+1g(x) ≥ inf
Q∈Q(n)

EQ[g(xX
(n)
k+1)]. (28)
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Take ε > 0. Then we see by assumption that there exist Q̄0, Q̄j ∈ Q(n) j =
1, 2, . . . , N such that

(H(n))k+1g(x) ≥ EQ̄0

[(H(n))kg(xY
(n)
1 )] − ε

2
,

(H(n))kg(xa
(n)
j ) ≥ EQ̄j

[g(xa
(n)
j X

(n)
k )] − ε

2
. (29)

Take ρ0
l , ρ

j
l ∈ Ll, l = 1, 2, . . . , n, j = 1, 2, . . . ,M , such that E[

dQ̄0

dP
|Fn] =

n∏
l=1

ρ̄0
l (·, Zl), E[

dQ̄j

dP
|Fn] =

n∏
l=1

ρ̄j
l (·, Zl) hold. Then we define Q̄ ∈ P by

E[
dQ̄

dP
|Fn] =

n∏
l=1

ρ̄k(·, Zk), where

ρ̄1 = ρ̄0
1,

ρ̄l =
N∑

j=1

ρ̄j
l−11{Z1=zj}, l = 2, 3, . . . , n. (30)

We see that Q̄ ∈ Q(n) and

(H(n))k+1g(x) ≥ EQ̄[g(xX
(n)
k+1)] − ε ≥ inf

Q∈Q(n)
EQ[g(xX

(n)
k+1)] − ε. (31)

Since ε > 0 is arbitrary, we have (28). This shows the assertion (1).

Next we show the assertion (2). Since X
(n)
i,n is martingale under Q ∈ Q(n),

it is sufficient to show that supn∈N supQ∈Q(n) EQ[|X(n)
i,n |2m] < ∞, for each

i = 1, 2, . . . ,M . Take Q ∈ Q(n) and fix ω ∈ Ω. We denote qω,k,j = Q[Zk =
zj|Fk−1](ω), k = 1, 2, . . . , n, j = 1, 2, . . . , N . We see that

1 = EQ[Y
(n)
i,k |Fk−1](ω) =

N∑
j=1

qω,k,j(a
(n)
il )

= 1 + EQ[Zi,k|Fk−1](ω)

√
T

n
+ bi

T

n

+
N∑

j=1

qω,k,j{exp (zij

√
T

n
+ bi

T

n
) − (1 + zij

√
T

n
+ bi

T

n
)}.

Then we have

EQ[|Y (n)
i,k |2m|Fk−1](ω)
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= 1 + 2mEQ[Zi,k|Fk−1](ω)

√
T

n
+ 2mbi

T

n

+
N∑

j=1

qω,k,j{exp (2mzij

√
T

n
+ 2mbi

T

n
) − (1 + 2mzij

√
T

n
+ 2mbi

T

n
)},

and

EQ[|Y (n)
i,k |2m|Fk−1](ω)

≤ 1 +
N∑

j=1

{2m| exp (zij

√
T

n
+ bi

T

n
) − (1 + zij

√
T

n
+ bi

T

n
)|

+ | exp (2mzij

√
T

n
+ 2mbi

T

n
) − (1 + 2mzij

√
T

n
+ 2mbi

T

n
)|}.

for k = 1, 2, . . . , n. We denote by b(n) the right term of this inequality. Note
that b(n) is independent of k, ω and Q. We see that lim

n→∞
n(b(n) − 1) exists

and |n(b(n) − 1)| ≤ b, n ∈ N, for some b > 0. Then we have

EQ[|X(n)
i,n |2m|] ≤ EQ[|X(n)

i,n−1|2mEQ[|Y (n)
i,n |2m|Fn−1]]

≤ (1 +
b

n
)EQ[|X(n)

i,n−1|2m] ≤ · · · ≤ (1 +
b

n
)n, Q ∈ Q(n).

This implies that lim sup
n→∞

sup
Q∈Q(n)

EQ[|X(n)
i,n |2m] ≤ eb. Hence we have the asser-

tion.

We show that assertion (3) holds. We see that there exists some c > 0

such that EQ[|Y (n)
i,k+1 − 1|4|Fk](ω) ≤ c(

T

n
)2, for each i ≤ M, k ≤ n − 1, Q

and ω by an argument similar to that of (2). Then using the result of (2), we

have EQ[|X(n)
i,k+1 − X

(n)
i,k |4|] ≤ c(T/n)2EQ[|X(n)

i,k |4] ≤ c′(T/n)2 for some c′ > 0.
Hence we have assertion (3) by Burkholder’s Inequality.

4.2 Proposition on Limit of Value

Let P̄ be the set of probability measures P̄ on (C[0,∞)M ,B[C[0,∞)M ]) such
that the following is satisfied:

The coordinate function w(·) = (w1(·), . . . , wM(·)) is a positive

martingale with respect to {Bt}t∈[0,T ] under P̄ , where we define

{Bt}t∈[0,T ] by Bt = σ(w(u); u ≤ t), 0 ≤ t ≤ T.
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P̄ (wi(0) = 1, i = 1, 2, . . . ,M) = 1.

〈wi, wi′〉·, i, i′ ∈ {1, 2, . . . ,M} are absolutely continuous

with respect to Lebesgue measure, and

(
1

wi(u)wi′(u)

d〈wi, wi′〉
dt

(u))i,i′=1,2,...,M ∈ Γ, u ∈ [0, T ], P̄ a.s.

Our purpose in this subsection is to prove the following.

Proposition 4.2. Take g ∈ Ĉ([0,∞)M : R) and an arbitrary subsequence
(n̄) of (n)n∈N.
(1) There exist a subsequence (n̄(k))k∈N of (n̄) and a continuous mapping
Wg : [0, T ] × [0,∞)M → R such that

Wg(t, x) = lim
k→∞

(H(n̄(k)))n̄(k)−[n̄(k)t/T ]g(x),

for any (t, x) ∈ [0, T ] × [0,∞)M , where [x] represents the greatest integer
that is not greater than x. Also this convergence is uniform on any compact
subsets on [0, T ] × [0,∞)M .
(2) Wg(t, ·) belongs to Ĉ([0,∞)M : R) for each t ∈ [0, T ].
(3) There exists P̄t,x ∈ P̄ such that Wg(t, x) = EP̄t,x [g(xw(T − t))] holds for
any (t, x) ∈ [0, T ] × [0,∞)M ,

(4) Wg(t, x) = lim
k→∞

(H(n̄(k)))[
n̄(k)t′

T
]Wg(t+ t′, ·)(x), for t, t′ ∈ [0, T ] with t+ t′ ∈

[0, T ] and x ∈ [0,∞)M .
(5) Wg is a viscosity subsolution of Hamilton-Jacobi-Bellman equation (13).

We need two lemmas to prove Lemma 4.2. Let us define X(t, ω; n)
= (X1(t, ω; n), X2(t, ω; n), . . . , XM(t, ω; n)), t ∈ [0, T ], ω ∈ Ω, n ∈ N by

X(t, ω; n) ≡ nt − T [nt/T ]

T
X

(n)
[nt/T ]+1 +

T ([nt/T ] + 1) − nt

T
X

(n)
[nt/T ], t ̸= T,

X(T, ω; n) ≡ X(n)
n , (32)

i.e., X(t; n) is the linear interpolation of X(n)
· .

Lemma 4.3. Let g ∈ Ĉ([0,∞)M : R). Then we have

|(H(n))k′
g(x) − (H(n))kg(x)| ≤ K̄|x|

√
T

n
|k′ − k|, k, k′ ∈ {0, 1, . . . , n},

for some K̄ > 0 which does not depend on n ∈ N.
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Proof. We may assume that k′ > k. Let K > 0 be a constant such that
|g(x)| ≤ K(1 + |x|2m), |g(x) − g(x′)| ≤ K|x − x′|, x, x′ ∈ [0,∞)M holds. By
virtue of Lemma 4.1(3), we have

|EQ[g(xX
(n)
k′ )] − EQ[g(xX

(n)
k )]| ≤ EQ[|g(xX

(n)
k′ ) − g(xX

(n)
k )|]

≤ K|x|EQ[|X(n)
k′ − X

(n)
k |4]

1
4 ≤ K̄|x|

√
T

n
|k′ − k|

for Q ∈ Q(n). Hence we have the assertion.

Lemma 4.4. Let (Q(n))n∈N, Q(n) ∈ Q(n) be an arbitrary sequence. We
define a probability measure P (n) on (C[0,∞)M ,B[C[0,∞)M ]) by P (n) =
Q(n) ◦ X(·; n)−1 for each n ∈ N. Then the sequence (P (n))n∈N is tight.
Moreover any cluster point of (P (n))n∈N belongs to P̄.

Proof. We can easily see that

EP (n)

[|w(t) − w(t′)|4] = EQ(n)

[|X(t′; n) − X(t; n)|4]
≤ K|t′ − t|2, t.t′ ∈ [0, T ],

for some K > 0 by Lemma 4.1. Hence (P (n))n∈N is tight.

Let P̄ be a cluster point of (P (n))n∈N. Obviously we see that the coor-
dinate function w(·) = (w1(·), w2(·), . . . , wM(·)) is a positive martingale with
respect to {Bt}t∈[0,T ] under P̄ , and P̄ (wi(0) = 1, i = 1, 2, . . . ,M) = 1.

For each n ∈ N and ω̃ ∈ Ω, we define a probability measure Q̂
(n)
ω̃,k ∈ Q̂, k =

0, 1, . . . , n − 1 by Q̂
(n)
ω̃,k[Â] = EP̂ [ρ

(n)
k (ω̃, Ẑ)1Â], where E[dQ(n)/dP |Fn] =∏n

l=1 ρ
(n)
l (·, Zi). Let (gii′)i,i′=1,2,...,M ∈ C([0, T ] × C[0,∞)M)M×M be a ma-

trix valued function such that each gii′ , i, i′ = 1, 2, . . . ,M is bounded {Bt}-
adapted function, and (gii′(u,w)) ∈ RM×M is nonnegative definite for all
(u,w) ∈ [0, T ] × C[0,∞)M . For n ∈ N, k = 1, 2, . . . , n we have

EP (n)

[
M∑

i,i′=1

gii′(
kT

n
)(wi(

kT

n
+

T

n
) − wi(

kT

n
))(wi′(

kT

n
+

T

n
) − wi′(

kT

n
))]

= EQ(n)

[
M∑

i,i′=1

gii′(
kT

n
,X(·; n))EQ(n)

[(X
(n)
i,k+1 − X

(n)
i,k )(X

(n)
i′,k+1 − X

(n)
i′,k)|Fk]]

= EQ(n)

[
M∑

i,i′=1

gii′(
kT

n
,X(·; n))Xi,kXi′,k

EQ̂
(n)
ω,k [(Ŷ

(n)
i − 1)(Ŷ

(n)
i′ − 1)]

T/n

T

n
]

≤ EP (n)

[max
Q̂

M∑
i,i′=1

gii′(
kT

n
)wi(

kT

n
)wi′(

kT

n
)
EQ̂[(Y

(n)
i − 1)(Y

(n)
i′ − 1)]

T/n

T

n
],
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where Q̂ runs Q̂ ∩ ∩M
i=1{Q̂ ∈ P̂ | EQ̂[Ŷ

(n)
i ] = 1}. Then we see that

∫ t

s

M∑
i,i′=1

gii′(u,w)d〈wi, wi′〉u ≤
∫ t

s
(max

γ∈Γ

M∑
i,i′=1

γii′gii′(u,w)wi(u)wi′(u))du,

for t, s ∈ [0, T ]. Also we have

∫ t

s

M∑
i,i′=1

gii′(u,w)d〈wi, wi′〉u ≥
∫ t

s
(min

γ∈Γ

M∑
i,i′=1

γii′gii′(u,w)wi(u)wi′(u))du,

for t, s ∈ [0, T ], by the same way. Hence we deduce that P̄ ∈ P̄ . This
completes the proof.

Now we show Proposition 4.2. Let K > 0 be a positive number such that
|g(x) − g(x′)| ≤ K|x − x′|, x, x′ ∈ [0,∞)M and |g(x)| ≤ K(1 + |x|2m), x ∈
[0,∞)M hold. We denote W (n)

g (t, x) = (H(n))n−[nt/T ]g(x). Then using Lemma
4.3, we see that

|W (n)
g (t, x) − W (n)

g (t, x′)| ≤ K|x − x′|,
|W (n)

g (t, x)| ≤ K(1 + |x|2m),

|W (n)
g (t, x) − W (n)

g (t′, x)| ≤ K|x|
√

T

n
|[nt

T
] − [

nt′

T
]|, (33)

for some K > 0 which is independent of n ∈ N.

(1): We see that the family {W (n̄)
g (t, ·)}n∈N, t∈[0,T ] ⊂ Ĉ([0,∞)M : R) is

uniformly bounded and equicontinuous on any compact set of [0,∞)M . Then
using Ascoli-Arzela’s theorem we see that there exists a continuous function
W1,g,t on [0, 1]M for each t ∈ [0, T ] and a subsequence (n̄1) of (n̄), which does
not depend on t, such that

sup
x∈[0,1]M

|W (n̄1)
g (t, x) − W1,g,t(x)| → 0, n̄1 → ∞. (34)

Also we see by the same way that there exists a continuous function W2,g,t

on [0, 2]M for each t ∈ [0, T ] and a subsequence (n̄2) of (n̄1), which does not
depend on t, such that

sup
x∈[0,2]M

|W (n̄2)
g (t, x) − W2,g,t(x)| → 0, n̄2 → ∞. (35)

Obviously W1,g,t = W2,g,t on [0, 1]M , for each t ∈ [0, T ].
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Then for each l ∈ N, we can inductively define continuous functions
Wl+1,g,t on [0, l + 1]M for t ∈ [0, T ] and subsequences (n̄l+1) of (n̄l), which
does not depend on t, such that W1,g,t = W2,g,t = · · · = Wl+1,g,t on [0, l]M . We
also define continuous functions Wg,t on [0,∞)M for t ∈ [0, T ] by Wg,t(x) =
Wl,g,t(x) on [0, l]M . Obviously Wg,t is well-defined, and we see that the se-
quence (n̄(k)), n̄(k) = n̄k(k), k ∈ N satisfies limk→∞ W (n̄(k))

g (t, x) = Wg,t(x)
for (t, x) ∈ [0, T ] × [0,∞)M . Using (33), we have

|Wg,t(x) − Wg,t′(x
′)| ≤ K|x − x′| + K|x|

√
|t − t′| (36)

for (t, x), (t′, x′) ∈ [0, T ] × [0,∞)M . This implies that the mapping (t, x) →
Wg,t(x) is continuous. Then we can define a continuous mapping Wg : [0, T ]×
[0,∞)M by Wg(t, x) = Wg,t(x). Obviously, Wg and (n̄(k))k∈N satisfy the
assertion.

(2): We can easily show the assertion by letting k → ∞ on both sides of the
inequalities (33).

(3): Fix (t, x) ∈ [0, T ]×[0,∞)M . Hereafter we simply write (n)n∈N instead of

(n̄(k))k∈N for convention. We see by Lemma 4.1 that there exists Q
(n)
l ∈ Q(n)

for each n, l such that W (n)
g (t, x) ≥ EQ

(n)
l [g(xX

(n)
n−[nt/T ])] ≥ W (n)

g (t, x) − 1/l.

Let P
(n)
l = Q

(n)
l ◦ X(·; n)−1. Since (P

n)
l )n,l∈N is tight by Lemma 4.4, then

there exist a cluster point Pt,x ∈ P̄ . Obviously Pt,x satisfies the condition.

(4): Fix t, t′ ∈ [0, T ], x ∈ [0,∞)M . First we claim that

|(H(n))[nt′/T ]W (n)
g (t + t′, ·)(x) − (H(n))[nt′/T ]Wg(t + t′, ·)(x)| → 0, (37)

as n → ∞. Fix ε > 0. Since the convergence W (n)
g (t + t′, ·) → Wg(t +

t′, ·), n → ∞ is uniform on
M∏
i=1

[0, xiR], for each R > 0, there exists n(R) ∈ N

such that

sup
y∈

∏M

i=1
[0,xiR]

|W (n)
g (t + t′, y) − Wg(t + t′, y)| < ε/2,

for n > n(R). We denote

F (n) = W (n)
g (t + t′, ·)(xX

(n)
[nt′/T ]) − Wg(t + t′, ·)(xX

(n)
[nt′/T ]), (38)

for n ∈ N. Then for each Q(n) ∈ Q(n), n > n(R) we have

|EQ(n)

[F (n)]|

20



≤ EQ(n)

[|F (n)|1{|X(n)

[nt′/T ]
|≤R}] + EQ(n)

[|F (n)|1{|X(n)

[nt′/T ]
|>R}]

≤ ε

2
+ EQ(n)

[|F (n)|2]
1
2 Q(n)[|X(n)

[nt′/T ]| > R]
1
2

≤ ε

2
+

K

R
EQ(n)

[1 + |X(n)
[nt′/T ]|

2m]
1
2 EQ(n)

[|X(n)
[nt′/T ]|

2]
1
2

≤ ε

2
+

K ′

R
,

where K,K ′ are positive numbers which do not depend on R, n, and Q(n).
Let R = ε/2K ′ and n0 = n(ε/2K ′). Then we have |EQ(n)

[F (n)]| < ε and

|(H(n))[nt′/T ]W (n)
g (t + t′, ·)(x) − (H(n))[nt′/T ]Wg(t + t′, ·)(x)| ≤ ε,

for n > n0. Hence we have the claim.

Also we see that |W (n)
g (t, x) − Wg(t, x)| → 0, as n → ∞ and,

|(H(n))[nt′
T

]W (n)
g (t + t′, ·)(x) − W (n)

g (t, x)|
= |(H(n))n−[n(t+t′)/T ]+[nt′/T ]g(x) − (Hn)n−[nt/T ]g(x)|

≤ K|x|
√

T

n
|[nt′

T
] + [

nt

T
] − [

n(t + t′)

T
]| → 0,

as n → ∞. We have the assertion from these results.

(5): Take (t̄, x̄) ∈ [0, T ) × [0,∞)M . Let Û ∈ C∞([0, T ] × [0,∞)M) be a
function such that Û(t̄, x̄) = Wg(t̄, x̄) and Û ≥ Wg on some neighbour-
hood V of (t̄, x̄) hold. We can easily see by (2) that Wg(t, x) ≤ K(1 + |x|2m)

for some K > 0, m ∈ M. Then we may assume that Û(t, x) ≥ Wg(t, x), and

|Û(t, x)|+ |(∂Û/∂t)(t, x)|+∑
i,i′ |xixi′(∂

2Û/∂xi∂xi′)(t, x)| ≤ K(1+ |x|2m), for
any (t, x) ∈ [0, T ] × [0,∞)M . Let γ̄ = (γ̄i,i′) ∈ Γ be the element such that

M∑
i,i′=1

1

2
γ̄i,i′x̄ix̄i′

∂2Û

∂xixi′
(t̄, x̄) = min

γ∈Γ

M∑
i,i′=1

1

2
γi,i′ x̄ix̄i′

∂2Û

∂xixi′
(t̄, x̄)

= min
Q̂

M∑
i,i′=1

1

2
EQ̂[ẐiẐi′ ]x̄ix̄i′

∂2Û

∂xixi′
(t̄, x̄),

where Q̂ runs Q̂ ∩ ∩M
i=1{Q̂ ∈ P̂ | EQ̂[Ẑi] = 0}.

Also, let Q̂(n) ∈ Q̂ ∩ ∩M
i=1{Q̂ ∈ P̂ | EQ̂[Ŷ

(n)
i ] = 1}, n ∈ N be measures

that attain the minimal of

min
Q̂

M∑
i,i′=1

1

2

EQ̂[(Ŷ
(n)
i − 1)(Ŷ

(n)
i′ − 1)]

T/n
x̄ix̄i′

∂2Û

∂xixi′
(t̄, x̄), n ∈ N,
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where Q̂ runs Q̂ ∩ ∩M
i=1{Q̂ ∈ P̂ | EQ̂[Ŷ

(n)
i ] = 1} for each n ∈ N. Note

that we can naturally regard Q̂(n) as a probability measure on (Ω,F1) for
each n ∈ N. Take ρ(n) ∈ L1 such that dQ̂(n)/dP = ρ(n)(·, Z1) holds. We

define Q̄(n) ∈ Q(n) by E[
dQ̄(n)

dP
|Fn] =

n∏
k=1

ρ̄
(n)
k (·, Zk), where ρ̄

(n)
k = ρ(n), k =

1, 2, . . . , n,, and P̄ (n) = Q̄(n) ◦ X(·; n)−1 for n ∈ N. We see that there exists
a cluster point P̄ ∈ P of {P̄ (n)}n∈N and d〈wi, wi′〉u = γ̄i,i′wi(u)wi′(u)du, P̄ -
a.s., by an argument similar to that of the proof of Lemma 4.4. Then we
have

Û(t̄, x̄) = Wg(t̄, x̄) = lim
k→∞

(H(n))[nh/T ]Wg(t̄ + h, ·)(x̄)

≤ lim sup
k→∞

EP̄ (n)

[Wg(t̄ + h, x̄w(
T

n
[
nh

T
])]

= EP̄ [Wg(t̄ + h, x̄w(h))] ≤ EP̄ [Û(t̄ + h, x̄w(h))].

Then we see by Ito’s formula that

0 ≤ EP̄ [
∫ h

0
(
∂Û

∂t
+

M∑
i,i′=1

1

2
γ̄i,i′xixi′

∂2Û

∂xixi′
)(t̄ + u, x̄w(u))du]. (39)

Dividing both sides by h > 0 and letting h → ∞, we have

0 ≤ (
∂Û

∂t
+

M∑
i,i′=1

1

2
γ̄i,i′xixi′

∂2Û

∂xixi′
)(t̄, x̄)

= (
∂Û

∂t
+ min

γ∈Γ

M∑
i,i′=1

1

2
γi,i′x̄ix̄i′

∂2Û

∂xi∂xi′
)(t̄, x̄).

This completes the proof.

4.3 Conclusion

Now we prove Theorem 1.5, which is our main result in this paper. Take
an arbitrary subsequence (n̄) of (n)n∈N and define Wf as in Proposition 4.2.
Using Proposition 4.2 (3), We have inf P̄∈P̄ EP̄ [f(xw(T − t))] ≤ Wf (t, x) for
(t, x) ∈ [0, T ] × [0,∞)M . On the other hand, we have the inverse inequality
by Theorem A.2, Proposition A.4, and Proposition 4.2 (3). Then we have

Wf (t, x) = inf
P̄∈P̄

EP̄ [f(xw(T − t))].

Since the subsequence (n̄) is arbitrary, U(t, x) = lim
n→∞

(H(n))n−[nt/T ]T/nf(x)

exists for any t ∈ [0, T ], x ∈ [0,∞)M , and equals inf
P̄∈P̄

EP̄ [f(xw(T−t))]. Then
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we see that U is a viscosity solution of (13) because U(t, x) = Wf (t, x) =
EP̄ [f(xw(T − t))] is both a supersolution and subsolution. Also the unique-
ness holds by Corollary A.2. Hence we have the assertion from Theorem 3.2.
This completes the proof.

A Some Remarks on a Bellman Equation and

viscosity solution

We recall the definition and some property of viscosity solution in this ap-
pendix. The reader also refer to [6] for detail.

Definition A.1. We say that a continuous function U : [0, T ]×[0,∞)M → R
is a viscosity supersolution (resp. subsolution) of Hamilton-Jacobi-Bellman
equation (13), if

(
∂Û

∂t
+ inf

γ∈Γ

M∑
i,i′=1

1

2
γi,i′xixi′

∂2Û

∂xixi′
)(t̄, x̄) ≤ 0 (resp. ≥ 0)

holds for any (t̄, x̄) ∈ [0, T ]×[0,∞)M and Û ∈ C∞([0, T ]×[0,∞)M) such that
Û(t̄, x̄) = U(t̄, x̄) and Û −U takes its local maximum (resp. local minimum)
value 0 at (t̄, x̄). Also we say that a function U : [0, T ] × [0,∞)M → R is a
viscosity solution if it is both a viscosity supersolution and subsolution.

We will need the following comparison theorem for a viscosity supersolu-
tion and a subsolution due to [14].

Theorem A.2. Let U and U be a viscosity supersolution and a subsolution
of Hamilton-Jacobi-Bellman equation (13). If the following inequalities:

sup
[0,T )×[0,∞)M

U(t, x)/(|x|2 + 1)m < ∞,

inf
[0,T )×[0,∞)M

U(t, x)/(|x|2 + 1)m > −∞, m > 0,

U(T, x) ≤ U(T, x), x ∈ [0,∞)M ,

hold, then we have U(t, x) ≤ U(t, x), (t, x) ∈ [0, T )× [0,∞)M . In particular,
the viscosity solution U of Hamilton-Jacobi-Bellman equation (13) satisfying
U ∈ Ĉ([0,∞)M : R) is unique.

Before we state a proposition on Hamilton-Jacobi-Bellman equation (13),
we prove a lemma.
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Lemma A.3. There exists Cm > 0 for each m ∈ N such that

EP̄ [max
u∈[0,t]

|w(u) − 1|2m] ≤ Cmtm,

EP̄ [ max
u∈[0,T ]

|w(u)|2m] ≤ Cm, t ∈ [0, T ], P̄ ∈ P̄ .

Proof. We see by Burkholder’s inequality that

EP̄ [max
u∈[0,t]

|w(u) − 1|2m] ≤ cEP̄ [
M∑
i=1

〈wi〉mu ]

≤ cEP̄ [(
∫ t

0
max
γ∈Γ

M∑
i=1

γii|wi(u)|2du)m] ≤ cγmEP̄ [(
∫ t

0
|w(u)|2du)m] (40)

≤ ctmEP̄ [
∫ t

0
|w(u)|2mdu] ≤ c + ctmEP̄ [

∫ t

0
max
s∈[0,u]

|w(u) − 1|2mdu]

where all c stand for positive numbers (not necessarily equal) which do not
depend on P̄ ∈ P̄ and t. Then we have the assertion by Gronwall’s inequality.

Let Ū(t, x) = inf
P̄∈P̄

EP̄ [f̃(xw(T − t))]. Using Lemma A.3, We can easily

see that Ū ∈ Ĉ([0,∞)M : R). Now we show the following.

Proposition A.4. Ū(t, x) is a viscosity supersolution of (13).

Proof. First we denote by Λ a set of control which is composed of pairs
{(Ω,F , P ; {Ft}t∈[0,T ]), X} such that the following satisfied:

(Ω,F , P ; {Ft}t∈[0,T ]) is a filtered probability space,

X = (X1, X2, . . . , XM) is a continuous positive martingale

with respect to {Ft}t∈[0,T ] under P,

P (Xi(0) = 1, i = 1, 2, . . . ,M) = 1.

〈Xi, Xi′〉·, i, i′ ∈ {1, 2, . . . ,M} are absolutely continuous

with respect to Lebesgue measure, and

(
1

Xi(u)Xi′(u)

d〈Xi, Xi′〉
dt

(u))i,i′=1,2,...,M ∈ Γ, u ∈ [0, T ], P a.s.

(41)
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We define Qtg(x), t ∈ [0, T ), x ∈ [0,∞)M , and g ∈ C̄([0,∞)M : R) by

Qtg(x) = inf
P̄∈P̄

EP̄ [g(xw(t))]. (42)

Then we can easily see that Qtg(x) = inf
λ∈Λ

EP [g(xXt)] since PX−1 ∈ P̄ .

step1 : We show that Qt+t′g(x) ≥ QtQt′g(x), t, t′ ∈ [0, T ], x ∈ [0,∞)M .
We define a filtration {B̂u}u∈[0,T ] on (C[0,∞)M ,B[C[0,∞)M ]) and a M -

dimensional {B̂u}-adapted process X̂u = (X̂1,u, X̂2,u, . . . , X̂M,u), u ∈ [0, T ],
by

B̂u =

{
Bt+u, 0 ≤ u ≤ T − t,
BT , T − t < u ≤ T .

X̂i,u(w) =

{
wi(t + u)/wi(t), 0 ≤ u ≤ T − t,
wi(T )/wi(t), T − t < u ≤ T .

Since (C[0,∞)M ,B[C[0,∞)M ], P̄ ) is standard probability space for each
P̄ ∈ P̄ , there exists a regular conditional measure P̄t(w,B) : C[0,∞)M ×
B[C[0,∞)M ] → [0, 1], t ∈ [0, t]. Then we can easily see that

((C[0,∞)M ,B[C[0,∞)M ], P̄t(w, ·) ; {B̂u}u∈[0,T ]), X̂) ∈ Λ,

and

EP̄ [g(xw(t + t′))] = EP̄ [EP̄ [g(xw(t + t′))|Bt]]

= EP̄ [
∫

g(xw(t′)X̂t′)P̂t(w, dw′)] ≥ EP̂ [Qt′g(xw(t))] ≥ QtQt′g(x),

for P̄ ∈ P̄ . Hence we have the assertion.

step2 : Take (t̄, x̄) ∈ [0, T )× [0,∞)M and fix it. Let Û ∈ C∞([0, T ]× [0,∞)M)
be a function such that Û(t̄, x̄) = U(t̄, x̄) and Û ≤ Uon some neighbourhood
V of (t̄, x̄) hold. We may assume that Û(t, x) ≤ U(t, x) and,

|Û(t, x)| + |∂Û

∂t
(t, x)| +

∑
i,i′

|xixi′
∂2Û

∂xixi′
(t, x)| ≤ K(1 + |x|2m), (43)

for any (t, s) ∈ [0, T ] × [0,∞), because U ∈ Ĉ([0,∞)M : R).

From here to the end of this proof, c > 0 will stand for positive numbers
(not necessarily equal) which do not depend on P̄ ∈ P̄ , t ∈ [0, T ], γ ∈ Γ,
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and R > 0. First we claim that there exists M(R) > 0 for each R > 0 such
that M(R) does not depend on P̄ ∈ P̄ , t ∈ [0, T ], γ ∈ Γ, and

|EP̄ [
∫ t−t̄

0

∂Û

∂t
(t̄ + u, x̄w(u))du

+
∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄ + u, x̄w(u))d〈wi, wi′〉u]

− {∂Û

∂t
(t̄, x̄)(t − t̄) + EP̄ [

M∑
i,i′=1

1

2
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)〈wi, wi′〉t−t̄]}|

≤ c(t − t̄)

R
+ cM(R)(t − t̄)3/2,

for t > t̄. To show this claim, we estimate

I1 + I2

= EP̄ [|
∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′Fii′(u,w)d〈wi, wi′〉u|1{ max

u∈[0,t−t̄]
|w(u)| > R}]

+ EP̄ [|
∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′Fii′(u,w)d〈wi, wi′〉u|1{ max

u∈[0,t−t̄]
|w(u)| ≤ R}],

(44)

where Fi,i′(u,w) =
∂2Û

∂xi∂xi′
(t̄ + u, x̄w(u)) − ∂2Û

∂xi∂xi′
(t̄, x̄), i, i′ = 1, 2, . . . ,M,

R > 0, P̄ ∈ P̄ , and

J1 + J2 = EP̄ [
∫ t−t̄

0
|G(u, w)|du1{ max

u∈[0,t−t̄]
|w(u)| > R}]

+ EP̄ [
∫ t−t̄

0
|G(u,w)|du1{ max

u∈[0,t−t̄]
|w(u)| ≤ R}], (45)

where G(u,w) =
∂Û

∂t
(t̄ + u, x̄w(u)) − ∂Û

∂t
(t̄, x̄), R > 0, P̄ ∈ P̄ . We

have the claim by Lemma A.3, Hölder’s inequality, Tchebychev’s inequal-
ity, Burkholder’s inequality, and Lipschitz continuity of all derivatives of Û
on a bounded interval. Also we have

|EP̄ [
∫ t−t̄

0
(min

γ∈Γ

M∑
i,i′=1

1

2
γii′x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)wi(u)wi′(u))du]

− (t − t̄)(min
γ∈Γ

M∑
i,i′=1

1

2
γii′x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄))| ≤ c|t − t̄|3/2.
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by Lemma A.3 and Hölder’s inequality.

step3 : We see by Ito’s formula that

Û(t̄, x̄) = U(t̄, x̄) = Q(T − t̄)f̃(t̄, x̄)

≥ Q(t − t̄)Q(T − t̄)f̃(x) = Q(t − t̄)U(t, ·)(x)

= inf
P̄∈P̄

EP̄ [U(t, x̄w(t − t̄))] ≥ inf
P̄∈P̄

EP̄ [Û(t, x̄w(t − t̄))]

= Û(t̄, x̄) + inf
P̄∈P̄

EP̄ [
∫ t−t̄

0

∂Û

∂t
(t̄ + u, x̄w(u))du

+
∫ t−t̄

0

M∑
i,i′=1

1

2
x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄ + u, x̄w(u))d〈wi, wi′〉u].

Then we have

0 ≥ −c(M(R) + 1)(t − t̄)3/2 − c(t − t̄)

R
+

∂Û

∂t
(t̄, x̄)(t − t̄)

+ (t − t̄)(min
γ∈Γ

M∑
i,i′=1

1

2
γii′x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄)), t̄ < t ≤ T, R > 0,

by the consequence of step 2. Dividing both sides of the above inequality by
t − t̄ > 0 and letting t → t̄, we have

0 ≥ − c

R
+

∂Û

∂t
(t̄, x̄) + min

γ∈Γ

M∑
i,i′=1

1

2
γii′ x̄ix̄i′

∂2Û

∂xi∂xi′
(t̄, x̄),

for all R > 0. Hence we have the assertion. This completes the proof.
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