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Abstract

From our previous paper, it is known that the Magnus representa-
tion of the Torelli group is not faithful. In this paper, we characterize
the kernel of its representation for a certain kind of elements.

1 Introduction

The linearity of the mapping class group of a surface of genus g ≥ 2 has been
one of the well-known open problems. A group is called linear if it admits
a finite dimensional faithful representation. Recently, Korkmaz [K], Bigelow
and Budney [B-B] proved that the mapping class group of a closed surface
of genus 2 is linear. However, it still remains open for higher genera. Then
it is significant to discuss whether some representations of the mapping class
groups are faithful and to determine the kernel.

Let Σg,1 be an oriented surface obtained from a closed surface of genus g
by removing an open disk. We denote by Mg,1 the mapping class group of
Σg,1 relative to the boundary, that is the group of path components of the
group of orientation preserving diffeomorphisms of Σg,1 which restrict to the
identity on the boundary. Let Ig,1 be the Torelli group of Σg,1, namely the
normal subgroup of Mg,1 consisting of all the elements which act trivially on
the first homology group of Σg,1.

The Magnus representations of various subgroups of the automorphism
group of a free group are defined making use of the Fox derivation [F], see
[Bir] for details. The Magnus representation for the Torelli group

r1 : Ig,1 → GL(2g; Z[H])
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Figure 1: Generators of Γ0 and base points b, b′

was introduced in [M1], where H = H1(Σg,1; Z). From our previous paper
[S1], the representation r1 is not faithful for g ≥ 2. Thus it makes sense to
study the kernel of r1. In this paper, we characterize the kernel of r1 for
the commutator of two BSCC maps, where the Dehn twist along a bounding
simple closed curve is called BSCC map. The following is one of the main
result of this paper.

Corollary 4.4 The commutator of two BSCC maps ϕ1, ϕ2 belongs to the
kernel of r1 if and only if the characteristic polynomial of the Magnus matrix
of the product ϕ1ϕ2 is trivial. Here the Magnus matrix means the image of
r1 for a mapping class.

In Section 2, we will recall the definitions of the Magnus representation
of the mapping class group and the Torelli group.

In Section 3, we will give a certain pairing for two curves on Σg,1 and
show the relationship with the pairing and the kernel of r1.

In Section 4, we will introduce another pairing for two curves on Σg,1 in
order to obtain additional information of the kernel of r1.

2 Definition of the Magnus representation of

the Torelli group

In this section, we recall the definitions of the Magnus representation for the
mapping class group and the Torelli group from [M1], [S1] and [S4].

Let Z[Γ0] be the integral group ring of Γ0 = π1(Σg,1, b). We fix a system
of generators α1, . . . , αg, β1, . . . , βg of the free group Γ0 as shown in Figure
1. Let us simply write γ1, . . . , γ2g for them.
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Definition 2.1 We call the mapping

r : Mg,1 −→ GL(2g; Z[Γ0])

ϕ �−→
(

∂ϕ(γj )

∂γi

)
i,j

the Magnus representation for the mapping class group, where ∂
∂γi

: Z[Γ0] →
Z[Γ0] is the Fox derivation and ¯ : Z[Γ0] → Z[Γ0] is the antiautomorphism
induced by the mapping γ �→ γ−1.

This mapping is not a homomorphism but a crossed homomorphism.

Proposition 2.2 (Morita [M1]) For any two elements ϕ, ψ ∈ Mg,1, we
have

r(ϕψ) = r(ϕ) · ϕr(ψ)

where ϕr(ψ) denotes the matrix obtained from r(ψ) by applying the automor-
phism ϕ : Z[Γ0] → Z[Γ0] on each entry.

It follows that if this mapping r is restricted to the Torelli group Ig,1 and
are reduced the coefficients to Z[H], then we obtain the following genuine
representation:

r1 : Ig,1 −→ GL(2g; Z[H]).

Here the reduction is induced by the abelianization a : Γ0 → H and r1
denotes the composition r� of the mapping r by the abelianization a. We
call r1 the Magnus representation of the Torelli group.

We have another definition of this representation (see [S4]). Let p : Σ̂ →
Σg,1 be the universal abelian covering, that is, the regular covering corre-
sponding to the abelianization. An arbitrary element of the Torelli group
induces an automorphism of H1(Σ̂, p

−1(b); Z) as a free Z[H]-module of rank
2g. Therefore we get the following representation:

r1 : Ig,1 −→ GL(2g; Z[H]).
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3 A higher intersection number of two loops

and the kernel of r1

The non-triviality of the kernel of r1 for g ≥ 2 is proved in [S1]. Moreover, it
is proved in [S2] that none of the terms of the lower central series of Ig,1 is
contained in the kernel. Then it is interesting to characterize and determine
the kernel.

First, we define a pairing of two loops on Σg,1. This pairing is useful to
give information about the kernel of r1. Choose base points b and b′ on ∂Σg,1

as depicted in Figure 1. Fix a point b̂ which is a lift of b to the universal
abelian covering Σ̂. The point b̂′ is determined as follows, which is a lift of b′.
We denote by bb′ the path on ∂Σg,1 from b to b′ with the orientation which

is opposite to that of Σg,1. Let b̂b′ be the lift of bb′ to Σ̂ starting at b̂. Then

we set b̂′ for the endpoint of b̂b′.

Definition 3.1 Let c1, c2 be two oriented loops on Σg,1 based at b, b′ respec-
tively. We define

〈c1, c2〉H =
∑
h∈H

(hĉ1, ĉ2) h.

Here ĉ1 is the lift of c1 to Σ̂ starting at b̂, ĉ2 is the lift of c2 to Σ̂ starting
at b̂′ and (·, ·) denotes the algebraic intersection number of two arcs. We
write hĉ1 for the curve which is acted on ĉ1 by an element h of the covering
transformation group H.

Suppose that c1 and c2 are bounding simple closed curves on Σg,1, where
bounding means 0-homologous. If we regard c1, c2 as oriented loops based at b,
b′ respectively, then we can compute the pairing 〈c1, c2〉H up to multiplication
by ±1 and by an element of H . That is to say, the pairing 〈c1, c2〉H depends
on how c1, c2 are represented as loops. However, whether 〈c1, c2〉H is zero or
not does not depend on the choices, and we will use this fact.

Proposition 3.2 Suppose that c1 and c2 are two bounding simple closed
curves on Σg,1, and ϕ1 and ϕ2 the Dehn twists along c1 and c2 respectively.
If 〈c1, c2〉H = 0, then [ϕ1, ϕ2] ∈ ker r1.
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Figure 2: geometric intersection number 2

Proof. We denote by ϕ̂∗ the automorphism of the first homology group
H1(Σ̂, p

−1(b); Z) induced by a diffeomorphism ϕ of Σg,1 representing an el-

ement of Mg,1. Let ĉ1, ĉ2 be lifts of c1, c2 to Σ̂ respectively. Then [ĉ1], [ĉ2]

belong to H1(Σ̂, p
−1(b); Z). Since 〈c1, c2〉H = 0, the intersection number

(ĉ1, ĉ2) equals zero. For a loop c based at b, we denote by ĉ a lift of c to Σ̂.

Then we have an element [ĉ] of H1(Σ̂, p
−1(b); Z) and

ϕ̂i∗([ĉ]) = [ĉ] + (ĉi, ĉ)[ĉi] i = 1, 2.

Then we obtain

ϕ̂1∗ ◦ ϕ̂2∗([ĉ]) = ϕ̂1∗([ĉ] + (ĉ2, ĉ)[ĉ2])

= [ĉ] + (ĉ1, ĉ)[ĉ1] + (ĉ2, ĉ)[ĉ2]

= ϕ̂2∗ ◦ ϕ̂1∗([ĉ]).

It follows that ϕ̂1∗ commutes with ϕ̂2∗ and this completes the proof.

Corollary 3.3 Suppose that c1 and c2 are two bounding simple closed curves.
If the geometric intersection number of c1 and c2 is two, then [ϕ1, ϕ2] ∈ ker r1.

Proof. Let t1, t2 be the intersection points. Also, let ci
′ be the subarcs of

ci from t1 to t2, ci
′′ from t2 to t1, see Figure 2. The number of the terms of

〈c1, c2〉H is two. Each value of the terms is decided by the value at t1 and t2
respectively. We consider loops c1

′c2′′, c1′c2′
−1, c2

′c1′′ and c2
′′c1′′

−1, where c−1

is the same arc as c with the opposite orientation. All of these are bounding
simple closed curves. It follows that the value at t1 is −1 times that of t2.
Then 〈c1, c2〉H = 0. By Proposition 3.2, this completes the proof.

5



4 Another pairing of bounding simple closed

curves and the kernel of r1

We define another pairing for two bounding simple closed curves:

〈〈c1, c2〉〉 = −〈c1, c2〉H ·〈c2, c1〉H .

The pairing 〈·, ·〉H depends on the way to assigning orientations and attaching
basepoints to two bounding simple closed curves. However, the way does not
have an effect on the pairing 〈〈·, ·〉〉. That is, we obtain the following lemma.

Lemma 4.1 Let c1, c2 be two bounding simple closed curves on Σg,1. Then
we have

1. 〈〈c1, c2〉〉 = 〈〈c2, c1〉〉
2. 〈〈γc1γ−1, c2〉〉 = 〈〈c1, c2〉〉
3. 〈〈c1−1, c2〉〉 = 〈〈c1, c2〉〉

where γ is a loop based at b and c1
−1 is the same loop as c1 with the opposite

orientation.

We recall the following before proving Lemma 4.1.

Theorem 4.2 (Morita [M1]) There exists a matrix J̃ such that for any
element f ∈ Mg,1 the following equality holds:

tr(f) J̃ r(f) = f J̃ .

This means that the Magnus representation of the mapping class group
is symplectic in a sense. The explicit expression of J̃ can be found in [M1]
and [S4] and is not included into this paper.

In this section, −→c denotes t
(
a

(
∂c
∂γ1

)
, . . . , a

(
∂c

∂γ2g

))
.

Proof.

1. It is obvious from the definition of the pairing 〈〈·, ·〉〉.
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2. We can consider γ as an element of Γ0 naturally. Because

a

(
∂γc1γ

−1

∂γi

)
= a

(
∂γ

∂γi

)
+ a(γ)a

(
∂c1
∂γi

)
+ a(γ)a(c1)a

(
∂γ−1

∂γi

)

= a(γ)a

(
∂c1
∂γi

)
,

then we get

−−−−→
γc1γ

−1 = a(γ)−→c1 .

By [S4, Lemma 4.4], we have 〈c1, c2〉H = −t−→c2 J1
−→c1 , where a(J̃) = J1,

therefore

〈〈γc1γ−1, c2〉〉 = −t−→c2 J1 a(γ) −→c1 ta(γ)−→c1 J1
−→c2

= −t−→c2 J1
−→c1 t−→c1 J1

−→c2
= 〈〈c1, c2〉〉.

3. Since

a

(
∂c1

−1

∂γi

)
= a(c1

−1)a

(
∂c1
∂γi

)
= −a

(
∂c1
∂γi

)
,

we deduce this lemma.

The relation between the pairing 〈〈·, ·〉〉 and the Magnus representation
r1 of the Torelli group can be expressed as the following formula.

Theorem 4.3 Suppose that c1 and c2 are two bounding simple closed curves
on Σg,1. Then we obtain

〈〈c1, c2〉〉 = tr(I2g − r1(ϕ1ϕ2)) = 2g − tr(r1(ϕ1ϕ2))

where ϕ1, ϕ2 are the Dehn twists along c1, c2 respectively.

Proof. Any bounding simple closed curve can be written as f(dk) for a
certain element f ∈ Mg,1 and for a bounding simple closed curve dk which
is shown in Figure 3. First, we will prove the statement in the case c1 =
f(di), c2 = dj . That is, we will consider the case ϕ1 = fψif

−1, ϕ2 = ψj ,

7



1 k

dk

k + 1 g

Figure 3: bounding simple closed curve

where ψk is the Dehn twist along dk. By Lemma 4.1, we can assume that c1
and c2 have expressions as

c1 = f([βi, αi] · · · [β1, α1]), c2 = [βj , αj] · · · [β1, α1].

We see from [S3] that

r1(ψk) = I2g + akbk. (4.1)

Here

ak = t(ȳ1 − 1 · · · ȳk − 1 0 · · · 0︸ ︷︷ ︸
g − k times

1 − x̄1 · · · 1 − x̄k 0 · · · 0︸ ︷︷ ︸
g − k times

)

bk = (1 − x̄1 · · · 1 − x̄k 0 · · · 0︸ ︷︷ ︸
g − k times

1 − ȳ1 · · · 1 − ȳk 0 · · · 0︸ ︷︷ ︸
g − k times

),

and xi, yi are the homology classes of αi, βi respectively. Note that tr(akbk) =
bkak = 0. We denote by r� the composition of the mapping r by the abelian-
ization a : Z[Γ0] → Z[H]. If we consider elements of the Torelli group, we
write r1 for r� as before. By the abelianization, Theorem 4.2 can be stated
as

tr�(f)J1 r
�(f) = fJ1. (4.2)

The following equalities can be checked easily:

bkJ1
−1 = tak, takJ1 = bk. (4.3)
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We will compute −→c1 by an explicit calculation. Since

a

(
∂c1
∂γl

)

=
i∑

k=1

a

(
∂f([βk, αk])

∂γl

)

=
i∑

k=1

{
a

(
∂f(βk)

∂γl

)
+ a(f(βk)) · a

(
∂f(αk)

∂γl

)

+a(f(βk)) · a(f(αk)) · a
(
∂f(βk

−1)

∂γl

)
+ a(f(αk)) · a

(
∂f(αk

−1)

∂γl

)}

=
i∑

k=1

{
a

(
∂f(βk)

∂γl

)
+ f(yk) · a

(
∂f(αk)

∂γl

)

−f(xk) · a
(
∂f(βk)

∂γl

)
− a

(
∂f(αk)

∂γl

)}

=

i∑
k=1

{
(f(yk) − 1) · a

(
∂f(αk)

∂γl

)
+ (1 − f(xk)) · a

(
∂f(βk)

∂γl

)}
,

we obtain

−→c1 = r�(f) · fai. (4.4)

Similarly, −→c2 = aj . Therefore

tr(I2g − r1(ϕ1ϕ2))

= tr(I2g − r�(f) · fr1(ψi) · r�(f)−1 · r1(ψj))

= tr(I2g − r�(f) · (I2g + fai
fbi) · r�(f)−1 · (I2g + ajbj)) Because (4.1)

= tr(−r�(f) · fai
fbi · r�(f)−1 − ajbj − r�(f) · fai

fbi · r�(f)−1 · ajbj)

= −tr(r�(f) · fai
fbi · r�(f)−1 · ajbj)

= −tr(r�(f) · fai
fbi · fJ1

−1 · tr�(f) · J1 · ajbj ) Because (4.2)

= −tr(r�(f) · fai
tfai · tr�(f) · J1 · aj

taj · J1) Because (4.3)

= −tfai · tr�(f) · J1 · aj · tr(r�(f) · fai
taj · J1)

= −t−→c1 J1
−→c2 · taj J1 r

�(f) · fai Because (4.4)

= −t−→c1 J1
−→c2 · t−→c2 J1

−→c1
= 〈〈c2, c1〉〉 = 〈〈c1, c2〉〉.
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Next, we consider the general case ϕ1ϕ2 = g fψif
−1 ψj g

−1 for g ∈ Mg,1. The
pairing 〈〈·, ·〉〉 is Mg,1-equivariant by [S4, Lemma 4.3], that is,

〈〈g(c1), g(c2)〉〉 = g(〈〈c1, c2〉〉).

Moreover, we see from [S3, Proposition 3.2] that

tr(r1(gϕ1ϕ2g
−1)) = g(tr(r1(ϕ1ϕ2))).

This means that tr(r1(·)) is also Mg,1-equivariant. Therefore this completes
the proof.

The Dehn twist along a bounding simple closed curve is called a BSCC
map. From our previous paper [S3], it is known that any BSCC map ϕ does
not lie in the kernel of r1, and the characteristic polynomial of the Magnus
matrix of ϕ is trivial:

det(λI2g − r1(ϕ)) = (λ− 1)2g.

It follows that Kg,1 is not contained in the kernel of r1, where Kg,1 denotes the
subgroup generated by the BSCC maps. We remark that the characteristic
polynomial of the Magnus matrix on Kg,1 is not always trivial (see [S4] for
details).

Theorem 4.3 gives a characterization of the kernel of r1 for the commu-
tator of two BSCC maps.

Corollary 4.4 The commutator of two BSCC maps ϕ1, ϕ2 belongs to the
kernel of r1 if and only if the characteristic polynomial of the Magnus matrix
of the product ϕ1ϕ2 is trivial. Here the Magnus matrix means the image of
r1 for a mapping class.

Proof. In general, if the characteristic polynomials of two matrices A,B
are trivial and A commutes with B, then the characteristic polynomial of
AB is also trivial.

Suppose that the commutator of two BSCC maps ϕ1, ϕ2 belongs to the
kernel of r1, that is, r1(ϕ1) commutes with r1(ϕ2). Because the characteristic
polynomial of the Magnus matrix for any BSCC map is trivial, we get

det(λI2g − r1(ϕ1ϕ2)) = (λ− 1)2g.
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Conversely, suppose that the characteristic polynomial is trivial. Then
we have

−tr(r1(ϕ1ϕ2)) = −2g.

By Theorem 4.3, we conclude that 〈〈c1, c2〉〉 = 0. This means 〈c1, c2〉H = 0 or
〈c2, c1〉H = 0, because Z[H] is an integral domain. In virtue of Proposition
3.2, 〈c1, c2〉H = 0 gives [ϕ1, ϕ2] ∈ ker r1 and 〈c2, c1〉H = 0 gives [ϕ2, ϕ1] ∈
ker r1. This completes the proof.
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