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Abstract. In this paper, we prove that the twisted Alexander
polynomial for the Lawrence-Krammer representation of the braid
group B4 is trivial. This gives an answer for the problem whether
the twisted Alexander polynomial for given faithful representations
is always non-trivial.

1. Introduction

Twisted Alexander polynomial for finitely presentable groups was in-
troduced by Wada in [W]. As a notable application, it is shown that the
twisted Alexander polynomial can tell Kinoshita-Terasaka knot from
Conway’s 11-crossing knot.

In [M], the twisted Alexander polynomial for Jones representations
of the braid group Bn (n ≥ 3) is studied. One of the main results of
[M] is the twisted Alexander polynomial for the Burau representation
is not trivial for n = 3 and trivial for n ≥ 4. We know that the Burau
representation is faithful for n = 3, not faithful for n ≥ 5 and the
faithfulness is still open for the case n = 4. Then it is mentioned in [M]
that it would be interesting to study a relation between the faithfulness
of the Burau representation and the twisted Alexander polynomial. In
other words,

Problem 1.1. If a given representation is faithful, is the twisted Alexan-
der polynomial non-trivial?

In this paper, we present the answer for this question.
Krammer constructed in [K1] a representation of the braid group,

which is now called the Lawrence-Krammer representation, and showed
that it is faithful for n = 4. Moreover, Bigelow [B] and Krammer
[K2] proved that the Lawrence-Krammer representation is faithful for
all n. Then we may show a relation between the faithfulness of a
representation and the twisted Alexander polynomial as a consequence
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of an explicit calculation of the twisted Alexander polynomial for the
Lawrence-Krammer representation.

In this paper, we show the following. (See Section 3 for the precise
statement.)

Theorem 1.2. The twisted Alexander polynomial for the Lawrence-
Krammer representation of the braid group B4 is trivial.

This gives the negative answer for Problem 1.1.
In Section 2, we briefly recall the definition of the Lawrence-Krammer

representation of the braid group B4. In Section 3, the twisted Alexan-
der polynomial of B4 is computed and we prove Theorem 1.2.

2. Lawrence-Krammer representation of B4

Let Bn be the braid group of n strings, Bn → Z � 〈x〉 the Abeliani-
sation and LK the Lawrence-Krammer representation

LK : Bn −→ GL
(
n(n − 1)/2; Z[q±1, t±1]

)
.

In this paper, we treat the case n = 4, then we argue the definition
of the braid group and the Lawrence-Krammer representation for only
this case. The braid group B4 admits the presentation:

B4 = 〈σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1〉.
The Lawrence-Krammer representation of B4 is defined as follows (see
[B],[K1] and [K2] for general cases).

LK(σ1) =




tq2 0 0 0 0 0
tq(q − 1) 0 0 q 0 0
tq(q − 1) 0 0 0 q 0

0 1 0 1 − q 0 0
0 0 1 0 1 − q 0
0 0 0 0 0 1




LK(σ2) =




1 − q q 0 0 0 0
1 0 0 tq2(q − 1) 0 0
0 0 1 tq(q − 1)2 0 0
0 0 0 tq2 0 0
0 0 0 tq(q − 1) 0 q
0 0 0 0 1 1 − q



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LK(σ3) =




1 0 0 0 0 0
0 1 − q q 0 0 0
0 1 0 0 0 tq3(q − 1)
0 0 0 1 − q q 0
0 0 0 1 0 tq2(q − 1)
0 0 0 0 0 tq2




3. Twisted Alexander polynomial

In this section, we compute the twisted Alexander polynomial. All
notations are the same as ones used in [M] unless we state it.

First, we obtain a denominator in the twisted Alexander polynomial
by an explicit calculation.

Lemma 3.1.

det (I6 − xLK(σ3)) = (1 − x)3 (1 + qx)2 (1 − q2tx).

Next, we calculate a numerator in the twisted Alexander polynomial.
In our case, we have the 18×12-matrix M3 which is obtained from the
Alexander matrix removing the third column. The numerator which
we need is the greatest common divisor of detM I

3 for all the choices
of the indices I. Here I = (i1, i2, . . . , i12) and M I

3 denotes the square
matrix consisting of the ik-th rows of the matrix M3, where 1 ≤ i1 <
· · · < i12 ≤ 18.

Lemma 3.2. For any index I, det M I
3 has a common divisor (1 −

x)3(1 + qx)2(1 − q2tx).

Proof. For a given 18 × 12-matrix A, we denote by A(i; a1, . . . , a12)
the matrix obtained from A adding aj times the j-th column to the
i-th column. We note that

det A(i; a1, . . . , a12)
I = (1 + ai) det AI .

1. First, we consider

M (1) = M3(4;−1 + q2t, p, p, 0, 1, 0, 0, 0, 0, 0, 0, 0),

where p = −1 − qt + q2t. Then we can take a term 1 − x as a
common divisor from the fourth column. Next, we observe

M (2) = M (1)(12; 0, 0, 0, 0, 0, 0, q2, pq, (1 − q)2qt,−1 + q2t, p, 0)

and

M (3) = M (2)(8;−1 + q2t, (−1 + q)qt, (−1 + q)qt, 0, 0, 0,

−q, 0, 0, 0, 0, 0).

Therefore the eighth and the twelfth columns have common divi-
sors 1 − x and det M I

3 has a divisor (1 − x)3 for any index I.
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2. Similarly, it can be considered

M (4) = M3(12; 0, 0, 0, 0, 0, 0,

q2, pq2,−1 + q3t − q4t + pq,−q2(1 + qt),−pq, 0)

and

M (5) = M (4)(5; 0,−q2, q,−q, 0, 0,−q2,−q2, 1 + q, 0, 0, 0).

Then the fifth and the twelfth columns have common divisors
1 + qx and det M I

3 has a divisor (1 + qx)2 for any index I.
3. Finally, we set

M (6) = M3(12; 0, q3t(1 − q)(1 − q2t),

q2t(−1 + q)(1 − q2t + q4t2 + pq), q2t(1 − q)(1 − q2t),

qt(−1 + q)(1 − q2t + q4t2 + pq), (1 + qt)(1 − q2t)2,

(1 − q)q4t, (−1 + q)q4t2, q2t(−1 + q)(1 − q − qt + q4t2),

0, q(1 + qt − q2t)(1 − q3t2), (1 − q − q2t)(1 − q3t2)).

The twelfth column of M (6) has a common divisor 1 − q2tx. We
need to note that the determinant of this matrix M (6)I is different
from that of M I

3 . More precisely,

det M (6)I =
(
1 + (1 − q − q2t)(1 − q3t2)

)
det M I

3 .

However, the greatest common divisor of two polynomials 1+(1−
q− q2t)(1− q3t2) and 1− q2tx is a unit, that is, they are relatively
prime. This deduces that det M I

3 has a divisor 1 − q2tx for any
index I. Then it completes the proof.

Lemma 3.3. There exist indices I1, I2 such that

gcd(detM I1
3 , detM I2

3 ) = (1 − x)3(1 + qx)2(1 − q2tx).

Proof. We select

I1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),

I2 = (2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 17)

and calculate det M I1
3 , det M I2

3 explicitly, then we get the conclusion.

The above two lemmas deduce that detM I
3 has a common divisor

(1−x)3(1+qx)2(1−q2tx) and does not have any other common divisor,
then the numerator is settled. It follows by the definition that
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Theorem 3.4. The twisted Alexander polynomial ∆B4,LK(x) for the
Lawrence-Krammer representation with the Abelianisation B4 → Z �
〈x〉 is given by

∆B4,LK(x) = 1.

Remark 3.5. The twisted Alexander polynomial for the Lawrence-Krammer
representation is not always trivial for n. In fact, we get ∆B3,LK(x) =
1 + q3tx3 by an easy calculation.
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Lamé system with stress boundary condition and the application to an inverse

problem.

2004–3 Hiroshi Oda and Toshio Oshima: Minimal polynomials and annihilators of gen-

eralized Verma modules of the scalar type.

2004–4 SAKAI Hidetaka: A q-analog of the Garnier system.

2004–5 Takuya Sakasai: The Magnus representation for the group of homology cylin-

ders.

2004–6 Johannes Elschner and Masahiro Yamamoto: Uniqueness in determining polyg-

onal sound-hard obstacles.

2004–7 Masaaki Suzuki: Twisted Alexander polynomial for the Lawrence-Krammer rep-

resentation.

The Graduate School of Mathematical Sciences was established in the University of

Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-

versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and

Sciences. All faculty members of these two departments have moved to the new gradu-

ate school, as well as several members of the Department of Pure and Applied Sciences

in the College of Arts and Sciences. In January, 1993, the preprint series of the former

two departments of mathematics were unified as the Preprint Series of the Graduate

School of Mathematical Sciences, The University of Tokyo. For the information about

the preprint series, please write to the preprint series office.

ADDRESS:

Graduate School of Mathematical Sciences, The University of Tokyo

3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN

TEL +81-3-5465-7001 FAX +81-3-5465-7012


