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1 Introduction

The concept of coherent risk measures were introduced by Artzner et al. [1], and a
characterization theorem was given by Delbaen [6]. Recently coherent multiperiod risk
measures were introduced in [2], and many studies have already appeared (e.g. [3], [4],
[5]). On the other hand, the concept of law invariant coherent risk measures was given in
[9]. In the present paper, we extend this idea to multiperiod ones. The basic tool is the
concept of conditional law invariant coherent risk measures. We remark that such kind of
ideas is not new (c.f. Gerber [7]). We also studies continuous limits of such risk measures.

Note that ¢ is called a value measure, if —¢ is a risk measure. We state our results
by using notions of value measures instead of risk measures, since value measures have
preferable properties. Let us state our main results in the rest of this section.

Let (2, F, P) be a standard probability space. We denote LP(2, F, P) by L, 1 <p <
00.

Definition 1 We say that a map ¢ : L™ — R is a coherent value measure, if the following
are satisfied.

(1) If X >0, then ¢(X) > 0.

(2) Superadditivity : ¢(X1 + X2) > ¢(X1) + ¢(X2).

(3) Positive homogeneity : for A > 0 we have ¢(AX) = A\p(X).

(4) For every constant ¢ we have ¢(X + ¢) = ¢(X) + c.

Then Delbaen [6] proved the following.

Theorem 2 For ¢ : L= — R, the following conditions are equivalent.
(1) There is a ( closed convex ) set of probability measures Q such that any Q € Q is
absolutely continuous with respect to P and for X € L™

#(X) = inf{E?[X]; Q € Q}.
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(2) ¢ is a coherent value measure and satisfies the Fatou property, i.e., if {X,,}5>, C L™
18 uniformly bounded and converging to X in probability, then

d(X) > limsup ¢(X,,).

(3) ¢ is a coherent value measure and satisfies the following property. If X, is a uniformly
bounded sequence that decreases to X, then ¢(X,,) tends to ¢(X).

Now we introduce the following notion.

Definition 3 We say that a map ¢ : L — R is law invariant, if p(X) = ¢(Y') whenever
X, Y € L™ have the same probability law.

Let £ denote the set of probability measures on R, £,, p € [1,00), denote the set
of probability measures v on R such that [g |z[Pv(dz) < oo, and Ly denote the set of
probability measures v on R such that v(R\ [-M, M]) = 0 for some M > 0. Also, Mgy
be the set of probability measures on [0, 1].

For v € L, let F, be the distribution function of v, i.e., F,(z) = v((00, 2]), z € R.. Let
us define Z : [0,1) x L — R by

Z(xz,v) =inf{z; F,(2) > z}, xel0,1), veL.

Then Z(-,v) : [0,1) — R is non-decreasing and right continuous, and the probability law
of Z(-,v) under Lebesgue measure on [0,1) is v (c.f.[10]). For any random variables X,
we denote by ux the probability law of X.

For each a € (0,1], let 7, : £1 — R be given by

Na(V) = ofl/ Z(z,v)dz, veL.
0
Also, we define 19 : Lo — R by
no(v) = inf{z € R;v((—o0,z]) > 0} ve Ly
Then we have the following (cf. [9]).

Theorem 4 Assume that (2, F, P) is a standard probability space and P is non-atomic.
Let ¢ : L*™° — R. Then the following conditions are equivalent.
(1) There is a ( compact convex ) subset My of Mgy such that

(X) = inf{/o ne(px)m(da); m e Mo}, X € L,

(2) ¢ is a law invariant coherent value measure with the Fatou property.

Definition 5 We say that a map n: Loo — R is a mild value measure ( abbreviated by
MVM ), if there is a subset Mgy of Moy such that

1
n(v) = inf{/ Na(V)m(da); m € Mg}, v E Lo
0
For any MVM n, we define a subset M(n) of Mg by

M) ={meM; nv) < /0 Ne(v)m(da) for all v € Lo}



For any v € L;, we see that 7,(v) < m(v), a € [0,1]. So any MVM 5 can be extended
to a map from £ to [—o0, 00) by

1
n(v) = inf{/ Na(V)m(da); m € M(n)}, veEL.
0
We denote this map by the same symbol 7.

Definition 6 Let n be an MVM and (2, F, P) be a standard probability space.
(1) For any integrable random variable X and any sub-c-algebra G, we define a G-
measurable random variable n(X|G) by

n(X|G) = n(P(X € dz|G)),

where P(X € dz|G) is a regular conditional probability law of X given a sub-c-algebra G.
We call n(X|G) a conditional value measure.

We denote n(X|{0,2}) simply by n(X).
(2) For any integrable random variable X and any filtration {Fy}7_,, we define an adapted
process { Z }1_, inductively by

Zk—l :ﬁ(Zk’fk_l), k:n,n—l,... ,1.

We denote an Fy-measurable random variable Zy by n(X|{Fi}r_y), and call it a homoge-
neous filtered value measure.

(3) For any filtration {Fi}}_, and any integrable adapted process {Xy}}_,, we define an
adapted process {Yy }1_, inductively by

Yn = Xna

Yie1 = X1 An(Ye|Fi-1), k=nn—1,...,1

We denote an Fo-measurable random variable Yo by n({ Xk} ol {Fr}iy), and call it a
homogeneous filtered value measure of an adapted process { Xy }i_o-

In this paper, we consider two kinds of limit theorem for homogeneous filtered value
measures. Let us introduce the following notion. For any MVM 7 and p € [1, c0), let

(1—a)t=t/r
oY

Ay(n) = supf / (a7 A ym(da); m € M(n)}.

1.1 Brownian-Poisson Filtration

Let (Q,F,P) be a complete probability space, {B(t);t € [0,00)} be a d-dimensional
Brownian motion and {N;(t);t € [0,00)}, i = 1,...,¢, be Poisson processes with an
intensity A;. We assume that they are independent. Let A\ = Zle A, and let F; =
o{B(s),Ni(s);s <t,i=1,... L}, t>0.

Let n,, n =1,2,..., be MVM’s. We assume the following.

(A-1) There is a constant C' > 0 such that Ay(n,) < C272, n=1,2,....



Let Fo(y; o, 8), y € RY, 0 < oo < 8 < 1, be given by

. ‘
Folyia,9) = nf{ [ 20,071 YN, )dri 0 <7 < )
0 i=1

)4
= inf{’ﬂh()\_l Z Aidy,); a <v < B},

i=1
and let b, : R¥ x R = R, n=1,2,..., be given by

ba(r, ) = inf{]|2( / (o) (da)

+A(/O1 m(da)a™ Fo(y; 0V (1 — (2°A71(1 = ), 1 A 2"A""a)));m € M)}

Here i is a standard normal distribution.
Then b, : RY x R* — R is concave,

by (sz, sy) = sby(x,y), reRY yeRY s>0,

and
bn(xa Y1, - 7y€> < bn(xlayia B 7y2)7
i o] > o], g1 < wl o e < YL
Let us assume the following furthermore..

(A-2) There is a continuous function b : R? x R* — R such that b, — b, n — oo,
uniformly on compacts in R% x RY.

Let K be a compact convex set in R? x R? given by

¢
K ={(z,w) € R* x [0,00)"; b(z,y) <z-2+ Z)\iyiwi for all (z,y) € R* x R}.
i=1
Also, let K be a set of martingales p(t) such that there are predictable processes ¢ :
[0,00) x Q — R4, 1; : [0,00) x Q — [0,00), i =1,... ¢, for which

P((p(t),1(t), ... ,¢(t)) € K for any t € [0,T]) =1

o) =T1C I wieDesal [ eanis)—; [ loPas=3" A [ @io-1s),

1=1 Se(ovt]7ANi(5)7éO

t>0.
Then we have the following.
Theorem 7 Under the assumption (A-1) and (A-2), we have the following.
For any X € L*(Q, Fr, P), T > 0,
22n

Tim 7, (X[{Fo-niimo) = If{ E[p(T) X]; p € K}

We prove this theorem in Section 5 via a nonlinear partial differential equation.



1.2 Collective Risk

Let (€2, F, P) be a probability space. Let K > 1, p € (1,00), pr € R, \x > 0, and v,
€L, k=1,... K. Let Zi(k), Ti(k), k=1,... ,K,i=1,2,..., be independent random
variables such that the distribution of Zi(k) is v, and P(Ti(k) > 1) = exp(—Ait), t >0, for
k=1,...,K,i=12....Let NP(t) =1 and X (t) = ZHN® () + pr(r? At)
fort>0,k=1,... K,i=1,2,....

Let F; = J{Xi(k)(s); sel0,t,k=1,...,K,i=1,2,...},t>0. Also, let

{Ti(k)ﬁt}’

K my
k=1 i=1
for any ¢ > 0, and any my,... ,mg € Z>o. Here Z>, denotes the set of non-negative

integers.

Theorem 8 Let n be MVM. Assume that A,(n) < oco. Let ® : [0,00)% x RX — R be
given by

[e§) K T O K
(. =n( Y ([[(exp(-Auze) (A’“gk’f D= &)™ (vie = €)) + D pra
L1, Lg=0 k=1 k=1

forx € [0,00)%, & € RE. Here x stands for the convolution and v+ a denotes a probability
measure on R given by the following for any probability measure v on R and a € R.

(v+a)(A) =v({z € R; x —a € A}) for any Borel set A in R.

Assume that there is a C fuention u : [0,00) x [0,00)% — R such that u(0,x) = 0,
x € [0,00)%, and satisfies the following Hamilton-Jacobi equation

0 0 0 K
au(tax) - CI)(:U7 %u(t,x), 76(%—Ku(tax))a (t,l‘) € [07 OO) X [07 OO) :
Then we have the following.

sup{|[hn(X (6 mu, ..., ) {Fm} 00y = wlt,mah, .. mch);

t,mih,... ,mgh € [O,R],ml,... , MK € ZZ()}—>O,
as h | 0, for any R > 0.

2 Basic Estimate
Proposition 9 (1) Let (2, F, P) be a pobability space. Then for any a € (0,1] and
X € LY, F, P),

inf{E[pX]; pe L*,0< p < 1,E[p] = a}

= inf{/Rxf(x)uX(dx); 0<f< 1,/Rf(x)px(dx) = a}.



(2) For any a € (0,1] and pn € L4

| 2t

mf{/xf p(dx); 0<f<1/f p(dr) = a}.

Proof. Let p € L™ with 0 < p < 1 and E[p] = a. Then there is a Borel measurable
function h : R — R such that h(X) = E[p|c{X}] a.s. Let f = (hV0) A1l. Then we have

E[pX] = E[XElplo{X}] = E[X f(X)] = /R £ (2)px(dz)
and

| Feux(an) = B = Bl = o

These imply the assertion (1).
Let p € L. Then taking ([0,1),B([0,1)),dz) as a probability space, we have from
the assertion (1),

mf{/a:f p(dx); 0<f<1/f p(dr) = a}.

:/ Zwinpla)de 0< p <1, [ pla)dz = a)

0 R

= / Z(x; p)dx.
0
This implies the assertion (2).
This completes the proof. 1

Proposition 10 Let v be a probability measure on R? such that [g,(|z]+|y]) v(dz, dy) <
0o. Let py(dx), ua(dy) be the marginal dstributions of v, and let ps be the probability law
of x +y under v(dz,dy). Then for any MVM n,

(k) = n(pa) +n(p2).
Proof. First we show that
Na(pi3) = Na(p1) +1a(p2) — a € (0,1]. (1)
There are pi(-,y), p2(-,z) € L, x,y € R, such that

v(dz,y) = pr(dz, y)p2(dy) = pa(dy, x)pa (dz).

Then we have for any measurable function f: R — [0, 1]

/R 2 F (2 pia(dz) = /R (2 + ) f(a + y)(de, dy)



:/Rx(/Rf(x+y)p2(dy,x))u1(dx)+/Ry(/Rf(ﬁﬁ+y)01(dl’ay))u2(dy)-

Note that

0§/f($+y)pz(dy,x)§1, 0§/f($+y)p1(dx,y)§1,
R R

and
L[ st vty anmin) = [ ([ s potde ) = [ 12

This and Proposition 9 imply Equation (1).
Our assertion is an easy consequence of Equation (1). 1

Proposition 11 (1) For any o € (0,1}, andv € L,, p € [1,00),

na(v)] < ™7 /R [afPu(d)) 7.

(2) For any a € (0,1], and v € Ly, p € [1,00), with [, zv(dx) =0,

_ )1/
na(v)] < %(/R]azlpy(dx))l/p.

(3) For any MVM 7, p € [1,00) and v € L), with [g zv(dz) =0,

)] < Ap(n)( /R afPw(da)) .

In other words, for any X € LP,
E[X] = A,(n) B[ X — BIX]|""? < nlux) < BX].
Proof. The assertion (1) follows from

1 o 1 o
im0 =21 [ 2@l < o [ 2@ pde,
@ Jo o 0
The assertion (2) follows from
1
)l = 2 [ Zaal < 20 -y [ zpan
The assertions (1) and (2) imply that
1 — 1-1/p
)] < (@2 7 Sy ot
o R

for any a € (0,1], and v € L, p € [1,00), with fR azv(dz) = 0. This implies the assertion

(3).

This completes the proof. 1



Proposition 12 Let X, X, Xo are integrable random variables.

(1) If X > 0, then n(X|G) > 0.

(2) 1%, + %10) > 1(X,19) + n(Xa19).

(3) For any G-measurable bounded nonnegative random variable Z, we have n(ZX|G) =
Zn(X|G).

(4) For any G measurable integrable random variable Y, n(X +Y|G) = n(X|G) + Y.

(5) For any p € (1,00),

E[X|G] — Ay E[IX — BIX|G)I"IG)'" < n(X|G) < E[X|G]

Proof. Since the proofs are similar, we only prove the assertion (2). Let v, be a regular
conditional probability measure of (Xi, Xs) under G. Let p1, plo, and pus, be regular
conditional probability measures of X7, Xy and X; + X5 under G, respectively. Then we
have

,ulyw(A) = Vw(Aa R)7 IUZW(A) = Vw(Rv A) a.s.

and
t3w(A) =vo({(z,y);z+y € A}) as.
for any Borel set A. So by Proposition 10, we see that

N(pz0) < npnw) +0(p2w):
This completes the proof.
Proposition 13 For any Xy, X, € LP(Q,F, P), p € [1,00),
n(X11G) = n(Xa|G)] < [n(Xy = X5|G)[ V |n(X2 — X1[G)].
In particular,
[1(X11G) = 1(X2|G)] < Ap(n) B[ X1 = Xaf?|G]Y7 + (1 + Ay(n))| E[X1 — Xa|G]]
< 28, () E[| X1 — Xuf"|G]V7 + |E[X: — X,|G]].

Proof. Since
n(XilG) — n(X;|9) < —n(X; — X;|G),
we have the first assertion. By Proposition 12, we have
n(XIG)] < An), B[ X[PIG]Y? + (1 + Ay(n))| EIX|G)].

By this and the first assertion, we have the second assertion. 1

Proposition 14 Suppose that Ay(n) < 1/2. Then we have the following.
(1) For any integrable random variable X,

n(XIG)* < (1+28:(n)*) E[|X[*|G]-
(2) For any X1, Xy € L*(Q, F, P),

n(X1]G) = n(X:IG)* < (1+ 28:(1)*) E[| X1 — Xo[*|G].



Proof. Let Y = X — E[X|G]. By Proposition 12 we have
n(X|6)* = (E[X|G] + n(Y']9))*

= E[X*|G] — E[Y?|g] + 2E[X|G]n(Y|G) + n(Y]G)*
< BIX?|G] — E[Y?|G] + 22(n) E[X?|G] E[Y?*|G]"? + Ao (n)* E[Y?|G]

< E[X?|g] - %E[YQIQ] +28:(n) E[X?|G] 2 E[Y?(G]'2.

= E[X*|G] - %(E[YQIQ]”Q = 200 (n) EIX?|G]'2)? + 209 (n)*E[X?|G).

So we see that
n(X1G)* < E[X?|G] + 2A4(n)* E[X?|G].

This implies the assertion (1).
The assertion (1) and Proposition 13 imply the assertion (2).
This completes the proof. 1
Also we have the following.

Proposition 15 Let X, X, Xo are integrable random variables.
(1) If X > 0, then n(X|{Fr}}_y) > 0.

(2) n(X1 + Xo{Fitizo}) = n(Xal{Frti=o) + n(Xol{Fr}iz0)-
(3) For any Fo-measurable bounded nonnegative random variable Z, we have

N(ZXKFrtizo) = Zn(XK{Fr}izo)-
(4) For any Fo-measurable integrable random variable Y,
(X + Y Fitizg) = n(XHFitiz) +Y
(5) Suppose that Ay(n) < 1/2. For any X1, Xy € L*(Q, F, P),
(X1 [{Fitizo) — n(X2[{Frtizo)|” < (1+ 282(n)*)" T E[| X1 — Xaof*| Fo].

Proof. All assertions are proved by induction. Since the proofs are similar, we only
prove the assertion (5).

The case when n = 0 follows from Proposition 14. If the assertion is valid for n = k,
we see that

(X {Fi i) — n(Xa2l{Fibizo)
= In((X1[{Fi}izn) 1 Fo) — n(n(Xal{Fi}ioy)1Fo)
< (1+282(n)*) Elln(X1[{ Fiizy) — n(X2{ P}y I 7o)
< (1+28:(n)*) M E[E[| X0 — Xo*| A1) |Fo].

So we have the assertion (5).
This completes the proof. 1



3 Some Estimates

Proposition 16 Let p,v € L. Then for any \,«a € [0, 1], we have

/a Z(x; v+ (1 — \p)de

B ¥
= inf{)\/o Z(x;v)de + (1 — )\)/O Z(xyp)de; \B+ (1 —=Ny=«, [,7€]0,1]}.

Proof. Let us think of a random variable X defined on [0, 1) given by
X =Z\ zv) (@) + Z((1 =X (2= A); p)1py (), z €0,1).

Then the distribution law of X under Lebesgue measure is Av + (1 — A)u. Note that

/Oa Z(w: o+ (1= Np)da = inf{/AX(x)dx; A€ B(0,1)), /A dz = a)

a A+b
= inf{/ Z(\ I/)dx—i—/ Z((1=N) " z=N); p)dz; a €[0,)),b € [0,1-N),a+b = a}.
0 A

This implies our assertion. 1
Proposition 17 Let £ > 1, e € (0,1], ¢>0and A\; > 0, i =1,... (. Let A = >.t_, A,
and assume that \e? < 1/2. Let (X, Zy,...,Z), &, - .. ,& are independent random vari-
ables such that the distribution of X is the standard normal distribution and

Let vy, i=1,... ¢, is the probability law of Z;. and v = \~* Zle A\iv;. Also let

F(l/;oz,ﬂ):inf{/vZ(@y)dx;ozgﬁygﬁ}, 0<a<p<l.
0

Then for any MVM n with As(n) < oo,

V4
n(eeX + 3" 6.2)
=1

—inf{]c]e(/o na(uo)m(da))—l—)\eQ(/o m(da)a ' F(v;0V(1—(A\e?)H1—a), 1An(Ae?) " ta));
m e M(n)}|

< 2A2(77)(c(2)\1/282 + 38(2)\82)2/5 + )\63) + 2)\52(/ ]a:|2du)1/2))
R

+2c(Ae® + 32(20e2)%/10) + 2)\254(/ |z|dv),
R

where [y 18 the standard normal distribution.

10



Proof. Let (Q, Fi, Pr), k = 0,1, be copies of (Q, F, P). Let mj : Qo xQ; — Q, k=0,1,
be maps given by 7y (wo, w1) = wy. Let us think of probability space (o x Q, Fo®F1, Py ®
Pp)

Let A():{flzzfg:(]},Az :{51:1,53:0,37&2},2:1, ,f. Then
¢
P(Ag) = JJ(1 = Ne?) = 1 -,
j=1
and

P(A) = e’ [ - Ne?) < he?, i=1,... L
J#i
So there are mutually disjoint sets A%, i = 0,1,...,¢, in F such that Ay D Aj, A; C A,
i=1,...,0,P(A)) =1—- X2, P(A) =N\e?i=1,... 0 and U_ A, = Q. Let & = Las,
1=20,1,... ,¢. Then we have

Ellg = &P = P(A = A) = \e’(1 = [ (1 = Ne?) < ([ [+ A€ — 1)
j#i J#
¢
< )\i52(exp(z Aje?) — 1) < 200e?,

J=1

for © = 1,...,¢. Note that the probability law of ce X + Zle & Z; under P and that of
ce(X omo) + 325_(Zi o mo) (& o my) under Py ® P, is the same. Also, we see that

l l
El|(ce(X omo) + Y (Ziomo)(&om)) — (ce(X omo)(§y om) + Y _(Ziomo)(& om)) P/
=1 =1
l
<ce || X lwll 1= & I +ED_|1ZiIPIE — &IP)P
=1

4
< a0 || X |l +(2AN)PED D NI Zi)P

i=1
= 08(2)\52)1/”(/R |2 |Pd o) */? + (2)\254)1/”(/R]a:|pdu)1/p

The probability law of cs(X o) (€ om) 4+ Sty (Ziomo) (€l om) is (1 — Ae2)u+ A,
where p is the normal distribution of mean 0 and variance c?c?.
So we have

VA
n(eeX + Y &Zi) —n((1— e + Av)]
1=1

< 205(1) (2eN2e% + 2Xe%( /

. ||2dv) %) 4 (2ee® + 2)\254(/R |z|dv)). (2)

11



By Proposition 16, we have

/ Z(z; (1 = X + Ne*v)dz
0

B ¥
= inf{(1— )\82)/ Z(x;,u)dx—l—)\€2/ Z(z;v)de; (1-Xe?)B+Ae*y=a, B,v€][0,1]}.
0 0
If (1—Xe?)B+ Ae?y = q, 8,7 € [0, 1], then
B< (=2 a<a+2 %, and B> (a — Ae?) V0,
and so

B B
[ Zwimdsl < la - 6170 [ 120 a0

< 3cela — 710 < 3es((202) A )10,
So we have N
] / Z(z; (1 = Ae?)p + Ne’v)dx
0

—{(1 - )\62)/0 Z(x; p)dr + A2 F(r;0V (1 — (A?) 711 — ), 1A (Ae?) )}

< 3es((2Xe) A @)1,
which implies
M0 (1 = AeH) 4 M) — {cena (o) + Ae®a ' F(r;0V (1 — (M) (1 —a), 1A (Ae?) L)}
< 3esa ((2062) A )10 + eAe®|na (o).
Therefore, if m € M(n), then

] /0 m(da)na((1 — Ae?)p + \e?v)

—{ce(/o na(uo)m(da))+)\€2(/0 m(da)a F(v;0vV(1—(Ae?) " (1—a), IA(A?) Ta)) Y|

< 306(2)\52)2/5/ a2 m(da) + 606(2)\52)9/10/ m(da) + cAe’| Na (po)m(da)|
[0,1/2] (1/2,1] [0,1]

< 3ee Ao () (2025 + 6e2(20%)%10 + eAeP Ao (n).

Here we use that

0<— / o (o) m(da) < —n(jio) < Aa(n).

So we have
(1= Ae*)p + Ae’v)

—inf{ca(/o na(uo)m(da))+)\€2(/0 m(da)a  F(v;0V(1—(Ae?) " H1—a), IA(Ae?) " ta));

m e M)}
< Do(n)(Bes(2A)P + eA) + Gez(2Ae)7/

This and Equation (2) imply our assertion. 1

12



4 Nonlinear PDE

Definition 18 C° is defined to be the set of functions u : [0,00) x R? x Zéo — R such
that

(1) u(t,-,y) : R* = R is continuous for any (t,y) € [0,00) x Z%,,

2) [[ullor = {lu(t,z,9)]; (t,2,y) € [0, T) x R? x ZEy} < oo for any T > 0,

and

(3) sup{fu(t,z, y)|; t € [0,T]} — 0, as |z| + [y| — oo for any T' > 0.

Definition 19 C! is defined to be the set of functions u : [0,00) x R4 x Z£, — R such
that -
(1) u e,
(2) u(t,,y): RY— R is Ct for any (t,y) € [0,00) x Z&,,
and -
3) Zuec i=1,..,d
We deﬁne | u HlT, uEC T >0, by

Uu HQT .

d
elor <312
| ullir=[ u [lor 2 I e

For u € C!, let

ou
vﬂfu(tﬂ z, y) = (?(ta z, y))izl ..... d € Rd,
X
and
DyU(t,x,y) = (u(t,x,y—i—e,) _u(taxay>)i:1 ..... ¢ € Rﬁ,
i—1
——
where e; = (0,...,0,1,0,...,0) € R".

For f € Cy(R x Z%,), let P.f : R x Z£, — R, t > 0, be given by

(P f)(2,y) = /Rd(zim)dmexp(_@

D)y, @ € Ry € 2L,

Proposition 20 For f € C°, let
t
u(t, 7, y) :/ (Paf (s, ) (@, y)ds,  (t,,y) € [0,00) x R x ZL,.

0

Then u € Ct and
T
e @ VT) [ @ =97 1 o ds
0

Proof. Suppose that f € C°N C*°([0,00) x R? x RY).
Then we have

au / 3;' —z ’33—2’2
pp /dS/Rd e “(t— ) e p(_z(t_s))f(s,z,y)dz,

13



So we have

-(U, X, s ads s—(T— s, te |V, .
ox’ Y 0 \/t — S 0 T—t V T—s 0rs=(T~1)

Since C° N C>([0, 00) x R4 x RY) is dense in C°, we have our assertion. .
Proposition 21 For f € C° and g € C*, let
t
u(t, z,y) = (Pg(0,-,%))(z, y) +/ (Pisf (s, %)) (@, y)ds, (t, 2, y) € [0,00) x R x Z%,.
0

Then u € Ct and
u(T —t,z+ B(t),y + N(t))

— _/Otf(T— s,z + B(s),y + N(s))ds + /OtVa:u(T— s,x+ B(s),y + N(s—))dB(s)
+ Z Dyu(T — s,x + B(s),y + N(s—) - (N(s) — N(s—))

for (t,z,y) € [0,T] x R* x Z&,,.

Proof. Suppose that f € C°N C*°([0,00) x R? x RY).
Then we see that u € C' N C*=((0,T] x R% x RY), and

0 1
_EU(T —t,, y) = iAacu(T —t,x, y) + f(T —t,, y)
So we have our assertion by Ito’s formula. Since C° N C>([0,00) x R? x RY) is dense in
C°, we have our assertion. 1

Theorem 22 Let b: R x Z£, — R and C' > 0, and assume that
b(z,y) — b(2', )| < Clz —2'|+ |y —y|), z.2' €RY, y,y €Zi,.
Then for any f € C', there is a unique u € C' such that
t
ult.9) = f(t9) + [ Pl 5), Dyu(s. 1), )ds,
0
for (t,z,y) € [0,T] x R* x Z&,,.
Proof. For any v € C!, let
t
B0t 2,5) = Flt.2,) + [ sVl 61, Dy, ) . )i,
0

(t,z,y) € [0,T] x R x Z£,,. Then by Proposition 21 we see that ®(v) € C* for any v € C?,
and

| @(v1) — ®(vy) [[1..< C(1+29(d + ﬁ)/o (t—8)72 || v — vy |l ds, t €10,T).

So we have our assertion by usual argument based on Picard’s iteration method and
Gronwall’s inequality. 1
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5 Proof of Theorem 7

We prove Theorem 7 in this section. Let us think of the situation in Theorem 7. We may
assume that Aq(n,) < 1/2,n > 1.

Proposition 23 There is a constant C' > 0 such that
¢

[l - B27") + D yalNi(27")|Fo) = balw, )| < C27 (L 4+ AP (|| + |y

i=1
for any v € R, y € RY and n > 1 with 27"\ < 1.
Proof. Let t;,, = —A; 'log(1 — \27™),i=1,... L. Since —22 < log(1 —x) +2 <0,
x € [0,1/2], we see that 27" < t;,, < 27" + \;272" for n > 1 with A\27™™ < 1/2. So we see
that
BlINi(tin) A1 — N2
< E[Ni(tin), Ni(tin ) > 2] + E[(Ni(tin) — Ni(27"))]

(Aitin _
= exp(—Aitin)( Z >)')+)\i(ti,n_2 ")
k:2 '

< (Aitin)? + Niti —277) < 2272727

and
E[|Ni(tin) A1~ Ni(2 )2
< BRN:(tin) (Niltin) — 1), Niftin) 2 211/2+E[<Nz< tin) — Ni(27))21/2
= (2(Aitin) )1/2 + Ni(tin —27™) + (Ni(tin — 27 ))2)1/2

< 2itin + 2(Ni(tin — 272 < 6A27

Therefore we see that

|El(z- B(2™") + Z yiNi(27")) = (¢ - B(27") + Z Yi(Ni(tin) A1)

< 20227y

and

Efl(z-B2™) + Z yiNi(27")) = (w- B(27") + Z vi(Ni(ti) A D))

< 6A27"yl.
So we have by Proposition 13

’nn x - B —i—ZyN’ n/2 ’f0> nnx B +Zyz zn ’fo’

< BAAL(7) A2 [y + 2(1 + Ao (ma))AZ272y.

Note that
P(Ni(tin) N1=1)=1—=P(N;(tin) N1 =0) = \27".

So by Proposition 17 and the definition of b,,, we have our assertion.
This completes the proof. 1
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Theorem 24 For any f € C', there is a unique u € C' such that

ult.9) = (PO 9) ) + [ Peeso Vs ). Dyl =) 0)ds,
(t,z,y) € [0,T] x R% x Zéo by virtue of Theorem 22. Then we have
1 (£(0,2 4+ B(T), y+ N(T){ Frz-}i2o) —u(T,,9)| = 0, n— oo,
for any T >0, x € R? and y € R".
Proof. Step 1. We first think of the case that there are integers K, L > 1 such that

T=K2*L
By Proposition 21, we see that

uw(T —t,x+ B(t),y + N(t))
= — /Otb(T — s, Vyu(x + B(s),y + N(s)), Dyu(z + B(s),y + N(s))ds

_|_/0t Vou(T — s,z + B(s),y + N(s—))dB(s)

+ > Dyu(T — s,z + B(s),y + N(s—) - (N(s) — N(s—)). (3)
0<s<t
Let
U = Vau(T — k27", 2+ B(k27"),y + N(k27"))
and
Wy = Dyu(T — k27", x + B(k27™"),y + N(k27")),
forn>1,k=0,1,2,... . Then we see that

wW(T—k2™", 2+ B(k2™), y+N(k2™™) —w(T—(k—1)2"", s+ B((k—1)2""), y+ N ((k—1)2"™))

= —2_”bn(vn7k_1, wmk_l)—H}mk_1(B(kQ_n)—B((k—l)Q_n))—i-wn’k_l (N(kQ_n)—N((k—l)Q_n)—i-Rn’k,

where

Rn,k

k2—n
=— / (b(Vu(T—s,x+B(s),y+N(s)), Dyu(T—s, x+B(s), y+N(8))—bn(Vn k-1, Wy k—1))ds
(k—1)2-n

k2~ n
_|_/( (Vou(T — 5,2+ B(s),y + N(5—)) — vpr—1)dB(s)

k—1)2—7

+ > (Dyu(T — 5,2+ B(s),y + N(s—) — wnx1) - (N(s) — N(s—))

(k—1)2-n<s<k2—n

So we see that there are C,,, n=L,L+1,,..., such that C,, — 0, as n — oo, and that

E[| B[Ryl Fir-no-n] Y]/ < Ca277,
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and
E|R. )V <C27v? n>L k=1,..., K" L

So we have
Elnn(u(l = k27", 2 + B(k27™"),y + N(k27")| Fr=1)2-n)

—u(l— (k=127 x + B((k— 1)27"),y + N((k — 1)27")) ") /2
< 27" E|nn(vnp-1-(B(k27") = B((k—1)27"))+wn -1 (N (k27") =N ((k—1)27")| Fa_1)2-»)

n(vnk 1, Wn, k— 1)’ ]1/2

+A2(0) Bl| R |”] + (1 + 285 (50)) E[| Bl R e Fmnyon] 7] 2.

Therefore we see that there are C),, n = L,L+1,..., such that C], — 0, as n — oo, and
that
Elnn(u(l = k27", 2 + B(k27"),y + N(k27")| Fr=1)2-n)

—u(l = (k= 1)27" &+ B((k = 1)27"),y + N((k — 1)27"))[*]"/
<02 n>L k=1,...,K2" "
So by Proposition 15(5), we have

I (uw(T — k27", 2 + B(k2™"),y + N (k27" {Fra-n 152 ")
—na(u(T = (k= 1)27", 2z + B((k — 1)27™),y + N((k — 1)27")[{ Fro-n 155 )]

< (1420 "Cl2™, n> L.
This implies that

(£ (0,2 + B(T),y + N(T){Fra-n 12" ) — (T, 2, y)|

< (1420720l T < O exp(2C?T)T,  n>1

This implies our assertion for T'= K21 K,L > 1.
Step 2. For any T' > 0, let T,,, = 27[2™T], m = 1,2,... . Then we see by Proposi-
tion 15(5) that

7 (F(0,2 + B(T),y + N(T)){Fra-n}2rg) = mu(£(0, 2 + B(Ton), y + N(Tpn)) { Frz—n } 20y

< (14205())* BTV E] (0,24 B(T), y+N(T)) = (0, 2+ B(T,), y+ N(T,0)) !>

So we see that

lim sup |1, (f(0, 2 + B(T),y + N(T)){ Fra-n }2o) — w(T, z,y)]

< exp(20%(T + 27™E[|f(0,x + B(T),y+ N(T)) — (0,2 4+ B(Ty),y + N(T,,))|*]*?
—HU(T, z, y) - U(Tma xZ, y)’

Taking m — oo, we have our Theorem.
This completes the proof.
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Proposition 25 For any T > 0 and f € C*,

lim 7,(f(0,2 + B(T),y + N(T))|{ Fra-n 2%)

= inf{E[p(T)f(0,z + B(T),y + N(T))]; p € L}

Proof. Suppose that p(t) is a martingale and satisfies

)= [ os=e(6)BGs) + Y[ plom)(uats) = 1N (5) — M)

Now let u € C! be as in Theorem 24 for f. Then by Equation (3) and Ito’s formula, we
have

= E[/O p(t=)(=b(Vu(T —t,x+ B(t),y+ N(t—)), Dyu(T —t,x + B(t),y + N(t—)))

)4
+o(t) - Vau(T —t, x4+ B(t),y+ N(t=)) + Y Xidi(t) Dyu(T — t, z+ B(t), y + N(t—)),)dt].

=1

So we see that
Elp(T)f(0,2 4+ B(T),y + N(T))] —w(T,x,y) >0,

if (p(t),1(t),...,e(t)) € K, t € [0,T], almost surely. Also, by measurable section
theorem, we see that there is a predictable process such that (¢(t), ¥1(t), ... ,¥e(t)) € K
and

o(t) - Vou(T —t,z + B(t),y + N(t— +ZA1¢I (t)Dyu(T — t,z + B(t), y + N(t—));)dt].

= b(V,u(T — t, 2+ B(t),y + N(t—)), Dyu(T — t,x + B(t),y + N(t—))),

€ [0, 7], almost surely. These imply our assetion. 1

Corollary 26 For any T > 0, and any bounded measurable function g : R x Zéo — R
we have

lim 9,(g9(B(T), N(T) {Fra—}i o)
= nf{E[p(T)g(B(T), N(T))]; p € K}.
Proof. We can find a sequence f, € C', n=1,2,..., such that
Ellg(B(T), N(T)) = fu(0, B(T),N(T))]} - 0,  n — oo,
Then by virtue of Proposition 15(5) and Assumption (A-1), we have

12(9(B(T), N(T){Fia-n}iZo) = 1t (fa(0, B(T), N(T){Fran}iy)|
< (1+ 02" T2 Bg(B(T), N(T)) — fu(0, B(T), N(T))[**
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— 0, n — o0.

Note that
sup{ E[p(T +1)*]; p € K} < .

So we see that
|inf{E[p(T)g(B(T), N(T)]; p € K}. — nf{E[p(T') f.(0, B(T), N(T))]; p € K}|
< sup{E[p(T)[g(B(T), N(T)) = fu(0, B(T), N(T))|}; p € K}
— 0, n — 00.

Thus we have our assertion from the previous Proposition. 1

Proposition 27 For any m > 1, M > 1, and bounded measurable functions f : (R% x
Z5,)" — R we have

lim 7, (f(B(27™), N(27™), B(2:2™™), N(2-27™), ..., B(M2™™), N(M2™™ ))|{ Fra-n }2)

= inf{E[p(M2™™) f(B(2™™), N(2™), ..., B(M2™™), N(M2™™))]; p € K}.

Proof. We prove our assertion by induction in M. Our assertion is valid for M = 1 by
Corollary 26. Let us assume that our assertion is valid for M. Then again by Corollary 26
we have

lim g, (F(BE ™), N2, ... BUM + 1)27), N(M + 12D Faramran Yir)

— f(B(2™),N(2™™),...B(M2™™),N(M2™™))  a.s.,

where

f(xla Y, .- s T, yM) = lnf{E[p(MQ_m)f(xla Yty oo s TMYM, xM—i_B(Q_m)? yM+N(2_m>>]7 P € IC}
Since K is multiplicative, we see that
f(B(2™™),N(2™™),... ,B(M2™™), N(M2™™))
— inf{p(M2™™) " Elp(M + 1)27") f(B2™™), N@2™), ..,
B(M+1)27™), N((M 4+ 1)27™))|Fuz-n]; p € K}.
By Proposition 15(5) and Assumption (A-1), we see that

Ellna(f(BT™), N27™),... B(M +1)27), N((M + 1)27") {Fra-n }1 o)

22n

~na(f(B27™),N(27™),... B(M2™™"), N(M2™"))|Fiy ) Pl
< (14 C2)M Bl (f(BERT™), o, N((M + 127 ) {Farz-maron 1io)
—f(B(27™),N(27™),... B(M2™™), N(M27™))[*]"/?

So from the assumption in induction, we have

lim g, (f(BE™), N(2™),.... B(M +1)27), N(M + 127" ) [{Fra- Y1)

n—oo
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= inf{E[p(M2™™) f(B(2™™), N(2™™), ... B(M2™™), N(M2~™))}; p € K}.
= mf{E[p(M+1)27™) f(B(2™™), N(2™), ... B(M+1)2"™), N(M+1)2"™))]; p € K}.

Thus we have our assertion for M + 1.
This completes the proof. 1
Now let us prove Theorem 7.
Let K = [T]+ 1. Then there exists f,, : (R x Z£,)%*" — R, m =1,2..., such that

E[X — fu(B(2™™), N(2™™),..., B(K2™)2™™), N((K2™)2"™)] — 0,  m — 0.

Then we have our assertion in a similar proof of Corollary 26 by using Proposition 27.
This completes the proof of Theorem 7.

6 Proof of Thoerem 8

Let us think of the situation in Subsection 2.2. Let pj, : [0,00) — [0,00), h > 0, be given
by
pr(t) = hk for t > 0 with h(k —1) >t <hk, k=1,2,....

Let .
mg
Yi(n,mi, . omic) = D (Z NS (0h) + pu(pn(r) 1))
k=1 i=1
for any n,mq,... ,mg > 0. Then we have
K
| X (nh;my, ... ,mg)— Yu(n;my,... ,mg)| < thkpk.
k=1
Let
Y () (1 — exp(—=Ah)) exp(=Ah(m — €)), 0<L<m
and
(Az)*

qo(z, \) = exp(—Az) 7

Proposition 28 Let n is MVM. Let h > 0, and F), : Z>o x Z5, be a function inductively
defined by
Fh(O;ml, c. ,mK) = 0,

Fo(j+1ma, ... ,mg)

o] K K
=1( Z prk(mka/\ki ) (s UK+ By (fyma — G, 7mK—€K>)+hzmkPk
l1,..Lg=0 k=1 k=1

for 3 >0, my,... ,mg > 0. Then we have
W(Yh(N, mq, ... ,mK)’{th};V:O) = Fh(N; mq, ... ,mK)

for N >0, mq,... ,mg > 0.
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Proof. Let us fix mq,... ,mg > 0. Let
VN = Yh(N;ml,... ,mK)
and
‘/j—l :ﬂ(‘/j’f(j_l)h), j:N,N—l,... ,1.
Let
1(ik) = {i € {1,... .mu}; N (jh) = 0}
and a(j; k) = #(I(j; k), k=1,... ,K, j > 0. Here #(I) denotes the cardinal of a set I.
Then it is sufficient to prove the following.
Claim.

Vi = Fu(N = jsa(j: 1), ,a(j, K)) + Ya(jsm,... ,mg),  j=N.N—1....0.

The assertion is obvious when 7 = N.
Suppose that the assertion is valid for j < N. For any I}, C I, C {1,...,my}, and

Borel sets Bi(k), t=1,...,my, k=1,... K, and A € F(_1)n, we have

P{IG:ik) =1, Z® e BP iecn\ILIG—1:k) =1L, k=1,... K|}nA)

(2

H [T w(B)(1 — exp(—Axh))FUND exp(—Ach# (1))

Efk\f/
PHI(G—Lk)=1, k=1,... , K} NA)
So we have for any Borel set B and 0 < b, < b, <my, k=1,... K,

PH{Yn(jyma, ... ,mi) = Yu(j—L;my, ... ,mg) — hibkpk € B}
N{a(j; k) =b,a(j —1;k)=by, k=1,... , K} NA)
= O ) (B H (ZZ) (1 — exp(=Akh))" % exp(—Achb},)
P({a(j - 1:1{) — b, k=1,...,K}NA).

Since
Vi
=Yu(j — Lima, ... omg), n(Fu(N = jia(j; 1), a(f, K))
+(Ya(gima, ... ,mi) = Ya(j — Lima, ... mg))|F—n)-
Thus we see that the assertion is valid for 7 — 1. This completes the proof. 1

Proposition 29 For any R > 1, and \,... ,A\x > 0,

K
SUP{ Z Rﬁﬁ HK!HZ% Mp, Ak h) — H%(mkh, Ae)l; 0<my, ... ,mxg <h 'R}
k=1

Tyeen

— 0
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Proof. Let G(;m,\;h): C — C, F(-;z,\) : C — C be an entire function given by

G(z;m, A\ h) = Zpg(m, A h) 2" = exp(—=Ahm){1 + z(exp(Ah) — 1)}™,
=0

F(zyz,\) = Z qo(x, \) 2" = exp(—Ax + \z2).
=0
Let epp be given by

K K
ern = sup{| [ [ G(zx; mu, A 1) — T F (s mah, M)l
k=1 k=1

2% €C,|m <RO<mpy <h'Rk=1,... K}
Then it is easy to see that eg, — 0, as h | 0, for any R > 1. We see that

K K
[T e (e, Aes B) = T g (mch, M)
k=1 k=1

cdzg

K/ . / Hf:l G(zk; M, Aes h) — Hf:l F(zg; mih, \i,) dzy -
|z1/=R |zx|=R

1 l 1
Zfﬁ— "'Z}?—’—

So we have

K
Z RE“L +€K’HP&€ mis Mes h) = [ e (mah, M)

b fp=1

This implies our assertion.

Proposition 30 For any MVM n, p € [1,00), and vy, v, ... ,vx € Ly, we have

Z Hpek (e, Aws h) R V)

l1,... L =0k=1

fe'e) K
Z H Qo (Ml N Uit 5 -+ x Ui

l1,... L =0k=1

o0

K K
<2X(1+280,m) D ] e (e, A 1) H% (mih, Ax)|
Cro =0 k=1 Pl

{2(1 + Z(/R | [P (da)) 1 /P) Yt t),
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Proof. Let Y, Zi(k), k=1,...,K, = 12,..., be independent random variables
such that Y is uniformly distributed and the probability law of Zi(k) is 1. We can take
disjoint Borel subsets Ay, 4., l1,... , ¢k > 0, in [0, 1] such that the Lebesgue measure
of Auy. tre 18 TIrey Do (M, A h) A TTiy e, (mgh, ). Then we can take disjoint Borel
subsets By, ¢, l1,... 0k >0, in [0, 1] such that Ay, ¢, C Bo,....m, and the Lebesgue
measure of By, . g, is Hle Pe, (M, Ay h). Also we can take disjoint Borel subsets Cy, . o).,
li,... Uk > 0, in [0,1] such that Ay, 4. C Cy .. m, and the Lebesgue measure of
Cgh_’gK is Hle qe, (mkh, )\k) Let

00 K 4
k
Xi= Y g, MYz,
l1,... £gr=0 k=1 i=1
and
00 K
k
Xo= Y g, MO zZY),
l1,... £ge=0 k=1 i=1

Note that the probability laws of X; and Xy are >~ , _, Hle Do, (M, A R)7 - - %

goos

*0 g o] K *£1 *0 g .
v and Y0, o TTeei qe, (meh, Ai)vpt s - x v respectively. Then we have

goos

(k) = nxa)| < 28,(n) B[| X1 = XoP]YP + B[IX1 — Xo]

00 K
<@+280,m) > Ellm, . (V) =1ey L PO B2
mi,... mg=1 k=1 i=1
00 K K
= (14248,(n)) Y 27 Fh e T py, (m, ks h)—] [ g (mah, M)/
0y Lie=0 k=1 k=1
K
XL B2 ey
k=1
00 K K
<2M(1424,(n) > 2 Vet dm T po(mi, Aes b) = T ] aelmih, M)l
Oy fe=1 k=1 k=1
K
x(1+ Z E[| 2" p)V/pypllt+li)
k=1
This implies our assertion. 1

Proposition 31 For any R > 0, there is a C' > 0 such that

|©(2,8) = (2,&)| < ClE=¢|

for any x,£,& € RN with || < R and |€ —¢'| < 1.
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Proof. Since we have

!@(33 §) — ¢z, )
< (142A,(n)) Z H (exp(— k) )\kxk ka!fk Py

01, =1 k=1

we have our assertion. 1
Suppose that u : [0,00) x [0,00)% — R is a C! function and satisfies

u(0,z) =0, z € [0,00)"
and

%u(t,x) = ®(z, Vyu(t, z)), t>0, x €[0,00)~.

Proposition 32 Let

en(R) = sup{|h u(t + h,mih, ... ,mgh) — thkpk

[e§) K
Z (Hpgk (M, Me; ) (07 - x5 LR u(t, mah— b, .. mch—Lgch)|;
e =0 k=1
t € [O,R],m1,~~- , MK € ZZO with mih € [O,R],k: 1,... ,K}

Then e,(R) — 0 as h | 0, for any R > 0.

Proof. For any a > 1 and € € (0, 1), let
0 0
d(g;a) = sup{|=u(t,z) — —u(s,y)| + |V.u(t,z) — V,u(s,y)l;
ot ot
t,s€[0,a],r,y€[0,a]", |t —s|+ |z —y| < e}
Then we see that d(¢;a) — 0, € — 0, for any a > 1. Since
L ou
u(t+h,xy, ... ,xx) —ult,z1, ... ,0x) = h/ a(t—l—sh,xl,... , T )ds
0

1
= h/ O(zq, ... x5, Vu(t + sh,z1, ... ,xx))ds,
0

we have
[u(t + h,x) — ult, 2) — hd(x, Vu(t, 2))| < h(h; R)

for any t,z € [0, R).
Note that

K
- E TPk
k=1



So we see that by Proposition 29

K
Cy = sup{|®(mih, ... ,mgh,Vu(t,mih,... ,mgh) — thkpk
k=1

—1( Z (prk(mka)\kS h)((v1 — aa—u(t,mlh, cooymgh) s

O =0 k=1 11
*((vi — a—u(t, mih, ..., mgh)*%)));
154 e
t €0,R],mq,...mg € Z>o with myh € [0,R],k=1,... ,K} =0
Note also that
K

1
ou

u(t, z1, ... ,xx)—u(t,x1—=Y1, ... ,Tk—YK) = —/ (Z yk%(t,xl—syl, e, TR —SYK)dS.
(Ot k

So we have

() — uftx = ) = (3 (0.)

=1

K
<O+ + s RO )

k=1

for t,xq,... ,ox € [0,R], 0 <yp < ap,k=1,... K.

Therefore we have
- s ou ou
nC - (T e (s i h))((yl—a—ml(t,mlh, s mh) ke .*((yK—%(t,mlh, . mgh)*)

l1,... Lg=0 k=1

o0

K
(Y ([T pe (i A R) (5 55 vt

Oy L =0 k=1
—h~ u(t,mah, ... mgh) —u(t,mih— bk, ... mgh—LCh)| < Ay(n)Cyn
for any t € [0, R],mq,--- ,mg € Z>o with myh € [0, R],k =1,... , K. Here

Cp,h

K

=sup{{ > (] e M) (0((6+ -+ )b R)Y_ )P}

Lo lre=0 k=1 k=1
mi, -+ ,Mg € ZZO WlthmkhSRa k= 1,... 7K}
Note that

> (T e (s A B)(S((6 + - - + i) s R)(

l1,... lr=0 k=1

)P

7[>
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<o e Y ([ peOmes M )OO )

Ui+l <h—1/2 k=1 k=1

+o(KRsa) Y ([ ] pa e s ) O )"

b4+l >h—1/2 k=1 k=1
K
1 2 Y4
<o(n E Hpek mie, A 1)) (] ] 2%)7
l1,... Lg=0 k=1 k=1

o] K K
+27 (K Rya) Y (T pe (m Mes ) ([ 2% )7+
l1,... £g=0 k=1 k=1
K
(R a)? T [ (exp(—Akh) +2°(1 — exp(—Axh))™
k=1

K
2 7h s (K R;a) H (exp(—=Agh) + 2°T1(1 — exp(—Agh))™
k=1

(1 + 27F \h)™

1=

K
S(h*2ay TT(1 + 2P Ach))™ + 27" (K R; a)
k=1

T
I

exp(2PT N\  R)

1=

K
< 6(h"% ) [ exp(2AR) + 27" *6(K R; a)
k=1 k

So we have Cp,;, — 0, as h | 0.
Thus we have

1

\h~tu(t + h,mah, ... ,mgh) — thkpk

[e§) K
Z (H Do, (M, M D)) (UF %5 - 538 b (t, myh—Lyh, ... mgch—Lgch))|
Oy L =0 k=1

< Ch+ Ap(n)Cyp + 0(h; R)
for any t € [0, R],m1,--- ,mg € Z>o with mzh € [0, R,k =1,... | K.
This implies our assertion. 1
Now let us prove Theorem 8. Let us take R > 0 and fix it. Let
an = sup{|Fp(n;ma, ... ,mg) — h~ u(nh, mih, ... mgh)l;

ml,...,mKEZZOWithmlh,...,mKhSR}, n=20,1,....

Then we see that ag = 0. Also, we have by Proposition 32

ani1 < an +en(R), n=0,...,[h'R].
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Therefore we see that
ha, < Rep(R), n=0,...,[h7 'R,
and so we have
sup{|hFL([h " t); (b ], .., W ak]) —ult, 20, ... 2k to0, ... 2k €0, R} — 0

as h | 0 for any R > 0.

Note that
X(T s omie) = X T i)
K myg
_ Z Z Z(k)(Ni(k)( N(k ([hTh))| < hz p—
k=1 i=1
So we have

(X (T, .. ymi) = X (WA T]ma, i) | Fomy)

K myg K
(3> Z2OWNI(T) = NP (T TIR) | Fipm)| < 0 e
k=1 i=1 =1
Also we have p
Mg
a3 Z2OWI(T) = N (TR Fppeaa)|

k=1 i=1

K my
(1+28,(m) YN Bl|28(NI(T) — NE (W= Th)) P Fp-amy) P

k=1 =1
< (1424, / oo (d)

So we see that

| (T, ms . s Finvy) = Yl Tl s i) [l

K K
< (1+ 2Ap(77))h2mk(/ e Pri(da))7P + 20> gy
k=1 R k=1
Therefore we have

(X (T, mu, ..., me) {Fun ) = Bu((hT], ma, ... mg)]

K K
< (1+ 2Ap(77))h2mk(/ e Pr(da))7P + 20> gy
k=1 R k=1

This and Proposition 32 imply our Theorem.
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