UTMS 2004-36

November 16, 2004

Twisted Alexander polynomial and surjectivity of a group homomorphism

by

Teruaki KITANO, Masaaki SUZUKI and Masaaki WADA

UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA, TOKYO, JAPAN

TWISTED ALEXANDER POLYNOMIAL AND SURJECTIVITY OF A GROUP HOMOMORPHISM

TERUAKI KITANO, MASAAKI SUZUKI AND MASAAKI WADA

ABSTRACT. If $\varphi : G \to G'$ is a surjective homomorphism, we prove that the twisted Alexander polynomial of G is divisible by the twisted Alexander polynomial of G'. As an application, we show non-existence of surjective homomorphism between certain knot groups.

1. INTRODUCTION

Suppose that G is a finitely presentable group with a surjective homomorphism to the free abelian group of rank l, e.g., abelianization. Let $\rho: G \to GL(n; R)$ be a linear representation. The twisted Alexander polynomial of G associated to ρ was introduced in [8] and is defined to be a rational expression of l indeterminates.

Let $\varphi : G \to G'$ be a surjective homomorphism. Each representation $\rho' : G' \to GL(n; R)$ naturally induces a representation of G, namely, $\rho = \rho' \circ \varphi$. In this paper we prove the following:

Main theorem. The twisted Alexander polynomial of G associated to ρ is divisible by the twisted Alexander polynomial of G' associated to ρ' .

The corresponding fact about the (classical) Alexander polynomial is well known [1].

We present two separate proofs of the main theorem. First we give a purely algebraic proof in §3. If G is a knot group, the twisted Alexander polynomial of G may be regarded as the Reidemeister torsion. In §4, we provide another proof of the main theorem in case when G and G' are knot groups, from the view point of Reidemeister torsion.

In the last section, we show non-existence of surjective homomorphism between certain knot groups, as an application of the main theorem.

2. Twisted Alexander Polynomial

In this section, we recall briefly the definition of the twisted Alexander polynomial.

Let G be a finitely presentable group. Choose and fix a presentation as follows:

$$G = \langle x_1, \ldots, x_u \mid r_1, \ldots, r_v \rangle.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M25, Secondary 57M05.

Key words and phrases. twisted Alexander polynomial, Reidemeister torsion.

The first author is supported in part by Grand-in-Aid for Scientific Research (No. 14740037), The Ministry of Education, Culture, Sports, Science and Technology, Japan. The second author is supported by the 21 century COE program at Graduate School of Mathematical Sciences, the University of Tokyo.

We denote by $\alpha : G \to \mathbb{Z}^l$ a surjective homomorphism to the free abelian group with generators t_1, \ldots, t_l and $\rho : G \to GL(n; R)$ a linear representation, where R is a unique factorization domain. These maps naturally induce ring homomorphisms $\tilde{\rho}$ and $\tilde{\alpha}$ from $\mathbb{Z}[G]$ to M(n; R) and $\mathbb{Z}[t_1^{\pm 1}, \ldots, t_l^{\pm 1}]$ respectively, where M(n; R) denotes the matrix algebra of degree n over R. Then $\tilde{\rho} \otimes \tilde{\alpha}$ defines a ring homomorphism

$$\mathbb{Z}[G] \to M\left(n; R[t_1^{\pm 1}, \ldots, t_l^{\pm 1}]\right).$$

Let F_u be the free group on generators x_1, \ldots, x_u and

$$\Phi: \mathbb{Z}[F_u] \to M\left(n; R[t_1^{\pm 1}, \dots, t_l^{\pm 1}]\right)$$

the composite of the surjection $\mathbb{Z}[F_u] \to \mathbb{Z}[G]$ induced by the fixed presentation and the map $\tilde{\rho} \otimes \tilde{\alpha} : \mathbb{Z}[G] \to M(n; R[t_1^{\pm 1}, \ldots, t_l^{\pm 1}]).$

We define the $v \times u$ matrix M whose (i, j) component is the $n \times n$ matrix

$$\Phi\left(\frac{\partial r_i}{\partial x_j}\right) \in M\left(n; R[t_1^{\pm 1}, \dots, t_l^{\pm 1}]\right),$$

where $\partial/\partial x$ denotes the Fox derivation. This matrix M is called the Alexander matrix of the presentation of G associated to the representation ρ .

It is easy to see that there is an integer $1 \leq j \leq u$ such that det $\Phi(x_j - 1) \neq 0$. For such j, let us denote by M_j the $v \times (u-1)$ matrix obtained from M by removing the j-th column. We regard M_j as an $nv \times n(u-1)$ matrix with coefficients in $R[t_1^{\pm 1}, \ldots, t_l^{\pm 1}]$. Moreover, for an n(u-1)-tuple of indices

$$I = (i_1, i_2, \dots, i_{n(u-1)}), \quad (1 \le i_1 < i_2 < \dots < i_{n(u-1)} \le nv)$$

we denote by M_j^I the $n(u-1) \times n(u-1)$ square matrix consisting of the i_k -th row of the matrix M_j , where $k = 1, 2, \ldots, n(u-1)$.

Then the twisted Alexander polynomial (see [8]) of a finitely presented group G for a representation $\rho: G \to GL(n; R)$ is defined to be a rational expression

$$\Delta_{G,\rho}(t_1,\ldots,t_l) = \frac{\gcd_I(\det M_j^I)}{\det \Phi(x_j-1)}$$

and moreover well-defined up to a factor $\epsilon t_1^{\varepsilon_1} \cdots t_l^{\varepsilon_l}$, where $\epsilon \in \mathbb{R}^{\times}, \varepsilon_i \in \mathbb{Z}$. See [8], [6], [2] and [3] for more precise definition and applications.

3. Main theorem and the algebraic proof

In this section, we prove the following main theorem of this paper.

Theorem 3.1. Let G and G' be finitely presentable groups and α, α' surjective homomorphisms from G, G' to \mathbb{Z}^l respectively. Suppose that there exists a surjective homomorphism $\varphi: G \to G'$ such that $\alpha = \alpha' \circ \varphi$. Then $\Delta_{G,\rho}$ is divisible by $\Delta_{G',\rho'}$ for any representation $\rho': G' \to GL(n; R)$, where $\rho = \rho' \circ \varphi$. That is to say, the quotient of $\Delta_{G,\rho}$ by $\Delta_{G',\rho'}$ is a genuine polynomial.

Proof. Choose and fix a presentation

$$G = \langle x_1, x_2, \dots, x_u \mid r_1, r_2, \dots, r_v \rangle.$$

Since φ is surjective, then G' is generated by $\varphi(x_1), \ldots, \varphi(x_u)$. Namely, G' can be presented as

$$G' = \langle \varphi(x_1), \varphi(x_2), \dots, \varphi(x_u) \mid s_1, s_2, \dots, s_{v'} \rangle.$$

For convenience, we also write x_i for $\varphi(x_i)$, that is, we consider that G' is generated by x_1, \ldots, x_u . Here each relator r_i is written as

$$r_{i} = \prod_{k} u_{k} s_{l_{i_{k}}}^{\varepsilon_{i_{k}}} u_{k}^{-1}, \quad i = 1, 2, \dots, v, \ 1 \le l_{i_{k}} \le v', \ u_{k} \in F_{u}, \ \varepsilon_{i_{k}} = \pm 1.$$

By applying the Fox derivation $\frac{\partial}{\partial x_j}$ and collecting terms of $\frac{\partial s_k}{\partial x_j}$, we get

(3.1)
$$\varphi\left(\frac{\partial r_i}{\partial x_j}\right) = \sum_{k=1}^{v'} A_{i,k} \frac{\partial s_k}{\partial x_j}.$$

Here $A_{i,k}$ $(1 \le i \le v)$ is a sum of some $\varepsilon_{\bullet} \varphi(u_{\bullet})$, which does not depend on j. Let M_G and $M_{G'}$ be the Alexander matrices removed the *u*-th column:

$$M_{G} = \begin{pmatrix} \tilde{\rho} \otimes \tilde{\alpha} \left(\frac{\partial r_{1}}{\partial x_{1}} \right) & \cdots & \tilde{\rho} \otimes \tilde{\alpha} \left(\frac{\partial r_{1}}{\partial x_{u-1}} \right) \\ \vdots & \ddots & \vdots \\ \tilde{\rho} \otimes \tilde{\alpha} \left(\frac{\partial r_{v}}{\partial x_{1}} \right) & \cdots & \tilde{\rho} \otimes \tilde{\alpha} \left(\frac{\partial r_{v}}{\partial x_{u-1}} \right) \end{pmatrix}$$
$$M_{G'} = \begin{pmatrix} \tilde{\rho}' \otimes \tilde{\alpha}' \left(\frac{\partial s_{1}}{\partial x_{1}} \right) & \cdots & \tilde{\rho}' \otimes \tilde{\alpha}' \left(\frac{\partial s_{1}}{\partial x_{u-1}} \right) \\ \vdots & \ddots & \vdots \\ \tilde{\rho}' \otimes \tilde{\alpha}' \left(\frac{\partial s_{v'}}{\partial x_{1}} \right) & \cdots & \tilde{\rho}' \otimes \tilde{\alpha}' \left(\frac{\partial s_{v'}}{\partial x_{u-1}} \right) \end{pmatrix}$$

By (3.1), we have

$$M_G = AM_{G'}$$

where $A = (\rho'(A_{i,k}))$ is a $nv \times nv'$ matrix. For $I = (i_1, i_2, \dots, i_{n(u-1)})$, as is easily shown,

$$\det M_G^I = \det \left(A^I M_{G'} \right) = \sum_K \pm \left(\det A_K^I \right) \left(\det M_{G'}^K \right)$$

where $K = (k_1, k_2, \ldots, k_{n(u-1)})$ and A_K^I is the matrix consisting of the $k_1, k_2, \ldots, k_{n(u-1)}$ -th columns of A^I . It follows that if det $M_{G'}^I$ has a common divisor P for all I, then so does det M_G^I . Moreover, the denominator of $\Delta_{G,\rho}$ is equal to that of $\Delta_{G',\rho'}$. This completes the proof.

The corresponding fact about the Alexander polynomial is well known. Let G(K) be the knot group $\pi_1(S^3 - K)$ of a knot K in S^3 . For any knots K, K', if there exists a surjective homomorphism from G(K) to G(K'), then the Alexander polynomial of K' is divisible by that of K. Murasugi mentions that if there exists a surjective homomorphism from a knot group G(K) to the trefoil knot group, then the twisted Alexander polynomial of G(K) is divisible by that of the trefoil knot group. The main theorem is a generalization of the above.

We remark geometric settings of a surjective homomorphism between groups. Here we mention degree 1 maps. Let X and Y be d-dimensional compact manifolds. Suppose that $f: X \to Y$ is a degree 1 map. It is easy to see that its induced homomorphism $f_*: \pi_1(X) \to \pi_1(Y)$ is a surjective homomorphism.

In the knot group case, there exist the following situations except for degree 1 maps. First, there exists a surjective homomorphism from any knot group to the trivial knot group which is the infinite cyclic group. Secondly, if a knot K is a connected sum of K_1 and K_2 , then its knot group G(K) is an amalgamated

product of $G(K_1)$ and $G(K_2)$. Then there exists a surjection from G(K) to each factor group. Thirdly, if a knot K is a periodic knot of order n, then there exists a surjective homomorphism from G(K) to $G(K_*)$ where K_* is its quotient knot of K.

4. Another proof from the view point of Reidemeister torsion

In this section, we prove our theorem in the knot group case. It is done by using the Mayer-Vietoris argument of Reidemeister torsion.

Here let us consider a knot K in S^3 and its exterior E(K). For the knot group $G(K) = \pi_1 E(K)$, we choose and fix a Wirtinger presentation

$$G(K) = \langle x_1, \ldots, x_u \mid r_1, \ldots, r_{u-1} \rangle.$$

The abelianization homomorphism

$$\alpha_K : G(K) \to H_1(E(K), \mathbb{Z}) \cong \mathbb{Z} = \langle t \rangle$$

is given by $\alpha_K(x_1) = \cdots = \alpha_K(x_u) = t$. If we have no confusion, we write simply α for α_K as previous section. In this section, we take a unimodular representation $\rho : G(K) \to SL(n; \mathbb{F})$ over a field \mathbb{F} . As the definition of the twisted Alexander polynomial, we consider the tensor representation

$$\rho \otimes \alpha : G \to GL(n; \mathbb{F}[t, t^{-1}]) \subset GL(n; \mathbb{F}(t)).$$

Here $\mathbb{F}(t)$ denotes the rational function field over \mathbb{F} . If $\rho \otimes \alpha$ is an acyclic representation over $\mathbb{F}(t)$, that is, all homology groups over $\mathbb{F}(t)$ of E(K) twisted by $\rho \otimes \alpha$ are vanishing, then Reidemeister torsion of E(K) for $\rho \otimes \alpha$ can be defined. Furthermore the following equality holds. See [3, 5] for more details of definitions and proofs.

Theorem 4.1. If $\rho \otimes \alpha$ is an acyclic representation, then we have

$$\tau_{\rho\otimes\alpha}(E(K)) = \Delta_{G(K),\rho}(t)$$

up to a factor $\pm t^{nk}$ $(k \in \mathbb{Z})$ if n is odd and up to only t^{nk} if n is even.

From this theorem, we prove the main theorem as divisibility of Reidemeister torsion in the knot group case. Here we take a surjective homomorphism φ : $G(K) \to G(K')$. By changing an orientation of meridians if we need, we may assume that $\alpha_{K'} \circ \varphi = \alpha_K$. Let $\rho' : G(K') \to SL(n; \mathbb{F})$ be a representation. For simplicity, we write a representation ρ for its composition $\rho' \circ \varphi$.

Now we consider 2-dimensional CW-complexes X(K) and X(K') defined by their Wirtinger presentations. It is well-known that these complexes are simple homotopy equivalent to the knot exteriors. Then these Reidemeister torsions of X(K)and X(K') are equal to the twisted Alexander polynomials respectively. Here we consider twisted homologies of these complexes by using their CW-complex structure. The coefficient V is a 2n-dimensional vector space over a rational function field $\mathbb{F}(t)$. When V is regarded as a G(K)-module by using ρ , it is denoted by V_{ρ} .

The homomorphism φ induces a chain map $\varphi_* : C_*(X(K), V_\rho) \to C_*(X(K'), V_{\rho'})$. We take a tensor representation $\rho \otimes \alpha_K : G(K) \to GL(n; \mathbb{F}(t))$. Assume that $\rho \otimes \alpha_K$ and $\rho' \otimes \alpha_{K'}$ are acyclic representations. Then we can prove the following.

Theorem 4.2. $\tau(X(K); V_{\rho \otimes \alpha_K}) / \tau(X(K'); V_{\rho' \otimes \alpha_{K'}})$ is a polynomial in $\mathbb{F}[t, t^{-1}]$.

We show the following proposition first.

Proposition 4.3. The chain map $\varphi_* : C_*(X(K), V_{\rho \otimes \alpha_K}) \to C_*(X(K'), V_{\rho' \otimes \alpha_{K'}})$ is surjective.

Proof. It is clear that φ induces an isomorphism on the 0-chains, and a surjection on the 1-chains. Then we only need to prove this proposition on the 2-chains.

We take a non-trivial 2-chain $z \in C_2(X(K'), V_{\rho' \otimes \alpha_{K'}})$. By the acyclicity of the chain complex $C_*(X(K'), V_{\rho' \otimes \alpha_{K'}})$, the boundary map $\partial : C_2(X(K'), V_{\rho' \otimes \alpha_{K'}}) \to C_1(X(K'), V_{\rho' \otimes \alpha_{K'}})$ is injective. Then the image ∂z is non-trivial in C_1 . On the other hand, by the surjectivity of

$$\varphi: C_1(X(K), V_{\rho \otimes \alpha_K}) \to C_1(X(K'), V_{\rho' \otimes \alpha_{K'}}),$$

there exists a 2-chain $w \in C_2(X(K), V_{\rho \otimes \alpha_K})$ such that $\varphi_*(w) = z$. By the commutativity of maps, in C_2

$$\varphi_*(\partial w) = \partial \varphi_*(w) = \partial \partial z = 0.$$

Then we have $\partial w = 0$. Hence by the acyclicity, there exists $\tilde{w} \in C_*(X(K), V_{\rho \otimes \alpha_K})$ such that $\partial \tilde{w} = w$. Again by the commutativity, $\varphi(\tilde{w}) = z$. Therefore φ_* is surjective.

Proof of Theorem 4.2. From the above proposition, we can take the kernel D_* of this chain map φ_* and obtain a short exact sequence

$$0 \to D_* \to C_*(X(K), V_{\rho \otimes \alpha_K}) \to C_*(X(K'), V_{\rho' \otimes \alpha_{K'}}) \to 0.$$

Here we recall the following fact. For a short exact sequence $0 \to C'_* \to C_* \to C''_*$ of finite chain complexes, if two of them are acyclic complexes, then the third one is also acyclic. Furthermore, among the torsion of them, it holds that

$$\tau(C_*) = \tau(C'_*)\tau(C''_*)$$

up to some factor.

By applying the property of the product of torsion, we have

$$\tau(X(K); V_{\rho \otimes \alpha_K}) = \tau(X(K'); V_{\rho' \otimes \alpha_{K'}}) \tau(D; V_{\rho \otimes \alpha_K}).$$

We only need to prove that $\tau(D; V_{\rho \otimes \alpha_K})$ is a polynomial. By the definition, 0-chains D_0 is vanishing. Because

$$\varphi_*: C_0(X(K), V_{\rho \otimes \alpha_K}) \to C_0(X(K'), V_{\rho' \otimes \alpha_{K'}})$$

is isomorphism. Hence by definition, its torsion is the determinant of $D_2 \rightarrow D_1$. Therefore it is a polynomial.

Remark 4.4. By the similar argument, we can prove that if $\varphi : G(K) \to G(K')$ is an injective homomorphism, then $\tau(X(K'); V_{\rho \otimes \alpha_{K'}})/\tau(X(K); V_{\rho \otimes \alpha_K})$ is a polynomial.

5. Examples

In this section, we show some examples of the twisted Alexander polynomials and an application for Theorem 3.1. We consider the problem: is there a surjective homomorphism from G(K) to G(K') for two given knots K, K'? Here we study the problem in case when K' is the figure eight knot 4_1 . It is investigated by Murasugi when K' is the trefoil knot 3_1 . The numbering of the knots follows that of Rolfsen's book [7].

If the classical Alexander polynomial of K can not be divided by that of K', we can determine whether or not there exists a surjective homomorphism from G(K) to G(K'). In the knot table in [7], up to 9 crossings, the classical Alexander polynomial

of any knot is not divisible by that of $G(4_1)$ except for $8_{18}, 8_{21}, 9_{12}, 9_{24}, 9_{37}, 9_{39}$ and 9_{40} . That is to say, except for 8_{18} , 8_{21} , 9_{12} , 9_{24} , 9_{37} , 9_{39} and 9_{40} , there exists no surjective homomorphism from such a knot group to $G(4_1)$.

Next, we consider a representation $\rho: G(K) \to SL(2; \mathbb{Z}/p\mathbb{Z})$ and the twisted Alexander polynomial associated to ρ . Theorem 3.1 says that if the numerator of $\Delta_{G(K),\rho}$ for all representations $\rho: G(K) \to SL(2; \mathbb{Z}/p\mathbb{Z})$ fixed some prime p can not be divided by the numerator of $\Delta_{G(K'),\rho'}$ for a certain representation $\rho': G(K') \to$ $SL(2; \mathbb{Z}/p\mathbb{Z})$, then there exists no surjective homomorphism from G(K) to G(K').

Let us compute the twisted Alexander polynomials $\Delta_{G(4_1),\rho'}$ for a certain representation $\rho': G(4_1) \to SL(2; \mathbb{Z}/7\mathbb{Z})$. The knot group $G(4_1)$ admits a presentation

$$G(4_1) = \langle x_1, x_2, x_3, x_4 \mid x_4 x_2 x_4^{-1} x_1^{-1}, x_1 x_2 x_1^{-1} x_3^{-1}, x_2 x_4 x_2^{-1} x_3^{-1} \rangle.$$

We can check easily that the following is a representation of $G(4_1)$:

$$\rho'(x_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \rho'(x_2) = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}, \ \rho'(x_3) = \begin{pmatrix} 4 & 4 \\ 3 & 5 \end{pmatrix}, \ \rho'(x_4) = \begin{pmatrix} 2 & 4 \\ 5 & 0 \end{pmatrix}$$

Then we obtain the Alexander matrix

$$M = \begin{pmatrix} 6 & 0 & 2t & 4t & 0 & 0 & 6t+1 & 6t \\ 0 & 6 & 5t & 0 & 0 & 0 & 0 & 6t+1 \\ 3t+1 & 3t & t & t & 6 & 0 & 0 \\ 4t & 2t+1 & 0 & t & 0 & 6 & 0 & 0 \\ 0 & 0 & 3t+1 & 3t & 6 & 0 & t & 0 \\ 0 & 0 & 4t & 2t+1 & 0 & 6 & 3t & t \end{pmatrix}.$$

The numerator P of the twisted Alexander polynomial $\Delta_{G(4_1),\rho'}$ is the determinant of M_4 obtained from M by removing the last two columns. Then we get

$$P = t^4 + t^3 + 3t^2 + t + 1.$$

Moreover, we calculate the numerator of the twisted Alexander polynomials of $G(8_{21})$ for all representations $G(8_{21}) \to SL(2; \mathbb{Z}/7\mathbb{Z})$ and get 24 polynomials. These calculations are made by author's computer program and the same results are obtained by Kodama Knot program [4]. None of them can be divided by P, then we conclude that there exists no surjective homomorphism from $G(8_{21})$ to $G(4_1)$. Similarly, if we deal with p = 5, 7, we get there exists no surjective homomorphism from $G(9_{12}), G(9_{24}), G(9_{39})$ to $G(4_1)$. On the other hand, we can give explicitly surjective homomorphisms from the rest knot groups $G(8_{18}), G(9_{37}), G(9_{40})$ to $G(4_1)$. Then we can determine whether or not there exists a surjective homomorphism from the group of all knot with up to 9 crossings to $G(4_1)$.

Acknowledgements. The authors would like to express their thanks to Prof. Sadayoshi Kojima and Prof. Dieter Kotschick for their useful comments.

References

- 1. R. Crowell and R. Fox, Introduction to knot theory, GTM 57, Springer
- 2. H. Goda, T. Kitano and T. Morifuji, Reidemeister torsion, Twisted Alexander polynomial and fibered knots, to appear in Comment. Math. Helv.
- 3. P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661.
- 4. http://www.math.kobe-u.ac.jp/HOME/kodama/knot.html
- 5. T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442
- 6. X.S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380.

- 7. D. Rolfsen, Knots and links, Publish or Perish, Inc.
- M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241–256.

DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES, TOKYO INSTITUTE OF TECHNOL-OGY, 2-12-1-W8-43 OH-OKAYAMA, MEGURO-KU, TOKYO 152-8552, JAPAN *E-mail address:* kitano@is.titech.ac.jp

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914 Japan

 $E\text{-}mail\ address:\ \texttt{macky@ms.u-tokyo.ac.jp}$

Department of Information and Computer Sciences, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan

E-mail address: wada@ics.nara-wu.ac.jp

Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

- 2004–25 Taro Asuke: The Godbillon-Vey class of transversely holomorphic foliations.
- 2004–26 Vilmos Komornik and Masahiro Yamamoto: Estimation of point sources and the applications to inverse problems.
- 2004–27 Oleg Yu. Imanuvilov and Masahiro Yamamoto: Stability estimate in a Cauchy problem for a hyperbolic equation with variable coefficients.
- 2004–28 Naoki Heya: The absolute continuity of a measure induced by infinite dimensional stochastic differential equations.
- 2004–29 Hidetaka Sakai: Hypergeometric solution of $2 \times 2q$ -Schlesinger system.
- 2004–30 Yasuharu Nakae: Taut foliations of torus knot complements.
- 2004–31 Teruhisa Tsuda: Universal characters and q-Painlevé systems.
- 2004–32 Vilmos Komornik and Paola Loreti: Discretized ingham type theorems.
- 2004–33 Takashi Taniguchi: On proportional constants of the mean value of class numbers of quadratic extensions.
- 2004–34 Takashi Taniguchi: A mean value theorem for the square of class numbers of quadratic fields.
- 2004–35 Na Zhang: The distribution of firm size.
- 2004–36 Teruaki Kitano, Masaaki Suzuki and Masaaki Wada: Twisted Alexander polynomial and surjectivity of a group homomorphism.

The Graduate School of Mathematical Sciences was established in the University of Tokyo in April, 1992. Formerly there were two departments of mathematics in the University of Tokyo: one in the Faculty of Science and the other in the College of Arts and Sciences. All faculty members of these two departments have moved to the new graduate school, as well as several members of the Department of Pure and Applied Sciences in the College of Arts and Sciences. In January, 1993, the preprint series of the former two departments of mathematics were unified as the Preprint Series of the Graduate School of Mathematical Sciences, The University of Tokyo. For the information about the preprint series, please write to the preprint series office.

ADDRESS:

Graduate School of Mathematical Sciences, The University of Tokyo 3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN TEL +81-3-5465-7001 FAX +81-3-5465-7012