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Abstract. If ϕ : G → G′ is a surjective homomorphism, we prove that the
twisted Alexander polynomial of G is divisible by the twisted Alexander poly-
nomial of G′. As an application, we show non-existence of surjective homo-
morphism between certain knot groups.

1. Introduction

Suppose that G is a finitely presentable group with a surjective homomorphism
to the free abelian group of rank l, e.g., abelianization. Let ρ : G → GL(n; R) be a
linear representation. The twisted Alexander polynomial of G associated to ρ was
introduced in [8] and is defined to be a rational expression of l indeterminates.

Let ϕ : G → G′ be a surjective homomorphism. Each representation ρ′ : G′ →
GL(n; R) naturally induces a representation of G, namely, ρ = ρ′ ◦ϕ. In this paper
we prove the following:

Main theorem . The twisted Alexander polynomial of G associated to ρ is divis-

ible by the twisted Alexander polynomial of G′ associated to ρ′.

The corresponding fact about the (classical) Alexander polynomial is well known
[1].

We present two separate proofs of the main theorem. First we give a purely
algebraic proof in §3. If G is a knot group, the twisted Alexander polynomial of G
may be regarded as the Reidemeister torsion. In §4, we provide another proof of
the main theorem in case when G and G′ are knot groups, from the view point of
Reidemeister torsion.

In the last section, we show non-existence of surjective homomorphism between
certain knot groups, as an application of the main theorem.

2. Twisted Alexander polynomial

In this section, we recall briefly the definition of the twisted Alexander polyno-
mial.

Let G be a finitely presentable group. Choose and fix a presentation as follows:

G = 〈x1, . . . , xu | r1, . . . , rv〉.
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We denote by α : G → Z
l a surjective homomorphism to the free abelian group

with generators t1, . . . , tl and ρ : G → GL(n; R) a linear representation, where
R is a unique factorization domain. These maps naturally induce ring homomor-
phisms ρ̃ and α̃ from Z[G] to M(n;R) and Z[t1

±1, . . . , tl
±1] respectively, where

M(n;R) denotes the matrix algebra of degree n over R. Then ρ̃⊗ α̃ defines a ring
homomorphism

Z[G] → M
(

n; R[t1
±1, . . . , tl

±1]
)

.

Let Fu be the free group on generators x1, . . . , xu and

Φ : Z[Fu] → M
(

n; R[t1
±1, . . . , tl

±1]
)

the composite of the surjection Z[Fu] → Z[G] induced by the fixed presentation
and the map ρ̃ ⊗ α̃ : Z[G] → M(n;R[t1

±1, . . . , tl
±1]).

We define the v × u matrix M whose (i, j) component is the n × n matrix

Φ

(

∂ri

∂xj

)

∈ M
(

n; R[t1
±1, . . . , tl

±1]
)

,

where ∂/∂x denotes the Fox derivation. This matrix M is called the Alexander
matrix of the presentation of G associated to the representation ρ.

It is easy to see that there is an integer 1 ≤ j ≤ u such that detΦ(xj − 1) 6= 0.
For such j, let us denote by Mj the v×(u−1) matrix obtained from M by removing
the j-th column. We regard Mj as an nv × n(u − 1) matrix with coefficients in
R[t1

±1, . . . , tl
±1]. Moreover, for an n(u − 1)-tuple of indices

I =
(

i1, i2, . . . , in(u−1)

)

,
(

1 ≤ i1 < i2 < · · · < in(u−1) ≤ nv
)

we denote by M I
j the n(u− 1)×n(u− 1) square matrix consisting of the ik-th row

of the matrix Mj , where k = 1, 2, . . . , n(u − 1).
Then the twisted Alexander polynomial (see [8]) of a finitely presented group G

for a representation ρ : G → GL(n; R) is defined to be a rational expression

∆G,ρ(t1, . . . , tl) =
gcdI(det M I

j )

detΦ(xj − 1)

and moreover well-defined up to a factor ǫt1
ε1 · · · tl

εl , where ǫ ∈ R×, εi ∈ Z. See
[8], [6], [2] and [3] for more precise definition and applications.

3. Main theorem and the algebraic proof

In this section, we prove the following main theorem of this paper.

Theorem 3.1. Let G and G′ be finitely presentable groups and α, α′ surjective

homomorphisms from G,G′ to Z
l respectively. Suppose that there exists a surjective

homomorphism ϕ : G → G′ such that α = α′ ◦ ϕ. Then ∆G,ρ is divisible by ∆G′,ρ′

for any representation ρ′ : G′ → GL(n; R), where ρ = ρ′ ◦ ϕ. That is to say, the

quotient of ∆G,ρ by ∆G′,ρ′ is a genuine polynomial.

Proof. Choose and fix a presentation

G = 〈x1, x2, . . . , xu | r1, r2, . . . , rv〉.

Since ϕ is surjective, then G′ is generated by ϕ(x1), . . . , ϕ(xu). Namely, G′ can be
presented as

G′ = 〈ϕ(x1), ϕ(x2), . . . , ϕ(xu) | s1, s2, . . . , sv′〉.
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For convenience, we also write xi for ϕ(xi), that is, we consider that G′ is generated
by x1, . . . , xu. Here each relator ri is written as

ri =
∏

k

uks
εik

lik

u−1
k , i = 1, 2, . . . , v, 1 ≤ lik

≤ v′, uk ∈ Fu, εik
= ±1.

By applying the Fox derivation ∂
∂xj

and collecting terms of ∂sk

∂xj
, we get

ϕ

(

∂ri

∂xj

)

=

v′

∑

k=1

Ai,k

∂sk

∂xj

.(3.1)

Here Ai,k (1 ≤ i ≤ v) is a sum of some ε• ϕ(u•), which does not depend on j. Let
MG and MG′ be the Alexander matrices removed the u-th column:

MG =











ρ̃ ⊗ α̃
(

∂r1

∂x1

)

· · · ρ̃ ⊗ α̃
(

∂r1

∂xu−1

)

...
. . .

...

ρ̃ ⊗ α̃
(

∂rv

∂x1

)

· · · ρ̃ ⊗ α̃
(

∂rv

∂xu−1

)











MG′ =











ρ̃′ ⊗ α̃′

(

∂s1

∂x1

)

· · · ρ̃′ ⊗ α̃′

(

∂s1

∂xu−1

)

...
. . .

...

ρ̃′ ⊗ α̃′

(

∂sv′

∂x1

)

· · · ρ̃′ ⊗ α̃′

(

∂sv′

∂xu−1

)











.

By (3.1), we have

MG = AMG′

where A = (ρ′(Ai,k)) is a nv × nv′ matrix. For I = (i1, i2, . . . , in(u−1)), as is easily
shown,

detM I
G = det

(

AIMG′

)

=
∑

K

±
(

detAI
K

) (

det MK
G′

)

where K = (k1, k2, . . . , kn(u−1)) and AI
K is the matrix consisting of the k1, k2, . . . ,

kn(u−1)-th columns of AI . It follows that if detM I
G′ has a common divisor P for

all I, then so does det M I
G. Moreover, the denominator of ∆G,ρ is equal to that of

∆G′,ρ′ . This completes the proof.
The corresponding fact about the Alexander polynomial is well known. Let

G(K) be the knot group π1(S
3 − K) of a knot K in S3. For any knots K, K ′, if

there exists a surjective homomorphism from G(K) to G(K ′), then the Alexander
polynomial of K ′ is divisible by that of K. Murasugi mentions that if there exists a
surjective homomorphism from a knot group G(K) to the trefoil knot group, then
the twisted Alexander polynomial of G(K) is divisible by that of the trefoil knot
group. The main theorem is a generalization of the above.

We remark geometric settings of a surjective homomorphism between groups.
Here we mention degree 1 maps. Let X and Y be d-dimensional compact manifolds.
Suppose that f : X → Y is a degree 1 map. It is easy to see that its induced
homomorphism f∗ : π1(X) → π1(Y ) is a surjective homomorphism.

In the knot group case, there exist the following situations except for degree
1 maps. First, there exists a surjective homomorphism from any knot group to
the trivial knot group which is the infinite cyclic group. Secondly, if a knot K
is a connected sum of K1 and K2, then its knot group G(K) is an amalgamated
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product of G(K1) and G(K2). Then there exists a surjection from G(K) to each
factor group. Thirdly, if a knot K is a periodic knot of order n, then there exists
a surjective homomorphism from G(K) to G(K∗) where K∗ is its quotient knot of
K.

4. Another proof from the view point of Reidemeister torsion

In this section, we prove our theorem in the knot group case. It is done by using
the Mayer-Vietoris argument of Reidemeister torsion.

Here let us consider a knot K in S3 and its exterior E(K). For the knot group
G(K) = π1E(K), we choose and fix a Wirtinger presentation

G(K) = 〈x1, . . . , xu | r1, . . . , ru−1〉.

The abelianization homomorphism

αK : G(K) → H1(E(K), Z) ∼= Z = 〈t〉

is given by αK(x1) = · · · = αK(xu) = t. If we have no confusion, we write simply
α for αK as previous section. In this section, we take a unimodular representation
ρ : G(K) → SL(n; F) over a field F. As the definition of the twisted Alexander
polynomial, we consider the tensor representation

ρ ⊗ α : G → GL(n; F[t, t−1]) ⊂ GL(n; F(t)).

Here F(t) denotes the rational function field over F. If ρ ⊗ α is an acyclic rep-
resentation over F(t), that is, all homology groups over F(t) of E(K) twisted by
ρ ⊗ α are vanishing, then Reidemeister torsion of E(K) for ρ ⊗ α can be defined.
Furthermore the following equality holds. See [3, 5] for more details of definitions
and proofs.

Theorem 4.1. If ρ ⊗ α is an acyclic representation, then we have

τρ⊗α(E(K)) = ∆G(K),ρ(t)

up to a factor ±tnk (k ∈ Z) if n is odd and up to only tnk if n is even.

From this theorem, we prove the main theorem as divisibility of Reidemeister
torsion in the knot group case. Here we take a surjective homomorphism ϕ :
G(K) → G(K ′). By changing an orientation of meridians if we need, we may
assume that αK′ ◦ ϕ = αK . Let ρ′ : G(K ′) → SL(n; F) be a representation. For
simplicity, we write a representation ρ for its composition ρ′ ◦ ϕ.

Now we consider 2-dimensional CW-complexes X(K) and X(K ′) defined by their
Wirtinger presentations. It is well-known that these complexes are simple homo-
topy equivalent to the knot exteriors. Then these Reidemeister torsions of X(K)
and X(K ′) are equal to the twisted Alexander polynomials respectively. Here we
consider twisted homologies of these complexes by using their CW-complex struc-
ture. The coefficient V is a 2n-dimensional vector space over a rational function
field F(t). When V is regarded as a G(K)-module by using ρ, it is denoted by Vρ.

The homomorphism ϕ induces a chain map ϕ∗ : C∗(X(K), Vρ) → C∗(X(K ′), Vρ′ ).
We take a tensor representation ρ⊗αK : G(K) → GL(n; F(t)). Assume that ρ⊗αK

and ρ′ ⊗ αK′ are acyclic representations. Then we can prove the following.

Theorem 4.2. τ(X(K);Vρ⊗αK
)/τ(X(K ′);Vρ′⊗αK′

) is a polynomial in F[t, t−1].

We show the following proposition first.
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Proposition 4.3. The chain map ϕ∗ : C∗(X(K), Vρ⊗αK
) → C∗(X(K ′), Vρ′⊗αK′

)
is surjective.

Proof. It is clear that ϕ induces an isomorphism on the 0-chains, and a surjection
on the 1-chains. Then we only need to prove this proposition on the 2-chains.

We take a non-trivial 2-chain z ∈ C2(X(K ′), Vρ′⊗αK′
). By the acyclicity of the

chain complex C∗(X(K ′), Vρ′⊗αK′
), the boundary map ∂ : C2(X(K ′), Vρ′⊗αK′

) →
C1(X(K ′), Vρ′⊗αK′

) is injective. Then the image ∂z is non-trivial in C1. On the
other hand, by the surjectivity of

ϕ : C1(X(K), Vρ⊗αK
) → C1(X(K ′), Vρ′⊗αK′

),

there exists a 2-chain w ∈ C2(X(K), Vρ⊗αK
) such that ϕ∗(w) = z. By the commu-

tativity of maps, in C2

ϕ∗(∂w) = ∂ϕ∗(w) = ∂∂z = 0.

Then we have ∂w = 0. Hence by the acyclicity, there exists w̃ ∈ C∗(X(K), Vρ⊗αK
)

such that ∂w̃ = w. Again by the commutativity, ϕ(w̃) = z. Therefore ϕ∗ is
surjective.

Proof of Theorem 4.2. From the above proposition, we can take the kernel D∗

of this chain map ϕ∗ and obtain a short exact sequence

0 → D∗ → C∗(X(K), Vρ⊗αK
) → C∗(X(K ′), Vρ′⊗αK′

) → 0.

Here we recall the following fact. For a short exact sequence 0 → C′
∗ → C∗ → C′′

∗

of finite chain complexes, if two of them are acyclic complexes, then the third one
is also acyclic. Furthermore, among the torsion of them, it holds that

τ(C∗) = τ(C′
∗)τ(C′′

∗ )

up to some factor.
By applying the property of the product of torsion, we have

τ(X(K);Vρ⊗αK
) = τ(X(K ′);Vρ′⊗αK′

)τ(D; Vρ⊗αK
).

We only need to prove that τ(D; Vρ⊗αK
) is a polynomial. By the definition,

0-chains D0 is vanishing. Because

ϕ∗ : C0(X(K), Vρ⊗αK
) → C0(X(K ′), Vρ′⊗αK′

)

is isomorphism. Hence by definition, its torsion is the determinant of D2 → D1.
Therefore it is a polynomial.

Remark 4.4. By the similar argument, we can prove that if ϕ : G(K) → G(K ′) is an
injective homomorphism, then τ(X(K ′);Vρ⊗αK′

)/τ(X(K);Vρ⊗αK
) is a polynomial.

5. Examples

In this section, we show some examples of the twisted Alexander polynomials
and an application for Theorem 3.1. We consider the problem: is there a surjective
homomorphism from G(K) to G(K ′) for two given knots K, K ′? Here we study the
problem in case when K ′ is the figure eight knot 41. It is investigated by Murasugi
when K ′ is the trefoil knot 31. The numbering of the knots follows that of Rolfsen’s
book [7].

If the classical Alexander polynomial of K can not be divided by that of K ′, we
can determine whether or not there exists a surjective homomorphism from G(K) to
G(K ′). In the knot table in [7], up to 9 crossings, the classical Alexander polynomial
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of any knot is not divisible by that of G(41) except for 818, 821, 912, 924, 937, 939 and
940. That is to say, except for 818, 821, 912, 924, 937, 939 and 940, there exists no
surjective homomorphism from such a knot group to G(41).

Next, we consider a representation ρ : G(K) → SL(2; Z/pZ) and the twisted
Alexander polynomial associated to ρ. Theorem 3.1 says that if the numerator of
∆G(K),ρ for all representations ρ : G(K) → SL(2; Z/pZ) fixed some prime p can not
be divided by the numerator of ∆G(K′),ρ′ for a certain representation ρ′ : G(K ′) →
SL(2; Z/pZ), then there exists no surjective homomorphism from G(K) to G(K ′).

Let us compute the twisted Alexander polynomials ∆G(41),ρ′ for a certain repre-
sentation ρ′ : G(41) → SL(2; Z/7Z). The knot group G(41) admits a presentation

G(41) = 〈x1, x2, x3, x4 | x4x2x
−1
4 x−1

1 , x1x2x
−1
1 x−1

3 , x2x4x
−1
2 x−1

3 〉.

We can check easily that the following is a representation of G(41):

ρ′(x1) =

(

1 1
0 1

)

, ρ′(x2) =

(

1 0
3 1

)

, ρ′(x3) =

(

4 4
3 5

)

, ρ′(x4) =

(

2 4
5 0

)

.

Then we obtain the Alexander matrix

M =

















6 0 2t 4t 0 0 6t + 1 6t
0 6 5t 0 0 0 0 6t + 1

3t + 1 3t t t 6 0 0 0
4t 2t + 1 0 t 0 6 0 0
0 0 3t + 1 3t 6 0 t 0
0 0 4t 2t + 1 0 6 3t t

















.

The numerator P of the twisted Alexander polynomial ∆G(41),ρ′ is the determinant
of M4 obtained from M by removing the last two columns. Then we get

P = t4 + t3 + 3t2 + t + 1.

Moreover, we calculate the numerator of the twisted Alexander polynomials of
G(821) for all representations G(821) → SL(2; Z/7Z) and get 24 polynomials. These
calculations are made by author’s computer program and the same results are ob-
tained by Kodama Knot program [4]. None of them can be divided by P , then
we conclude that there exists no surjective homomorphism from G(821) to G(41).
Similarly, if we deal with p = 5, 7, we get there exists no surjective homomorphism
from G(912), G(924), G(939) to G(41). On the other hand, we can give explicitly sur-
jective homomorphisms from the rest knot groups G(818), G(937), G(940) to G(41).
Then we can determine whether or not there exists a surjective homomorphism
from the group of all knot with up to 9 crossings to G(41).

Acknowledgements. The authors would like to express their thanks to Prof.
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