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Abstract

We propose an integrable system of q-difference equations of which the universal
characters satisfy and regard it as a q-analogue of the UC hierarchy; see [10]. Via
a similarity reduction of this integrable system, rational solutions of the q-Painlevé
systems are constructed in terms of the universal characters.
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Introduction

We consider the q-Painlevé system of type A
(1)
N−1:

ϕn =
ϕn−1

an

Gn−1(ϕ)

Gn+1(ϕ)
,

Gn(ϕ) = 1 + ϕn−1 + ϕn−2ϕn−1 + · · ·+ ϕn−N+1 · · ·ϕn−1,
(0.1)

for n ∈ Z/NZ (N ≥ 3), which was introduced by Kajiwara et al. [2, 3]. Here ϕn = ϕn(x)

are the unknown variables and the symbol ϕn stands for ϕn(qx); an ∈ C× are constant

parameters such that a1a2 · · ·aN = q−N . The system (0.1) in fact has symmetry under the

affine Weyl group of type A
(1)
N−1 and goes to the (higher order) Painlevé equation of type

A
(1)
N−1 through a certain limiting procedure as q → 1; cf. [9]. We often denote the q-Painlevé

system (0.1) by q-P (AN−1). Note that q-P (A2) and q-P (A3) coincide with the q-Painlevé

equations q-PIV and q-PV respectively; see [1, 7].

The q-Painlevé system arises, via a similarity reduction, from the q-KP hierarchy which

is a q-analogue of the KP hierarchy; see [3]. As a consequence of this remarkable fact, (0.1)

admits a class of rational solutions in terms of Schur polynomials; see [3] or Theorem 5.1

below. On the other hand, for the case N = 4 (q-PV), Masuda [7] discovered another class

of rational solutions which contains the former one in terms of the universal characters.

Here the universal character is a generalization of Schur polynomial attached to a pair of

partitions; see [5].

The aim of the present article is to give an answer to the question: why the universal

character appears in the solutions of the q-Painlevé systems. First we propose an integrable

system of q-difference equations of which the universal characters satisfy (see Definition 2.1

and Theorem 2.2). Since this integrable system is regarded as a q-difference analogue of

the UC hierarchy (see [10]), we call it the q-UC hierarchy. Note that it contains the q-KP

hierarchy as a special case (see Remark 2.4). Secondly a certain similarity reduction of the

q-UC hierarchy is considered; and then turns out to be equivalent to the q-Painlevé system

of type A
(1)
2g+1 (g = 1, 2, . . .). This fact leads us to the

Theorem 0.1. The q-Painlevé system of type A
(1)
2g+1 (g = 1, 2, . . .) admits a class of rational

solutions in terms of the universal characters attached to a pair of (g+1)-reduced partitions.

(See Theorem 5.2.)

In Sect. 1, we recall the definition of the universal characters. Then we introduce the

q-UC hierarchy in Sect. 2. In Sect. 3, we briefly review the derivation of q-Painlevé systems.

Sect. 4 concerns a similarity reduction of q-UC hierarchy. Finally, in Sect. 5, we present an

expression of the rational solutions of q-Painlevé systems in terms of universal characters.

Sect. 6 is devoted to the proof of Theorem 2.2.
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Note. Throughout the paper, we shall use the notations:

(a; q)∞ =
∞∏
i=0

(1 − qia), (a; q, p)∞ =
∞∏

i,j=0

(1 − qipja);

use also (a1, . . . , ar; q)∞ = (a1; q)∞ · · · (ar; q)∞ and (a1, . . . , ar; q, p)∞ = (a1; q, p)∞ · · · (ar; q, p)∞.

For a function f = f(x), let

f = f(qx), f = f(q−1x).

1 Universal characters

1.1 Definition

We first recall the definition of the universal character. For a pair of sequences of integers λ =

(λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µl′), the universal character S[λ,µ](x,y) is a polynomial

in (x,y) = (x1, x2, . . . , y1, y2, . . .) defined as follows (see [5, 10]):

S[λ,µ](x,y) = det

(
pµl′−i+1+i−j(y), 1 ≤ i ≤ l′

pλi−l′−i+j(x), l′ + 1 ≤ i ≤ l + l′

)
1≤i,j≤l+l′

, (1.1)

where pn are defined by the generating function:

∑
k∈Z

pk(x)zk = exp

( ∞∑
n=1

xnz
n

)
. (1.2)

Schur polynomial Sλ(x) (see e.g. [6]) is regarded as a special case of the universal character:

Sλ(x) = det
(
pλi−i+j(x)

)
= S[λ,∅](x,y). (1.3)

If we count the degree of variables as

deg xn = n and deg yn = −n,

then the universal character S[λ,µ](x,y) is a weighted homogeneous polynomial of degree

|λ| − |µ|,

where |λ| = λ1 + · · ·+ λl.
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1.2 N-reduced partitions

A subset M ⊂ Z is said to be a Maya diagram if

m ∈M (m� 0) and m /∈M (m� 0);

see [8]. Each Maya diagram M = {. . . , m3, m2, m1} corresponds to a unique partition

λ = (λ1, λ2, . . .) such that mi −mi+1 = λi − λi+1 + 1. For each n = (n1, n2, . . . , nN) ∈ ZN ,

let us consider the Maya diagram:

M(n) =

N⋃
i=1

(NZ<ni
+ i),

then denote by λ(n) the corresponding partition. Notice that

λ(n) = λ(n + 1),

where 1 = (1, 1, . . . , 1). A partition of the form λ(n) is said to be an N-reduced partition.

We remark that a partition λ is N -reduced if and only if λ has no hook with length of a

multiple of N . We prepare the notations:

ei =

i
�

(0, . . . , 0, 1, 0, . . . , 0) and n(k) = n +

k∑
i=1

ei.

Lemma 1.1 (see [11, Lemma 2.2]). For any n ∈ ZN and partition µ, we have

S[(Nni−|n|,λ(n(i−1))),µ](x,y) = ±S[λ(n(i)),µ](x,y). (1.4)

2 q-UC hierarchy

We introduce a q-difference analogue of the UC hierarchy (q-UC hierarchy); cf. [10].

Let I ⊂ Z>0 and J ⊂ Z<0. Let ti (i ∈ I ∪ J) be the independent variable and Ti = Ti;q

its q-shift operator defined as follows:

Ti;q(ti) =

{
qti (i ∈ I),

q−1ti (i ∈ J),
(2.1)

and Ti;q(tj) = tj (i 	= j). We use also the notation Ti1Ti2 · · ·Tin = Ti1i2...in for the sake of

simplicity.

Definition 2.1. The following system of q-difference equations is called the q-UC hierarchy:

(ti − tj)Tij(τ0)Tk(τ1) + (tj − tk)Tjk(τ0)Ti(τ1) + (tk − ti)Tik(τ0)Tj(τ1) = 0, (2.2)

where i, j, k ∈ I ∪ J .
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Let

xn =

∑
i∈I t

n
i − qn

∑
j∈J t

n
j

n(1 − qn)
, (2.3a)

yn =

∑
i∈I t

−n
i − q−n

∑
j∈J t

−n
j

n(1 − q−n)
, (2.3b)

and define the function s[λ,µ] = s[λ,µ](t) in ti (i ∈ I ∪ J) as

s[λ,µ](t) = S[λ,µ](x,y). (2.4)

The universal characters solve the q-UC hierarchy in the sense of the

Theorem 2.2. For any integer m and pair of sequences of integers [λ, µ],

τ0 = s[λ,µ](t), τ1 = s[(m,λ),µ](t), (2.5)

satisfy the q-UC hierarchy (2.2).

The proof of the theorem is given in Sect. 6.

Remark 2.3. Let hn(t) = pn(x) and Hn(t) = pn(y) under the change of variables (2.3).

Notice the expression by the use of generating functions:

∞∑
k=0

hk(t)z
k =

∏
i∈I,j∈J

(qtjz; q)∞
(tiz; q)∞

, (2.6a)

∞∑
k=0

Hk(t)z
k =

∏
i∈I,j∈J

(q−1t−1
j z; q−1)∞

(t−1
i z; q−1)∞

. (2.6b)

Also function s[λ,µ](t) is defined as

s[λ,µ](t) = det

(
Hµl′−i+1+i−j(t), 1 ≤ i ≤ l′

hλi−l′−i+j(t), l′ + 1 ≤ i ≤ l + l′

)
1≤i,j≤l+l′

. (2.7)

Remark 2.4. Let J = ∅ and put tk = 0 in (2.2), we obtain the q-KP hierarchy (see [3]):

(ti − tj)Tij(τ0)τ1 + tjTj(τ0)Ti(τ1) − tiTi(τ0)Tj(τ1) = 0, i, j ∈ I. (2.8)

If µ = ∅, then it makes sense to substitute tk = 0 in s[λ,µ](t). Hence we recover from

Theorem 2.2 a solution of the q-KP hierarchy by means of Schur polynomials; cf. [3, Propo-

sition 2.2].
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3 q-Painlevé systems

We briefly review the derivation of the q-Painlevé system (0.1) from the q-KP hierarchy

following [3].

Consider the case I = {1, 2} in particular. Let us impose the N -periodic condition:

τn = τn+N , (3.1)

and the similarity condition:

T12(τn) = γnτn (γn ∈ C
× : constant), (3.2)

on the q-KP hierarchy:

(t1 − t2)T12(τn−1)τn + t2T2(τn−1)T1(τn) − t1T1(τn−1)T2(τn) = 0. (3.3)

Let (t1, t2) = (x, 1), we have from (3.3) the following q-difference equation for σn(x) =

τn(x, 1):

σn−1 σn + (x− 1)σn−1 σn − γn

γn−1

xσn−1 σn = 0, (3.4)

where n ∈ Z/NZ. This is the bilinear form of the q-Painlevé system; in fact, the functions

ϕn(x) = x
γn+1

γn

σn+1(q
−1x)σn−1(x)

σn+1(x)σn−1(q−1x)
, (3.5a)

solve (0.1) with the parameters

an =
γ2

n

γn+1γn−1

q−1. (3.5b)

4 Similarity reduction of q-UC hierarchy

Consider the q-UC hierarchy (2.2) in the case I = {1, 2} and J = {−1,−2}; replace the base

q with q2. Then we have

(t1 − t2)T1,2;q2(τ0)T−1;q2(τ1) + (t2 − t−1)T−1,2;q2(τ0)T1;q2(τ1)

+(t−1 − t1)T−1,1;q2(τ0)T2;q2(τ1) = 0. (4.1)

Notice that functions τi = τi(t−2, t−1, t1, t2) (i = 0, 1) can be regarded as functions in variables

(x,y) = (x1, x2, . . . , y1, y2, . . .) via

xn =
tn1 + tn2 − q2n(tn−1 + tn−2)

n(1 − q2n)
,

yn =
t−n
1 + t−n

2 − q−2n(t−n
−1 + t−n

−2 )

n(1 − q−2n)
.
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We now suppose that τi satisfies the similarity condition:

τi(pt−2, pt−1, pt1, pt2) = pdiτi(t−2, t−1, t1, t2) (di ∈ C : constant), (4.2)

for any p ∈ C×; and let

t1 = x, t2 = x−1, t−1 = −aq−2, t−2 = −aq−3, (4.3)

that is,

xn =
xn + x−n − (−a)n(1 + q−n)

n(1 − q2n)
, (4.4a)

yn =
xn + x−n − (−a)−n(1 + qn)

n(1 − q−2n)
. (4.4b)

Under the specialization (4.3) (or (4.4)), let

fi(x, a) = τi(t−2, t−1, t1, t2).

Lemma 4.1. The functions fi = fi(x, a) satisfy the following equation:

(x−1 + a)f0(q
−1x, a)f1(qx, aq) + qd0−d1(x− x−1)f0(x, a)f1(x, aq)

−(x+ a)f0(qx, a)f1(q
−1x, aq) = 0. (4.5)

Proof. We have

T−1,2;q2(xn) =
tn1 + (q2t2)

n − q2n((q−2t−1)
n + tn−2)

n(1 − q2n)

=
xn + q2nx−n − (−a)n(q−2n + q−n)

n(1 − q2n)

= qn

(
q−nxn + qnx−n − (−aq−2)n(q−n + 1)

n(1 − q2n)

)
,

and similarly

T−1,2;q2(yn) = q−n

(
q−nxn + qnx−n − (−aq−2)−n(qn + 1)

n(1 − q−2n)

)
.

Combine this with the similarity condition (4.2), we obtain

T−1,2;q2(τ0) = qd0f0(q
−1x, aq−2). (4.6)

One can verify in the same way that T1;q2(τ1) = qd1f1(qx, aq
−1); and also

T1,2;q2(τ0) = q2d0f0(x, aq
−2), T−1;q2(τ1) = f1(x, aq

−1),

T−1,1;q2(τ0) = qd0f0(qx, aq
−2), T2;q2(τ1) = qd1f1(q

−1x, aq−1).
(4.7)
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Substitute (4.3) and the above formulae into (4.1); then replace a with aq2, we get (4.5). �

The universal character S[λ,µ](x,y) is a homogeneous solution of the q-UC hierarchy

whose degree equals |λ|−|µ|; see Theorem 2.2. Hence we have in particular from Lemma 4.1

the

Proposition 4.2. Let

s[λ,µ](x, a) = S[λ,µ](x,y), (4.8)

with the specialization (4.4). For any integer k and pair of sequences of integers [λ, µ], let

f0(x) = s[λ,µ](x, a), f1(x) = s[(k,λ),µ](x, aq). (4.9)

Then we have

(x−1 + a)f0 f1 + q−k(x− x−1)f0 f1 − (x+ a)f0 f1 = 0. (4.10)

Remark 4.3. If we let f0 = 1 and f1 = f(x), then equation (4.10) is reduced to the linear

q-difference equation of the form:

(x−1 + a)f(qx) + q−k(x− x−1)f(x) − (x+ a)f(q−1x) = 0. (4.11)

Define Pk = Pk(x, a) (k ∈ Z≥0) by the generating function:

∞∑
k=0

Pk(x, a)z
k =

(−az,−aqz; q2)∞
(xz, x−1z; q2)∞

. (4.12)

Then Pk is equivalent to the continuous q-Laguerre polynomial and solves the linear q-

difference equation, (4.11), in fact; see e.g. [4].

Remark 4.4. Denote by λT the transpose of a partition λ; see [6]. It is easy to see the

following properties:

S[λ,µ](x,y) = S[µ,λ](y,x) = ±S[λT ,µT ](−x,−y);

and for any p ∈ C×

S[λ,µ](px1, p
2x2, . . . , p

−1y1, p
−2y2, . . .) = p|λ|−|µ|S[λ,µ](x1, x2, . . . , y1, y2, . . .).

Notice the formulae:

xn =
xn + x−n − (−a)n(1 + q−n)

n(1 − q2n)
= −q−2n

(
xn + x−n − (−a−1q)−n(1 + qn)

n(1 − q−2n)

)
,

yn =
xn + x−n − (−a)−n(1 + qn)

n(1 − q−2n)
= −q2n

(
xn + x−n − (−a−1q)n(1 + q−n)

n(1 − q2n)

)
.
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Then we see from Proposition 4.2 that the pair

F0(x) = s[λ,µT ](x, aq), F1(x) = s[λ,(k,µ)T ](x, a), (4.13)

satisfies the q-difference equation:

(x−1 + a−1)F0 F1 + q−k(x− x−1)F0 F1 − (x+ a−1)F0 F1 = 0, (4.14)

which is the same equation as (4.10) except replacing a with a−1.

5 Rational solutions of q-Painlevé systems

5.1 q-P (AN−1) in terms of Schur polynomials

Since the q-Painlevé system is derived from the q-KP hierarchy via a similarity reduction,

we obtain the following expression of rational solutions by means of N -reduced Schur poly-

nomials.

Theorem 5.1 (see [3, Corollary 4.4]). For any n ∈ ZN , let

σi(x) = Sλ(n(i))(x), x1 = x, x2 = 1, xl = 0 (l ≥ 3). (5.1)

Then functions σi solve (3.4) when

γi+1

γi
= qNni+1−|n|.

Consequently

ϕi(x) = qNni+1−|n|x
σi+1(q

−1x)σi−1(x)

σi+1(x)σi−1(q−1x)
, (5.2a)

gives a rational solution of q-P (AN−1) with the parameters

ai = qN(ni−ni+1)−1. (5.2b)

5.2 q-P (A2g+1) in terms of universal characters

From now on we deal with the q-Painlevé system, (0.1), in the case N is even. Let N = 2g+2

(g = 1, 2, . . .). Consider the change of variables:

σ2j = xd2j
(−aqx,−a−1q2x; q, q2)∞

(−qx; q, q)∞ ρ2j , (5.3a)

σ2j+1 = xd2j+1
(−a−1qx,−aq2x; q, q2)∞

(−qx; q, q)∞ ρ2j+1. (5.3b)
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Here let di ∈ C be constant parameters such that

γ2j+1

γ2j
= aq2k2j ,

γ2j

γ2j−1
= a−1q2k2j−1 , (5.4)

with ki = di+1−di. Then the bilinear form of q-P (A2g+1), (3.4) with N = 2g+2, is converted

to the following system:

(x−1 + a)ρ2j ρ2j+1 + q−k2j(x− x−1)ρ2j ρ2j+1 − (x+ a)ρ2j ρ2j+1 = 0, (5.5a)

(x−1 + a−1)ρ2j−1 ρ2j + q−k2j−1(x− x−1)ρ2j−1 ρ2j − (x+ a−1)ρ2j−1 ρ2j = 0, (5.5b)

which coincides with the similarity reduction of the q-UC hierarchy; see Sect. 4.

By virtue of Proposition 4.2 (and also Remark 4.4), together with Lemma 1.1, we now

arrive at the

Theorem 5.2. For any m,n ∈ Zg+1, the functions

ρ2j(x) = s[λ(m(j)),λT (n(j))](x, a),

ρ2j+1(x) = s[λ(m(j+1)),λT (n(j))](x, aq),
(5.6)

solve (5.5) when

k2j = (g + 1)mj+1 − |m|, k2j+1 = (g + 1)nj+1 − |n|.

Consequently

ϕi(x) =
x

(aiq)
1
2

ρi+1(q
−1x)ρi−1(x)

ρi+1(x)ρi−1(q−1x)
, (5.7a)

gives a rational solution of q-P (A2g+1) with the parameters

a2j = a−2q2(g+1)(nj−mj+1)+2|m|−2|n|−1,

a2j+1 = a2q2(g+1)(mj+1−nj+1)−2|m|+2|n|−1.
(5.7b)

Remark 5.3. The rational solutions given in Theorems 5.1 and 5.2 are reduced to those of

the Painlevé (differential) equation of type A
(1)
N−1, in parallel with the continuous limit from

the q-Painlevé system to the equation; cf. [11].

Example 5.4. Consider the function:

R[λ,µ](x, a, q)

= a|µ|x[λ|+|µ|ql(θ)−2|θ|

 ∏
(i,j)∈λ

(
1 − q2h(i,j)

) ∏
(i,j)∈µ

(
q2h(i,j) − 1

) s[λ,µ](x, aq), (5.8)
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for a pair of partitions λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .). Here recall that s[λ,µ](x, a)

is defined in (4.8) under the specialization (4.4); we denote by h(i, j) the hook-length, i.e.,

h(i, j) = λi + λT
j − i− j + 1; and let θi = max(µT

i − λi, 0), |θ| =
∑

i θi, l(θ) = #{i|θi 	= 0}.
Then it is observed that R[λ,µ] seems to be a polynomial in x, a, q, whose coefficients are all

positive integers. We give below some examples of the special polynomials R[λ,µ](x, a, q):

R[∅,∅] = 1,

R[ ,∅] = 1 + x2 + a(1 + q)x,

R[ ,∅] = 1 + x4 + a(1 + q)(1 + q2)(x+ x3) + (1 + q2)(1 + a2q(1 + q))x2,

R[ ,∅] = 1 + x6 + a(1 + q)(1 + q2 + q4)(x+ x5)

+(1 + q2 + q4)(1 + a2q(1 + q)(1 + q2))(x2 + x4)

+a(1 + q2)(1 + q3)(1 + q + q2 + a2q3(1 + q))x3,

R[ ,∅] = q2(1 + x6) + a(1 + q)(1 + q2 + q4)(x+ x5) + (1 + q2 + q4)(1 + a2(1 + q)2)(x2 + x4)

+a(1 + q3)(2(1 + q + q2) + a2q(1 + q)2)x3,

R[∅, ] = aq(1 + x2) + (1 + q)x,

R[∅, ] = a2q(1 + x4) + a(1 + q)(1 + q2)(x+ x3) + (1 + q2)(1 + q + a2q)x2,

R[ , ] = aq2(1 + x4) + q(1 + q)(1 + a2q)(x+ x3) + a(1 + q2)(1 + q + q2)x2,

R[ , ] = a2q3(1 + x6) + aq2(1 + q)(1 + q2 + a2q)(x+ x5)

+q(q(1 + q)(1 + q2) + a2(1 + q + 3q2 + 2q3 + 2q4 + q5 + q6))(x2 + x4)

+a(1 + q)(1 + q2)(1 + q2 + q3 + q4 + a2q3)x3.

6 Verification of Theorem 2.2

We have in general the

Lemma 6.1. Let hn = hn(t) and Hn = Hn(t) (n ∈ Z) be functions such that

Ti(hn) = hn − tihn−1, (6.1a)

Ti(Hn) = Hn − t−1
i Hn−1, (6.1b)

for i ∈ I ∪ J . Let

τ0 = det

(
Hni−j+1, 1 ≤ i ≤ r′

hni+j−1, r′ + 1 ≤ i ≤ r

)
1≤i,j≤r

, (6.2)

τ1 = det

(
Hni−j+1, 1 ≤ i ≤ r′

hni+j−2, r′ + 1 ≤ i ≤ r + 1

)
1≤i,j≤r+1

. (6.3)

Then the pair τ0 and τ1 solves the q-UC hierarchy (2.2).
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Theorem 2.2 follows immediately from the lemma, since the functions defined by (2.6) in

fact satisfy the relations (6.1).

Remark 6.2. Note that if we choose the functions hn and Hn as

hn = ψn,α = α−n
∏

i∈I,j∈J

(αqtj ; q)∞
(αti; q)∞

,

Hn = Ψn,α = αn
∏

i∈I,j∈J

(α−1q−1t−1
j ; q−1)∞

(α−1t−1
i ; q−1)∞

,

then obtain a q-analogue of the soliton solution; cf. [10] and Appendix below. It is easy to

see that functions ψn,α and Ψn,α satisfy (6.1), in fact.

Proof of Lemma 6.1. We prove the lemma in three steps:

(i) Consider the row vector of size r:

(Tij(hn), Tij(hn+1), . . . , Tij(hn+r−1)) . (6.4)

Add the l-th column multiplied by (−tk) to the (l+1)-th column for 1 ≤ l ≤ r−1 , we then

obtain

(Tij(hn), Tijk(hn+1), . . . , Tijk(hn+r−1)) , (6.5)

by using the relation (6.1a).

By the same procedure as above, the vector:

(Tij(Hn), Tij(Hn−1), . . . , Tij(Hn−r+1)) , (6.6)

is transformed into

−tk
(−t−1

k Tij(Hn), Tijk(Hn), Tijk(Hn−1), . . . , Tijk(Hn−r+2)
)
, (6.7)

via (6.1b).

Summarizing above we thus have

Tij(τ0) = (−tk)r′ |uk, U | . (6.8)

Here we let

uk = T
(−t−1

k Tij(Hn1), . . . ,−t−1
k Tij(Hnr′ ), Tij(hnr′+1

), . . . , Tij(hnr)
)
, (6.9)

and U = (Ua,b)1≤a≤r,1≤b≤r−1 denote the r × (r − 1)-matrix defined as

Ua,b =

{
Tijk(Hna−b+1) (1 ≤ a ≤ r′),

Tijk(hna+b) (r′ + 1 ≤ a ≤ r).
(6.10)
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(ii) Let us consider elementary transformations of the row vector of size r + 1:

(Tk(hn−1), Tk(hn), . . . , Tk(hn+r−1)) . (6.11)

First we add the l-th column multiplied by (−ti) to the (l+1)-th column for 1 ≤ l ≤ r, then

we get

(Tk(hn−1), Tik(hn), . . . , Tik(hn+r−1)) .

Secondly adding the l-th column multiplied by (−tj) to the (l + 1)-th column for 2 ≤ l ≤ r,

we obtain

(Tk(hn−1), Tik(hn), Tijk(hn+1), . . . , Tijk(hn+r−1)) .

Add the second column multiplied by (ti − tj)
−1 to the first column, we finally have the

vector: (
(ti − tj)

−1Tjk(hn), Tik(hn), Tijk(hn+1), . . . , Tijk(hn+r−1)
)
. (6.12)

Similarly, the vector:

(Tk(Hn), Tk(Hn−1), . . . , Tk(Hn−r)) , (6.13)

is converted to

titj
(−(ti − tj)

−1t−1
i Tjk(Hn),−t−1

j Tik(Hn), Tijk(Hn), . . . , Tijk(Hn−r+2)
)
, (6.14)

by the same elementary transformations as above.

Hence we have the expression:

(ti − tj)Tk(τ1) = (titj)
r′ |vi,vj, V | , (6.15)

where we let

vi = T
(−t−1

i Tjk(Hn1), . . . ,−t−1
i Tjk(Hnr′ ), Tjk(hnr′+1

), . . . , Tjk(hnr+1)
)
, (6.16)

and V = (Va,b)1≤a≤r+1,1≤b≤r−1 be the (r + 1) × (r − 1)-matrix defined as

Va,b =

{
Tijk(Hna−b+1) (1 ≤ a ≤ r′),

Tijk(hna+b) (r′ + 1 ≤ a ≤ r + 1).
(6.17)

(iii) Substitute (6.8) and (6.15) to the equation of q-UC hierarchy (2.2), we have

(−titjtk)−r′ (LHS of (2.2)) =

|uk, U | |vi,vj, V | − |uj , U | |vi,vk, V | + |ui, U | |vj ,vk, V | , (6.18)

which immediately turns out to be zero by the Plücker relation (a determinant identity). �
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A UC hierarchy and its discrete analogue

The UC hierarchy is an infinite-dimensional integrable system characterized by the universal

characters and is an extension of the KP hierarchy; see [10]. In this appendix, we briefly

summarize some results on the UC hierarchy and present its discrete analogue.

A.1 UC hierarchy and its solutions

Introduce the vertex operators:

X±(z; x,y) = exp(±ξ(x − ∂̃y, z)) exp(∓ξ(∂̃x, z
−1)), (A.1)

Y ±(z; x,y) = exp(±ξ(y − ∂̃x, z
−1)) exp(∓ξ(∂̃y, z)), (A.2)

where ξ(x, z) =
∑∞

n=1 xnz
n and ∂̃x stands for

(
∂

∂x1
, 1

2
∂

∂x2
, 1

3
∂

∂x3
, . . .

)
. The UC hierarchy is

defined by the following bilinear equations for an unknown function τ = τ(x,y) (see [10]):

Res
z=0

X−(z; x′,y′)τ(x′,y′)X+(z; x,y)τ(x,y) dz = 0, (A.3a)

Res
z=∞

Y −(z; x′,y′)τ(x′,y′)Y +(z; x,y)τ(x,y) dz = 0. (A.3b)

Note that (A.3) is equivalently rewritten into a system of partial differential equations of

infinite order.

Now we recall two classes of solutions of the UC hierarchy:

(i) All the universal characters S[λ,µ](x,y) are solutions of (A.3); see [10, Proposition 1.4].

(ii) τ = τm,n(x,y; pi, qj , ck) is a solution of (A.3), called the (m,n)-soliton solution. Here

function τm,n has the following expression of ‘twisted’ Wronskian type:

τm,n = det

 (
∂

∂y1

)j−1 (
eξ(y,p−1

i ) + cie
ξ(y,q−1

i )
)
, 1 ≤ i ≤ n(

∂
∂x1

)m+n−j (
eξ(x,pi) + cie

ξ(x,qi)
)
, n + 1 ≤ i ≤ m+ n


1≤i,j≤m+n

, (A.4)

where pi, qi, ci being constant parameters; see [10, Proposition 1.5].

Let τ0(x,y) = τ(x,y) be a solution of the UC hierarchy and let

τ1(x,y) = X+(w; x,y)τ(x,y), (A.5)

for an arbitrary parameter w. Then we have

Res
z=0

zX−(z; x′,y′)τ0(x′,y′)X+(z; x,y)τ1(x,y) dz = 0, (A.6a)

Res
z=∞

Y −(z; x′,y′)τ0(x′,y′)Y +(z; x,y)τ1(x,y) dz = 0, (A.6b)

which is called the (1, 0)-modified UC hierarchy. In particular we have the

Proposition A.1. For any integer m and pair of sequences of integers [λ, µ],

τ0 = S[λ,µ](x,y), τ1 = S[(m,λ),µ](x,y),

satisfy the system (A.6).
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A.2 d-UC hierarchy

Consider the (1, 0)-modified UC hierarchy (A.6). First we note that (A.6a) is equivalently

rewritten into∮
dz

2π
√−1

zτ0(x
′ + ε(z−1),y′ + ε(z))τ1(x − ε(z−1),y − ε(z))eξ(x−x′,z) = 0, (A.7)

with ε(z) = (z, z2/2, z3/3, . . .). Here the integration is taken along a small contour around

z = ∞.

Let I ⊂ Z be a subset and fix i, j, k ∈ I. Let

x′ = x − ε(ti) − ε(tj) − ε(tk),

y′ = y − ε(t−1
i ) − ε(t−1

j ) − ε(t−1
k ),

where ti’s are arbitrary small parameters such that t−1
i ’s lie inside the contour. Then we

have

eξ(x−x′,z) =
1

(1 − tiz)(1 − tjz)(1 − tkz)
. (A.8)

Equation (A.7) is rewritten into ∮
F (z)

dz

2π
√−1

= 0, (A.9)

where

F (z) =
z

(1 − tiz)(1 − tjz)(1 − tkz)

×τ0(x − ε(ti) − ε(tj) − ε(tk) + ε(z−1),y − ε(t−1
i ) − ε(t−1

j ) − ε(t−1
k ) + ε(z))

×τ1(x − ε(z−1),y − ε(z)).

Now let us assume that: the sum of residues of F (z) vanishes inside the contour except at

z = t−1
i , t−1

j , t−1
k . Then we have from (A.9)

Res
z=t−1

i

F (z) dz + Res
z=t−1

j

F (z) dz + Res
z=t−1

k

F (z) dz = 0,

which is equivalent to the equation:

(ti − tj)T̃ij(τ0)T̃k(τ1) + (tj − tk)T̃jk(τ0)T̃i(τ1) + (tk − ti)T̃ik(τ0)T̃j(τ1) = 0, (A.10)

via the change of variables:

xn =

∑
i∈I αit

n
i

n
and yn =

∑
i∈I αit

−n
i

n
. (A.11)

Here T̃i (i ∈ I) stands for the shift operator defined as

T̃i(αi) = αi − 1, T̃i(αj) = αj (i 	= j); (A.12)
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and let T̃ij = T̃iT̃j . In the same way, we obtain (A.10) also from (A.6b). Note that both

classes of solutions of the (modified) UC hierarchy, universal characters and soliton solutions,

satisfy the above assumption. We call (A.10) the d-UC hierarchy. The q-UC hierarchy, (2.2),

is derived from (A.10) by replacing T̃i with the q-shift operator Ti formally; cf. Sect. 2.

Remark A.2. The d-UC hierarchy can be recovered from the q-UC hierarchy through a certain

limiting procedure as follows. Let us consider the substitution:

ti = sie
εαi , q = e−ε, (A.13)

in (2.2). Noticing that

Ti(ti) = qti = sie
ε(αi−1),

if we take ε→ 0, then we immediately obtain from (2.2) the d-UC hierarchy, (A.10).
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