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TAUT FOLIATIONS OF TORUS KNOT COMPLEMENTS

YASUHARU NAKAE

Abstract. We showed that for any torus knot K there is a family of taut

foliations of the complement of K which realize all boundary slopes in (−∞, 1).
This theorem is proved by a construction of branched surfaces and laminations

carried by these branched surfaces which are used in the Roberts paper [6].

Applying this construction to a fibered knot K′, we also showed that there
exists a family of taut foliations of the complement of the cable knot K of K′

which realize all boundary slopes in (−∞, 1). And more, we partially extend

the theorem of Roberts to a link case.

1. Introduction

In this paper, we discuss taut foliations of the complement of a torus knot. A
taut foliation of a 3-manifold is a codimension one foliation such that there is a circle
which intersects every leaf transversely. There are a lot of studies on foliations of a
3-manifold, many of these indicate that the structure of foliations reflects well the
topology of a manifold. Novikov [3] showed that if a 3-manifold other than S2×S1

possesses a foliation without Reeb components, it has topological properties that
its fundamental group is infinite, the second homotopy group is trivial and its leaves
are all π1-injective. Rosenberg [8] showed that if a 3-manifold possesses a foliation
without Reeb components, then the manifold is irreducible, where a 3-manifold
is irreducible if all embedded 2-spheres bound 3-balls. Combining theorems of
Novikov and Rosenberg with that of Palmeira [4], one can see that if a 3-manifold
possesses a foliation without Reeb components its universal cover is homeomorphic
to R3. An infinite fundamental group avoids a possibility that a 3-manifold is a lens
space, the fact π2 is trivial and moreover that a 3-manifold is irreducible imply that
the universal cover is contractible. Therefore the existence of “Reebless” foliations
plays an important role in studies of a 3-manifold. In fact, a Reeb component has
no transverse circle which intersects all leaves, and hence a taut foliation has no
Reeb component. Thus a taut foliation takes over the fruits of “Reebless” foliations
with respect to the topological properties.

Rachel Roberts showed the following theorem.

Theorem 1.1. (Roberts [6]) Let M be an orientable, fibered compact 3-manifold
with single boundary component, whose fiber is a surface of negative Euler charac-
teristic with one puncture. Then there is an interval (−a, b) for some a, b > 0 such
that for any rational number ρ ∈ (−a, b) there is a taut foliation which realizes a
boundary slope ρ.

The boundary of such manifold M is a torus, and the boundaries of leaves of
these taut foliations are parallel simple closed curves on the torus. Since a torus
is homeomorphic to the quotient space R2

/
Z2, a simple closed curve on a torus is

regarded as a straight line on the quotient space. Then the boundary slope of a taut
foliation means a slope of the simple closed curve which is a boundary of a leaf of the
foliation, and it can be regarded as a fraction q

p with two relatively prime integers
p and q. If one performs the Dehn filling to the manifold in Theorem 1.1 with the
slope ρ belonging to the interval (−a, b), a taut foliation of a closed manifold is
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obtained, because a solid torus is a product of a disk and a circle, and then each
disk is attached to each leaf of the taut foliation along its boundary. Hence one of
the advantages of Theorem 1.1 is that one can estimate a range of slopes in which
a taut foliation survives after doing the Dehn filling.

The Dehn surgery along a knot embedded in S3 consists of two operations,
drilling out a neighbourhood of a knot from S3 and doing the Dehn filling. Lick-
orish [1] showed that all closed 3-manifold is obtained from S3 by doing the Dehn
surgery along some link embedded in S3. Then how the Dehn surgery along
knots and links yields a 3-manifold is one of important subjects in the study of
3-manifolds. A knot or link embedded in a 3-sphere is called fibered if the com-
plementary space of the knot is a fiber bundle. The fiber is a surface with some
number of holes, then the complementary space of a fibered knot is suitable for the
application of Theorem 1.1. A torus knot embedded in S3 is a simple closed curve
on the boundary of the standardly embedded solid torus in S3. It is well known
that a torus knot is fibered. So we focus on the complement of a torus knot, then
we prove the following theorem.

Theorem 1.2. (Main Theorem) For any torus knot K embedded in S3, there is
a family of taut foliations in the complement of K which realize all boundary slopes
in (−∞, 1).

Theorem 1.2 leads one to the conclusion that all the Dehn surgeries along any
torus knot by the slope belonging to the interval (−∞, 1) yield closed 3-manifolds
with a taut foliation. As seen before, these manifolds with a taut foliation have
properties that its fundamental group is infinite, its second homotopy group is
trivial and its universal cover is homeomorphic to R3.

Theorem 1.2 is proved in Section 3 in the following way. First we give an explicit
construction of the fibration of the complement of any torus knot. This construction
is an analogy of the construction of the fibration on the complement of trefoil knot,
which is one of the torus knots, written in Rolfsen’s book [7]. Next, using this
construction of the fibration, we construct a branched surface which carries a family
of laminations. Finally we extend these laminations to taut foliations and prove
these taut foliations satisfy the condition of the conclusion of Theorem 1.2.

In section 4, by using the construction of the fibration proved in section 3, we
obtain the following result.

Corollary 4.6 Let K be a fibered knot embedded in S3. For this K, let K̂ be a
simple closed curve on the boundary of the regular neighbourhood of K, namely K̂
is a cable knot of K. Then K̂ is fibered, and moreover there is a family of taut
foliations in the complement of K̂ which realizes all boundary slopes in (−∞, 1).

For a torus knot K0 embedded in S3, we can obtain a new knot K1 as a simple
closed curve on the boundary of the regular neighbourhood of K0. By iterating
this construction, there is a sequence of knots {Ki}i=0,1,···, and we call each of it a
iterated torus knot. We obtain also in section 4 the following theorem.

Theorem 4.1 Each iterated torus knot Ki is fibered, and moreover there is a
family of taut foliations in the complement of Ki which realizes all boundary slopes
in (−∞, 1).

By the theorem of Lickorish stated before, in order to consider a topology of
a 3-manifold in terms of the Dehn surgery it is needed to consider a link case.
Therefore we partially extend the theorem of Roberts to a link case as follows.

Theorem 5.1 Let M be an orientable, fibered compact 3-manifold with two bound-
ary components, whose fiber is a surface with two punctures and its genus is more
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than two. If the monodromy of the fibration satisfy the condition (1) of Lemma 5.5,
then there are intervals (−ai, bi) for some ai, bi > 0 and i = 1, 2 such that there is a
family of taut foliations which realizes all boundary slopes in each intervals, where
i corresponds to each torus boundary component of M .

2. Preliminaries

In this section, we review some definitions and explain backgrounds which are
necessary to understand the main theorem of this paper. Throughout this paper, all
manifolds and knots or links are oriented unless otherwise specified. For a manifold
M and a submanifold B of M , N(B) denotes the regular neighborhood of B in M .

Let F be a codimension one foliation on a 3-manifold M . For every leaf L of F
if L has a closed transverse curve γ i.e. it is transverse to F and passes through L,
we call that F is a taut foliation.

A branched surface B is a compact space modelled locally on the object of Fig-
ure 1.

∂hN(B)
∂vN(B)

Figure 1

If B lies in a 3-manifold M , we denote a fibered regular neighbourhood of B in M
by N(B), locally modelled on Figure 1. When we regard that the branched surface
B is embedded in N(B), we consider that N(B) is fibered by I-fibers normal to
the branched surface B.

For such a fibered regular neighbourhood N(B), we denote the part of ∂N(B)
which lies in the set of end points of the I-fibers of N(B) by ∂hN(B), and the part
of ∂N(B) which contains sub arcs of the I-fibers by ∂vN(B) as in Figure 1. We call
that ∂hN(B) is a horizontal boundary, and ∂vN(B) is a vertical boundary. If M has
boundaries and the branched surface embedded in M intersects ∂M transversely,
∂M ∩B is a train track τ , a space modelled locally on Figure 2. The train track on
∂M has also fibered regular neighbourhood N(τ) locally modelled on Figure 2 with
I-fiber, and then we denote similarly the part which intersects the endpoints of
I-fibers by ∂hN(τ) and the part which contains sub arcs of the I-fibers by ∂vN(τ).

If we denote the map which collapses all I-fibers by π : N(B) → B, a branch
locus is an arc on B which contains the image of the vertical boundary ∂vN(B)
under the collapsing map π.

The sectors {Si} of B are the closures of the components of B \ {branch locus}.
Now we put a weight {wi = 0} on each sector {Si} of B, and we denote the correc-
tion of these weights by the vector w = (w1, w2, · · · , wn). The branch equation is
the equation among the sectors which intersect at the branch loci locally modelled
in Figure 3. If we assign weights to sectors as in Figure 3, then the branch equations
are d = e+f , b = a+d and c = a+e. If the vector w satisfies the branch equations
for all branches, we call the vector w an invariant measure of B. The branched
surface B is called a measured branched surface if there is an invariant measure on
B. The measures assigned on the sectors induce the measures on the train track τ
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∂vN(τ)

∂hN(τ)

τ N(τ)

Figure 2

a
b c

d e

f

Figure 3

on the boundary ∂M . Therefore, if B is measured then the train track τ has also
an invariant measure. In this case we call that the train track is a measured train
track.

For a 3-manifold M we say λ is a lamination of M if λ is a foliation on a closed
subset of M . We see that the measured branched surface B with positive integer
weight carries a compact surface, then if we extend these weights to real numbers
there is a non-compact surface on N(B). These non-compact surface is a source of
a measured lamination on N(B).

We define that a lamination λ is carried by a branched surface B if it can be
isotoped into N(B) everywhere transverse to the fiber of the I-bundle, λ is fully
carried by B if it also intersects every fiber of the I-bundle.

Related to the main theorem of this paper, we introduce the definition of affinely
measured branched surface.

Definition 2.1. Let M be a compact 3-manifold and B be a branched surface em-
bedded in M . If there is a family of the simple curves or simple properly embedded
arcs {γi}i=1,··· ,n such that B \ ⋃n

i=1 γi has an invariant measure w, then we call
that B is affinely measured with respect to

⋃n
i=1 γi.

Let Mh be a surface bundle with monodromy h whose fiber is a once punctured
oriented surface F of genus g. In fact we see that

Mh = F × [0, 1]
/
(x, 1) ∼ (h(x), 0).
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We take a family of properly embedded arcs {αi}i=1,··· ,n in a fiber F and n copies
of the fiber,

F0 = F × {0} , F1 = F ×
{

1
n

}
, · · · , Fn−1 = F ×

{
n− 1
n

}
.

For the family of arcs {αi}i=1,··· ,n, we define the family of disks

D1 = α1 ×
[
0,

1
n

]
, D2 = α2 ×

[
1
n
,
2
n

]
, · · · , Dn = αn ×

[
n− 1
n

, 1
]
.

Then we construct a branched surface embedded inMh by combining these copies of
fibers and disks whose branch loci are the arcs {αi}i=1,··· ,n, we denote the branched
surface B by

B = 〈F0, F1, · · · , Fn−1 ; D1, D2, · · · , Dn〉.
The operation that one removes a solid torus from a 3-manifold and reattach it

with some identification map is called Dehn surgery. In the main theorem of this
paper, we construct a family of taut foliation in torus knot complements. Therefore
if we attach a solid torus to it in an appropriate way then we obtain a closed manifold
with a taut foliation.

For a knot or link K embedded in a compact, oriented 3-manifold M we denote

the exterior M \
◦

N(K) by MK .
The Dehn surgery consists of two operations, drilling that one remove the solid

torus from M , and filling that one reattaches a solid torus by an identification map
f . Let T be a torus boundary component of a compact orientable 3-manifold M .
For a homeomorphism f : ∂(D2 × S1) → T , the identification space M(T ; f) =
(D2 × S1)

⋃
f M is obtained by identifying the points of ∂(D2 × S1) with their

images of f , then we say that M(T ; f) is a (Dehn) filling of M along T . By this
construction, M(T ; f) depends only on the isotopy class of f , and moreover depends
only on the curve f(m) ⊂ T where m = ∂D2×{pt} ⊂ ∂(D2×S1) is a simple closed
curve. By this fact the isotopy class of a curve on a torus T plays an important
role, then we define a slope r on a torus T to be the isotopy class of an essential,
unoriented, simple closed curve on T . We denote the Dehn filling on M along T
with an identification map f such that f(m) represents the slope r by M(T ; r). If
M has only one boundary component T , we write the abbreviation of M(T ; r) by
M(r).

There is a distinguished slope defined on any knot. The meridian m for a knot
K embedded in a manifold M is any essential, simple closed curve on ∂N(K) such
that m is homologically trivial in N(K). The slope represented by a meridian m is
called meridional slope of K, and we denote it by µK . For the meridional slope m,
if we glue a solid torus D2×S1 to ∂MK with identification map f : ∂(D2×S1) → T
such that f(∂D2 × {pt}) is a representative of the meridional slope m, we say this
operation is the trivial Dehn surgery since in this case Mk(µk) ∼= M .

For any knot K in the 3-sphere, there is a Seifert surface S of K such that the
boundary of S is equivalent to K, more precisely S intersects N(K) in an annulus
whose boundary consists of K and an essential, simple closed curve on ∂N(K). We
call the latter curve S ∩ ∂N(K) longitude of K. The longitude is characterized up
to isotopy, then we define the longitudinal slope of K denoted by λK such that λK

is represented by any longitude of K.
By the fact that two oriented essential simple closed curve on a torus T are

isotopic if and only if the 1-cycles which they define are homologous, the set of slopes
on T corresponds bijectively to the set of± pairs of primitive classes inH1(T ). Then
the slope r corresponds to a class α in H1(T ). Since H1(T ) has an ordered basis
{α, β}, for this basis the slope r corresponds to the element pα + qβ ∈ H1(T ).
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Then we obtain a bijection between the space of all slopes on T and Q ∪ { 1
0} by

the identification pα+ qβ ↔ p
q . Let K be a knot embedded in S3. For a slope r of

the boundary of MK which corresponds to the fraction p
q , we denote the surgered

manifold MK(r) also by MK(p
q ).

Now we prepare the convention for the paper. For given two oriented simple
closed curves α and β properly embedded in a surface F , we denote the homological
intersection number by 〈α, β〉 with the sign convention for orientation such that if
the positive vector of the first curve overlaps to the next one by rotating clockwise
by angle π

2 then 〈α, β〉 = 1 (see Figure 4).

α

β 〈α,β〉 = 1 

Figure 4

For a torus boundary T of a 3-manifold M , we take distinguished two simple
closed curves µ and λ on T which satisfy 〈µ, λ〉 = 1. They are called meridian and
longitude as defined above when M is an exterior of some knots. The pair µ and λ
represents a basis of H1(T ), then we also write this basis by µ and λ. Corresponding
to the basis (µ, λ), for any given essential simple closed curve γ in T we define the
corresponding fraction of the slope which represented by γ by the formula

slope γ =
〈γ, λ〉
〈µ, γ〉 .

Note that by the above definition the slope of λ corresponds to 0
1 , and the slope of

µ corresponds to 1
0 .

Let M be a compact 3-manifold with single boundary component which is home-
omorphic to a torus, and let F be a taut foliation of M whose leaves intersect ∂M
in parallel simple closed curves. Then the boundary of every leaf of F is a union of
closed curves. We take an appropriate coordinate (µ, λ) on ∂M , that is, a basis for
H1(∂M), and suppose that the parallel simple closed curves which are boundary
leaves of F represent a slope r. If we do the Dehn filling along ∂M with slope
r, we obtain the closed manifold M(r). Since the solid torus D2 × S1 is trivially
foliated by the disks {D2×{x}}x∈S1 , the disk D2×{x} is attached to the leaf of F
along each boundary, then we simultaneously obtain the foliation F̂ in the closed
manifold M̂(r). By this construction, resultant foliation F̂ remains taut, thus we
obtain a taut foliation of a closed 3-manifold by this procedure.

In this paper we mainly deal with a torus knot embedded in S3. Then we
introduce the definition of torus knot.

Definition 2.2. Let T be a solid torus standardly embedded in S3. For an ap-
propriate basis (α, β) of H1(∂T ), we take simple closed curves γ on ∂T which has
a representation rα + sβ ∈ H1(∂T ) where r and s are integers. Then we call γ is
torus knot or link of type (r, s), and denote it K(r, s).

Note that if r and s are relatively prime, then γ is one simple closed curve, thus
K(r, s) is a knot embedded in S3. Otherwise K(r, s) is a link embedded in S3,
whose number of components is equal to the greatest common divisor between r
and s.

For a knot K embedded in S3, K is called fibered knot if the exterior of K is a
surface bundle over a circle. A torus knot has following property.
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Lemma 2.3. K(r, s) is a fibered knot.

We shall prove this Lemma by constructing a fiber bundle directly in the exterior
of the torus knot K(r, s) in Section 3, but usually it is a well known fact by the
theory of singularity of complex functions (see Milnor’s book [2]).

3. Main theorem

Theorem 3.1. (Main Theorem)
Let K(r, s) be the torus knot of type (r, s), where (r, s) is a pair of relatively

prime integers. Then there is a family of taut foliations {Fx} of the exterior of
K(r, s) which realizes any boundary slope in the open interval (−∞, 1).

This theorem is proved as follows. All types of torus knots are fiber knots (see
Lemma 2.3). First we construct explicitly a fiber bundle structure of the exterior of
the (r, s)-type torus knot K(r, s). Next we choose an arc properly embedded in a
fiber surface and then, by the explicit construction of the fibration, we can see the
image of this arc under the action of the monodromy of this fibration. Finally, we
shall prove that this properly embedded arc and its image is a “good pair” in the
sense of the theorem of Roberts and we obtain the desired family of taut foliations
{Fx} with parameter x. Then we shall prove that the family {Fx} realizes all
boundary slopes in the open interval (−∞, 1).

3.1. Constructing fibrations of the exterior of tours knots. Let V be a
solid torus standardly embedded in the 3-sphere S3. We consider that the (r, s)-
type torus knot K(r, s) is a simple closed curve on the boundary ∂V of V . Cutting
V by a meridian disk D and joining infinitely many copies of this piece, we get the
universal cover Ṽ of V and the covering K̃ of K on ∂Ṽ . Ṽ becomes a cylinder of
infinite length, so we put Ṽ into R3 such that the x-axis is the core of this cylinder.
Notice that the number of components of K̃ is s, and then let k1(x), k2(x), · · · ,
ks(x) be components of K̃.

These components k1(x), k2(x), · · · , ks(x) are the curves represented by following
formulae;

ki(x) = (x, cos
r

s
(x+

2(i− 1)π
r

), sin
r

s
(x+

2(i− 1)π
r

)) (i = 1, · · · , s).

Now we construct a surface in the cylinder Ṽ as follows. Let GB
i be the twisted

band embedded in the part of the cylinder Ṽ where x ∈ [0, 2π
r ] represented by

following formulae;

GB
i =

{
riki(x) + (1− ri)ki−1

(
2π
r
− x

)
+

(
2π
r
n, 0, 0

)

∣∣∣ 0 5 x 5 π

r
, 0 < ri < 1, n = 0,±1,±2, · · ·

}

(i = 1, · · · , s, k0 = ks).

For the parameter value x = π
r , there is a disk with s points removed from the

boundary. It is the regular polygon with s edges which are parts of boundaries of
these bands. Then let GP be the regular polygonal disks embedded into the disks{

(π
r + 2π

r k, y, z)
∣∣ y2 + z2 5 1, k = 0,±1,±2, · · ·} such that the boundary edges of

one of these disks Pk are the arcs represented by the following formulae;
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∂Pk =
s⋃

i=1

{
riki

(
π

r
+

2π
r
k

)
+ (1− ri)ki−1

(
π

r
+

2π
r
k

)
| 0 < ri < 1

}
.

The regular polygonal disk Pk is bounded by the above arcs ∂Pk and embedded
in the disk

{
(π

r + 2π
r k , y , z) | y2 + z2 5 1

}
, therefore GP =

⋃
k∈Z Pk . Then the

surface G which we want to construct in Ṽ is defined as the union of GB and GP .
Next we define the map Rθ : Ṽ −→ Ṽ given by

Rθ(x, y, z) =
(
x+

θ

r
, y cos

θ

s
− z sin

θ

s
, y sin

θ

s
+ z cos

θ

s

)
.

Lemma 3.2. Rθ turns Ṽ by the angle
θ

s
keeping components k1(x), k2(x), · · · , ks(x)

of K̃ invariant.

Proof. Let ki(t) =
(
t, cos

r

s
(t+

2(i− 1)π
r

), sin
r

s
(t+

2(i− 1)π
r

)
)

be a compo-

nent of K̃. Then

Rθ(ki(t)) = Rθ

(
t, cos

r

s
(t+

2(i− 1)π
r

), sin
r

s
(t+

2(i− 1)π
r

)
)

=
(
t+

θ

r
, cos

r

s
(t+

2(i− 1)π
r

) cos
θ

s
− sin

r

s
(t+

2(i− 1)π
r

) sin
θ

s
,

cos
r

s
(t+

2(i− 1)π
r

) sin
θ

s
+ sin

r

s
(t+

2(i− 1)π
r

) cos
θ

s

)

=
(
t+

θ

r
, cos (

r

s
(t+

2(i− 1)π
r

) +
θ

s
), sin (

r

s
(t+

2(i− 1)π
r

) +
θ

s
)
)

=
(
t+

θ

r
, cos

r

s
((t+

θ

r
) +

2(i− 1)π
r

), sin
r

s
((t+

θ

r
) +

2(i− 1)π
r

)
)

= ki(t+
θ

r
)

¤
We define Gθ = Rθ(G), 0 5 θ 5 2π.

Lemma 3.3. The family of surfaces {Gθ|0 5 θ 5 2π} fills up Ṽ \⋃
ki. If θi, θj ∈

[0, 2π] and θi 6= θj, then Gθi
∩Gθj

= ∅ except for θi, θj ∈ {0, 2π}.
Proof. Let p = (t, u, v) ∈ Ṽ ⊂ R3 be a point in Ṽ . It is sufficient to prove when

0 5 t 5 2π
r

. Let Dt and Dt
′ be the disks in Ṽ given by

Dt = {(t, y, z)|y2 + z2 5 1}, Dt
′ = {(t, y, z)|y2 + z2 < 1}.

Now we define a flow ψ on Ṽ by ψ = {Rθ(w)|θ ∈ R}w∈D0 . We denote ψ′ the flow
ψ restricted to Ṽ ′ = {(x, y, z)|x ∈ R, y2 + z2 < 1}, G′ the surface G restricted to
Ṽ ′.
Claim. The intersection of a flow line l of ψ′|05θ52π and a surface G′|05x5 2π

r
is

one point.
Proof of Claim. Let proj : Ṽ |05x5 2π

r
−→ D0

′ be the projection map given by
proj(x, y, z) = (0, y, z). Then this map is shown to be one to one and onto when
it is restricted to G′ as follows. For a point p ∈ G′, if p ∈ GP , the point p is written
as p =

(
π
r , u, v

)
and then proj(p) = (u, v) which belongs to the regular polygonal
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disk P on D0. If p 6∈ GP , let Gi
B
′ be the surface Gi

B restricted to Ṽ ′ and we set
p ∈ Gi

B
′. We can write Gi

B
′ and ki(x) as follows;

Gi
B

′
=

{
riki(x) + (1− ri)ki−1(

2π
r
− x) | 0 < x <

π

r
, 0 < ri < 1

}

ki(x) =
(
x, cos

r

s
(x+

2(i− 1)π
r

), sin
r

s
(x+

2(i− 1)π
r

)
)
.

Then there are real numbers rp and tp such that 0 < rp < 1 and 0 < tp <
π
r , and

we can write proj(p) as follows;

proj(p) = proj
(
rpki(tp) + (1− rp)ki−1(

2π
r
− tp)

)

=
(
rp cos

r

s
(tp +

2(i− 1)π
r

) + (1− rp) cos
r

s
(
2π
r
− tp +

2(i− 2)π
r

),

rp sin
r

s
(tp +

2(i− 1)π
r

) + (1− rp) sin
r

s
(
2π
r
− tp +

2(i− 2)π
r

)
)

=
(
rp cos

r

s
(tp +

2(i− 1)π
r

) + (1− rp) cos
r

s
(
2(i− 1)π

r
− tp),

rp sin
r

s
(tp +

2(i− 1)π
r

) + (1− rp) sin
r

s
(
2(i− 1)π

r
− tp)

)
.

By putting γ = rp and ξ = 2(i−1)π
r ,

proj(p) =
(
γ cos

r

s
(tp + ξ) + (1− γ) cos

r

s
(ξ − tp), γ sin

r

s
(tp + ξ) + (1− γ) sin

r

s
(ξ − tp)

)

= γ
(
cos

r

s
(tp + ξ), sin

r

s
(tp + ξ)

)
+ (1− γ)

(
cos

r

s
(ξ − tp), sin

r

s
(ξ − tp)

)
.

Let α(t) and β(t) be the points on the boundary ∂D0 = {(y, z) ∈ D0 | y2 +z2 = 1}
such that

α(t) =
(
cos

r

s
(t+ ξ), sin

r

s
(t+ ξ)

)

β(t) =
(
cos

r

s
(ξ − t), sin

r

s
(ξ − t)

)
.

Then we can write the image of Gi
B
′ under the map proj as follows;

proj(Gi
B

′
) =

{
γα(t) + (1− γ)β(t) ∈ D0 | 0 < t <

π

r
, 0 < γ < 1

}
.

Gathering this image for all i = 1, 2, · · · , s, these fill the complement of P in D0
′.

Thus we proved that the map proj is one to one and onto.
For a point p = (t, u, v) ∈ Ṽ ′|05x5 2π

r
, let l be the flow line of ψ′ which contains

the point p. Since the perpendicular projection map is one to one and onto by
the above argument, the flow line l intersects G′ at one point p′ = (t′, u′, v′).
By the definition of the flow ψ′, R t−t′

r

(p′) = p. Therefore this point p exists on

R t−t′
r

(G′) = G t−t′
t

′, so there is an unique θ such that p ∈ Gθ.

For a point p = (t, u, v) = (t, cos τ, sin τ) ∈ (Ṽ \ Ṽ ′|05x5 2π
r

) \⋃
ki, there exists

some i and a path l on the boundary ∂Ṽ such that

p ∈ l =
{
riki(τ − 2(i− 1)π

r
) + (1− ri)ki−1(

2π
r
− (τ − 2(i− 1)π

r
)) | 0 < ri < 1

}

= R
r(τ− 2(i−1)π

r )

(
{riki(0) + (1− ri)ki−1(

2π
r

) | 0 < ri < 1}
)
.
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Since the path l is contained in R
r(τ− 2(i−1)π

r )(G
i
B), the point p is contained in this

image. Therefore there exists an unique θ such that p ∈ Gθ. This completes the
proof of Lemma 3.3.

¤
Adding some points to Gθ and modifying Gθ in a neighbourhood of ∂Ṽ , we see

that the boundary of Gθ consists of k1(x), · · · , ks(x) and s lines {li}s
i=1, where

li =
{(
x, cos 2(i−1)π

r , sin 2(i−1)π
r

)
| x ∈ R

}
. By the above explicit construction of

Gθ on Ṽ , every Gθ is invariant under the covering transformation of Ṽ . Then we
can project Gθ to the surface Fθ

′ = q(Gθ) on V . The family of surfaces {Fθ
′ =

q(Gθ) | 0 5 θ < 2π} fills up V since all Gθ are disjoint by Lemma 3.3, and each
surfaces satisfy ∂Fθ

′ ⊃ K(r, s).
Next we define the s lines C̃1, C̃2, · · · , C̃i, · · · , C̃s on ∂Ṽ as follows;

C̃i =
{

(x, cos
2(i− 1)π

s
, sin

2(i− 1)π
s

) | x ∈ R
}
, (i = 1, · · · , s).

We define the family of lines {C̃i
θ | 0 5 θ < 2π} on ∂Ṽ by C̃i

θ = Rθ(C̃i). Now
we project this family to V by the covering map q, and get the family of curves
{Ci

θ = q(C̃i
θ) | 0 5 θ < 2π} on ∂V . The boundary of Fθ

′ on ∂V consists of the
union of our torus knot K(r, s) and this family of curves, that is,

∂Fθ
′ = K(r, s) ∪

(
s⋃

i=1

Ci
θ

)
.

By definition, V is a solid torus standardly embedded into S3. So let W be the
complement of V in S3, then W also is a solid torus standardly embedded into S3.
By the above construction, a curve of this family {C̃i

θ | 0 5 θ < 2π} is a longitude
curve on ∂V , then it is a meridian curve on ∂W and it bounds a meridian disk K
in W . We define the meridian disks Di

θ such that ∂Di
θ = Ci

θ.
Finally we define the surface

Fθ =

(
Fθ
′ ∪

(
s⋃

i=1

Di
θ

))
\K(r, s),

and the map p : S3 \K(r, s) −→ S1 such that if x ∈ Fθ ⊂ S3 \K(r, s), p(x) = eiθ ∈
S1.

Lemma 3.4. This map p : S3 \K(r, s) −→ S1 defines a fibration on S3 \K(r, s)
whose fiber is Fθ.

Proof. Since the surfaces Gθ are disjoint in Ṽ by Lemma 3.3 and q is a covering
map, the surfaces Fθ are disjoint in S3 \K(r, s). Let I ⊂ S1 be an open interval
on S1. By the definition of p, for x ∈ S1, p−1(x) = Fx, and then Fx ∩Fy = ∅ when
x 6= y. Thus p−1(I) =

∐
x∈I

Fx which is a disjoint union of fibers. For any x ∈ S1, Fx

is a open set in S3 \K(r, s), so p−1(I) is open and the map p is continuous. As seen
before there is the flow ψ on Ṽ . If we project it to V and denote this flow by ψ̂, the
flow ψ̂ is transverse to Fθ

′ for any θ in V . The solid torus W is trivially foliated
by disks Di

θ, and there is a flow φ transverse to any disk Di
θ which coincide with ψ̂

on the boundary ∂W . By gathering these transverse flows ψ̂ and φ, we obtain the
flow ϕ on S3 \K(r, s) transverse to Fθ for any θ. For any point x ∈ S1 and any
interval x ∈ I ⊂ S1 we define a map η : p−1(I) → Fx×I such that η(q) = (ϕτ (q), t)
where the point ϕτ (q) is the point on which the flow line of ϕ through q intersects
Fx = p−1(x), and t = p(q). Since ϕ is a transverse flow, the map η becomes a
trivialization map of this fibration.



TAUT FOLIATIONS OF TORUS KNOT COMPLEMENTS 11

¤
Thus we complete an explicit construction of fibration of the complement of our

torus knot K(r, s).

3.2. Proof of main theorem. Next we choose two properly embedded arcs α and
β on the fiber F0. Let α̃ and β̃ be the arcs on ∂Ṽ such that

α̃ =
{

(t, 1, 0) ∈ ∂Ṽ | 0 5 t 5 2π
r

}

β̃ =
{

(t, cos
2π
s
, sin

2π
s

) ∈ ∂Ṽ | 2π
r

5 t 5 4π
r

}
.

We define the two arcs α and β on the fiber F0 so that α = q(α̃) and β = q(β̃). The
fiber F0 is an open surface, but attaching a copy of our torus knot K(r, s) to it we
regard it as a closed surface whose boundary is on ∂N(K(r, s)). If we regard the
fiber as a closed surface, these two arcs α and β are properly embedded arcs whose
each end points ∂α and ∂β sit on ∂N(K(r, s)). In the later argument, we always
regard a fiber surface as a closed surface whose boundary is on ∂N(K(r, s)).

Let h : F0 −→ F0 be the monodromy map of this fibration. This map is defined
as the composition of the rotation map Rθ and the covering map q ; h = q ◦ R2π.
By the construction of this fibration, the monodromy h maps α to β, i.e. h(α) = β.

Now we consider the complement M = S3 \N(K(r, s)) of the torus knot K(r, s)
as the quotient space of the product of the fiber F0 and the unit interval I = [0, 1] ;

M = F0 × [0, 1]
/
(x, 1) ∼ (h(x), 0).

Note that the boundary ∂M is homeomorphic to a torus since the boundary of F0

is a circle and h maps this circle to itself. The positive side of F0 is defined by a
positive direction of the unit interval [0, 1].

Using this interval, we define a disk D in M such that D = α× [0, 1]. Note that
the boundary ∂D of the disk consists of four arcs, α, β on F0 and ∂α × [0, 1] on
∂M .

We define the coordinate system on the torus boundary ∂M = ∂N(K(r, s)) by
choosing two specific oriented simple closed curves λ and µ as follows. Let λ be a
curve such that λ = ∂F0, and we call it a longitude. The orientation of λ is induced
from the orientation of F0. Let µ be a curve on ∂M such that it satisfies 〈λ, µ〉 = 1
and bounds an essential disk in N(K(r, s)).

Now we define a branched surface B− such that B− = 〈F0;D〉. We shall prove
that this branched surface B− carries laminations λx which realize all boundary
slopes in (−∞, 0], and then these laminations λx extend to taut foliations Fx by
filling up complementary regions. To prove this, we need some definitions and
lemmas.

Definition 3.5. Let F be a compact surface with a single circle boundary com-
ponent and negative Euler characteristic, and δ and δ′ be simple arcs properly
embedded in F . The pair (δ, δ′) is called good if δ and δ′ are disjoint on F , and
their endpoints alternate along ∂F as are shown in Figure 5.

Note that for a good pair (δ, δ′), each simple arc is non-separating on F .

Lemma 3.6. Let α and β be the simple arcs on F0 defined above, then (α, β) is a
good pair.

Proof. The arc α is a part of the boundary of D1
0 and β is a part of the boundary

of D2
0, D

i
0 ∩ Dj

0 = ∅ if i 6= j, and each disk Di
0 is a properly embedded meridian

disk in the solid torus W . Then clearly α and β have no self intersection and are
disjoint each other.
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δ

δ′

∂F

Figure 5

Let ∂1α̃ be the point on ∂Ṽ such that ∂1α̃ = (0, 1, 0) ∈ Ṽ ⊂ R3. It is one of the
end points of α̃ and is on the component k1(x) of K̃(r, s). When we consider G0 as
a closed surface with boundary K̃(r, s), ∂1α̃ can move along k1(x) in the direction
induced by the rotation map Rθ, then ∂1α̃ meets one end point of β̃. We denote
this point by ∂1β̃.

Let ki(x) be the sub arc of ki(x) restricted to Ṽ |05x52π, then our torus knot
K(r, s) consists of the union of arcs q(ki(x)), i = 1, 2, · · · , s and these arcs are
disjoint except at each end points. We define an orientation on ki(x) by the orien-
tation induced by the rotation map Rθ, and then we can specify a starting point
and an ending point of each ki(x). One end point of k1(x) which is not ∂1α̃ is the
ending point of k1(x) and is connected to the starting point of k2(x) when they
are projected to V . Similarly, the ending point of ki(x) is connected to the start-
ing point of ki+1(x). By this consideration, after passing ∂1β̃, ∂1α̃ will meet the
remaining end point ∂2α̃ of ∂α̃ on ks(x) when they are projected to V , and finally
meets the remaining end point ∂2β̃ on ks(x).

This means that these points ∂1α̃, ∂1β̃, ∂2α̃ and ∂2β̃ project to the end points of
α and β on ∂F0, and these points are in the order along ∂F0 such that ∂1α = q(∂1α̃),
∂1β = q(∂1β̃), ∂2α = q(∂2α̃) and ∂2β = q(∂2β̃). Therefore end points of α and β
alternate along ∂F0, thus (α, β) is a good pair.

¤
Next we choose a properly embedded curve on F0 which cuts the branched surface

B− nicely.

Lemma 3.7. There is a simple arc γ− properly embedded in F0 such that B− is
affinely measured with respect to γ−.

Proof. Let T be a regular neighbourhood of α ∪ β ∪ ∂F0. Since α and β form a
good pair, T is homeomorphic to a twice punctured torus. ∂T has two boundary
components. One of these is ∂F0, and we denote the other component by C. To
define a desired simple arc, we put an orientation on α and β. We choose an
orientation of α̃ so that the direction in which the x-coordinate is increasing is
positive and choose one on β̃ to be the same direction as Ṽ .

Then we define a simple arc γ− properly embedded in T so that it satisfies

[γ−] = −[α] + [β] ∈ H1(F0, ∂F0).

The orientations on α and β are induced from those on α̃ and β̃ by the covering
projection q on V .

There are two choices of the simple arc γ− up to isotopy as are shown in Figure 6.
Each choice of the simple arc γ− separates T \ (α ∪ β) into two regions R and

RC ; R does not intersect C and RC contains C. To prove that B− \ γ− has an
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α

β

α

β

γ− γ−

R R

RC RC

(a)  (b)

Figure 6

affine measure, we assign weight 1 to RC and 1 + x to R as in Figure 7, where RC

and R are parts of sectors of B− ∩ T .

α

β

α

β

γ− γ−

(a)  (b)

1 1

x

x

x x

1 + x 1 + x

Figure 7

Since the simple closed curve C is contained only in RC and the weight of RC

is 1, we can put weight 1 on the region which is bounded by C on F0, then B− is
affinely measured with respect to γ−.

¤
Let us take the choice of γ− indicated in Figure 7 (a). Let λx

′ be an affinely
measured lamination which is carried by B− \ γ−. ∂v(N(B− \ γ−)) \ ∂vN(B−) is
two copies of annuli γ− × I. Let f be a scaling map on γ− × I such that

f : γ− × [0, 1] → γ− × [0, 1] : (p, t) 7→ (p, (1 + x)t)

where p is a point of γ−, x is the weight parameter defined before. We glue two
copies of γ− × I on ∂v(N(B− \ γ−)) \ ∂vN(B−) by the scaling map f , we get the
lamination λx which is carried by B−.



14 YASUHARU NAKAE

Lemma 3.8. λx realizes the boundary slope
−x2

x+ 1
.

Proof. Let τ = B− ∩ ∂M be the train track on ∂M . By the definition of γ−, ∂γ−
intersects τ at two points ∂1γ− and ∂2γ− on λ = F0 ∩ ∂M . Let τ ′ be the branched
arc system which is made from τ by cutting at ∂1γ− and ∂2γ−. We assign τ ′ the
affine measure induced from the affine measure already defined on B− \ γ−.

We defined the disk D = α× [0, 1] which is a sector of B−. The boundary of D
consists of four arcs; two of them are α and β, the other two arcs are bounded by
∂1α and ∂1β, ∂2α and ∂2β, respectively. We denote by κ1 the arc which is bounded
by ∂1α and ∂1β, and denote the other by κ2. By construction of B−, sectors of τ
which is not contained in λ are κ1 and κ2. Therefore the point ∂1α is connected
with ∂1β by κ1, and ∂2α is connected with ∂2α by κ2 on ∂M . Then we see that
the train track τ is divided into exactly two components by cutting at ∂1γ− and
∂2γ−, that is, τ ′ has two components.

Let τ1′ be one of the components of τ ′ which contains ∂1α and ∂1β, τ2′ be the
other one. τ ′ has the affine measure assigned as before, we denote this measure by
w′. Then τ1′ and τ2′ also have the affine measure w1

′ and w2
′. Since we construct

the measured branched surface B− from B− \ γ− by using the scale map f , the
measure w2

′ changes into w2
′ × 1

1+x . Then we obtain the measure w on the train
track τ induced from the measure on B− as pictured in Figure 8.

Let τ(w) be a lamination on N(τ) ⊂ ∂M carried by the measured train track
(τ, w), then τ(w) is the restriction of the lamination λx to ∂M . It means that the
boundary slope of λx is the slope of a simple closed curve which is a leaf of τ(w).

We assign an orientation to the measured train track (τ, w), and the meridian µ
and the longitude λ as Figure 8.

x

1 + x

x

1 + x

x

x

1

11

1 + x

1 + x

λ

µ

Figure 8

Notice that in Figure 8 we look at ∂M putting our viewpoint in the interior of
M , but for the purpose of estimating a homological intersection number of simple
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closed curves on ∂M we must observe them from the viewpoint which is in the
interior of N(K(r, s)).

By this observation on Figure 8, we can calculate the homological intersection
number between τ(w) and the coordinate system (µ, λ) as follows;

〈τ(w), λ〉 =
x

1 + x
− x

〈µ, τ(w)〉 = 1.

Then the slope of a simple closed curve of τ(w) is

slope τ(w) =
〈τ(w), λ〉
〈µ, τ(w)〉 =

x

1 + x
− x =

−x2

x+ 1
.

Therefore, we see that the lamination λx realizes the boundary slope −x2

x+1 .
¤

By this Lemma 3.8 and letting x range over [0,∞), we conclude the following
Proposition.

Proposition 3.9. The family of laminations {λx} realizes all boundary slopes in
(−∞, 0].

To prove the main theorem we shall prove the following Proposition.

Proposition 3.10. The lamination λx extends to a taut foliation Fx of M which
realizes any boundary slope in (−∞, 0].

Proof. Let λx be the lamination on N(B−) defined above. Since the disk D is
defined by D = α × [0, 1] in M , we can consider that D is properly embedded
in F0 × [0, 1]. By definition, (α, β) is a good pair and then α is non-separating.
Therefore D does not separate F0 × [0, 1].

Let MD be a complementary region of D in F0 × [0, 1], Fα be a complementary
region of α in F0, i.e. if we set

MD
′ = (F0 × [0, 1]) \D, Fα

′ = F0 \ α,
MD and Fα are the metric completion of MD

′ and Fα
′, respectively. Then MD

is the product space of Fα and [0, 1], and MD has corners. The boundary of MD

consists of four parts, two copies of Fα and two copies of α× [0, 1].
We denote these parts as follows: Fα,0 is the copy of Fα embedded in F0 × {0},

Fα,1 is the copy in F0 × {1}, D+ and D− are two copies of α× [0, 1], where D+ is
the positive side of the sector D in B− with respect to the orientation of B−, D−
is a negative side. By shrinking MD and sliding up the curve Fα,0 ∩ D+ to near
the curve Fα,1 ∩D+ along D+, and sliding down the curve Fα,1 ∩D− to Fα,0 ∩D−
along D−, we can consider that MD is embedded into the complementary region
MB− = M \N(B−).

The embedded MD satisfies that the boundaries D+ and D− coincide with the
two components of ∂vN(B−) and MD is homeomorphic to the product of one
component of ∂hN(B−) which is homeomorphic to F0 \ α and an interval [0, 1].
Therefore if we foliate the complementary region MB− by the product foliation and
fill the complementary region of λx in N(B−) with parallel leaves, we can extend
λx to a foliation Fx.

When x = 0 we consider that Fx is the original fibration of M . Otherwise, at
the boundary ∂M the meridian curve meets each leaf of Fx transversely. In both
cases, Fx is a taut foliation.

¤
Now we have shown the existence of taut foliations which realizes all boundary

slopes in (−∞, 0]. To complete the proof of main theorem, we must fill up the left
part of the interval, [0, 1).
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We take a fiber F0, and the two simple arcs α and β properly embedded in F0

as before. Let F1 and F2 be the fibers given by

F1 = F0 ×
{

1
3

}
, F2 = F0 ×

{
2
3

}
.

Since F1 and F2 are copies of F0, there are copies of the pair of arcs α and β on
each Fi, i = 0, 1, 2. We denote these arcs on Fi by αi and βi. The orientation of
the pair of curves (αi, βi) is induced from the pair (α, β).

In the proof of Lemma 3.7, we defined a simple arc γ− properly embedded in
F0, and there are two choices of γ− up to isotopy. Now we temporary denote one
choice of γ− which is the type shown in the left figure of Figure 6 by γa, the other
by γb. Then we define three simple arcs γ0

+, γ1
+ and γ2

+ properly embedded in F0,
F1 and F2, respectively, such that γ0

+ has the type of γb, γ1
+ has the type of γa and

γ2
+ has the type of γb.

We define three disks D0, D1, D2 in M which will be sectors of our desired
branched surface such that

D0 = α0 ×
[
0,

1
3

]
, D1 = β1 ×

[
1
3
,
2
3

]
, D2 = α2 ×

[
2
3
, 1

]
.

Then we obtain the branched surface B+ such that

B+ = 〈F0, F1, F2 ; D0, D1, D2〉
with the orientations given in Figure 9.

Lemma 3.11. B+ is affinely measured with respect to the simple arcs γ0
+, γ1

+ and
γ2
+.

Proof. Similar to the proof of Lemma 3.7, for i = 0, 1, 2, each αi ∩ βi ∩ ∂Fi has a
regular neighbourhood Ti which is homeomorphic to a twice punctured torus. We
can consider that each γi is properly embedded in Ti. We assign measures on Di

and Ti as shown in Figure 7.
Then each region Fi \ Ti is bounded by the boundaries of Ti which are assigned

the measure 1. We put the measure 1 on each region Fi \ Ti, then B+ is affinely
measured with respect to γ0

+, γ1
+ and γ2

+.
¤

Let λx be the lamination on N(B+) which is obtained by gluing via the scaling
map f on each region γi

+ × [0, 1].

Lemma 3.12. λx realizes the boundary slope
x2

x2 + 3x+ 3
.

Proof. Let τ = B+∩∂M be the train track on ∂M . Each γi
+ has two end points on

λi = Fi∩∂M . We denote these end points of γi
+ by ∂1γi

+ and ∂2γi
+. Similar to the

proof of Lemma 3.8, these six end points ∂1γi
+ and ∂2γi

+, i = 0, 1, 2 cuts τ into two
parts. We denote these parts by τ1′ and τ2′ such that τ1′ contains a point ∂2β0. We
put the affine measure on B+ \ (γ0

+∪γ1
+∪γ2

+) as pictured in Figure 9. Then τ1′ and
τ2
′ have the affine measures induced from the affine measure on B+\(γ0

+∪γ1
+∪γ2

+),
let w1

′ and w2
′ be affine measures on τ1

′ and τ2
′ respectively. When we construct

the measured branched surface B+ from B+ \ (γ0
+ ∪ γ1

+ ∪ γ2
+) by gluing with the

scale map f , the measure w2
′ changes into w2

′ × 1
1+x . Then we obtain the affine

measure w on τ (See Figure 10).
Let τ(w) be a lamination on N(τ) ⊂ ∂M carried by the measured train track

(τ, w). By construction, the leaves of τ(w) are the boundary of leaves of λx, that
is, the boundary slope of λx is calculated by computing the slope of a leaf of τ(w).
To do this, we put an orientation on τ as in Figure 10. By the same consideration
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F0

F1

F2

D0

D1

D2

γ0+ = γb

γ1+ = γa

γ2+ = γb

D2

D0

D1

1

1

x

x
x x

1 + x

1 + x

1 + x

1

1

1
1

x x

x

x

1 + x

1 + x

1 + x

1
1

1

x

x

x x

1 + x

1 + x

1 + x

Figure 9

as in the proof of Lemma 3.8, we obtain the homological intersection numbers of
τ(w) with respect to the coordinate system (µ, λ) as follows;

〈τ(w), λ〉 = − x

1 + x
+ x =

x2

1 + x

〈µ, τ(w)〉 = (1 + x) + 1 +
1

1 + x
=
x2 + 3x+ 3

1 + x
,
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1

1 + x

1

1 + x

1

1 + x

x

1 + x

x

1 + x

x

1 + x

1 + x

1 + x

1 + x

x

1 + x

x

x

x

x

11

1

1

1

1

λ

µ

Figure 10

where the intersections between τ and λ are two points, the intersections between
µ and τ are three points. Then the slope of a simple closed curve of τ(w) is

slope τ(w) =
〈τ(w), λ〉
〈µ, τ(w)〉 =

x2

x2 + 3x+ 3
.

¤
By the Lemma 3.12 and letting x range over [0,∞), we conclude as follows.

Proposition 3.13. The family of laminations {λx} realizes all boundary slopes in
[0, 1).

To finish the proof of main theorem, we shall prove following Proposition.

Proposition 3.14. The above family of laminations {λx} extends to the family of
taut foliations {Fx} on M which realizes all boundary slopes in [0, 1).

Proof. Similar to the proof of Proposition 3.10, we see that there are three com-
ponents of complementary regions of B+ in F0 × [0, 1]. Each component is homeo-
morphic to a region MDi which is a product of a subsurface of F0 and an interval.
Therefore each complementary region of N(B+) in M is filled by a product foliation
whose leaves intersect ∂vN(B) transversely. Then λx extends to the whole foliation
Fx on M . Considering the leaves of Fx on ∂M , we can see Fx is a taut foliation.

¤
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By Proposition 3.10 and Proposition 3.14, the proof of main theorem is com-
pleted.

4. Iterated torus knot case

In this section, we extend the result of section 3 to an iterated torus knot. To
define an iterated torus knot, at first we define a sequence of solid tori {Ti} and knots
{Ki} embedded in S3 as follows. The first solid torus T0 is standardly embedded in
S3 and let K0 be a simple closed curve on the boundary ∂T0. We called K0 a torus
knot before, now we will call it a standard torus knot. A regular neighbourhood of
K0 is also a solid torus, and we denote this solid torus by T1 which is embedded in
S3. Then we define a new knot K1 which is a simple closed curve on the boundary
∂T1. By iterating this construction, the knot Ki−1 has a regular neighbourhood Ti

homeomorphic to a solid torus and there is a new knot Ki which is a simple closed
curve on the boundary ∂Ti. To avoid complicated arguments, we assume that each
Ki is not homotopic to a meridian curve or a longitude curve on ∂Ti.

To construct a taut foliation made as a modification of fibration, we must define
these {Ki} precisely.

Let T0 be a solid torus standardly embedded in S3 and K0(r0, s0) be a simple
closed curve on ∂T0 which has a homological representation r0m0 +s0l0 ∈ H1(∂T0),
where m0 is the standard meridian and l0 is the standard longitude of ∂T0. Let
T1 be a regular neighbourhood of K0 which is homeomorphic to a solid torus.
The complement M0 = S3 \N(K0) has the fibration ξ0 as seen before, then we
define that the longitude l1 of ∂T1 is a simple closed curve which coincides with the
boundary of a fiber of the fibration ξ0, and we define the meridian m1 such that
m1 intersects l1 transversely at one point and m1 bounds a disk in T1. For this
meridian-longitude pair we define a new knot K1(r1, s1) which is a simple closed
curve on ∂T1 and has a homological representation r1m1 + s1l1 ∈ H1(∂T1).

In section 3.1, we construct a sub surface Fθ
′ in the solid torus V and prove

that the family of surfaces {Fθ
′|0 5 θ < 2π} fills up V . The boundaries of Fθ

′

consist of circles {Ci
θ}i=1,··· ,s and the torus knot K(r, s) on ∂V . By construction,

the circles {Ci
θ}i=1,··· ,s are parallel on ∂V . Then we replace T1 by this solid torus

V so that the circles {Ci
θ}i=1,··· ,s coincide with the curves parallel to the longitude

l1 and the torus knot K(r, s) on ∂V coincides with K1(r1, s1), that is, r = r1 and
s = s1. Since any boundary of fibers of ξ0 is a curve on ∂T1 which parallel to a
longitude, any surface of the family {Fθ

′|0 5 θ < 2π} is connected to a fiber of
ξ0 via the boundary circles {Ci

θ|i = 1, · · · , s1, 0 5 θ < 2π}. Let F 1
θ be one of

the surfaces made by this construction. F 1
θ consists of one sub surface Fθ

′ and s1
copies of a fiber of ξ0 which are connected to Fθ

′ on the circles {Ci
θ}i=1,··· ,s1 . Since

the family {Fθ
′} fills up the solid torus T1 and M0 is fibered, the family of surfaces

{F 1
θ |0 5 θ < 2π} fills up the complement M1 = S3 \N(K1(r1, s1)). Similar to the

proof of Lemma 3.3, we can see that surfaces of the family {F 1
θ } are disjoint. Then

the map p : M1 → S1 : x ∈ F 1
θ 7→ θ defines the fibration ξ1.

Therefore, K1(r1, s1) is a fibered knot embedded in S3. Let T2 be a regular
neighbourhood of K1(r1, s1), T2 is also solid torus. We define the longitude l2 on
∂T2 so that its homology class coincides with the homology class of a curve which
is the boundary of a fiber of the fibration ξ1, and define the meridian m2 so that
it intersects l2 at one point and bounds a disk in T2. Then we define a new knot
K2(r2, s2) which is a simple closed arc on ∂T2 whose homology class is represented
by r2m2+s2l2 ∈ H1(∂T2). Replacing the solid torus T2 by same V , we can construct
the fibration ξ2 on M2 = S3 \N(K2(r2, s2)).

Iterating this construction, we can get the sequence of knots {Ki(ri, si)}, and
then we call it an iterated torus knot sequence. Simply, we call Ki(ri, si) an iterated
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torus knot. By this construction, the complement Mi of every iterated torus knot
is fibered with the fibration ξi.

For every iterated torus knot, we can extend the result of Theorem 3.1.

Theorem 4.1. Let Ki(ri, si) be the iterated torus knot defined as above. Then
there is a family of taut foliations {Fx} of the exterior of Ki(ri, si) which realizes
any boundary slope in the open interval (−∞, 1).

We shall prove this theorem by the same steps as in the proof of the main
theorem. First we define two arcs on the fiber of fibration ξi. We denote the
infinite cover of the solid torus V by Ṽ ⊂ R3. Let α̃ and β̃ be the arcs on ∂Ṽ such
that

α̃ =
{

(t, 1, 0) ∈ ∂Ṽ | 0 5 t 5 2π
ri

}

β̃ =
{

(t, cos
2π
si
, sin

2π
si

) ∈ ∂Ṽ | 2π
ri

5 t 5 4π
ri

}
.

We define the two arcs α and β on the boundary of ∂V so that α = q(α̃) and
β = q(β̃) where the map q : Ṽ → V is the covering map. Since α and β are the arcs
on C1

0 and C2
0 respectively, α and β are properly embedded in the fiber F0 of the

fibration ξi, and these end points are on the boundary of a regular neighbourhood
of the iterated torus knot Ki(ri, si).

Let h : F0 → F0 be the monodromy map of the fibration ξi. The rotation
map Rθ : Ṽ → Ṽ defined in previous section induces the map R̂θ : V → V by
composition with the covering map q, R̂θ = q ◦ Rθ. We define a map h′ : V → V

by h′ = R̂2π. By construction of the fibration ξi, the map h′ maps the subsurface
F0 ∩V to F0 ∩V . If we define the map h′ on complementary region of V such that
for k = 1, · · · , si, h′ maps the fiber F i−1

k of the fibration ξi−1 connected with F0
′

via Ck
0 to the fiber F i−1

k+1 of ξi−1 connected with F0
′ via Ck+1

0 , we can extend h′ to
the monodromy h. Because of this extension, we can see that h(α) = β.

Now we consider the complement Mi = S3 \N(Ki(ri, si)) of the torus knot
Ki(ri, si) as the quotient space of the product of the fiber F0 and a unit interval
I = [0, 1] ;

Mi = F0 × [0, 1]
/
(x, 1) ∼ (h(x), 0).

We define the orientation of F0 such that the positive side is the positive direction
of the unit interval [0, 1].

We define a coordinate system on the torus boundary ∂Mi = ∂N(Ki(ri, si))
by choosing two specific oriented simple closed curves λ and µ which are called
a longitude curve and a meridian curve so that λ is the boundary of ∂F0 and µ
satisfies that 〈λ, µ〉 = 1 and µ bounds an essential disk in N(Ki(ri, si)). In this
definition, the orientation of λ is induced from the orientation of F0.

Lemma 4.2. The pair of properly embedded arcs (α, β) defined above is a good
pair.

Proof. By the construction of ξi, for some parameter k, k′ ∈ [0, 2π), α is a part of
the boundary of the fiber F i−1

k of the fibration ξi−1 and β is a part of the boundary
of the fiber F i−1

k′ . Since F i−1
k and F i−1

k′ are disjoint, α and β have no self intersection
and are disjoint.

We define a temporary orientation on Ki(ri, si) which is induced from the ori-
entation of the rotation map Rθ, and denote the end points of α and β by ∂1α and
∂2α, ∂1β and ∂2β. The distinction between ∂1 and ∂2 is defined by the direction
induced from the direction of x-axis of Ṽ . Similar to the proof of Lemma 3.6,
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tracing these four end points along Ki(ri, si) with the orientation, we can see that
these points are placed along ∂F0 in the order ∂1α, ∂1β, ∂2α, ∂2β.

¤
Now we define the branched surface B− such that B− = 〈F0 ; D〉.

Lemma 4.3. There is a simple arc γ− properly embedded in F0 such that B− is
affinely measured with respect to γ−.

Proof. Let T be a regular neighbourhood of α ∩ β ∪ ∂F0. By the argument of the
proof of Lemma 3.7, we can take a simple arc γ− properly embedded in T so that
it satisfies

[γ−] = −[α] + [β] ∈ H1(F0, ∂F0).
Although there are two choices of simple arc γ− up to isotopy, we can see that
B− \ γ− consists of two branched surfaces and they have affine measure for each
choice of γ−. ¤

In order to define the branched surfaces B−, we take the left type of the two
choices of γ− in Figure 6. Let λx

′ be an affinely measured lamination carried by
B− \ γ− with the weight as shown in Figure 7, and f be the scaling map on γ−× I
such that

f : γ− × [0, 1] → γ− × [0, 1] : (p, t) 7→ (p, (1 + x)t).
We glue two copies of γ− × I on ∂vN(B− \ γ−) \ ∂vN(B−) by f , and get the
lamination λx in N(B−) carried by the branched surface B−.

Lemma 4.4. λx realizes the boundary slope
−x2

x+ 1
.

Proof. Let τ = B− ∩ ∂Mi be the train track on ∂Mi. By the definition of γ−
the end points ∂γ− intersects τ at two points. As the proof of Lemma 3.8, we can
see that these two points separate τ into two parts τ ′1 and τ ′2. We assign the affine
measure on τ ′1 and τ ′2 induced from an affine measure on B− \ γ−. Gluing by the
scaling map f implies that the affine measure w′2 on τ ′2 changes into w′2 × 1

1+x and
in consequence τ has the affine measure w.

Let τ(w) be a lamination on N(τ) ⊂ ∂M carried by the measured train track τ
with the affine measure w. By construction τ(w) is the restriction of the lamination
λx to ∂Mi. It means that the boundary slope of λx is calculated by the slope of a
leaf of τ(w). We calculate the slope of a leaf of τ(w) as in Figure 8, then we obtain
that

slope τ(w) =
〈τ(w), λ〉
〈µ, τ(w)〉 =

x

1 + x
− x =

−x2

x+ 1
.

Therefore, we see that the lamination λx realizes boundary slope −x2

x+1 .
¤

Letting the parameter x range over [0,∞) in the above formula of the slope,
we conclude that the family of laminations {λx} realizes all boundary slopes in
(−∞, 0]. To prove Theorem 4.1, we extend the lamination λx to the taut foliation
Fx.

Proposition 4.5. The lamination λx extends to a taut foliation Fx on Mi which
realizes any boundary slope in (−∞, 0].

Proof. Let λx be the lamination on N(B−) defined above. Similar to the proof of
Proposition 3.10, the complementary region MB− = Mi \N(B−) is homeomorphic
to the product space of the subsurface F0 \α and the interval [0, 1]. We foliate this
complementary region by the product foliation whose vertical boundary coincides
with the ∂vN(B−) and fill the complementary region of λx in N(B−) by parallel
leaves. Then we can extend λx to a foliation Fx.
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If x = 0 we consider that Fx is the original fibration ξi on Mi. Otherwise, at
the boundary ∂Mi the meridian curve meets each leaf of Fx transversely. In both
cases, Fx is a taut foliation.

¤
The existence of taut foliations which realizes all boundary slope in the interval

[0, 1) is shown as same as the latter part of Section 3. By joining the results of
Proposition 4.5, the proof of Theorem 4.1 is completed.

Using the method of the proof of Theorem 4.1, we obtain the following Corollary.

Corollary 4.6. Let K be a fibered knot embedded in S3. The boundary ∂T of
the regular neighbourhood T of K is a torus. Let K̂(r, s) be a simple closed curve
on ∂T whose homology class is represented by rm + sl ∈ H1(∂T ) where m and
l are the meridian and the longitude respectively. Then there is a family of taut
foliations {Fx} of the exterior of K̂(r, s) which realizes any boundary slope in the
open interval (−∞, 1).

Proof. Since K is a fibered knot embedded in S3, there is a fibration ξ in M ′ =
S3 \N(K). We define a longitude curve l on ∂T as the boundary of a fiber of ξ
and a meridian curve m such that m intersects l at one point and bounds a disk
in N(K). We replace the solid torus T by the solid torus V defined before such
that the circles {Ci

θ}i=1,··· ,s coincide with the parallel curves of the longitude l. By
joining the internal surfaces in V and original fiber surfaces of ξ along the family of
circles {Ci

θ|i = 1, · · · , s, 0 5 θ < 2π}, we obtain a fibration ξ̂ on M = S3 \ K̂(r, s).
By above construction, if we take two arcs α and β properly embedded in a

fiber of ξ̂ as defined in this section, we can construct the branched surfaces B− and
B+ by using the pair (α, β) which carry the laminations λx with the property that
they realize all boundary slopes in (−∞, 0] and [0, 1) respectively. We extend these
laminations to taut foliations by filling the complementary region, then we obtain
a family of taut foliations which realizes all boundary slopes in (−∞, 1).

¤

5. Extension to a link case

In this section, we partially extend theorem of Rachel Roberts (Theorem 4.1
in [6]) to a fibered link case.

We denote a surface whose genus is i and has j boundaries by Σi,j . Let M be an
oriented, compact, fibered 3-manifold with a monodromy h and an orientable fiber
Σi,j . Any boundary component of M is homeomorphic to a torus. We suppose
that j = 2 and i is more than two, for simplicity we write Σi,2 by F , and the
monodromy h maps each boundary to itself. We consider M as a quotient space;
M = F × [0, 1]

/
(h(x), 0) ∼ (x, 1) where F = Σi,2 and x ∈ F . The orientation of

F is defined by the increasing direction of this interval [0, 1]. For this orientation
of F we define a coordinate system (µ, λ) for each component of ∂M such that
λ is a component of ∂F with the orientation induced from F and µ satisfies that
〈µ, λ〉 = 1.

Let α be a simple non-separating arc properly embedded in F × {0}. Setting
D = α× [0, 1] we consider that D is properly embedded in F × [0, 1] such that ∂D
consists of four arcs, ∂α× [0, 1] on ∂F × [0, 1], α+ on F × {0} and α− on F × {1}.
In order to prepare for the later section where we construct a branched surface by
these fibers and disks, we take the convention for the orientation of D such that if
we fix the orientation of α the positive orientation of D is coherent with the positive
turn direction of α with the right screw rule (see Figure 11).

For this settings, we state the theorem extended to a link case.
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α

D

α

D

Figure 11

Theorem 5.1. For i = 1, 2, let αi be simple non-separating arcs properly embedded
in F such that the end points of αi are on one component of ∂F and αi are disjoint
each other. Let Di be disks in M such that Di = αi × [0, 1]. If the arcs αi and the
monodromy h satisfy the condition (1) of Lemma 5.5, there is a branched surface
which is made from a splitting of B = 〈F ;D1, D2〉 such that it carries a family of
laminations λx realizing all boundary slopes in (−ai, bi) for some ai, bi > 0, i = 1, 2
where i corresponds to the component of the torus boundaries of M . Moreover,
these laminations λx extend to taut foliations Fx with same property of slopes.

We shall prove Theorem 5.1 by the following steps. In Lemma 5.2, we define a
branched surface which is made from a sequence of arcs properly embedded in each
fiber, and prove the existence of arcs {γi

k} such that the branched surface is affinely
measured with respect to {γi

k}. In Lemma 5.3, we prove that there are sequences of
arcs which are the source of above branch surface. In Lemma 5.4, depending on the
property of orientations of a sequence of arcs we can see that the branched surface
carries laminations which realize all boundary slopes in a positive or negative part
of above intervals. In Lemma 5.5, for sequences of arcs which are given by the
arcs αi and the monodromy h, this sequences can be modified to sequences with
a certain property. There are two cases, one case is suitable for the assumption
of Lemma 5.3 and then there is a desired branched surface, the other case is not
suitable for the assumption of Lemma 5.3.

Recall that a pair of arcs δ and δ′ properly embedded in a surface F is good
if they are disjoint and their end points alternate along the boundary of F . For
the sequence σ = (α0, α1, · · · , αn) of arcs properly embedded in F , if each pair
(αk, αk+1) for 0 5 k < n is good we call the sequence σ is a good sequence.

Lemma 5.2. Let σi = (h(αi
n) = αi

0, α
i
1, · · · , αi

n), i = 1, 2 be good sequences and
we suppose that four arcs (α1

k, α
1
k+1) and (α2

k, α
2
k+1) are disjoint (k = 0, · · · , n−1).

For 1 5 k 5 n, we take disks {Di
k} in M such that

Di
k = αi

k ×
[
k − 1
n

,
k

n

]
.
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We fix an orientation for each αi
k and define orientations on Di

k by our convention.
We define the branched surface

B = 〈F0, F1, · · · , Fn−1;D1
1, D

2
1, D

1
2, D

2
2, · · · , D1

n, D
2
n〉.

Then there is a family of simple arcs {γi
k} properly embedded in each Fk for 0 5

k 5 n− 1, i = 1, 2, such that B is affinely measured with respect to
⋃

i=1,2

⋃n−1
k=0 γ

i
k.

Proof. We denote each boundary of the fiber Fk by ∂iFk for i = 1, 2. For 0 5 k 5
n−1 and i = 1, 2, there is a regular neighbourhood T i

k of αi
k ∪αi

k+1∪∂iFk which is
homeomorphic to a torus with two boundary components in each Fk. One of these
boundary components is ∂iFk, we denote the other component by Ci

k. Since the
four arcs (α1

k, α
1
k+1) and (α2

k, α
2
k+1) are disjoint by assumption, we can take these

T 1
k and T 2

k so that they are disjoint. Then two simple closed curves C1
k and C2

k

are disjoint. Similar to the proof of Lemma 3.7, we define a simple arc γi
k properly

embedded in T i
k so that it satisfies

[γi
k] = −[αi

k] + [αi
k+1] ∈ H1(Fk, ∂Fk).

There are two choices of the simple arc γi
k up to isotopy as in Figure 6, but now

we choose the candidate suitable for our convention.
The properly embedded arc γi

k separates T i
k\(αi

k∪αi
k+1) into exactly two regions

R and RCi
k
, R does not intersect Ci

k and RCi
k

contains Ci
k. To prove this Lemma,

we assign the weight 1 to RCi
k

and 1 + x to R for all T i
k. Since the simple closed

curve Ci
k is contained only in RCi

k
and the weight of RCi

k
is 1, we can put the weight

1 on the region which is bounded by C1
k and C2

k on Fk. Putting the weight x on
each Di

k, we see that B \(
⋃

i=1,2

⋃n−1
k=0 γ

i
k) has an affine measure. Then B is affinely

measured with respect to
⋃

i=1,2

⋃n−1
k=0 γ

i
k.

¤

Lemma 5.3. Let α1 and α2 be two disjoint non-separating simple arcs properly
embedded in F such that the boundary points ∂α1 are on ∂1F and ∂α2 are on ∂2F .
Then there are good sequences

σi = (h(αi) = αi
0, α

i
1, · · · , αi

n = αi), i = 1, 2,

such that for 0 5 k 5 n− 1, four arcs (α1
k, α

1
k+1) and (α2

k, α
2
k+1) are disjoint.

Proof. We suppose the arcs α1 and α2 are in the configuration shown in Figure 12.

A1
B1

C1

Ag

Bg

Cg−1

α1 α2

Figure 12

Lickorish proved in [1] that the group of orientation preserving automorphisms
Aut+(F ) of the surface of genus g is generated by the set D of Dehn twists with
respect to the curves A1, · · · , Ag, B1, · · · , Bg, C1, · · · , Cg−1 in Figure 12. We denote
the Dehn twist along these curves also by A1, · · · , Ag, B1, · · · , Bg, C1, · · · , Cg−1,
then D = {A1, · · · , Ag, B1, · · · , Bg, C1, · · · , Cg−1}. Let γ be a properly embedded
arc in F whose endpoints are on one boundary component. If γ intersects only one
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γ

JJ(γ)

∂F

Figure 13

of the curves of D which we denote by J , then we easily see that (γ, J(γ)) is a good
pair by isotoping J(γ) slightly in the neighbourhood of γ ∪ J (see Figure 13).

Let J be any element of D. If J = B1, (α1, A1J(α1)) is a good pair, and also
(A1J(α1), (A1

−1)A1J(α1) = J(α1)) is a good pair. Then (α1, A1J(α1), J(α1)) is a
good sequence. By the same considerations, (α2, Bg(α2), (JBg

−1)Bg(α2) = J(α2))
is a good sequence. If J = Bg, by a symmetrical argument, (α1, B1(α1), J(α1)) and
(α2, AgJ(α2), J(α2)) are good sequences. If J 6= B1 and Bg, (α1, B1(α1), J(α1))
and (α2, Bg(α2), J(α2)) are good sequences. In all cases, there are good sequences
σ̂1 : α1 → J(α1) and σ̂2 : α2 → J(α2) with the same number of terms.

Now we decompose the monodromy h into compositions of elements of D, h =
Jm ◦Jm−1 ◦· · ·◦J1 where Ji ∈ D. By the above argument, there are good sequences

σ̂i
k : αi → Jk(αi)

for each i = 1, 2 and k = 1, · · · ,m. For any good sequence σ : δ → δ′ and
ψ ∈ Aut+(F ), ψ(σ) is also a good sequence

ψ(σ) : ψ(δ) → ψ(δ′).

Hence if we concatenate these good sequences,

σ̂i
m : αi → Jm(αi)

Jm(σ̂i
m−1) : Jm(αi) → Jm ◦ Jm−1(αi)

Jm ◦ Jm−1(σ̂i
m−2) : Jm ◦ Jm−1(αi) → Jm ◦ Jm−1 ◦ Jm−2(αi)

...

Jm ◦ Jm−1 ◦ · · · J2(σ̂i
1) : Jm ◦ Jm−1 ◦ · · ·J2(αi) → Jm ◦ Jm−1 ◦ · · · J2 ◦ J1(αi)

= h(αi)

we obtain a good sequence σ̂i : αi → h(αi) for i = 1, 2 with same number of terms.
If a pair (αk, αk+1) is good, the opposite pair (αk+1, αk) is also good. Therefore if
we reverse the order of the sequence σ̂i, we can obtain the desired good sequence
σi = (h(αi) = αi

0, α
i
1, · · · , αi

n = αi), for i = 1, 2.
¤

In Lemma 5.4, we shall construct two branched surfaces such that the one of them
carries the family of laminations which realizes all boundary slopes in negative part
of the interval of the conclusion of Theorem 5.1, the other carries positive part.
In order to define these specific branched surfaces, we define some notation for
orientations of simple arcs on the surface.

Let α and β be simple arcs properly embedded in F and we suppose the pair
(α, β) is good. If we give the orientations for α and β, there are two cases for the
orientation of the pair (α, β) in the neighbourhood of ∂F as in Figure 14.



26 YASUHARU NAKAE

∂F

α

β

(a) (b)

∂F

α

β

Figure 14

We call a good pair (α, β) is a negatively oriented pair if it is oriented as in
Figure 14 (a), otherwise if it is oriented as in Figure 14 (b) we call it a positively
oriented pair. For a good sequence σ = (α0, α1, · · · , αn), we call σ is a negatively
oriented good sequence if each pair (αi−1, αi) is a negatively oriented pair for i =
1, 2, · · · , n, and we call σ is a positively oriented good sequence if each pair (αi−1, αi)
is a positively oriented pair.

For the pair of good sequences σ = (σ1, σ2) defined in Lemma 5.2, we denote
the branched surface defined in Lemma 5.2 by Bσ, and we consider that each
sector of Bσ constructed from {Di

k} has the orientation induced from the arcs
{αi

k} with our convention defined before. We denote the two boundaries of M
which are homeomorphic to a torus by ∂iM for i = 1, 2, which corresponds to
∂iF × [0, 1]

/
(h(x), 0) ∼ (x, 1) where x ∈ ∂iF .

Lemma 5.4. For α1 and α2 defined in the proof of Lemma 5.3, if σ1 = (h(α1) =
α1

0, α
1
1, · · · , α1

n = α1) and σ2 = (h(α2) = α2
0, α

2
1, · · · , α2

n = α2) are both negatively
oriented good sequences, then the branched surface Bσ carries the family of lami-
nations {λx} which realizes all boundary slopes of ∂iM in (−ai, 0] for some ai > 0.
If σ1 and σ2 are both positively oriented good sequences, Bσ carries the family of
laminations {λx} which realize all boundary slopes of ∂iM in [0, bi) for some bi > 0.

Proof. We assume that σ1 and σ2 are both positively oriented. Let τσi be the
train track on ∂iM such that τσi = Bσ ∩ ∂iM for i = 1, 2. By Lemma 5.2 there
is a family of properly embedded arcs {γi

k} such that Bσ is affinely measured with
respect to

⋃
i=1,2

⋃n−1
k=0 γ

i
k. Let λx be a lamination which is carried by Bσ with

this measure. By assumption that σ is positively oriented, we can see that the
boundary points of the family {γi

k} cut each τσi on ∂iM into two parts as follows.
For each k = 0, 1, · · · , n − 1, we define the orientation on ∂iFk induced from the
orientation of Fk. Since each ∂iFk is parallel to the longitude curve on ∂iM and
the orientation of ∂Fk is induced from the interval [0, 1] used in the definition of
quotient space M , these circles {τσi∩∂Fk} are parallel circles on ∂iM with coherent
orientation. By applying this orientation to the train tracks {τσi}, the two sub arcs
∂Di

k = Di
k ∩ ∂iM have two types, one is oriented downwards, the other is oriented

upwards (see Figure 15).
In each ∂iFk the end points of γi

k cut the circle τσi∩Fk into exactly two parts. We
temporary denote these components by σi

k and σi
k
′. If σi

k intersects the component
of ∂Di

k+1 which is oriented downwards, σi
k intersects the component of ∂Di

k which is
also oriented downwards, and also σi

k
′ intersects the components of ∂Di

k+1 and ∂Di
k

which are both oriented upwards. By these considerations, any components of ∂Di
k

for k = 1, 2, · · · , n, oriented downwards are connected via σi
k for k = 0, 1, · · · , n−1,
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αk−1

αk

αk+1

αk

γk

γk−1

Fk

Fk−1

Figure 15

and also any components of ∂Di
k oriented upwards are connected via σi

k
′. Therefore

τσi on ∂iM is separated into exactly two parts.
By this conclusion we can apply the scale map f as before, then τσi has the

affine measure wσi induced from the measure on the branched surface Bσ. Hence
the lamination λx intersects ∂iM in the measured lamination τσi(wσi).

We calculate boundary slopes of τσi(wσi) by converting the measured train track
(τσi , wσi) into a combinatorially equivalent (see [5] Chapter 2) measured train track
(τσi

′, wσi
′).

We denote one of the branches of ∂iDi
n ∩ ∂iM ⊂ τσi which is weighted x

x+1 by
νi
1 and the other weighted x by νi

2. We remove νi
1 from τσi and changes the weight

of νi
2 into

x− x

x+ 1
=

x2

x+ 1
,

and except for the weight of sectors on ∂iF0 and ∂iFn−1 which are weighted x+ 1,
fix the weight on all sectors of τσi . The excepted sectors get the weight

x− x

x+ 1
+ 1 =

x2

x+ 1
+ 1

(see Figure 16).
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1

x

1

x + 1

x

x + 1

x → x2

x + 1

ν1ν2 1
1

x + 1

x

x + 1
→ 0

x + 1

→ x2 + x + 1

x + 1

Figure 16

Next we collapse the resultant train track along ∂iF0 × [0, n−1
n ] to get τσi

′. Let
z(x) be a linear combination of 1, x and 1

x+1 such that

z(x) = c2x+ c1 +
c0

x+ 1
,

where c0,c1 and c2 are non-negative constants. Since the sectors of τσi contained in
∂iF0∪∂iF1∪· · · ∂iFn−1 are positively weighted by non-negative linear combinations
of 1, x and 1

x+1 , the three sectors of τσi
′ are weighted x2

x+1 , z(x) and z(x) + x2

x+1

(see Figure 17).
By taking the two candidates of the meridian µ there are two cases of the slope

of τσi
′, and hence of τσi such that

〈τσi
′(wσi

′), λ〉
〈µ, τσi

′(wσi
′)〉 =

x2

x+1

z(x)
,

or
〈τσi

′(wσi
′), λ〉

〈µ, τσi
′(wσi

′)〉 =
x2

x+1

z(x) + x2

x+1

.

Therefore, letting x range over [0,∞) we obtain a family of laminations {λx}
which realizes all boundary slopes either in [0, 1

c2
) or in [0, 1

c2+1 ) respectively. Then
we see that Bσ carries the family of laminations which realize all boundary slopes
of ∂iM in [0, bi) for some bi > 0.
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x2

x+ 1 

z(x)

z(x) + 
x2

x+ 1 

Figure 17

We can apply the symmetrical argument to obtain a similar conclusion for a
negatively oriented good sequence σ′, and then we see that Bσ′ carries the family
of laminations which realize all boundary slopes of ∂iM in (−ai, 0] for some ai > 0.
By gathering these intervals, we complete the proof of this Lemma.

¤

Lemma 5.5. Let σi = (h(αi
n) = αi

0, α
i
1, · · · , αi

n), i = 1, 2 be good sequences and we
suppose that four arcs (α1

k, α
1
k+1) and (α2

k, α
2
k+1) are disjoint for 0 5 k 5 n. Then

we can modify the sequence σ = (σ1, σ2) into σ̄ = (σ̄1, σ̄2) with one of the following
two properties,

(1) both of σ̄1 and σ̄2 are either positively oriented good sequences or negatively
oriented good sequences,

(2) σ̄ = (σ̄1, σ̄2) has the property that (α1
n−1, α

1
n) is a positively oriented good

pair and (α2
n−1, α

2
n) is a negatively oriented good pair, or (α1

n−1, α
1
n) is a

negatively oriented good pair and (α2
n−1, α

2
n) is a positively oriented good

pair. Other pairs (αi
k−1, α

i
k), k = 1, · · · , n − 2, i = 1, 2 are either all

positive or all negative pair.

Proof. For the original good sequences

σ1 = (α1
0, α

1
1, · · · , α1

n)

σ2 = (α2
0, α

2
1, · · · , α2

n),

there are the following eight cases:
(NP )P

k : For 0 5 j < k and i = 1, 2, each pair (αi
j , α

i
j+1) is positively oriented;

(α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is positively oriented.

(NP )N
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is negatively oriented;

(α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is positively oriented.

(PN)P
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is positively oriented;

(α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is negatively oriented.

(PN)N
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is negatively oriented;

(α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is negatively oriented.

(NN)P
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is positively oriented;

(α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is negatively oriented.

(NN)N
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is negatively oriented;

(α1
k, α

1
k+1) is negatively oriented and (α2

k, α
2
k+1) is negatively oriented.
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(PP )P
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is positively oriented;

(α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is positively oriented.

(PP )N
k : For 0 5 j < k and i = 1, 2, each pair (αi

j , α
i
j+1) is negatively oriented;

(α1
k, α

1
k+1) is positively oriented and (α2

k, α
2
k+1) is positively oriented.

For each of eight cases, we define operations as follows.
For the case (NP )P

k , we replace the pair (α1
k, α

1
k+1) by the sequence (α1

k,−α1
k+1,

−α1
k, α

1
k+1), and replace the pair (α2

k, α
2
k+1) by the sequence (α2

k, α
2
k+1,−α2

k,−α2
k+1)

and rewrite −α2
k+1 to α2

k+1, i.e. we reverse the orientation of α2
k+1. Then we can

see that (α1
k,−α1

k+1,−α1
k, α

1
k+1) and (α2

k, α
2
k+1,−α2

k, α
2
k+1) are positively oriented

good sequences. Then all pairs before αi
k+1 are a positive good pairs. It means

that we modify the cases (NP )P
k into the cases (NP )P

k+1, (PN)P
k+1, (PP )P

k+1, or
(NN)P

k+1.
For other cases, the operations are as follows.

(NP )N
k : (α1

k, α
1
k+1) → (α1

k, α
1
k+1,−α1

k,−α1
k+1) and rewrite the last term,

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1)

(PN)P
k : (α1

k, α
1
k+1) → (α1

k, α
1
k+1,−α1

k,−α1
k+1) and rewrite the last term,

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1)

(PN)N
k : (α1

k, α
1
k+1) → (α1

k,−α1
k+1,−α1

k, α
1
k+1),

(α2
k, α

2
k+1) → (α2

k, α
2
k+1,−α2

k,−α2
k+1) and rewrite the last term

(NN)P
k : (α1

k, α
1
k+1) → (α1

k,−α1
k+1,−α1

k, α
1
k+1),

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1)

(NN)N
k : no operations

(PP )P
k : no operations

(PP )N
k : (α1

k, α
1
k+1) → (α1

k,−α1
k+1,−α1

k, α
1
k+1),

(α2
k, α

2
k+1) → (α2

k,−α2
k+1,−α2

k, α
2
k+1)

By doing these operations, in each case the resultant sequences satisfy the con-
dition of one of the cases (NP )P

k+1, (NP )N
k+1, (PN)P

k+1, (PN)N
k+1, (NN)P

k+1,
(NN)N

k+1, (PP )P
k+1, (PP )N

k+1. Therefore if we iterate these operations, finally
we reach one of the following situations:

(1a) the resultant sequences σ̄1 and σ̄2 are both positively oriented.
(1b) the resultant sequences σ̄1 and σ̄2 are both negatively oriented.
(2a) For 0 5 k 5 n − 1 and i = 1, 2 each pair (αi

k, α
i
k+1) is positively oriented

but (α1
n−1, α

1
n) is negatively oriented and (α2

n−1, α
2
n) is positively oriented,

or (α1
n−1, α

1
n) is positively oriented and (α2

n−1, α
2
n) is negatively oriented.

(2b) For 0 5 k 5 n − 1 and i = 1, 2 each pair (αi
k, α

i
k+1) is negatively oriented

but (α1
n−1, α

1
n) is negatively oriented and (α2

n−1, α
2
n) is positively oriented,

or (α1
n−1, α

1
n) is positively oriented and (α2

n−1, α
2
n) is negatively oriented.

Hence the cases (1a) and (1b) is the case (1) of the conclusion of this Lemma,
and the cases (2a) and (2b) is the case (2).

¤
Lemma 5.6. Let λx be the lamination obtained in Lemma 5.4. Then the lamination
λx extends to a taut foliation Fx with the same boundary slope property.

Proof. For any point x1 on α1
k and any point x2 on α2

k, let δ be a simple arc
on Fk−1 whose end points are ∂1δ = x1 and ∂2δ = x2 and such that δ does not
intersect α1

k and α2
k. Since α1

k and α2
k are disjoint and both non-separating, there

is such a simple arc δ. Let Fk−1
′ be a sub surface which is a metrically completed

surface of the open surface Fk−1 \ (α1
k ∪α2

k). Then we can regard that δ is properly
embedded in Fk−1

′. The boundaries of the sub surface Fk−1
′ has four components,

two of them are copies of α1
k and the others are copies of α2

k. We denote these
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boundaries by αi+
k and αi−

k for i = 1, 2, where the signs mean that the copy with +
sign is on the right side of the original arc with respect to the orientation of original
arc, the sign − means that it is on opposite side.

Since we construct the disks {Di
k} by using the sub interval [k−1

n , k
n ], we denote

the image of ∂iδ on Fk induced from this construction of disks by ∂iδ̄ for i = 1, 2,
and by the same construction we can consider the image of δ on Fk, we denote it
by δ̄. The arcs α1

k and α2
k also separate the surface Fk into sub surface Fk

′ with
four boundary components αi+

k and αi−
k for i = 1, 2. In order to specify these arcs

we denote them by ᾱi+
k and ᾱi−

k . Because of our convention for the orientation of
the disks {Di

k}, we can see that αi−
k correspond to the vertical boundary ∂vN(Bσ)

near the surface Fk−1 and ᾱi+
k correspond to ∂vN(Bσ) near the surface Fk.

There are four cases related to the endpoints condition of δ. If ∂1δ ∈ α1+
k and

∂2δ ∈ α2+
k , then ∂1δ̄ ∈ ᾱ1+

k and ∂2δ̄ ∈ ᾱ2+
k . In this case, by the condition of the

orientation of disks {Di
k}, we can modify δ by sliding the end point ∂1δ to the point

∂1δ̄ along the disk D1
k and ∂2δ to the point ∂2δ̄ along the disk D2

k. The resultant
arc is smooth arc on Bσ with endpoints on ᾱ1+

k and ᾱ2+
k . By the same argument,

if ∂1δ ∈ α1+
k and ∂2δ ∈ α2−

k , then there is a smooth arc on Bσ with endpoints
on ᾱ1+

k and α2−
k ; if ∂1δ ∈ α1−

k and ∂2δ ∈ α2+
k , then there is a smooth arc on Bσ

with endpoints on α1−
k and ᾱ2+

k ; and if ∂1δ ∈ α1−
k and ∂2δ ∈ α2−

k , then there is a
smooth arc on Bσ with endpoints on α1−

k and α2−
k . In all cases, each end points of

the modified arc δ correspond to the points on ∂vN(B).

Therefore we can foliate the complementary region Fk−1 × [k−1
n , k

n ] \
◦

N(Bσ) by
the product foliation Fk−1

′ × [0, 1] with the property that the vertical boundaries
of Fk−1

′ × [0, 1] are connected to the vertical boundaries ∂vN(Bσ). Filling the
complementary region of the lamination λx in N(Bσ) with parallel leaves, we can
extend λx to a foliation Fx. In the boundary ∂M a meridian curve intersects all
leaves of Fx transversely, thus Fx is a taut foliation.

¤
In summary, we proved the existence of the good sequences σ = (σ1, σ2) in

Lemma 5.3 and we modify these sequences suitable for the assumption of Lemma 5.4.
By Lemma 5.2 and Lemma 5.4, for these modified good sequences with good prop-
erty there are two branched surfaces Bσ− and Bσ+ which carry the families of
laminations {λx} which realize all boundary slope in (−ai, 0] and [0, bi) on ∂iM for
some ai > 0 and bi > 0, i = 1, 2 respectively. Then the lamination λx is extended
to the taut foliations Fx by Lemma 5.6, we complete the proof of Theorem 5.1.

Example 5.7. Now we calculate these intervals of slopes for the complement of
(6, 4)-torus link. First we propose an explicit construction of the fibration on the
complement of (6, 4)-torus knot as similar to the construction established in Section
3.1.

Let K be the (6, 4)-torus link which is a pair of simple closed curves on the solid
torus V standardly embedded in S3. We denote these components by K1 and K2.
Taking the infinite cover Ṽ of V with the covering map q : Ṽ → V , we denote
the cover of K on Ṽ by K̃. Then Ṽ is a cylinder of infinite length, and K̃ has
four components. If we embed Ṽ into R3 in the same way as in section 3.1, these
components are the curves represented by the following formulae;

k1
i (x) = (x, cos

3
2
(x+

2(i− 1)π
3

), sin
3
2
(x+

2(i− 1)π
3

)) (i = 1, 2).

k2
i (x) = (x, cos

3
2
(x+

2(i− 1)π
3

+
π

3
), sin

3
2
(x+

2(i− 1)π
3

) +
π

3
) (i = 1, 2),
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where each kj
i (x) projects to Kj by the covering map q.

Now we construct a surface in Ṽ as follows. We define twisted bands Gi,j
B by the

following formulae;

GB
1,1 =

{
rk1

1(x) + (1− r)k2
2

(
2π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
1,2 =

{
rk2

2(x+
2π
6

) + (1− r)k1
2

(
4π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
2,1 =

{
rk2

1(x) + (1− r)k1
1

(
2π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
2,2 =

{
rk1

1(x+
2π
6

) + (1− r)k2
2

(
4π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
3,1 =

{
rk1

2(x) + (1− r)k2
1

(
2π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
3,2 =

{
rk2

1(x+
2π
6

) + (1− r)k1
1

(
4π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
4,1 =

{
rk2

2(x) + (1− r)k1
2

(
2π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

GB
4,2 =

{
rk1

2(x+
2π
6

) + (1− r)k2
1

(
4π
6
− x

)
+

(
2π
3
n, 0, 0

)

∣∣∣ 0 5 x 5 π

6
, 0 < r < 1, n = 0,±1,±2, · · ·

}

The boundaries of these bands bound the squares {Pk} on each disk Dk =
{(x, y, z)|x = 2k+1

6 π, y2 + z2 5 1}, k ∈ Z. Then we define a surface G in Ṽ as the
union of all Gi,j

B and Pk. Next we define the map Rθ : Ṽ → Ṽ given by

Rθ(x, y, z) =
(
x+

θ

6
, y cos

θ

4
− z sin

θ

4
, y sin

θ

4
+ z cos

θ

4

)
.

As seen in section 3.1, Rθ keeps the components kj
i (x) invariant and rotates Ṽ

by angle π
2 , moreover if we set Gθ = Rθ(G), 0 5 θ 5 2π, the family of surfaces

{Gθ|0 5 θ < 2π} fills up Ṽ and all Gθ are disjoint. Gθ has four line boundaries
{C̃i

θ}i=1,2,3,4 on ∂Ṽ . We set Fθ
′ = q(Gθ) and then the family of surfaces {Fθ

′|0 5
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θ < 2π} fills up V . The images of C̃θ are four longitudinal circles {Ci
θ}i=1,2,3,4 on

∂V . Since the complement of V is also a solid torus, we connect meridian disks of
the complement to each Cθ along its boundaries, then we obtain a surface Fθ in
S3 \ K. The family of surfaces {Fθ|0 5 θ < 2π} fills up S3 \ K, and as seen in
section 3.1, the map p : S3 \K → S1 defines a fibration.

Next we take two arcs. Let α̃1 and α̃2 be arcs on ∂Ṽ such that

α̃1 =
{

(t, 1, 0) ∈ ∂Ṽ | 0 5 t 5 2π
3

}

α̃2 =
{

(t, 1, 0) ∈ ∂Ṽ | π 5 t 5 5π
3

}
.

We project each arc to V and denote their images by α1′ and α2′. These arcs
are on the circle C0, then we modify these arcs slightly in the neighbourhood of
C0 such that we fix each end points and shift each center of arcs forward to the
direction of the center of the meridian disk whose boundary is C0, so that each arc
does not intersect the link K in its interior. We denote the resultant arcs by α1

and α2.
Let h be the monodromy of the fibration, and set β1 = h(α1) and β2 = h(α2).

These arcs β1 and β2 are on the meridian disk whose boundary is C2π, then four
arcs are on the one fiber surface F0. The four arcs are mutually disjoint, and
each arc is non-separating on the fiber. The pair (α1, β1) is a good pair, and so is
(α2, β2). Hence by tracing the method of section 3.2, we can construct the branched
surfaces, then we obtain a family of taut foliations {Fx} such that Fx realizes all
boundary slope in (−∞, 1) on each boundary components.
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three-dimensional non-stationary Lamé system and the application to an inverse
problem.

2004–23 Wuqing Ning and Masahiro Yamamoto: An inverse spectral problem for a non-
symmetric differential operator: Uniqueness and reconstruction formula.

2004–24 Li Shumin: An inverse problem for Maxwell’s equations in biisotropic media.

2004–25 Taro Asuke: The Godbillon-Vey class of transversely holomorphic foliations.

2004–26 Vilmos Komornik and Masahiro Yamamoto: Estimation of point sources and
the applications to inverse problems.

2004–27 Oleg Yu. Imanuvilov and Masahiro Yamamoto: Stability estimate in a Cauchy
problem for a hyperbolic equation with variable coefficients.

2004–28 Naoki Heya: The absolute continuity of a measure induced by infinite dimen-
sional stochastic differential equations.

2004–29 Hidetaka Sakai: Hypergeometric solution of 2 × 2q-Schlesinger system.

2004–30 Yasuharu Nakae: Taut foliations of torus knot complements.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


