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e-mail:myama@ms.u-tokyo.ac.jpAbstrat. In a bounded domain Ω ⊂ Rn , we consider a hyperbolic operator P

with the principal term ∂2
t
− p(x, t)∆. Under the assumption that the outer normal

derivative of p is non-positive, we will estimate u in U × (−t0, t0) by the Cauchy

data on an open subset of ∂Ω × (−T, T ), where t0 < T is some constant and U

is a neighbourhood of ∂Ω. The condition on the normal derivative is physically
understood and means that the wave speed does not decrease inward on ∂Ω.

§1. Introduction and main result.

Let Ω ⊂ Rn be a bounded domain whose boundary ∂Ω is of class C2. We consider

a hyperbolic operator:

(Pu)(x, t) ≡ ∂2
t u(x, t) − p(x, t)∆u(x, t)

−
n

∑

k=1

qk(x, t)∂ku(x, t) − qn+1(x, t)∂tu(x, t) − q0(x, t)u(x, t), x ∈ Ω, 0 < t < T.
(1.1)

Here we set x = (x1, ..., xn) ∈ Rn,

∂j =
∂

∂xj
, 1 ≤ j ≤ n, ∂t =

∂

∂t
.
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Henceforth we assume that

p ∈ C1(Ω × R), qj ∈ L∞(Ω × R), 0 ≤ j ≤ n+ 1 (1.2)

and

p(x, t) > 0, (x, t) ∈ Ω × R. (1.3)

Let Γ ⊂ ∂Ω be a relatively open subset.

Stability for the Cauchy problem. Let Pu = 0 in Ω× (−T, T ). Then estimate

‖u‖H1(D) by u,∇u on Γ × (−T, T ). Here D ⊂ Ω × (−T, T ) is some open subset.

In some cases, we can take D = Ω × (−T, T ) for suitable T > 0 and Γ = ∂Ω.

Then the resulting estimate is closely related with the observability inequality.

For stability estimates including observability inequalities for Cauchy problems,

we refer to: Amirov and Yamamoto [1], Bardos, Lebeau and Rauch [2], Cheng,

Isakov, Yamamoto and Zhou [3], Ho [4], Hörmander [5], Isakov [7], [8], Kazemi and

Klibanov [9], Khăıdarov [10], Klibanov and Malinsky [11], Klibanov and Timonov

[12], Komornik [13], [14], Lasiecka and Triggiani [15], Lasiecka, Triggiani and Yao

[16], Lasiecka, Triggiani and Zhang [17], Lions [18], Yao [22], and the references

therein.

For establishing stability estimates, we can refer to the three methods:

(1) the multiplier method: [4], [13], [14].[18].

(2) the Carleman estimate and the related estimates: [1], [3], [5], [7]-[12], [15]-

[17], [22].

(3) the micrlocal analysis: [2].

Our main interest is to establish the stability estimate for general variable co-

efficient p(x). The multiplier method is widely applicable but is not feasible for
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treating the first order terms
∑n

j=1 qj∂ju in (1.1). On the other hand, the microlo-

cal analytical technique gives a sharp condition for the observability inequality, but

the verification of the condition on p, T and Γ is not easy in concrete cases. The

approach by Carleman estimate ([1], [3], [5], [7]-[12]) can treat lower-order terms

and moreover is essential for proving the uniqueness and the stability in an inverse

problem of determining coefficients in (1.1) by Cauchy data on the boundary.

In the case where the principal parts are with variable coefficients, in order

to estabslish a Carleman estimate, we have to assume extra conditions on the

coefficients, and in many existing works (e.g. [3], [7], [8], [10], [12]), the following

type of conditions (or similar) are assumed for p:

there exists y ∈ R
n such that

(∇p(x, t) · (x− y))

2p(x, t)
< 1 (1.4)

as long as x ∈ Ω is in a neighbourhood of Γ and t ∈ (−t0, t0) with some t0 > 0.

Here and henceforth, (·, ·) denotes the scalar product in Rn.

The physical meaning of such conditions as (1.4) in the existing works is not

clear. The purpose of this paper is to establish a stability estimate for p satisfying

a condition which is more general than (1.4) and can be interpreted physically.

Henceforth we set

Bρ(x0) = {x ∈ R
n; |x− x0| < ρ}

Bρ(x0, t0) = {(x, t) ∈ R
n+1; |x− x0|2 + |t− t0|2 < ρ2}

with t0 ∈ R, x0 ∈ Rn and ρ > 0. For β > 0, r1 > 0 and y ∈ Rn, we set

Qγ(y) = Qγ = {(x, t) ∈ Ω × R; |x| < r1, |x− y|2 − βt2 > γ}.

Let ν = ν(x) be the outward unit normal vector at x to ∂Ω and ∂u
∂ν = ∇u · ν.

Our main result is the stability which is local in (x, t).
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Theorem (local stability). Let x0 ∈ ∂Ω be fixed and let us assume that there

exists δ > 0 such that Bδ(x0) ∩ Ω is convex and

∂p

∂ν
(x0, 0) ≤ 0. (1.5)

Let T > 0 be given arbitrarily. Then there exist y ∈ Rn, β > 0, r1 > 0, γ > 0,

C > 0 and κ ∈ (0, 1) such that

x0 ∈ Qγ(y) (1.6)

and

‖u‖H1(Qγ(y)) ≤ CEκ(E1−κ + ‖u‖1−κ
H1(Ω×(−T,T ))) (1.7)

where we set

E = ‖u‖
H

3
2 ((∂Ω∩Bδ(x0))×(−T,T ))

+ ‖u‖H2(−T,T ;L2(∂Ω∩Bδ(x0))

+

∥

∥

∥

∥

∂u

∂ν

∥

∥

∥

∥

H2(−T,T ;L2(∂Ω∩Bδ(x0))

+

∥

∥

∥

∥

∂u

∂ν

∥

∥

∥

∥

L2(−T,T ;H
1
2 (∂Ω∩Bδ(x0))

.

Corollary (unique continuation). Let x0 ∈ Γ be fixed and let us assume that

there exists δ > 0 such that Bδ(x0) ∩Ω is convex and (1.5) holds. We assume that

u = |∇u| = 0 on Γ × (−T, T ). Then there exists a neighbourhood U ⊂ Rnx × Rt of

(x0, 0) such that u = 0 in U .

Condition (1.5) means that the wave speed
√

p(x, t) does not strictly decrease

inward from ∂Ω at x0, and (1.5) is interpreted as an acceptable sufficient condition

for the unique continuation for example by tracing rays from x0 in view of the

classical law of refraction (Snell’s law). In the case where p(x, t) is t-independent

or analytic in some component of (x, t), the uniqueness in the Cauchy problem is

already proved for more general Γ (e.g., Hörmander [6], Theorem 3.4.1 (pp.59-60)
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in Isakov [7], Robbiano [19], Tataru [21]). However, for general p = p(x, t) in the

C1-class, their results do not assert the unique continuation, and moreover the

existing results by Carleman estimates, cannot guarantee the uniqueness without

an extra condition such as (1.4).

When we assume (1.5) suitably for x ∈ Ω and t ∈ (−T, T ) with sufficiently large

T > 0, we can establish the stability which is global in (x, t) and is what is called an

observability inequality. However the proof requires extra continuation arguments,

and in a succeeding paperm we will discuss the details.

Remark. For example, we consider n = 2 and p(x) = (1 + x2
1 + x2

2)
2. Then we

have

∂p

∂|x| > 0, 0 < |x| < R,

and condition (1.5) does not hold for x 6= 0. Then, as is shown in Example 4.1 in

Yao [22], there exists a closed geodesic in Ω by the Riemannian geometry by p. Our

condition (1.5) is related with a condition which excludes closed geodesics. More-

over in the case where Γ is flat near x0, condition (1.5) is a sufficient condition for

the absence of boundary rays and waveguides (see pp.73–74 and (3.25) in Romanov

[20]).

The proof of the theorem is done by choices of the point y in the Carleman

weight function |x− y|2 − βt2.

§2. Key Carleman estimate.

Without loss of generality, we may set x0 = 0 ∈ Rn. We setM1 = ‖p− 1
2 ‖C1(Ω×[−T,T ])

and M2 = ‖p 1
2 ‖C(Ω×[−T,T ]). We assume that there exist r > 0, y ∈ Rn \ {0} such
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that

inf
(x,t)∈Br(0,0),x∈Ω

{

1 − (∇p(x, t) · (x− y))

2p(x, t)

}

≡ µ0 > 0. (2.1)

Let us choose β > 0, r1 ∈ (0, r) sufficiently small such that







β(1 + 2rM1M
2
2 + rM1M2) < M−2

1 µ0,

β < r−1M−1
1 (|y| − r)

(2.2)

and

r < |y|, r21 + 2r1|y| < βr2. (2.3)

Moreover we note that

|y|2 − (βr2 − r21 − 2r1|y|) < |y|2 (2.4)

because of (2.3). We set

ψ(x, t) = |x− y|2 − βt2,

Qγ = {(x, t) ∈ Ω × R; |x| < r1, ψ(x, t) > γ} (2.5)

for

γ ∈ (|y|2 − (βr2 − r21 − 2r1|y|), |y|2).

Then, for

γ ∈ (|y|2 − (βr2 − r21 − 2r1|y|), |y|2),

we note that

(0, 0) ∈ Qγ (2.6)

and that

(x, t) ∈ Qγ implies |t| < r. (2.7)
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In fact, (2.6) is straightforward from |y|2 > γ. Next (x, t) ∈ Qγ implies that

|x| < r1, so that

|x− y|2 ≤ |x|2 + |y|2 + 2|x||y| ≤ r21 + |y|2 + 2r1|y|.

Therefore |x− y|2 − γ > βt2 yields that

t2 <
|x− y|2 − γ

β
<
r21 + |y|2 + 2r1|y| − γ

β
< r2

by γ > |y|2 − (βr2 − r21 − 2r1|y|). Thus (2.6) and (2.7) follow.

Henceforth we set

ϕ(x, t) = eσψ(x,t)

with parameter σ > 0. Then

Proposition 1 (Carleman estimate). We assume (2.1). Let

|y|2 − (βr2 − r21 − 2r1|y|) < γ < |y|2.

Then there exists σ0 > 0 such that for any σ > σ0, we can take s0 = s0(σ) > 0 and

C = C(σ) > 0 such that

∫

Qγ

(s3|u|2 + s|∂tu|2 + s|∇u|2)e2sϕdxdt ≤ C

∫

Qγ

|Pu|2e2sϕdxdt (2.8)

for u ∈ H1
0 (Qγ) with Pu ∈ L2(Qγ) and all s ≥ s0(σ).

Proof. We can prove Proposition 1 by means of Theorem 3.2.1 (p.49) in Isakov

[7], but we will apply a simplified criterion (Theorem 2.1 in Isakov [8]). Let

xn+1 = t, ξ′ = (ξ1, ..., ξn) ∈ R
n,

ξ = (ξ1, ..., ξn, ξn+1) ∈ R
n+1, ζ = (ζ1, ..., ζn, ζn+1) ∈ C

n+1,

A(x, t, ζ) = ζ2
n+1 − p(x, t)

n
∑

j=1

ζ2
j ,

∇ = (∂1, ..., ∂n), ∇x,t = (∂1, ...., ∂n, ∂t).
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First we will verify that

|∇x,tψ| > 0 on Qγ . (2.9)

In fact, we have

|∇ψ(x, t)| = 2|x− y| ≥ 2(|y| − |x|) ≥ 2(|y| − r1) > 0

by (2.3). Second we will prove that

|A(x, t,∇x,tψ)| 6= 0, (x, t) ∈ Qγ . (2.10)

In fact, since (x, t) ∈ Qγ implies that |x| < r1 and |t| < r, we see that

− 1

4
A(x, t,∇x,tψ) = p(x, t)|x− y|2 − β2t2

≥M−2
1 (|y| − r1)

2 − β2r2 > 0

by means of (2.2).

Next we will prove the pseudoconvexity on Qγ : there exists a constant C0 > 0

such that

J ≡
n+1
∑

j,k=1

(∂j∂kψ)
∂A

∂ξj
(x, t, ξ)

∂A

∂ξk
(x, t, ξ)

+ lim
s→0

1

s
Im

n+1
∑

k=1

(∂kA)(x, t, ξ +
√
−1s∇x,tψ)

∂A

∂ζk
(x, t, ξ +

√
−1s∇x,tψ) ≥ C0|ξ|2

(2.11)

for any ξ ∈ Rn+1 and any (x, t) ∈ Qγ , provided that

A(x, t, ξ) = 0,
n+1
∑

j=1

∂A

∂ξj
(x, t, ξ)∂jψ(x, t) = 0. (2.12)

Here and henceforth c denotes the complex conjugate of c ∈ C.
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Verification of (2.11). We see that (2.12) is equivalent to

ξ2n+1 = p|ξ′|2, p(ξ′ · (x− y)) + βtξn+1 = 0. (2.13)

On the other hand,

n+1
∑

j,k=1

(∂j∂kψ)
∂A

∂ξj
(x, t, ξ)

∂A

∂ξk
(x, t, ξ)

=8(p2(x, t)|ξ′|2 − βξ2n+1) = 8(p(x, t)− β)ξ2n+1

by (2.13). Moreover

1

s
Im

n+1
∑

k=1

(∂kA)(x, t, ξ +
√
−1s∇x,tψ)

∂A

∂ζk
(x, t, ξ +

√
−1s∇x,tψ)

=
1

s
Im

[

n
∑

k=1

{2(∂kp)p(ξk −
√
−1s∂kψ)} − 2(∂n+1p)(ξn+1 −

√
−1s∂n+1ψ)

]

n
∑

j=1

(ξj +
√
−1s∂jψ)2

=4(ξ′ · ∇ψ){p(∇p · ξ′) − (∂n+1p)ξn+1}

+2{−p(∇p · ∇ψ) + (∂n+1p)(∂n+1ψ)}(|ξ′|2 − s2|∇ψ|2).

Therefore, by (2.13), we have

J = 8(p(x, t) − β)ξ2n+1 + 4(ξ′ · ∇ψ){p(∇p · ξ′) − (∂n+1p)ξn+1}

+2{−p(∇p · ∇ψ) + (∂n+1p)(∂n+1ψ)}|ξ′|2

=8(p(x, t)− β)ξ2n+1 + 8(ξ′ · (x− y)){p(∇p · ξ′) − (∂n+1p)ξn+1}

−4p(∇p · (x− y))|ξ′|2 − 4(∂n+1p)βt|ξ′|2

=8p

(

1 − (∇p · (x− y))

2p

)

ξ2n+1 − 8βξ2n+1

−8βt(∇p · ξ′)ξn+1 +
4βt(∂tp)

p
ξ2n+1.

Here by (2.7), (2.13) and the Cauchy-Schwarz inequality, we have

|8βt(∇p · ξ′)ξn+1| =

∣

∣

∣

∣

8βt
(∇p · ξ′)
p
√
p

p
√
pξn+1

∣

∣

∣

∣

≤ 8βr × 2|(∇(p−
1
2 ) · ξ′)|p√p|ξn+1|

≤8βrM1(p|ξ′|2 + ξ2n+1)M
2
2 = 16βrM1M

2
2 ξ

2
n+1
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and
∣

∣

∣

∣

4βt(∂tp)

p
ξ2n+1

∣

∣

∣

∣

≤ 4βr × 2|∂t(p−
1
2 )|√pξ2n+1 ≤ 8βrM1M2ξ

2
n+1.

Therefore

J ≥ (8M−2
1 µ0 − 8β − 16βrM1M

2
2 − 8βrM1M2)ξ

2
n+1.

By (2.13), we have |ξ|2 = p+1
p ξ2n+1, and the first condition in (2.2) implies (2.8).

Thus by Theorem 2.1 in Isakov [8], the proof of Proposition 1 is complete.

§3. Proof of Theorem 1.

If necessary, we rotate and translate Ω, so that without loss of generality, we can

set x0 = 0 and near x0, the hypersurface ∂Ω can be represented by x1 = γ(x′) with

x′ = (x2, ..., xn) such that γ(0, ..., 0) = 0 and ∇γ(0, ..., 0) = 0 and Ω is located at

the same side of x1 < γ(x′). By the convexity of Ω near 0, for small ρ > 0 we see

that

{x ∈ Ω; |x| < ρ} ⊂ {(x1, x
′) ∈ R

n; x1 < 0}

and ν(0, ..., 0) = (1, 0, ..., 0). Then, by (1.5), we have

∂1p(0, 0) ≤ 0. (3.1)

We set

M = max
(x,t)∈Ω×[−T,T ]

|∇ log p(x, t)|, Dρ = {x ∈ Ω; |x| < ρ}.

For a small constant ε > 0, we choose δ(ε) > 0 such that

δ(ε) < min

{

ρ, T,
1

M

}

(3.2)

|x|, |t| < δ(ε) imply ∂1 log p(x, t) ≤ ε. (3.3)
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We further choose large R > 0 and small δ0 > 0 such that

x ∈ Ω and |x− y| > R − δ0 imply |x| < ρ (3.4)

and

∂(Dρ ∩ {x ∈ R
n; |x− y| > R− δ0})

=(∂Ω ∩Dρ) ∪ {x ∈ R
n; |x− y| = R − δ0}, (3.5)

where we set

y = (−R, 0, ..., 0).

In fact, (3.4) is possible because Ω ⊂ {(x1, x
′); x1 < 0} and {x ∈ Rn; |x − y| ≤

R} ∩Ω = (0, 0), while (3.5) is satisfied for sufficiently large R > 0 and small ρ > 0,

because Ω is convex near ∂Ω ∩ {x; |x| ≤ ρ}.

For this R > 0, we set ε = 1
R

. Then

1

2
+

1

2
Mδ

(

1

R

)

< 1

by (3.2). Hence, recalling that y = (−R, 0, ..., 0), by (3.3) we have

(∇p(x, t) · (x− y))

2p(x, t)
= −1

2
(∇ log p(x, t) · y) +

1

2
(∇ log p(x, t) · x)

=
1

2
(∂1 log p(x, t))R+

1

2
(∇ log p(x, t) · x) ≤ 1

2
+

1

2
M |x|

≤1

2
+

1

2
Mδ

(

1

R

)

< 1, (x, t) ∈ Bδ(1/R)(0, 0), x ∈ Ω.

Hence (2.1) holds true with r = δ ≡ δ
(

1
R

)

.

Next we choose β > 0 and δ1 ∈ (0, δ(1/R)) by (2.2) and (2.3) where we set

y = (−R, 0, ..., 0) and r = δ
(

1
R

)

. Furthermore for δ0 > 0, we can choose small

δ, δ1 > 0 again if necessary such that

√

R2 − (βδ2 − δ21 − 2δ1R) > R − δ0.
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Setting r = δ and r1 = δ1, we define Qγ by (2.5). Consequently we have Carleman

estimate (2.8) for R2 − (βδ2 − δ21 − 2δ1R) < γ < R2.

Now we will complete the proof of the theorem. We set Γ = ∂Ω ∩ Bδ1(0). By

the extension theorem, there exists F ∈ H2(Dδ1 × (−T, T )) such that











F = u,
∂F

∂ν
=
∂u

∂ν
on Γ × (−T, T ),

‖F‖H2(Dδ1
×(−T,T )) ≤ CE .

(3.6)

Set u− F = v, and we have










Pv = −PF in Dδ1 × (−T, T ),

v =
∂v

∂ν
= 0 on Γ × (−T, T ).

(3.7)

Let us fix γ0, γ1, γ2, γ3 such that

R2 − (βδ2 − δ21 − 2δ1R) < γ0 < γ1 < γ2 < γ3 < R2

and let us introduce a cut-off function χ = χ(x, t) ∈ C∞
0 (Rn+1) such that 0 ≤ χ ≤ 1

and

χ(x, t) =

{

1, ψ(x, t) ≥ γ2,

0, ψ(x, t) ≤ γ1.
(3.8)

We set

w = χv.

Then, noting (3.4) - (3.6), we see that

w ∈ H2
0 (Qγ0).

By (3.7), we have

Pw = 2(∂tv)(∂tχ) + v(∂2
t χ)

−2p∇v · ∇χ− pv∆χ−
n+1
∑

j=1

(qj∂jχ)v − χPF in Qγ0 .
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Henceforth C > 0 denotes generic constants which are independent of s > 0.

Therefore, setting r = δ and r1 = δ1, we can apply Proposition 1 to Pw, so that

∫

Qγ0

(s3|w|2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C
∫

Qγ0

∣

∣

∣

∣

∣

∣

2(∂tv)(∂tχ) + v(∂2
t χ) − 2p∇v · ∇χ− pv∆χ−

n+1
∑

j=1

(qj∂jχ)v

∣

∣

∣

∣

∣

∣

2

e2sϕdxdt

+C

∫

Qγ0

|PF |2e2sϕdxdt.

By (3.8), the first integral at the right hand side is not zero only if γ1 ≤ ψ(x, t) ≤ γ2.

Hence (3.6) yields

∫

Qγ0

(s3|w|2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C‖u‖2
H1(Qγ0

) exp(2seσγ2) + Ce2sCE2

for all large s > 0. Since

∫

Qγ0

(s3|w|2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≥
∫

Qγ3

(s3|v|2 + s|∇v|2 + s|∂tv|2)e2sϕdxdt

≥ exp(2seσγ3)

∫

Qγ3

(s3|v|2 + s|∇v|2 + s|∂tv|2)dxdt,

by means of (3.8), we obtain

exp(2seσγ3)

∫

Qγ3

(s3|v|2 + s|∇v|2 + s|∂tv|2)dxdt

≤C‖u‖2
H1(Qγ0

) exp(2seσγ2) + Ce2sCE2,

that is, there exists a constant s0 > 0 such that

‖v‖2
H1(Qγ3

) ≤ C‖u‖2
H1(Qγ0

)e
−sd + Ce2sCE2 (3.9)
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for all s ≥ s0. Here we set d = 2(eσγ3 − eσγ2) > 0.

In (3.9), setting s + s0 by s, we replace C by C′ = Ce2s0C , so that we see that

(3.9) holds for all s ≥ 0. If E = 0 in (3.9), then u = v and

‖u‖2
H1(Qγ3

) ≤ C‖u‖2
H1(Qγ0

)e
−sd

for all s > 0, so that letting s −→ ∞, we have u = 0 in Qγ3 . Therefore conclusion

(1.7) holds. Next let E > 0. If ‖u‖2
H1(Qγ0

) ≤ E , then conclusion (1.7) is obtained

already.

If ‖u‖2
H1(Qγ0

) > E , then we can set

s =
1

2C + d
log

‖u‖2
H1(Qγ0

)

E > 0.

Then (3.9) yields

‖v‖2
H1(Qγ3

) ≤ 2CE d
2C+d ‖u‖

4C
2C+d

H1(Qγ0
).

Hence (1.7) follows. Thus the proof of the theorem is complete.

Acknowlegements. Most of this paper has been written during the stays of the

first named author at Graduate School of Mathematical Sciences of the University

of Tokyo in 2004. The author thanks the school for the hospitality. The second

named author was supported partially by Grant 15340027 from the Japan Society

for the Promotion of Science and Grant 15654015 from the Ministry of Education,

Cultures, Sports and Technology.

References

1. A. Amirov and M. Yamamoto, Uniue continuation and an inverse problem
for hyperbolic equations across a general hypersurface, preprint.

2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the
observation, control, and stabilization of waves from the boundary, SIAM J.
Control and Optim 30 (1992), 1024–1965.



STABILITY FOR CAUCHY PROBLEM 15

3. J. Cheng, V. Isakov, M. Yamamoto and Q. Zhou, Lipschitz stability in
the lateral Cauchy problem for elasticity system, J. Math. Kyoto Univ 43
(2003), 475–501.
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