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ESTIMATION OF POINT SOURCES AND THE APPLICATIONS

TO INVERSE PROBLEMS

VILMOS KOMORNIK AND MASAHIRO YAMAMOTO

Abstract. Let Ω ⊂ RN be a bounded domain. We introduce a distance ‖A−
B‖ between two n-tuples of point sources A = (a1, ..., an), B = (b1, ...., bn) ∈
Ωn and we establish upper and lower estimates between ‖A − B‖ and a norm
of
Pn

j=1
δaj −

Pn
j=1

δbj
. Next we will apply the estimates to the following

two inverse problems and prove best possible conditional stability estimates:
(i) inverse problem of determining point heat sources by final overdeter-

mining data.
(ii) inverse problem of determining point wave sources by lateral overdeter-

mining data.

1. Introduction

Let Ω ⊂ R
N be a bounded domain whose boundary ∂Ω is smooth. For a point

a = (a1, ..., aN) ∈ Ω, by δa we denote the Dirac delta function:

δa(ϕ) =< δa, ϕ >= ϕ(a) for ϕ ∈ C(Ω).

In relation with inverse problems, the Dirac delta function describes a point source.
For example, let us consider

∂2u

∂t2
(x, t) = ∆u(x, t) + σ(t)δA(x), x ∈ Ω, t > 0

where σ 6≡ 0 is a given function, and A = (a1, ..., an) ∈ Ωn, δA =
∑n
j=1 δaj .

This is a very simplified model for an earthquake (e.g., Aki and Richards [2]),
and in an inverse problem, we are required to estimate locations a1, ..., an of point
sources. By a general framework, we can estimate the locations in H−s(Ω) with
some s > 0, which is the dual of Hs

0(Ω): the closure of C∞
0 (Ω) in Hs(Ω). However,

it is not directly clear how much ‖δA−δB‖H−s(Ω) characterizes geometric distances
between A = (a1, ..., an), B = (b1, ..., bn) ∈ Ωn. Therefore we need an independent
research and we can refer to Bruckner and Yamamoto [4], El Badia and Ha-Duong
[7], Komornik and Yamamoto [12], where the authors discuss determination of point
sources in a one-dimensional wave equation. In particular, in [12] we introduced
some quasi-distance ‖ ·‖∗ between two sequences A = (a1, ..., an), B = (b1, ..., bn) ∈
(0, 1)n, and established an upper and lower estimate between ‖δA − δB‖W−s,q(0,1)

and ‖A−B‖∗.
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The purpose of this paper is to extend the estimate given in [12] to the multidi-
mensional domain Ω, and then to apply it to two inverse problems.

The paper is composed of four sections. In Section 2, we will introduce an optimal
distance ‖ · ‖ between A,B ∈ Ωn, and show our main results on upper and lower
estimates between Sobolev norms of δA − δB and ‖A−B‖. In Section 3, we apply
the estimate to an inverse heat source problem with final overdetermination and in
Section 4, we discuss an inverse wave source problem by lateral overdetermination.

2. Estimation of point sources

First we investigate the relation between the distance of two points a, b ∈ Ω and
the distance of the corresponding Dirac masses δa, δb in suitable Sobolev spaces.
Here we recall that δa(ϕ) = ϕ(a) for ϕ ∈ C(Ω).

Henceforth, for the usual Sobolev spaceW s,p(Ω), by W̃ s,p(Ω) we denote its factor

space with respect to constants, and by (W̃ s,p(Ω))′ its dual space. We can identify

W̃ s,p(Ω) with
{
u ∈W s,p(Ω) :

∫

Ω

u(x)dx = 0
}
.

In order to obtain an upper and lower estimate of |a− b| without extra constraints

on a, b ∈ Ω, we take the norm of the dual space of W̃ s,p(Ω).

Proposition 2.1. Let s > 1 and p > 1 be two real numbers.
(a) If N−1

p < s− 1 < N
p , then there exist two constants C1, C2 > 0 such that

C1|a− b|s−N
p ≤ ‖δa − δb‖(fW s,p(Ω))′ ≤ C2|a− b|s−N

p(2.1)

for all a, b ∈ Ω.
In case N−1

p = s− 1 the first inequality still holds; if, moreover, 1 < p ≤ 2, then

the second inequality holds, too.

(b) If s− 1 > N
p , then there exist two constants C1, C2 > 0 such that

C1|a− b| ≤ ‖δa − δb‖(fW s,p(Ω))′ ≤ C2|a− b|(2.2)

for all a, b ∈ Ω.

Remark. The first inequality of (2.1) and its proof are valid under the weaker

assumption s > N
p , which is in fact necessary in order to have δa− δb ∈ (W̃ s,p(Ω))′.

Proof of the second inequality of (2.1). It follows from our assumptions on s that
the equality

1

r
=
N

p
− s− 1

1
(2.3)

defines a number r such that p < r <∞. Given a and b, introduce a unit vector e
satisfying a− b = |a− b|e and set f(t) := ϕ(b+ te) for any ϕ ∈W s,p(Ω). Using the
Hölder inequality, the Sobolev embedding and trace theorems (see e.g., Adams [1],
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Theorem 7.58 (i), p. 218), we have the following inequalities:

|(δa − δb)(ϕ)| = |ϕ(a) − ϕ(b)|

=

∣∣∣∣∣

∫ |a−b|

0

f ′(t) dt

∣∣∣∣∣

≤ |a− b|1− 1
r · ‖f ′‖Lr(0,|a−b|)

≤ |a− b|1− 1
r · ‖∇ϕ‖Lr([a,b])

≤ C|a− b|1− 1
r · ‖∇ϕ‖W s−1,p(Ω)

= C|a− b|1− 1
r · ‖ϕ‖fW s,p(Ω)

.

Finally let 1 < p ≤ 2 and let N−1
p ≤ s− 1. Then we can take p ≤ r <∞ satisfying

(2.3). Therefore Theorem 7.58 (iii) in Adams [1], p. 218 yields

‖∇ϕ‖Lr([a,b]) ≤ C‖∇ϕ‖W s−1,p(Ω).

Taking (2.3) into account, the second estimate of (2.1) follows.

Proof of the first inequality of (2.1) . Fix a function ψ ∈ C∞(RN ) satisfying the
following conditions:





0 ≤ ψ ≤ 1,

ψ(0) = 0,

ψ(x) = 1 if |x| ≥ 1.

(2.4)

Given two points a, b ∈ R
N with a 6= b, consider the function ϕ ∈ W̃ s,p(RN ) given

by the formula

ϕ(x) := ψ
(x− a

r

)
, r := |a− b|.

We clearly have

(δa − δb)(ϕ) = ϕ(a) − ϕ(b) = −1.

Furthermore, for s = 1, 2, . . . we also have for every 0 ≤ r ≤ M the following
estimates:

‖ϕ‖pfW s,p(RN )
=

∑

1≤|α|≤s

∥∥∥r−|α|Dαψ
(x− a

r

)∥∥∥
p

Lp(RN )

=
∑

1≤|α|≤s

∫

RN

r−|α|p
∣∣∣Dαψ

(x− a

r

)∣∣∣
p

dx

=
∑

1≤|α|≤s

∫

RN

rN−|α|p
∣∣∣Dαψ

(x− a

r

)∣∣∣
p

d

(
x− a

r

)

=
∑

1≤|α|≤s
rN−|α|p

∥∥∥Dαψ
∥∥∥
p

Lp(RN )

≤ CpMr
N−sp.

Here CM > 0 is a constant depending on M . These estimates remain valid for
all real numbers s ≥ 1 by the interpolation argument.
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Now choosing a number M which is larger than the diameter of Ω and using the
obvious inequality

‖ϕ‖fW s,p(Ω)
≤ ‖ϕ‖fW s,p(RN )

,

it follows that

‖δa − δb‖(fW s,p(Ω))′
≥ |(δa − δb)(ϕ)|

‖ϕ‖fW s,p(Ω)

≥ |(δa − δb)(ϕ)|
‖ϕ‖fW s,p(RN )

≥ C−1
M rs−

N
p

= C−1
M |a− b|s−N

p .

Proof of the second inequality of (2.2). We modify the proof of the corresponding
inequality in (2.1) as follows. We may assume, by diminishing s if needed, that

N

p
< s− 1 <

N + 1

p
,

because (W̃ s1,p(Ω))′ ⊂ (W̃ s2,p(Ω))′ for s1 < s2. Then we may choose ε > 0 such
that

s− 1 =
N

p
+

1

p
− 1

p+ ε
.

Then, applying Theorem 7.58 in [1], p. 218, we obtain that

W s−1,p(Ω) ⊂W 1/p,p+ε([a, b]).

Furthermore, since
p+ ε

p
> 1,

applying Theorem 7.57 in [1], p. 217 (the condition p < n of that theorem is
unnecessary, see a remark on p. 218), we also have

W 1/p,p+ε([a, b]) ⊂ L∞([a, b]).

It follows that

|(δa − δb)(ϕ)| = |ϕ(a) − ϕ(b)|

=
∣∣∣
∫ |a−b|

0

f ′(t) dt
∣∣∣

≤ |a− b| · ‖f ′‖L∞(0,|a−b|)

≤ |a− b| · ‖∇ϕ‖L∞([a,b])

≤ C|a− b| · ‖∇ϕ‖W s−1,p(Ω)

= C|a− b| · ‖ϕ‖fW s,p(Ω)
.

Proof of the first inequality of (2.2). Choosing the test functions ϕ(x1, . . . , xN ) :=
xj , j = 1, . . . , N , we have obviously

‖ϕ‖pfW s,p(Ω)
= |Ω|
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(the volume of Ω) and

|(δa − δb)(ϕ)| = |aj − bj|,
so that

‖δa − δb‖(fW s,p(Ω))′
≥ |(δa − δb)(ϕ)|

‖ϕ‖fW s,p(Ω)

≥ |Ω|−1|aj − bj |.

It follows that

N‖δa − δb‖2
(fW s,p(Ω))′

≥ |Ω|−2
N∑

j=1

|aj − bj|2 = |Ω|−2|a− b|2,

so that

‖δa − δb‖(fW s,p(Ω))′ ≥
1√
N |Ω|

|a− b|.

Next we will extend Proposition 2.1 to A = (a1, ..., an), B = (b1, ..., bn) ∈ Ωn

where aj and bj may be not distinct.
For the optimal distance ‖A − B‖ with A = (a1, ..., an), B = (b1, ..., bn) ∈ Ωn,

we define

‖A−B‖ = min
π

max
1≤i≤n

|ai − bπ(i)|(2.5)

where the minimum is taken over all the permutations of 1, ..., n. Then ‖ · ‖ is a
distance: ‖A − C‖ ≤ ‖A − B‖ + ‖B − C‖ for A,B,C ∈ Ωn and ‖A − B‖ = 0
if and only if A = B (after renumbering if necessary). We state the main result
which assures that the distance ‖ · ‖ defined by (2.5) gives an optimal estimate for
‖δA − δB‖(fW s,p(Ω))′

.

Theorem 2.2. Let n be a positive integer and s > 1, p > 1 two real numbers.
(a) If N−1

p < s− 1 < N
p , then there exist two constants C1, C2 > 0 such that

C1‖A−B‖s−N
p ≤ ‖δA − δB‖(fW s,p(Ω))′ ≤ C2‖A−B‖s−N

p(2.6)

for all A,B ∈ Ωn.
In case N−1

p = s− 1 the first inequality still holds; if, moreover, 1 < p ≤ 2, then

the second inequality holds, too.

(b) If s− 1 > N
p , then there exist two constants C1, C2 > 0 such that

C1‖A−B‖s−N
p ≤ ‖δA − δB‖(fW s,p(Ω))′ ≤ C2‖A−B‖(2.7)

for all A,B ∈ Ωn.

Estimates (2.6) are clearly optimal because the expressions on the left- and
right-hand sides have the same size. Concerning the optimality of this theorem for
s− 1 > N

p , we shall also prove the following proposition:

Proposition 2.3. (a) Unlike in (2.2) for the case of n = 1, the first inequality of
(2.7) cannot be improved as

C1‖A−B‖ ≤ ‖δA − δB‖(fW s,p(Ω))′

in general.
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(b) There exist a positive constant C2 and special configurations of points ai and
bi with arbitrarily small norm ‖A−B‖ such that

‖δA − δB‖(fW s,p(Ω))′
≤ C2‖A−B‖s−N

p

with a constant C2 independent of ‖A−B‖. That is, the second inequality in (2.7)
is not the best possible.

For the proof of the first inequalities of (2.6) and (2.7), we will use a theorem
by Hall and Rado [8], [17], [18] from the graph theory.

Theorem 2.4. (Hall–Rado). Consider an even graph having 2n points a1, ..., an
and b1, ..., bn which may not necessarily distinct each other. We connect some pairs
(ai, bj) such that the following two conditions hold:

• for every k ∈ {1, ..., n} and every subsequence A′ = (ai1 , ..., aik) of A =
(a1, ...., an), at least k elements bj of the sequence B are connected to one of
them;

• for every k ∈ {1, ..., n} and every subsequence B′ = (bi1 , ..., bik) of B =
(b1, ...., bn), at least k elements aj of the sequence A are connected to one of
them.

Then there exists a permutation π of the integers 1, . . . , n such that ai is connected
to bπ(i) for every i.

Remark. Let us recall an interpretation of this result as a solution of a “marriage
problem”. Assume that each of a set of n boys is acquainted with some of a set of n
girls. Under what conditions is it possible for each boy to marry one of his acquain-
tances? It is clearly necessary that every set of k boys be, collectively, acquainted
with at least k girls. The theorem, first proved in [8], [17], [18], asserts that this
condition is also sufficient. See [9] for a simple proof and for generalizations, and
[3] for other applications.

Proof of Theorem 2.2. The second inequalities follow by combining Proposition 2.1
and the triangle inequality. Indeed, for every permutation π we have

‖δA − δB‖(fW s,p(Ω))′
≤

n∑

i=1

‖δai − δbπ(i)
‖
(fW s,p(Ω))′

≤
n∑

i=1

C2|ai − bπ(i)|s−
N
p ≤ nC2 max

1≤i≤n
|ai − bπ(i)|s−

N
p .

Taking the minimum of the right-hand side of this inequality, the second inequality
of (2.6) follows. The second inequality of (2.7) follows similarly.

Turning to the proof of the first inequalities, we may assume that

‖A−B‖ > 0.

Fix 0 < r < ‖A−B‖ arbitrarily. We will consider an even graph with points ai, bi,
i = 1, ..., n, where ai is connected to bj if |ai − bj | < r. Then there exist an integer
1 ≤ k ≤ n and a subsequence (ai1 , ..., aik) of A such that the union of the k balls
Br(ai1 ),...., Br(aik) contains at most (k − 1) points bj. Indeed, otherwise there
would exist, by the Hall–Rado theorem, a permutation π such that |ai − bπ(i)| < r
for i = 1, . . . , n, contradicting the choice of r.
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Now introduce the product function

ϕ(x) := ψ
(x− ai1

r

)
. . . ψ

(x− aik
r

)
, x ∈ Ω,

where ψ is defined by (2.4).
Then ϕ belongs to W s,p(Ω) and

‖ϕ‖fW s,p(Ω) ≤ Cr
N
p −s(2.8)

by a simple computation, using the Leibniz formula and the interpolation inequality
(e.g., Lions and Magenes [14]). Furthermore, by the definition, we have

ϕ(ai1 ) = · · · = ϕ(aik) = 0,

ϕ(aj) ≤ 1 for all other values of j,

ϕ(bj) = 1 for all but at most k − 1 indices j,

ϕ(bj) ≥ 0 for all other values of j.

It follows that

δA(ϕ) ≤ n− k and δB(ϕ) ≥ n− k + 1.

Therefore we have

‖δA − δB‖(fW s,p(Ω))′
≥ |δB(ϕ) − δA(ϕ)|

‖ϕ‖fW s,p(Ω)

≥ C−1rs−
N
p .

Thus the proof of Theorem 2.2 is complete.

Proof of Proposition 2.3. (a) The following counterexample shows that we may not
be able to replace the exponent s − N

p by 1 in the first inequality of (2.7) if the

gravicentres of A and B are equal and

max{ max
1≤i,j≤n

|ai − aj |, 0}, max{ max
1≤i,j≤n

|bi − bj|, 0}

are small. For example, let us take N = 1, n = 2, Ω = (−1, 1) and Ak =
(
− 1
k ,

1
k

)
,

B = (0, 0) ∈ Ω2. In the case of (b), we have s > 1 + 1
p , and ϕ ∈ W̃ s,p(−1, 1)

implies ϕ ∈ C1+θ[−1, 1] by the Sobolev embedding where θ > 0. Moreover, by the

definition of W̃ s,p(−1, 1), we have

sup
−1≤x,y≤1

∣∣∣∣
dϕ

dx
(x) − dϕ

dx
(y)

∣∣∣∣ ≤ C‖ϕ‖fW s,p(−1,1)
|x− y|θ.

Let ϕ ∈ W̃ s,p(−1, 1) be arbitrary. Then the mean value theorem yields

δAn(ϕ) − δB(ϕ) = ϕ

(
1

k

)
+ ϕ

(
−1

k

)
− 2ϕ(0)

=

(
dϕ

dx
(ξ1) −

dϕ

dx
(ξ2)

)
1

k

with some 0 < ξ1 <
1
k and − 1

k < ξ2 < 0. By dϕ
dx ∈ Cθ[−1, 1], we have

|δAk
(ϕ) − δB(ϕ)| ≤ C‖ϕ‖fW s,p(−1,1)|ξ1 − ξ2|θ

1

k

≤2θC‖ϕ‖fW s,p(−1,1)

1

k1+θ
,
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that is,
‖δAk

− δB‖(fW s,p(−1,1))′

‖Ak −B‖ ≤ 2θC

kθ
.

Therefore

lim
k→∞

‖δAk
− δB‖(fW s,p(−1,1))′

‖Ak −B‖ = 0,

so that we cannot replace the exponent s− N
p by 1 in the first inequality of (2.7).

(b) Write s− N
p = m+ θ with an integer m and with 0 < θ < 1, set n = 2m and

choose the points ai and bi as follows. Set

s2j :=

(
m+ 1

0

)
+

(
m+ 1

2

)
+ · · · +

(
m+ 1

2j

)

s2j+1 :=

(
m+ 1

1

)
+

(
m+ 1

3

)
+ · · · +

(
m+ 1
2j + 1

)

for 0 ≤ j ≤ [(m+1)/2]. Fix a1 ∈ Ω arbitrarily and let h be a small nonzero vector.
Then let

ai = a1 + 2jh if s2j ≤ i < s2j+2;

bi = a1 + (2j + 1)h if s2j+1 − s1 ≤ i < s2j+3 − s1

for 0 ≤ j ≤ [(m + 1)/2]. Then the points ai and bi lie on a straight line at equal
distances. In order to simplify the notation, we may thus assume that they are
real numbers and that h is a small positive number. Then using Newton’s divided
differences and Sobolev’s imbedding theorem (see [1], p. 98, equation (9)), we have
(here δ denotes the difference operator)

|(δA − δB)(ϕ)| = |hm+1(∆m+1ϕ(a1))|
= |hm(∆mϕ(a1 + h) − ∆mϕ(a1))|
= |hm(ϕ(m)(c1) − ϕ(m)(c2))|
≤ chm|c1 − c2|θ

≤ chs−
N
p ,

because c1 and c2 belong to the interval (a1, a1 +(m+1)h) by the generalized Rolle
theorem. See, e.g., [6], pp. 50 and 65 (Corollary 3.4.2). Thus the proof of (b) is
complete.

Theorem 2.2 gives an unconditional upper and lower estimate between ‖A−B‖
and δA − δB , but the choice of the space W̃ s,p(Ω) makes the direct application
to our inverse source problems difficult, and a relevant norm may be not ‖δA −
δB‖(fW s,p(Ω))′ . ByW s,p

0 (Ω), we denote the closure of C∞
0 (Ω) by the norm inW s,p(Ω)

and we setW−s,q(Ω) = (W s,p
0 (Ω))′: the dual where s > 0, 1 < p <∞ and 1

p+ 1
q = 1.

Then we will modify Theorem 2.2:

Theorem 2.5. Let n ∈ N and s > 1, p > 1 two real numbers. We assume that
A = (a1, ..., an), B = (b1, ...., bn) ∈ Ωn satisfy

dist (a, ∂Ω) > ε for any a ∈ A ∪B(2.9)

for some ε > 0.
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(a) If N−1
p < s − 1 < N

p , then there exist two constants C3(ε) > 0 and C4 > 0

such that

C3‖A−B‖s−N
p ≤ ‖δA − δB‖W−s,q(Ω) ≤ C4‖A−B‖s−N

p .(2.10)

In case N−1
p = s− 1 the first inequality still holds; if, moreover, 1 < p ≤ 2, then

the second inequality holds, too.

(b) If s−1 > N
p , then there exist two constants C3 = C3(ε) > 0 and C4 > 0 such

that

C3‖A−B‖s−N
p ≤ ‖δA − δB‖W−s,q(Ω) ≤ C4‖A−B‖.(2.11)

Proof. The second inequalities in (2.10) and (2.11) are proved in the same way as
the ones in (2.6) and (2.7) of Theorem 2.2. Thus it is sufficient to prove the first
inequalities. The proof is similar to Theorem 2.2 with a different choice of a test
function.

We set

R = max{ sup
x,x′∈Ω

|x− x′|, ε}.(2.12)

Then ε
R ≤ 1. Fix a function ψ1 ∈ C∞(RN ) satifying

0 ≤ ψ1 ≤ 1, ψ1(0) = 0, ψ1(x) = 1 if |x| ≥ ε

R
.(2.13)

We may assume that ‖A− B‖ > 0. Fix 0 < r < ‖A− B‖ arbitrarily. Then, in
view of the Hall–Rado theorem, there exists an integer 1 ≤ k ≤ n and a subsequence
(ai1 , . . . , aik) of A such that

k⋃

m=1

{x; |x − aim | < r}(2.14)

contains at most (k − 1) points bj. Now introduce a test function

ϕ1(x) = 1 − ψ1

(x− ai1
r

)
. . . ψ1

(x− aik
r

)
, x ∈ Ω.

Then ϕ1 ∈W s,p(Ω) and ‖ϕ1‖W s,p(Ω) ≤ Cr
N
p −s by the same way as (2.8). Since

∣∣∣∣
x− aim

r

∣∣∣∣ >
ε

R

for any x ∈ ∂Ω by (2.9), we see from (2.13) that ϕ1 ∈ W s,p
0 (Ω). Furthermore it

follows from (2.12), (2.13) and (2.14) that

ϕ1(ai1 ) = · · · = ϕ(aik ) = 1,

ϕ1(aj) ≥ 0 for all other values of j,

ϕ1(bj) = 0 for all but at most k − 1 indices j,

0 ≤ ϕ1(bj) ≤ 1 for all other values of j.

Therefore
δA(ϕ1) ≥ k and δB(ϕ1) ≤ k − 1,

so that

‖δA − δB‖(W s,p
0 (Ω))′ ≥

|δB(ϕ1) − δA(ϕ1)|
‖ϕ1‖W s,p(Ω)

≥ C−1rs−
N
p .

Thus the proof of Theorem 2.5 is complete.
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3. Application to an inverse heat source problem with final

overdetermination

In this section, we will consider

∂u

∂t
(x, t) = ∆u(x, t) + h(t)δA(x), x ∈ Ω, t > 0,(3.1)

u(x, 0) = 0, x ∈ Ω,(3.2)

and

u(x, t) = 0, x ∈ ∂Ω, t > 0.(3.3)

Here we set A = (a1, ..., an) ∈ Ωn, δA =
∑n

j=1 δaj , and h = h(t), 6≡ 0, ∈ C1[0,∞) is
a given function. Let T > 0 be given.

Then we will consider an inverse heat source problem of determining A by the
final overdetermining data u(x, T ), x ∈ Ω.

This inverse problem is determination of hot spots in a heat process, and there
are several papers in the case where δA in (3.1) is replaced by L2-functions. For
example, Choulli and Yamamoto [5], Isakov [10], Prilepko, Orlovsky and Vasin [16],
Rundell [19], and the references therein.

For the statement of our result, we introduce operators and function spaces. Let
us define an operator −L in L2(Ω) by

(Lu)(x) = −∆u(x), x ∈ Ω, D(L) = H2(Ω) ∩H1
0 (Ω).(3.4)

Then L−1 is bounded from L2(Ω) to L2(Ω) and −L generates an analytic semigroup
in L2(Ω) (e.g., Pazy [15]). Moreover we can choose λj ∈ R and ϕj ∈ L2(Ω), j ∈ N

such that Lϕj = λjϕj , 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞ and {ϕj}j∈N is an orthonormal
basis in L2(Ω). For α ∈ R, we can define the fractional power Lα (e.g., [15]), and
by the interpolation theory (e.g., Lions and Magenes [14]), we see:





D(L
s
2 ) ⊂ Hs(Ω), s ≥ 0, Hs

0(Ω) = D(L
s
2 ) if 1

2 < s ≤ 2,

there exists a constant C > 0 such that

C‖y‖Hs(Ω) ≤
∥∥L s

2 y
∥∥
L2(Ω)

≤ C−1‖y‖Hs(Ω), y ∈ D(L
s
2 ), s ≥ 0.

(3.5)

For s ≥ 0, we define a Hilbert space X(s) by D(L
s
2 ) with the norm ‖y‖X(s) =∥∥L s

2 y
∥∥
L2(Ω)

. For s > 0, we introduce the triple:

X(s) ⊂ X0 ≡ L2(Ω) ⊂ X(−s).(3.6)

By extending L− s
2 to X(−s), henceforth we can write ‖y‖X(−s) = ‖L− s

2 y‖L2(Ω) for
any y ∈ X(−s). Moreover there exists a constant C > 0 such that

‖y‖H−s(Ω) ≤ C‖L− s
2 y‖L2(Ω) for y ∈ X(−s).(3.7)

In particular, by the Sobolev embedding and the duality, we see that δA ∈ X(−s)
if s > N

2 . Moreover, as is proved later, there exists a unique solution u = uA ∈
C1([0,∞);X(−s)) with s > N

2 to (3.1)–(3.3).
We are ready to state the conditional stability in our inverse heat source problem.

Theorem 3.1. We assume that h ∈ C1[0,∞) satisfies

h(T ) 6= 0,

∫ T

0

eλjηh(η)dη 6= 0 for any j ∈ N.(3.8)

Let s > 1. Then
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(a) If N−1
2 ≤ s − 1, then there exist two positive constants C1 = C1(ε) and C2

such that

C1‖A−B‖s−N
2 ≤ ‖(uA − uB)(·, T )‖X(1− s

2 )
≤ C2‖A−B‖s−N

2(3.9)

for any A,B ∈ Ωn satisfying (2.9) with ε > 0.
(b) If s−1 > N

2 , then there exist two positive constants C1 = C1(ε) and C2 such
that

C1‖A−B‖s−N
2 ≤ ‖(uA − uB)(·, T )‖X(1− s

2 )
≤ C2‖A−B‖(3.10)

for any A,B ∈ Ωn satisfying (2.9) with ε > 0.

The first inequalities in (3.9) and (3.10) are concerned with the stability for the
inverse problem. In the case of 1− s

2 ≥ 0, we can replace ‖ ·‖X(1− s
2 )

by ‖ ·‖H2−s(Ω):

‖A−B‖s−N
2 ≤ ‖(uA − uB)(·, T )‖H2−s(Ω).

Remark. Since −L generates an analytic semigroup in Lp(Ω) with p > 1 (e.g., [15]),
we can discuss the inverse problem in general W s,p(Ω), but the argument is more
complicated, and here we restrict ourselves to the L2-framework.

The choice s = N
2 + 1

2 in case (a) gives the optimal stability rate:

C1‖A−B‖ ≤ ‖(uA − uB)(·, T )‖2
X(−N

4 + 6
4 )

≤ C2‖A−B‖

for all A,B ∈ Ωn satisfying (2.9).

Proof. First step. We will prove a variant of Theorem 2.5.

Proposition 3.2. Let s > 1 and let us assume that A,B ∈ Ωn satisfy (2.9). Then
(a) If N−1

2 ≤ s− 1, then there exist two positive constants C3 = C3(ε) and C4 such
that

C3‖A−B‖s−N
2 ≤ ‖δA − δB‖X(−s) ≤ C4‖A−B‖s−N

2 .(3.11)

(b) If s−1 > N
2 , then there exist two positive constants C3 = C3(ε) and C4 such

that

C3‖A−B‖s−N
2 ≤ ‖δA − δB‖X(−s) ≤ C4‖A−B‖.(3.12)

Proof. The first inequalities in (3.11) and (3.12) follow directly from (3.7) and the
first inequalities in (2.10) and (2.11). As for the second ineqiualities, choosing
ϕ ∈ Hs

0 (Ω) in the proofs of the second inequalities in (2.1) and (2.2), we follows the
arguments there. Then, similarly to Theorem 2.2, the triangle inequality completes
the proofs.

Second step. Let s > N
2 . Then we will prove that there exist two positive constants

C5 and C6 such that

C5

∥∥L− s
2 (δA − δB)

∥∥
L2(Ω)

≤
∥∥L1− s

2 (uA − uB)(·, T )
∥∥
L2(Ω)

≤ C6

∥∥L− s
2 (δA − δB)

∥∥
L2(Ω)

(3.13)

for all A,B ∈ Ωn.
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Proof of (3.13). We rewrite (3.1)–(3.3) in terms of semigroup (e.g., [15]):
{
duA

dt (t) = −LuA(t) + h(t)δA in X(−s), t > 0,

uA(0) = 0.

Setting v = uA − uB, we have
{
dv
dt (t) = −Lv(t) + h(t)(δA − δB) in X(−s), t > 0,

v = 0.

Then there exists a unique solution v ∈ C1([0,∞);X(−s)) such that

Lv ∈ C([0,∞);X(−s)).
(See, e.g., Theorem 3.5, p. 114, in [15].) We further set w(t) = v′(t) = dv

dt (t), t > 0
and d = (uA − uB)(T ). Then





dw
dt (t) = −Lw(t) + h′(t)(δA − δB) in X(−s), t > 0,

w(0) = h(0)(δA − δB),

w(T ) = −Ld+ h(T )(δA − δB).

Therefore, since h(T ) 6= 0 and

w(t) = e−tLw(0) +

∫ t

0

e−(t−η)Lh′(η)(δA − δB)dη, t > 0,

we have

δA − δB =
Ld

h(T )
+

1

h(T )
e−TLh(0)(δA − δB)

+
1

h(T )

∫ T

0

e−(T−η)Lh′(η)(δA − δB)dη.

For simplicity, we set g = L− s
2 (δA − δB) ∈ L2(Ω). Then

g =
L1− s

2 d

h(T )
+
h(0)

h(T )
e−TLg +

1

h(T )

∫ T

0

e−(T−η)Lh′(η)gdη ≡ L1− s
2 d

h(T )
+Kg.(3.14)

First we will verify that the operator K : L2(Ω) −→ L2(Ω) is compact.
In fact, we see that for α > 0, there exists C7 > 0 such that ‖Lαe−tL‖ ≤ C7t

−α

for 0 < t ≤ T (e.g., [15]). Take α ∈ (0, 1). Hence for any y ∈ L2(Ω), we have

‖LαKy‖L2(Ω) ≤
∣∣∣∣
h(0)

h(T )

∣∣∣∣ ‖L
αe−TLy‖L2(Ω)

+

∣∣∣∣
1

h(T )

∣∣∣∣
∫ T

0

‖Lαe−(T−η)L‖ · ‖h′‖L∞(0,T )‖y‖L2(Ω)dη

≤ C8

(
T−α +

∫ T

0

(T − η)−αdη

)
‖y‖L2(Ω)

≤ C9‖y‖L2(Ω)

by 0 < α < 1.
By (3.5), we see that ‖Ky‖H2α(Ω) ≤ C10‖y‖L2(Ω). Since the embedding

H2α(Ω) −→ L2(Ω)

is compact by the Rellich theorem, we see that K : L2(Ω) −→ L2(Ω) is compact.
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Next we can verify that (I −K)y = 0 implies y = 0.
In fact, let (I −K)y = 0, that is,

L−1h(T )y = L−1h(0)e−TLy +

∫ T

0

L−1e−(T−η)Lh′(η)ydη.

Integration by parts yields
∫ T

0

e−(T−η)Lh(η)ydη = 0.(3.15)

Since the system {ϕj}j∈N of the eigenfunctions forms an orthonormal basis in
L2(Ω), we have

e−tLz =

∞∑

j=1

e−λjt(z, ϕj)ϕj

for any z ∈ L2(Ω), where the series converges in L2(Ω) and (·, ·) denotes the L2-
scalar product. Therefore (3.15) implies

∞∑

j=1

e−λjT

(∫ T

0

eλjηh(η)dη

)
(y, ϕj)ϕj = 0,

and (∫ T

0

eλjηh(η)dη

)
(y, ϕj) = 0, j ∈ N.

Hence assumption (3.8) yields (y, ϕj) = 0, j ∈ N, that is, y = 0. Thus I − K is
injective.

Therefore from (3.14), the Fredholm alternative implies

C′
5‖g‖L2(Ω) ≤ ‖L1− s

2 d‖L2(Ω) ≤ C′
6‖g‖L2(Ω).

Thus the proof of (3.13) is complete.

Hence by combining (3.13) with (3.11) and (3.12), the proof of Theorem 3.1 is
complete.

4. Application to an inverse problem of determining impulsive point

wave sources

Consider the system




∂2w
∂t2 (x, t) = ∆w(x, t) + σ(t)δA(x), x ∈ Ω, t > 0,

w(x, 0) = ∂w
∂t (x, 0) = 0, x ∈ Ω,

w(x, t) = 0, x ∈ ∂Ω, t > 0,

(4.1)

where Ω ⊂ R
N is a bounded domain whose boundary ∂Ω is of C2-class. Throughout

this section, we assume

σ ∈ C1[0,∞), σ(0) 6= 0.

In (4.1), the vibration is assumed to be caused by multiple impulses at n-points
A = (a1, ..., an), and we are required to determine A by boundary measurements.
We will study the stability in determining A.
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For a suitable subboundary Γ ⊂ ∂Ω, we introduce Hilbert spaces H = V0 ≡
L2(0, T ;L2(Γ)) and Vs = Hs

0(0, T ;L2(Γ)) with scalar product (·, ·)Vs . For s = m ∈
N, we have

Vm =

{
g ∈ Hm(0, T ;L2(Γ));

∂jg

∂tj
(·, 0) =

∂jg

∂tj
(·, T ) = 0, j = 0, 1, ...,m− 1

}

and

(g, h)Vm =

(
dmg

dtm
,
dmh

dtm

)

H

.

Identifying H with its dual, we have the dense and continuous imbeddings:

Vs ⊂ H = H ′ ⊂ V ′
s .

We write Vs = V−s.
Here we recall that the operator L and the spaces X(s), X(−s) are defined by

(3.4) and (3.6). Then, for s > N
2 , we have X(s) ⊂ C(Ω) by Sobolev imbedding.

Furthermore (see, e.g., Komornik [11]) we see that there exists a unique solution
wA ∈ C([0,∞);X(−s+ 2)) ∩ C2([0,∞);X(−s+ 1)) to (4.1).

Let x0 ∈ R
N be arbitrarily fixed and let

Γ = {x ∈ ∂Ω; (x− x0) · ν(x) ≥ 0},
where ν = ν(x) denotes the unit outward normal vector to ∂Ω at x. In terms of
Theorem 2.5, we will show the theorem concerning estimation of implusive wave
sources.

Theorem 4.1. Let s > 1 and

T > sup
x∈Ω

|x− x0|.

(a) If N−1
2 ≤ s− 1, then there exist two constants C1(ε), C2 > 0 such that

C1‖A−B‖s−N
2 ≤ ‖∂νwA − ∂νwB‖V−s+1 ≤ C2‖A−B‖s−N

2

for all A,B ∈ Ωn satisfying (2.9) with ε > 0.
(b) If s− 1 > N

2 , then there exist two constants C1(ε), C2 > 0 such that

C1‖A−B‖s−N
2 ≤ ‖∂νwA − ∂νwB‖V−s+1 ≤ C2‖A−B‖

for all A,B ∈ Ωn satisfying (2.9) with ε > 0.

Similarly to Theorem 3.1, the choice s = N
2 + 1

2 in case (a) gives the optimal
stability rate:

C1‖A−B‖ ≤ ‖∂νwA − ∂νwB‖2
V(1−N)/2

≤ C2‖A−B‖

for all A,B ∈ Ωn satisfying (2.9).
Proof of Theorem 4.1.

First Step.
We will prove:

Proposition 4.2. Let s ≥ 1. For f ∈ X(−s), let

vf ∈ C([0,∞);X(−s+ 1)) ∩C1([0,∞);X(−s))
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be the solution to




∂2v
∂t2 (x, t) = ∆v(x, t), x ∈ Ω, t > 0,

v(x, 0) = 0, ∂v
∂t (x, 0) = f(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(4.2)

We assume that T > supx∈Ω |x − x0|. Then there exist positive constants C3, C4

such that

C3‖f‖X(−s) ≤ ‖∂νvf‖V−s ≤ C4‖f‖X(−s)(4.3)

for any f ∈ X(−s).

Remark. In the case of s = 0, estimate (4.3) corresponds to a usual observability
inequality and a direct inequality (e.g., Lions [13], or Komornik [11]). In our case,
we assume that v(·, 0) = 0, which is related with the notion ”contrôlabilité exacte
élargie” where we can reduce the critical time supx∈Ω |x−x0| (Section 9 of Chapter
1 in Lions [13]). As for the case s = 1, we refer to Komornik and Yamamoto [12]
(the one dimensional case) and, Yamamoto and Zhang [20] for example.

Here and henceforth we write p ≍ q if there exist positive constants C and C′,
which are independent of p, q, such that Cp ≤ q ≤ C′p.

Proof of Proposition 4.2. By the interpolation argument (e.g., Lions and Magenes
[14]), it suffices to prove (4.3) for s = m ∈ N.

We recall that ϕj , λj are the eigenvectors and the eigenvalues of the operator L.
By (·, ·) we denote the scalar product in L2(Ω). Then, by the “contrôlabilité exacte
élargie” (Section 9 of Chapter 1 in [13]), we have

‖f‖L2(Ω) ≍ ‖∂νvf‖H
for all f ∈ L2(Ω), provided that T > supx∈Ω |x− x0|. Hence, noting that

vf (x, t) =

∞∑

k=1

(f, ϕk)
sin

√
λkt√
λk

ϕk(x)

in C1([0, T ];L2(Ω)) and

(∂νvf )(x, t) =

∞∑

k=1

(f, ϕk)
sin

√
λkt√
λk

∂νϕk(x)

in H , by a usual density argument we see that

( ∞∑

k=1

α2
k

) 1
2

≍
∥∥∥∥∥

∞∑

k=1

αk
sin

√
λkt√
λk

∂νϕk

∥∥∥∥∥
H

(4.4)

for αk ∈ R. Similarly for




∂2V
∂t2 (x, t) = ∆V (x, t), x ∈ Ω, t > 0,

V (x, 0) = f(x), ∂V
∂t (x, 0) = 0, x ∈ Ω,

V (x, t) = 0, x ∈ ∂Ω, t > 0,

in view of (3.5), we can see that

‖f‖H1
0(Ω) ≍ ‖∂νV ‖H
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for f ∈ H1
0 (Ω) = D(L

1
2 ). This means

( ∞∑

k=1

λkα
2
k

) 1
2

≍
∥∥∥∥∥

∞∑

k=1

αk cos
√
λkt∂νϕk

∥∥∥∥∥
H

.(4.5)

By a usual density argument, it suffices to prove the proposition in the case where

vf (x, t) =
∑∞

k=1(f, ϕk)
sin

√
λkt√
λk

ϕk(x) is a finite sum. For any ψ ∈ Hm
0 (0, T ;L2(Γ)),

by integration by parts we see that

(∂νvf , ψ)V−m,Vm =

∫ T

0

∫

Γ

(∂νvf )ψdSdt

=
∑

k

∫

Γ

∫ T

0

(f, ϕk)
sin

√
λkt√
λk

∂νϕk(x)ψ(x, y)dtdS

=
∑

k

∫

Γ

∫ T

0

(f, ϕk)
cos

√
λkt

λk
∂νϕk(x)

∂ψ

∂t
(x, t)dtdS

= −
∑

k

∫

Γ

∫ T

0

(f, ϕk)
sin

√
λkt

λ
3
2

k

∂νϕk(x)
∂2ψ

∂t2
(x, t)dtdS

= · · · · · · · · ·

=
∑

k

∫

Γ

∫ T

0

(f, ϕk)
Φ(

√
λkt)

λ
1+m

2

k

∂νϕk(x)
∂mψ

∂tm
(x, t)dtdS.

Here we set Φ(t) = cos t or − cos t or sin t or − sin t. Therefore

‖∂νvf‖V−m = sup
‖ψ‖Vm=1

|(∂νvf , ψ)V−m,Vm |

= sup
‖∂m

t ψ‖H=1

∣∣∣∣∣∣


∑

k

(f, ϕk)
Φ(

√
λkt)

λ
1+m

2

k

∂νϕk, ∂
m
t ψ



H

∣∣∣∣∣∣
=

∥∥∥∥∥∥

∑

k

(f, ϕk)
Φ(

√
λkt)

λ
1+m

2

k

∂νϕk

∥∥∥∥∥∥
H

.

Hence, setting αk = (f, ϕk)λ
− m

2

k or αk = (f, ϕk)λ
− 1+m

2

k in (4.4) and (4.5), we have

‖∂νvf‖V−m ≍
(
∑

k

(f, ϕk)
2λ−mk

) 1
2

= ‖L−m
2 f‖L2(Ω).

The last equality is seen because

L−m
2 f =

∑

k

(f, ϕk)

λ
m
2

k

ϕk

and {ϕk}k∈N is an orthonormal basis in L2(Ω). Thus the proof of Proposition 4.2
is complete.

Second Step. We will prove

Proposition 4.3. Let s ≥ 1 and let T > supx∈Ω |x−x0|. Then there exist positive
constants C5, C6 such that

C5‖f‖X(−s) ≤ ‖∂νwf‖V−s+1 ≤ C6‖f‖X(−s)(4.6)

for any f ∈ X(−s).
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Once Proposition 4.3 will be proved, Proposition 3.2 completes the proof of
Theorem 4.1.
Proof of Proposition 4.3. By the interpolation argument, it is sufficient to prove
(4.6) for s = m ∈ N. First

∥∥∥∥
∫ t

0

(t− η)m−1

(m− 1)!
h(·, η)dη

∥∥∥∥
H

= ‖h‖V−m .(4.7)

Indeed, by the density argument, it suffices to prove (4.7) for h ∈ H = L2(0, T ;L2(Γ)).

By the definition of the dual norm and integration by parts, noting that ∂jψ
∂tj (·, 0) =

∂jψ
∂tj (·, T ) = 0, j = 0, 1, ...,m− 1 if ψ ∈ Vm, we have

‖h‖V−m = sup
‖ψ‖Vm=1

|(h, ψ)H |

= sup
‖ψ‖Vm=1

∣∣∣∣∣

∫

Γ

∫ T

0

h(x, η)ψ(x, η)dηdS

∣∣∣∣∣

= sup
‖ψ‖Vm=1

∣∣∣∣∣

∫

Γ

∫ T

0

(∫ η

0

h(x, θ)dθ

)
∂ψ

∂η
(x, η)dηdS

∣∣∣∣∣
= · · ·

= sup
‖ψ‖Vm=1

∣∣∣∣∣

∫

Γ

∫ T

0

(∫ η

0

(η − θ)m−1

(m− 1)!
h(x, θ)dθ

)
∂mψ

∂ηm
(x, η)dηdS

∣∣∣∣∣

= sup
‖Ψ‖H=1

∣∣∣∣
(∫ η

0

(η − θ)m−1

(m− 1)!
h(x, θ)dθ,Ψ

)

H

∣∣∣∣

=

∥∥∥∥
∫ η

0

(η − θ)m−1

(m− 1)!
h(x, θ)dθ

∥∥∥∥
H

,

which is (4.7).
Next we will verify that

(4.8)

∫ t

0

(t− η)m−2

(m− 2)!
(∂νwf )(x, η)dη

= σ(0)

∫ t

0

(t− η)m−1

(m− 1)!
(∂νvf )(x, η)dη+

∫ t

0

σ′(θ)

(∫ t−θ

0

(t− θ − η)m−1

(m− 1)!
(∂νvf )(x, η)dη

)
dθ

for all f ∈ C∞
0 (Ω).

Proof of (4.8). By the Duhamel principle (e.g., [12]), we have

wf (x, η) =

∫ η

0

σ(η − θ)vf (x, θ)dθ, x ∈ Ω, t > 0.
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Hence, by integration by parts, we have

∫ t

0

(∂νwf )(x, η)
(t − η)m−2

(m− 2)!
dη

=

∫ t

0

(t− η)m−2

(m− 2)!

(∫ η

0

σ(η − θ)∂νvf (x, θ)dθ

)
dη

=

∫ t

0

σ(0)(∂νvf )(x, η)
(t − η)m−1

(m− 1)!
dη +

∫ t

0

(t− η)m−1

(m− 1)!

(∫ η

0

σ′(η − θ)∂νvf (x, θ)dθ

)
dη

=

∫ t

0

σ(0)(∂νvf )(x, η)
(t − η)m−1

(m− 1)!
dη +

∫ t

0

(t− η)m−1

(m− 1)!

(∫ η

0

σ′(θ)∂νvf (x, η − θ)dθ

)
dη.

On the other hand, we change orders of integrals and the variables η −→ η − θ in
the resulting integral, so that

∫ t

0

(t− η)m−1

(m− 1)!

(∫ η

0

σ′(θ)∂νvf (x, η − θ)dθ

)
dη

=

∫ t

0

σ′(θ)

(∫ t

θ

(t− η)m−1

(m− 1)!
(∂νvf )(x, η − θ)dη

)
dθ

=

∫ t

0

σ′(θ)

(∫ t−θ

0

(t− θ − η)m−1

(m− 1)!
(∂νvf )(x, η)dη

)
dθ.

Thus the proof of (4.8) is complete.
Let f ∈ C∞

0 (Ω). Setting

W (x, t) =

∫ t

0

(t− η)m−1

(m− 1)!
(∂νvf )(x, η)dη,

we can rewrite (4.8) as

σ(0)W (x, t) +

∫ t

0

σ′(θ)W (x, t− θ)dθ

= σ(0)W (x, t) +

∫ t

0

σ′(t− θ)W (x, θ)dθ

=

∫ t

0

(t− η)m−2

(m− 2)!
(∂νwf )(x, η)dη, x ∈ Γ, 0 < t < T,

which is a Volterra equation of the second kind by σ(0) 6= 0. Consequently we have

∥∥∥∥
∫ t

0

(t− η)m−1

(m− 1)!
(∂νvf )(·, η)dη

∥∥∥∥
H

≍
∥∥∥∥
∫ t

0

(t− η)m−2

(m− 2)!
(∂νwf )(·, η)dη

∥∥∥∥
H

.

By (4.7), we obtain

‖∂νvf‖V−m ≍ ‖∂νwf‖V−m+1 .

Hence Proposition 4.2 implies that ‖∂νwf‖V−m+1 ≍ ‖f‖X(−m)) for f ∈ C∞
0 (Ω). The

density argument yields (4.6) for any f ∈ X(−m). Thus the proof of Proposition
4.3 is complete.

Hence, in view of Propositions 3.2 and 4.3, we can complete the proof of Theorem
4.1.
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