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Abstract. Several examples of transversely holomorphic foliations with non-trivial
Godbillon-Vey class are given. It is shown that if the complex codimension is odd,
then there are at least two foliations which are distinct as real foliations. It is also
shown that the Godbillon-Vey class is rigid under deformations in the category of
transversely holomorphic foliations.

Introduction

The Godbillon-Vey class is the most important invariant in the theory of fo-
liations and extensively studied. It is well-known that the Godbillon-Vey class
admits continuous deformations, namely, there are families of foliations of which
the Godbillon-Vey class varies continuously. However, when restricted to categories
of foliations admitting certain transverse structures, the Godbillon-Vey class often
become rigid or trivial [5],[35],[11],[7],[24],[30]. In this paper, we will study trans-
versely holomorphic foliations and show the following non-triviality and the rigidity
of the Godbillon-Vey class.

Theorem A.

1) For each q, there are transversely holomorphic foliations of complex codi-
mension q of which the Godbillon-Vey classes are non-trivial.
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2) If q = 3, then there are at least three transversely holomorphic foliations
which are mutually distinct as real foliations. If q is odd and q > 3, then
there are at least two transversely holomorphic foliations of complex codi-
mension q which are distinct as real foliations of codimension 2q.

Moreover, these foliations can be realized as locally homogeneous foliations.

The Godbillon-Vey class of transversely holomorphic foliations seems to be firstly
studied by Rasmussen [36], where some examples are given by using actions of
complex Lie groups. Theorem A is shown by constructing examples obtained by
clarifying and generalizing one of his examples.

Theorem B. The Godbillon-Vey class is rigid under both actual and infinitesimal
deformations in the category of transversely holomorphic foliations.

Theorem B is in fact valid for classes which belong to the image of the natural
map H∗(WUq+1) → H∗(WUq). By a deformation of transversely holomorphic fo-
liation, we mean a smooth family of integrable distributions such that the resulting
foliations are transversely holomorphic. On the other hand, the infinitesimal de-
formations will be introduced by following Heitsch [22], in which the rigidity under
infinitesimal deformations has been shown for a certain type of cocycles. Theorem
B is obtained as its generalization. See section 4 for more details.

This paper is organized as follows. First of all, basic notions and general con-
structions of secondary classes are recalled. In Section 2, Theorem A is shown in
steps. Firstly, the theory of Kamber-Tondeur is recalled in the first part (§ 1). As
a result, it will be shown that secondary classes of locally homogeneous foliations
are realized in the Lie algebra cohomology. Some related known results in the real
category are also recalled. Calculations of Lie algebra cohomology using the unitary
trick will be explained in § 2. The construction of examples is carried out in § 3.
They are constructed on the complex simple groups of type An, Bn, Cn and G2.
These examples will have some common properties and it will be shown that the
groups of type Dn, En and F4 cannot have foliations having the same properties.

In Section 3, relations with the residue of Heitsch [21],[23] are discussed. In Sec-
tion 4, Theorem B is shown. The proof is separately given for smooth deformations
and for infinitesimal deformations.

Section 5 is a review of Rasmussen’s examples given in [36]. One of his results
seemingly contradicts Theorem B. An explanation will be given.

Acknowledgments.
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1. Definitions of Transversely holomorphic

foliations and Complex secondary classes

Definition 1.1. A foliation F of real codimension 2q of a manifold M is said
to be transversely holomorphic if there is a coordinate system {Uα}, {ϕβα} of M

satisfying the following conditions, namely,

1) Uα
∼= Vα×Dα, where Vα ⊂ Rdim M−2q and Dα ⊂ Cq are open subsets, in a

way such that if L is a leaf of F , then the connected components of L∩Uα

are of the form Vα × {z}, z ∈ Dα.
2) Under the above identification, ϕβα(x, z) = (ψβα(x, z), γβα(z)), where each

γβα is a biholomorphic local diffeomorphism.

The integer q is called the complex codimension F and denoted by codimCF .

There are some relevant complex vector bundles associated with transversely
holomorphic foliations.

Definition 1.2. Let TF be the subbundle of TM spanned by the vectors tangent
to the leaves of F . Let TCM = TM ⊗ C and let E be the subbundle of TCM

locally spanned over C by the vectors tangent to the leaves and transversely anti-

holomorphic vectors
∂

∂z̄1
, . . . ,

∂

∂z̄q
. The integrability condition for F implies that

E is well-defined. Set Q(F) = TCM/E and call it the complex normal bundle.

Let C[v1, · · · , vq] be the polynomial ring generated by v1, . . . , vq with coefficients
in C. The degree of vi is set to be 2i. Let Iq be the ideal generated by the
monomials of degree greater than 2q, and set Cq[v1, · · · , vq] = C[v1, · · · , vq]/Iq.
Similarly, Cq[v̄1, · · · , v̄q] is defined by replacing vi with v̄i.

Definition 1.3. Let WUq be the differential graded algebra defined by setting

WUq = Cq[v1, · · · , vq]⊗Cq[v̄1, · · · , v̄q]⊗
∧

[ũ1, · · · , ũq].
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The exterior derivative on WUq is defined by requiring dũi = vi − v̄i and dvi =
dv̄i = 0. The degree of ũi is set to be 2i− 1. The cohomology classes in H∗(WUq)
which involve ũi’s are called complex secondary classes. Cochains in WUq are
denoted as follows. Let I = {i1, i2, . . . , ir}, where i1 < i2 < · · · < ir. Set then
ũI = ũi1 ũi2 · · · ũir

. If I is empty, then set ũI = 1. Let J = (j1, j2, . . . , jq), where
jt’s are non-negative integers. Set then vJ = vj1

1 vj2
2 · · · vjq

q and |J | = j1 + 2j2 +
· · · + qjq. Similarly, v̄J is defined for an index set J as above. Index sets for v̄i’s
are usually denoted by K. Finally, the classes in H∗(WUq) are usually denoted by
their representatives by abuse of notation.

Real secondary classes are also considered by forgetting the transverse holomor-
phic structures. Set R2q[c1, · · · , c2q] = R2q[c1, · · · , c2q]/I ′2q, where the degree of ci

is set to be 2i and I ′2q is the ideal generated by monomials of degree greater than
4q.

Definition 1.3’. Set

WO2q = R2q[c1, · · · , c2q]⊗
∧

[h1, h3, · · · , h2q−1],

where the degree of hi is 2i− 1 and the derivative is defined by requiring dhi = ci

and dci = 0. The cohomology of H∗(WO2q) which involve hi’s are called real
secondary classes.

The following secondary classes are relevant [9],[10] (see also [34],[1]).

Definition 1.4.

1) The class h1c
2q
1 in H4q+1(WO2q) is called the Godbillon-Vey class and de-

noted by GV2q.
2) The class

√−1ũ1(v
q
1 +vq−1

1 v̄1 + · · ·+ v̄q
1) in H2q+1(WUq) is called the imag-

inary part of the Bott class and denoted by ξq.

There is a natural map from H∗(WO2q) to H∗(WUq) which corresponds to
forgetting transverse complex structures. It is given as follows.

Theorem 1.5 [1]. Let λ be the mapping from WO2q to WUq given by

λ(ck) = (
√−1)k

k∑

j=0

(−1)jvk−j v̄j ,

λ(h2k+1) =
(−1)k

2
√−1

2k+1∑

j=0

(−1)j ũ2k−j+1(vj + v̄j),
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where v0 and v̄0 are considered as 1. Then λ induces on the cohomology a mapping,
denoted again by λ, which corresponds to forgetting transverse complex structures.
In particular, The Godbillon-Vey class and the imaginary part of the Bott class are
related by the formula

λ(GV2q) =
(2q)!
q!q!

ξq · chq
1,

where ch1 =
v1 + v̄1

2
corresponds the first Chern class of the complex normal bundle

of the foliation. The image of GV2q under λ is also called the Godbillon-Vey class.

Definition 1.6. A connection ∇ on Q(F) is said to be a complex Bott connection
if ∇ satisfies

∇XY = LXY

for any sections X of E and Y of Q(F), where LX denotes the Lie derivative with
respect to X. It is equivalent to the condition ∇XY = π[X, Ỹ ], where π : TCM →
Q(F) is the natural projection and Ỹ is any lift of Y to TCM .

Given a transversely holomorphic foliation F of M , the characteristic mapping
χF : H∗(WUq) → H∗(M ; C) is defined. First recall the definition of Chern-Simons
forms [12].

Definition 1.7. Let ∇0 and ∇1 be connections on Q(F) and let θ0 and θ1 are
respective connection forms. Let f be an invariant polynomial on GL(q; C) of
degree k. Set θt = (1− t)θ0 + tθ1 and

∆f (θ1, θ0) =
∫ 1

0

kf(θ1 − θ0, Ωt, . . . , Ωt)dt,

where Ωt = dθt + θt ∧ θt is the curvature form of θt.

It is well-known that d∆f (θ1, θ0) = f(Ω1)−f(Ω0) and ∆f (θ0, θ1) = −∆f (θ1, θ0).
See Section 4 for more properties of ∆f (θ1, θ0).

The characteristic mapping χF : H∗(WUq) → H∗(M ;C) is defined on the form
level as follows.

Definition 1.8. Let F be a transversely holomorphic foliation of complex codi-
mension q of M . Let ∇ be a complex Bott connection on Q(F) and let ∇u be
a unitary connection on Q(F) with respect to some Hermitian metric on Q(F).
Denote by θ and θu the connection forms of ∇ and ∇u, respectively. Let ci be the
Chern polynomial of degree i and set

vi(Ω) = ci(Ω), v̄i(Ω) = ci(Ω),

ũi(θ, θu) = ∆ci(θ, θ
u)−∆ci(θ, θu),
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where Ω is the curvature form of θ and ω denotes the complex conjugate in value
of ω for a differential form ω.

In what follows, Chern polynomials and Chern forms are denoted by vi and v̄i

in order to avoid confusions with elements of WO2q.

Theorem-Definition 1.9 (Bott [10]). The correspondence which assigns vi to
vi(Ω), v̄i to v̄i(Ω) and ũi to ũi(θ, θu) induces a mapping from H∗(WUq) to H∗(M ; C)
independent of the choice of connections and metrics. This mapping is denoted by
χF and called the characteristic mapping. The image χF (ω) of ω ∈ H∗(WUq) is
denoted also by ω(F).

Remark 1.10. Let BΓCq be the classifying space of transversely holomorphic foli-
ations of complex codimension q, then χF can be considered as a mapping from
H∗(WUq) to H∗(BΓCq ; C).

In what follows, the coefficients of cohomology groups are always chosen to be
the complex numbers C unless otherwise stated.

2. Non-triviality of the Godbillon-Vey class

The aim of this section is to show the following

Theorem A.

1) For each q, there are transversely holomorphic foliations of complex codi-
mension q of which the Godbillon-Vey classes are non-trivial.

2) If q = 3, then there are at least three transversely holomorphic foliations
which are mutually distinct as real foliations. If q is odd and q > 3, then
there are at least two transversely holomorphic foliations of complex codi-
mension q which are distinct as real foliations of codimension 2q.

Moreover, these foliations can be realized as locally homogeneous foliations.

For this purpose, we will first introduce locally homogeneous foliations and then
explain how to compute their complex secondary classes. Theorem A is shown in
§ 3 by constructing examples.

§ 1. Locally homogeneous foliations and their complex secondary classes.

Notation 2.1.1. Given a Lie group, its Lie algebra is denoted by the corresponding
german lower case letter, e.g., if G is a Lie group, then its Lie algebra is denoted
by g.
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Let G be a Lie group and let K be its connected closed Lie subgroup. Let H

be a connected subgroup of G which contains K, and denote by F̃ the foliation
of G whose leaves are {gH g ∈ G}. This foliation induces a foliation F̂ of G/K

invariant under the left action of G. Assuming in addition that G/K admits a
cocompact lattice Γ , a foliation FΓ of M = Γ\G/K is induced.

Definition 2.1.2. The foliations of the form FΓ for quadruplets (G,H, K, Γ ) as
above are called locally homogenous foliations.

Definition 2.1.3. Assume that H is a closed Lie subgroup of G. A foliation F of
M is said to be a (transversely) (G,H)-foliation if F admits a foliation coordinate
system {Vα×Dα}, {(ψβα, γβα)} as in Definition 1.1 such that Dα is an open subset
of G/H and γβα is given by the natural left action of G on G/H.

Locally homogenous foliations are (G, H)-foliations if H is closed.

The following facts are already known for real secondary classes of transversely
(G,H)-foliations.

Theorem 2.1.4 (Baker [5] for 1) and Pittie [35] for 2) and 3)). In the category of
(G,H)-foliations, we have the following.

1) If G is semisimple, then all real secondary classes are rigid.
2) If H is nilpotent, then all real secondary classes are trivial. If H is solvable,

then only real secondary classes of the form hicJ with i+ |J | = codimRF+1
can be non-trivial.

3) If (G,H) is a parabolic pair, namely, if G is semisimple and H is parabolic,
then only real secondary classes of the form hIcJ with i1+cJ = codimRF+1
can be non-trivial, where i1 is the smallest entry of I. Moreover, such non-
trivial classes are cohomologous to scalar multiples of h1hIc

q
1.

In the cases 2) and 3), there are non-trivial examples.

Assuming that g/h admits complex structures, FΓ is transversely holomorphic.
It is in particular the case if G and H are complex Lie groups. In what follows, we
pose the following

Assumption 2.1.5. Let G be a complex Lie group and let H be its closed con-
nected complex subgroup. Assume that there is an AdK-invariant splitting σ :
g/h → g, i.e., the image is invariant under the action of AdK . Assume also that
there is an AdK-invariant Hermitian metric on g/h.

It is easy to verify that if σ is AdK-invariant, then Adk(σ(v)) = σ(Adk(v)) for
7



v ∈ g/h and k ∈ K. Note that a splitting σ and a Hermitian metric as above can
be always found if K is compact.

Let F̂ be the foliation of G/K induced by the foliation F̃ of G as above, then the
complex normal bundle Q(F̂) of F̂ is naturally isomorphic to G ×K (g/h), where
K acts on G × (g/h) from the right by (g, v) · k = (gk, Adk−1v). Let P (F̂) be the
associated principal bundle of Q(F̂), then P ∼= G ×K GL(g/h), where (g, A) · k =
(gk, k−1A) for (g, A) ∈ G×GL(g/h). Hence the normal bundle Q(FΓ ) is naturally
isomorphic to Γ\G×

K
(g/h). The following kind of connections are relevant.

Definition 2.1.6. A connection on Q(FΓ ) is said to be locally homogeneous if it
is induced by a gl(g/h)-valued 1-form on the trivial bundle G × GL(g/h) which is
invariant under the left G-action and the right K-action as above.

Under these assumptions, the following theorem is known.

Theorem 2.1.7 (Kamber-Tondeur [26], Baker [5], Pittie [35]). Let (G,H,K, Γ )
be as above and assume that there are an AdK-invariant splitting of g → g/h and
an AdK-invariant Hermitian metric on g/h. Let gR be the Lie algebra g viewed
as a real Lie algebra. By using locally homogenous connections, the characteristic
mapping for FΓ factors through H∗(gR, k). This mapping is independent of the
choice of locally homogeneous connections.

If g′ is a real Lie algebra and if k′ is a Lie subalgebra of g′, then the cohomology
group H∗(g′, k′) is by definition the cohomology of the complex

C∗(g′, k′) =
{
ω ∈ ∧∗

g′∗ iKω = 0, iKdω = 0 for all K ∈ k′
}

,

where iK denotes the interior product with K. We refer to [8] for more details.

Theorem 2.1.7 is particularly important by virtue of the following theorem by
T. Kobayashi and K. Ono. We only need its quite reduced form, which is as follows;

Theorem 2.1.8 (Proposition 3.9 and Example 3.6 in [29]). Let G′ be a real con-
nected semisimple Lie group and let K ′ be its compact subgroup. Let Γ ′ be a co-
compact lattice of G′/K ′, then the natural mapping H∗(g′, k′) → H∗(Γ ′\G′/K ′) is
injective.

It follows that it suffices to study the characteristic classes in H∗(gR, k) rather
than H∗(Γ\G/K) when examples as in § 3 are considered.

From now on, we will give a proof Theorem 2.1.7 in steps by following Baker [5].
We do not assume that G is semisimple nor K is compact until § 2.
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Definition 2.1.9 (cf. Lemma 4.3 in [5]). Let π : g → g/h be the projection and let
σ be an AdK-invariant section to π. Set ρ = idg − σπ, and define a gl(g/h)-valued
1-form θ on G×GL(g/h) by setting

θ(g,A)(X,Y ) = AdA−1(L∗g−1ρ∗ad)(X) + τA(Y ),

where (X, Y ) ∈ T(g,A)(G×GL(g/h)) and τ is the Maurer-Cartan form on GL(g/h).

Note that ρ is also an AdK-invariant mapping from g to h.

Lemma 2.1.10 [5]. θ induces a connection on P invariant under the natural left
action of G on P . Moreover, θ is associated with a Bott connection on the complex
normal bundle Q(F̂).

Proof. Claim 1. θ projects down to P .
Let k ∈ K and denote by Rk the right action on G×GL(g/h), then

(R∗kθ)(g,A) = R∗kθ(gk,Adk−1A)

= R∗k(AdA−1AdAdk
(L∗g−1L∗k−1ρ∗ad) + τk−1A)

= AdA−1AdAdk
(L∗g−1Ad∗k−1ρ∗ad) + τA.

Thus it suffices to show Ad∗k−1ρ∗ad = AdAdk−1 ◦ ρ∗ad. This follows from the
following infinitesimal version.
Claim 2. ad∗wρ∗ad = [adw, ρ∗ad] if w ∈ k, where the right is the Lie bracket of adw

and ρ∗ad in gl(g/h).
Indeed, for X,Y ∈ g, one has (ad∗wρ∗ad(X))Y = adρ[w,X]Y . Since w ∈ k and ρ is
AdK-invariant,

adρ[w,X]Y = [[w, Y ], ρ(X)] + [w, [ρ(X), Y ]]

= −adρ(X)(adwY ) + adw(adρ(X)Y ).

Hence Claim 2 and Claim 1 are shown.
Let RA denote the right action of GL(g/h) on P , and given a vector v ∈ gl(g/h),

ṽ denotes the vertical fundamental vector field induced by v.
Claim 3. R∗Aθ = AdA−1θ and θ(ṽ) = v.
Let (X, Y ) ∈ T(g,B)(G×GL(g/h)), then

(R∗Aθ)(g,B)(X, Y ) = θ(g,BA)(X,RA∗Y )

= AdA−1AdB−1adρ(Lg−1∗X) + τB(RA∗Y )

= AdA−1(θ(g,B)(X, Y )).
9



The second claim is clear.
Claim 4. θ is left invariant.
Let Lg1 denote the left action of g1 on G×GL(g/h), then

(L∗g1
θ)(g2,A)(X,Y ) = AdA−1(L∗g1−1L∗g2−1ρ∗ad)(Lg1∗X) + τA(Y )

= θ(g2,A)(X, Y ).

Claim 5. θ is a Bott connection.
Let [g0] ∈ G/K and choose a local decomposition U1 × U2 of G around g0, where
U1 and U2 are open set such that U1 ⊂ K and U2 is diffeomorphic to an open set
of G/K containing [g0] (in terms of foliations, U1 × U2 is a foliation chart for the
foliation of G by cosets of K). Then define a local section of P around [g0] by
setting s([g]) = [g, idg/h], where g ∈ U2. Let X ∈ T[g0](g0H/K) and Y ∈ Q(F̂)[g0],
then one may assume that Lg0−1∗X ∈ h and Lg0−1∗Y ∈ g/h. One has

(s∗θ)[g0](X)Y = θ(g0,idg/h)(s∗X)s∗Y = adXY.

This completes the proof. ¤

Let {ω1, . . . , ωq} be a basis of (g/h)∗ and consider ωi’s as elements of g∗ which
vanish when restricted to h. Since H is a subgroup, there is a gl(g/h)-valued 1-
form θ such that dω = −θ ∧ ω, where ω = t(ω1, . . . , ωq). Noticing that ω can be
considered as an element of P , one has the following

Corollary 2.1.11. Assume that θ = 0 when restricted to the image of the AdK-
invariant splitting σ as above, then θ can be regarded as a left invariant Bott con-
nection on Q(F̂).

Fix now an AdK-invariant Hermitian metric on g/h so that AdK ⊂ U(g/h). Let
h = k⊕n⊕m be an AdK-invariant splitting such that k⊕n = k+ker ad and adn = 0,
and denote by ρ′ the projection from h to k. Finally, choose an AdAdK

-invariant
splitting gl(g/h) = adk ⊕ adm ⊕ l and denote by p the projection to adk.

Lemma 2.1.12 (cf. Lemma 4.4 in [5]). Set ρu = ρ′ρ : g → k, then we have the
following properties:

1) p ◦ adρ(X) = adρu(X) for X ∈ g.
2) Set

θu
(g,A)(X, Y ) = AdA−1(L∗g−1ρ∗uad)(X) + τA(Y ),

then θu is a unitary connection.
10



Proof. Let X = X1 + X2 + X3 ∈ k ⊕ n ⊕ m = h, then ρu(X) = X1 and adX =
adX1 + adX3 . Thus p ◦ adX = adX1 = adρu(X). Since the mapping ρu is AdK-
invariant, θu is shown to be a connection form on P as in Lemma 2.1.3. When
restricted to G×K U(g/h), θu is u(g/h)-valued. Hence θu is unitary. ¤

Proof of Theorem 2.1.7. Since the connections given by Lemmas 2.1.10 and 2.1.12
are left invariant, they induce connections on Q(F). When calculated by these
connections, the characteristic mapping factors through H∗(gR, k). The indepen-
dence of the characteristic mapping from the choice of connections can be shown
by standard arguments (cf. [10]). ¤

Let F be a transversely holomorphic foliation of complex codimension q and
suppose that

∧q
Q(F) is a trivial line bundle, then the Bott class is defined as

follows [10]. Fix a trivialization s of
∧q

Q(F) and let ∇s be the flat connection
with respect to s and let θs be its connection form. Let ∇ be a Bott connection on
Q(F), then ∇ induces a connection on

∧q
Q(F), which we denote by ∇b. Set now

u1(θb, θs) = ∆c1(θ
b, θs),

where θb is the connection form of ∇b. Let Ωb be the curvature form of θb, then
du1(θb, θs) = v1(Ωb) and thus u1(θb, θs)v1(Ωb)q is a closed form. It is known that
the cohomology class represented by u1(θb, θs)v1(Ωb)q is independent of the choice
of trivializations and connections [10].

Definition 2.1.13. The class represented by u1(θb, θs)v1(Ωb)q is called the Bott
class and denoted by Bottq(F).

Remark 2.1.14. Assuming furthermore that Q(F) is trivial, differential forms ui,
i ≥ 2, are well-defined and several characteristic classes are obtained. However,
these classes depend on the choice of trivializations in general.

Let FΓ be a locally homogeneous, transversely holomorphic foliation associated
with (G,H,K, Γ ). By repeating similar arguments as in the proof of Theorem 2.1.7,
one has the following

Theorem 2.1.15. Let FΓ and (G,H, K, Γ ) be as above. Assume that
∧q

Q(FΓ ) is
trivial as a homogeneous vector bundle. Then by choosing a left invariant trivializa-
tion and using a locally homogeneous Bott connection, the Bott class is realized as
an element of H2q+1(gR, k). The Bott class is independent of the choice of invariant
trivializations and locally homogeneous Bott connections.
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§ 2. Calculation of the Lie algebra cohomology.

In what follows, we assume that G is a complex semisimple Lie group and that
K is a compact connected Lie subgroup of G. Hence there are always cocompact
lattices of G/K and Theorem 2.1.8 is valid, and g admits a compact real form
g0. We also assume that k ⊂ g0. Under these assumptions, we will construct an
isomorphism from H∗(gR, k) to H∗(G0×(G0/K)), where G0 is a compact Lie group
with Lie algebra g0.

Notation 2.2.1. The complex Lie algebra g considered as a real Lie algebra is
denoted by gR. Let J be the complex structure of g and let g− be the Lie algebra
gR equipped with the complex structure −J . The complex conjugate on g with
respect to g0 is denoted by σ, namely, σ(X + JY ) = X − JY for X, Y ∈ g0.

Definition 2.2.2. For ω ∈ ∧∗
g∗, define ω ∈ ∧∗

g−∗ by taking complex conjugate
in value. Their complexifications are denoted as follows;

ωC = ω ⊗C ∈ (
∧∗

g∗R)⊗C,

ωC = (ω)C .

Note that if ω restricted to g0 is R-valued (resp.
√−1R-valued), then ω = σ∗ω

(resp. ω = −σ∗ω).

Definition 2.2.3. Let κ : g0 ⊕ g0 → g0 ⊕
√−1Jg0 ⊂ gR ⊗C be the isomorphism

of real Lie algebras defined by

κ(X1, X2) =
1
2

(
X1 −

√−1JX1

)
+

1
2

(
X2 +

√−1JX2

)
.

Since g0 ⊕
√−1Jg0 is a real form of gR ⊗C, θ induces an isomorphism from g⊕ g

to gR ⊗C by complexification. Denote the complexification again by κ, then

κ(X + JY, Z + JW ) =
1
2

(X + JY + Z − JW ) +
√−1

1
2

(−JX + Y + JZ + W )

holds for X, Y, Z, W ∈ g0.

Remark 2.2.4. For X ∈ g0, one has

κ−1(X) = (X, X) κ−1(JX) = (JX,−JX)

κ−1(
√−1X) = (JX, JX) κ−1(

√−1JX) = (−X, X).

These relations imply the following
12



Lemma 2.2.5. κ−1(k⊗C) = {(k, k) k ∈ k⊗C} ⊂ g⊕ g.

Let ∆k be the diagonal embedding of k into g⊕g, then ∆k = κ−1(k) and κ−1(k⊗
C) = ∆k⊗C.

As C is chosen as the coefficients, there is a natural isomorphism from H∗(gR, k; C)
to H∗(gR ⊗C, k⊗C;C). Hence κ induces an isomorphism

κ∗ : H∗(gR, k) → H∗(g⊕ g, ∆k⊗C).

Lemma 2.2.6. Let ω ∈ g∗ and set ω1 = (ω, 0) ∈ g∗⊕g∗ and ω2 = (0, ω) ∈ g∗⊕g∗,
then κ∗(ωC) = ω1. If ω|g0 is R-valued, then κ∗(ωC) = ω2. If ω|g0 is

√−1R-valued,
then κ∗(ωC) = −ω2.

Proof. Let X,Y, Z,W ∈ g0. Since ω ∈ g∗, one has

κ∗(ωC)(X + JY, Z + JW )

=
1
2

(ω(X) + ω(JY ) + ω(Z)− ω(JW )) +
1
2

(ω(X) + ω(JY )− ω(Z) + ω(JW ))

=ω(X + JY ).

Assume that ω|g0 is R-valued, then ω = σ∗ω. Hence

κ∗(ωC)(X + JY, Z + JW )

=
1
2

(ω(X) + ω(JY ) + ω(Z)− ω(JW )) +
√−1

2
(−ω(JX) + ω(Y ) + ω(JZ) + ω(W ))

=
1
2

(ω(X)− ω(JY ) + ω(Z) + ω(JW )) +
1
2

(−ω(X) + ω(JY ) + ω(Z) + ω(JW ))

= ω(Z + JW ).

Similar calculations show that κ∗(ωC) = −ω2 if ω|g0 is
√−1R-valued. ¤

Since g0 is a real form of g, there are isomorphisms as follows:

H∗(g⊕ g, ∆(k⊗C)) ∼=H∗((g0 ⊗C)⊕ (g0 ⊗C), ∆k⊗C)

∼=H∗((g0 ⊕ g0)⊗C, ∆k⊗C)

∼=H∗((G0 ×G0)/K),

where K acts on G0 ×G0 diagonally from the right. The diffeomorphism τ : G0 ×
(G0/K) → (G0 ×G0)/K given by τ(g1, [g2]) = [g1g2, g2] induces an isomorphism

τ∗ : H∗((g0 ⊕ g0)⊗C, ∆k⊗C) → H∗(g0 ⊗C)⊗H∗(g0 ⊗C, k⊗C)

given by τ∗([α, β]) = ([α], [α + β]). Note that H∗(g0 ⊗C)⊗H∗(g0 ⊗C, k⊗C) ∼=
H∗(G0 × (G0/K)). Summing up, we obtained the following

13



Proposition 2.2.7. Let κ and τ as above, then

τ∗κ∗ : H∗(gR, k) → H∗(g0)⊗H∗(g0, k) ∼= H∗(G0 × (G0/K)).

is induced by the correspondence ω 7→ (ω, ω), ω 7→ (0, ω) (resp. ω 7→ (0,−ω)) for
ω ∈ g∗ such that ω|g0 is R-valued (resp.

√−1R-valued).

§ 3. Examples.

First we make some remarks.

Notation 2.3.1. Cochains in WO2q are regarded as cochains in WUq via the
mapping λ in Theorem 1.5. If α ∈ H∗(WUq), then the image of α under χFΓ

as
an element of H∗(gR, k) is denoted by α(K).

Lemma 2.3.2. Suppose that α(K) is non-trivial in H∗(gR, k). If K ′ is a closed
subgroup such that K ⊂ K ′ ⊂ H, then α(K ′) is non-trivial in H∗(gR, k′).

Proof. We have a natural mapping r : H∗(gR, k′) → H∗(gR, k). By the functoriality
of the characteristic mapping, r(α(K ′)) = α(K). ¤

Thus it is preferable to show the non-triviality of GV2q(K) for small K. But
there is the following

Proposition 2.3.3. One has vi({e}) = v̄i({e}) = 0 for all i. In particular,
GV2q({e}) = 0.

Proof. The bundle Q(F̂) admits a G-invariant trivialization because it is isomorphic
to G × (g/h). Hence vi({e}) = v̄i({e}) = 0. The triviality of the Godbillon-Vey
class follows from Theorem 1.5. ¤

We recall the definition of several Lie algebras to fix notations. We denote by Iq

the identity matrix of M(q;C), and set Jq =
(

0 Iq

−Iq 0

)
∈ M(2q; C).

Definition 2.3.4.

1) sl(q + 1; C) = {X ∈ M(q + 1; C) ; tr X = 0}
2) su(q + 1) =

{
X ∈ sl(q + 1; C) ; X + tX = 0

}

3) so(q; F ) = {X ∈ M(q; F ) ; X + tX = 0} , where F = R or F = C,
4) sp(q;C) = {X ∈ M(2q; C) ; tXJq + JqX = 0} ,

5) sp(q) = sp(q; C) ∩ su(2q)

sp(q) is also denoted by sp(q; R).

For more details including the topology of homogeneous spaces, we refer to [32].
14



Notation 2.3.5. We denote by Eij (0 ≤ i, j ≤ q) the standard basis of the Lie
algebra gl(q + 1; C). Rows and columns of matrices are always counted from zero.

Example 2.3.6. Let g = sl(q+1; C) and g0 = su(q+1), and construct an (SL(q+
1; C), CP q)-foliation. Let T q be the maximal torus of G standardly realized as a
subset of diagonal matrices, and let Uq, SUq and H be the subgroups of G defined
by

Uq =
{(

a 0
0 B

)
B ∈ U(q), a = (det B)−1

}
,

SUq =
{(

1 0
0 B

)
B ∈ SU(q)

}
,

H =
{(

a ∗
0 B

)
B ∈ GL(q; C), a = (det B)−1

}
.

We denote Uq and SUq again by U(q) and SU(q), respectively. The subgroup U(q)
is also denoted by T 1 × SU(q). Let K be a compact connected subgroup of G

contained in U(q) and containing T q, hence G ⊃ H ⊃ U(q) ⊃ K ⊃ T q.

Let ωij be the dual of Eij restricted to g, then
q∑

i=0

ωii = 0 and dωij = −
q∑

k=0

ωik∧
ωkj . Set ω = t(ω10, ω20, · · · , ωq0), then h = ker ω and dω = −θ ∧ ω, where

θ =




ω11 · · · ω1q

...
. . .

...
ωq1 · · · ωqq


− ω00Iq.

Here Iq denotes the identity matrix of dimension q. Since θ restricted to σ(g/h)
is 0, Corollary 2.1.11 implies that θ can be seen as a Bott connection with respect
to the basis {[Ei0]}i of g/h. On the other hand, define a splitting σ : g/h → g

by the formula σ([Ei0]) = Ei0, where i > 0, then σ is AdU(q)-invariant. Let g be
the Hermitian metric on g/h given by g([X], [Y ]) = tr tσ([X])σ([Y ]) for [X], [Y ] ∈
g/h, then g is AdU(q)-invariant and {[Ei0]}i is an orthonormal basis. Hence the
connection form of the unitary connection θu given by Lemma 2.1.12 with respect
to {[Ei0]}i is skew-Hermitian.

Denote cochains in WO2q and WUq evaluated by the Bott connection θ and the
unitary connection θu again by their own letters, then

h1 =
√−1ũ1 =

q + 1
2π

(ω00 + ω00),

c1 = dh1 =
√−1(v1 − v̄1)

= −q + 1
2π

q∑

i=0

(ω0i ∧ ωi0 + ω0i ∧ ωi0).

15



It follows from Theorem 2.1.7 that

GV2q(K) = h1c
2q
1 = ε (ω00 + ω00) ∧

(
q∧

i=1

ω0i ∧ ωi0 ∧ ω0i ∧ ωi0

)

as an element of H2q+1(gR, k), where ε = (2q)!
(

q + 1
2π

)2q+1

.

Set now Xij = Eij − Eji, Yij =
√−1(Eij + Eji) and Kk =

√−1(E00 − Ekk),
where 0 ≤ i < j ≤ q and 1 ≤ k ≤ q. These vectors form a basis of g0 = su(q + 1).
Let αk, βij , γij be the dual of Kk, Xij , Yij , respectively. Set Xji = −Xij and
Yji = Yij if i > j and denote their dual forms by βji and γji, then −βji = βij

and γji = γij . Denote their extension to g by complexification again by the same
letters, then

ω00 =
√−1(α1 + · · ·+ αq),

ωij = βij +
√−1γij , where i 6= j.

By Lemma 2.2.6,

κ∗
(

q∧
i=1

ω0i ∧ ωi0 ∧ ω0i ∧ ωi0

)

=
q∧

i=1

(β1
0i +

√−1γ1
0i) ∧ (β1

i0 +
√−1γ1

i0) ∧ (β2
0i −

√−1γ2
0i) ∧ (β2

i0 −
√−1γ2

i0)

=
q∧

i=1

(β1
0i +

√−1γ1
0i) ∧ (β1

0i −
√−1γ1

0i) ∧ (β2
0i −

√−1γ2
0i) ∧ (β2

0i +
√−1γ2

0i)

=
q∧

i=1

(4β1
0i ∧ γ1

0i ∧ β2
0i ∧ γ2

0i).

Here the superscripts are as in Lemma 2.2.6. Hence the equation

κ∗(GV2q(K)) = ε
√−1(α1

0 − α2
0) ∧

q∧
i=1

(4β1
0i ∧ γ1

0i ∧ β2
0i ∧ γ2

0i)

= (2q)!
(

q + 1
π

)2q+1 √−1
2

(α1
0 − α2

0) ∧
q∧

i=1

(β1
0i ∧ γ1

0i ∧ β2
0i ∧ γ2

0i)

holds in H∗(g⊕ g, ∆k⊗C) ∼= H∗(g0 ⊕ g0,∆k), where α0 = α1 + · · ·+ αq.
Finally, we have by Proposition 2.2.7 the following equation;

τ∗κ∗(GV2q(K))

=(2q)!
(

q + 1
π

)2q+1 √−1
2

α1
0 ∧

(
q∧

i=1

(β1
0i + β2

0i) ∧ (γ1
0i + γ2

0i)
)
∧

(
q∧

i=1

β2
0i ∧ γ2

0i

)

=(2q)!
(

q + 1
π

)2q+1 √−1
2

α1
0 ∧

(
q∧

i=1

β1
0i ∧ γ1

0i

)
∧

(
q∧

i=1

β2
0i ∧ γ2

0i

)
.
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The non-triviality of GV2q(K) is shown as follows. It suffices to show by Lemma
2.3.2 the non-triviality of GV2q(T q) in H∗(SU(q + 1)) ⊗ H∗(SU(q + 1)/T q). It

is clear that α1
0 ∧

(
q∧

j=1

β1
0j ∧ γ1

0j

)
and

q∧
j=1

β2
0j ∧ γ2

0j are non-zero multiple of the

volume forms of S2q+1 = SU(q + 1)/SU(q) and CP q = SU(q + 1)/(T 1 × SU(q)),
respectively. Since the natural mappings π1 : SU(q+1) → S2q+1 = SU(q+1)/SU(q)
and π2 : SU(q+1)/T q → CP q = SU(q+1)/(T 1×SU(q)) induce injective mappings
on the cohomology, GV2q(T q) is non-trivial in the cohomology.

On the other hand, GV2q(K) is trivial if K is contained in SU(q). By Lemma
2.3.2, it suffices to show the claim for K = SU(q). Then, the characteristic mapping
factors through H∗(SU(q + 1)) ⊗H∗(SU(q + 1)/SU(q)), which is trivial in degree
2. Therefore GV2q(K) is trivial by Theorem 1.5 because ch1(K) is trivial.

Let us verify now the relation between ξq and GV2q given in Theorem 1.5. Under
the notations as above, one has

v1 = − q + 1
2π
√−1

q∑

i=1

ω0i ∧ ωi0 and v̄1 =
q + 1

2π
√−1

q∑

i=1

ω0i ∧ ωi0.

Hence

κ∗v1 = − q + 1
2π
√−1

q∑

i=1

(β1
0i +

√−1γ1
0i) ∧ (−β1

0i +
√−1γ1

0i)

= −q + 1
π

q∑

i=1

β1
0i ∧ γ1

0i,

κ∗v̄1 =
q + 1

2π
√−1

q∑

i=1

(β2
0i −

√−1γ2
0i) ∧ (−β2

0i −
√−1γ2

0i)

= −q + 1
π

q∑

i=1

β2
0i ∧ γ2

0i.

It follows that

τ∗κ∗ch1(K)q = q!
(
−q + 1

π

)q q∧
i=1

(β2
0i ∧ γ2

0i)

as an element of H2q(SU(q + 1)× (SU(q + 1)/K)). On the other hand,

ξq(K) =
√−1ũ1(v

q
1 + vq−1

1 v̄1 + · · ·+ v̄q
1)

=
√−1

(
q + 1
2π

)
q!

(
−q + 1

π

)q

α1
0 ∧

q∧
i=1

(β1
0i ∧ γ1

0i) +
q∑

i=1

ωi ∧ β2
0i ∧ γ2

0i

17



for some ωi, i = 1, . . . , q. Hence the equation GV2q(K) = (2q)!
q!q! ξq(K)ch1(K)q

certainly holds. Remark that ξq(K) is non-trivial even if K = {e}.
Remark 2.3.7.

1) As explained, the non-triviality of GV2q(T q) follows from the non-triviality
of GV2q(T 1 × SU(q)). On the other hand, GV2q(SU(q)) is trivial. In other
words, GV2q(T 1×SU(q)) become trivial when pulled-back by the S1-bundle
p : Γ\SL(q + 1; C)/SU(q) → Γ\SL(q + 1; C)/(T 1 × SU(q)), where Γ is a
cocompact lattice of SL(q +1; C)/(T 1×SU(q)). This is related to the Hopf
fibration as follows. Recall that GV2q(K) is decomposed into the product of
ξq(K) and ch1(K)q. By the last part of Example 2.3.6, the both ξq(SU(q))
and ξq(T 1×SU(q)) are non-trivial. On the other hand, ch1(SU(q))q is trivial
while ch1(T 1 × SU(q))q is non-trivial. Now consider the following diagram;

S2q+1 −→ Γ\SL(q + 1; C)/SU(q) −→ Γ\SL(q + 1; C)/SU(q + 1)
y p

y
∥∥∥

CP q −→ Γ\SL(q + 1; C)/(T 1 × SU(q)) −→ Γ\SL(q + 1; C)/SU(q + 1),

where the first column is the Hopf fibration. Hence one can consider the
non-triviality of ch1(T 1 × SU(q))q is derived from the Hopf fibration.

2) By Proposition 2.3.3, GV2q({e}) = 0 in H∗(sl(q+1; C)R) because v1({e}) =
0. Since the complex normal bundle is trivial, the Bott class u1v

q
1({e})

is well-defined (Definition 2.1.13). The product of the Bott class and its
complex conjugate is u1ū1v

q
1 v̄

q
1({e}). By a similar calculation as in Example

2.3.6, one has

u1ū1v
q
1 v̄

q
1({e}) =

(
q + 1
2π

)2q+2

ω00 ∧ ω00 ∧ (dω00)q ∧ (dω00)q.

The mapping τ∗κ∗ is now an isomorphism from H∗(sl(q + 1; C)R) to
H∗(SU(q + 1)) ⊗H∗(SU(q + 1)). The image of u1ū1v

q
1 v̄

q
1({e}) under τ∗κ∗

is equal to

q!q!
4

(
q + 1

π

)2q+2

α1
0 ∧ α2

0 ∧
(

q∧
j=1

β1
0j ∧ γ1

0j

)
∧

(
q∧

j=1

β2
0j ∧ γ2

0j

)
.

By repeating the argument as in Example 2.3.6, this class is seen to be non-
trivial. It is easy to show that the Bott class is well-defined and non-trivial
if K is contained in SU(q). See Section 3 for related constructions.
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3) Another complex secondary class can be computed as follows. By Lemma
2.2.11, the matrix valued 1-form θ−tθ

2 induces a unitary connection. Set
ω̂ij = ωij + ωji, then one has

ũ2 =
1

8π2
((5ω̂00 + ω̂11) ∧ (ω01 ∧ ω10 − ω01 ∧ ω10)

+ (5ω̂00 + ω̂22) ∧ (ω02 ∧ ω20 − ω02 ∧ ω20)

+ (ω̂11 − ω̂22) ∧ ω̂21 ∧ ω̂12

−ω̂21 ∧ (ω10 ∧ ω02 − ω20 ∧ ω01)− ω̂12 ∧ (ω20 ∧ ω01 − ω10 ∧ ω02)) .

Hence

ũ1ũ2v
q
1 v̄

q
1(K) = ε ω̂11 ∧ ω̂22 ∧ ω01 ∧ ω10 ∧ ω02 ∧ ω20 ∧ ω̂21 ∧ ω̂12,

where ε is a non-zero constant. As the above differential form is a non-zero
multiple of the volume form of SU(3)/(T 1 × SU(2)), it is non-trivial.

Example 2.3.6, continued. Other real secondary classes also can be computed.
As an example, consider the case where q = 2. Noticing that these classes can be
realized as classes in H∗(SU(3))⊗H∗(SU(3)/(T 1 × SU(2))), it suffices to compute
the classes of degree 4q + 1 = 9 by a theorem of Pittie [35] referred in § 1 as 3) of
Theorem 2.1.4. Indeed, if hIcJ(T 1×SU(2)) is non-trivial, then i1+|J | = 2q+1 = 5.
Thus the degree of hIcJ(T 1 × SU(2)) is 9 + (2i2 − 1) + · · · + (2ir − 1), where
I = {i1, · · · , ir}. Noticing that i2 ≥ 3, the only possibility is I = {i1}.

The classes of degree 9 are h1c
4
1, h1c

2
1c2, h1c1c3, h1c4, h1c

2
2 and h3c2. By Theorem

1.5, the following formulae hold for c2, c3, c4 and h3;

c2 = −(v2 − v1v̄1 + v̄2), c3 = −√−1(−v2v̄1 + v1v̄2), c4 = v2v̄2,

h3 = −
√−1

2
(−ũ2(v1 + v̄1) + ũ1(v2 + v̄2)).

Hence

h1c
4
1 = 6

√−1ũ1v
2
1 v̄2

1 , h1c
2
1c2 =

√−1ũ1(v2
1 v̄2 + 2v2

1 v̄2
1 + v2v̄

2
1),

h1c1c3 =
√−1ũ1(v2

1 v̄2 + v2v̄
2
1), h1c4 =

√−1ũ1v2v̄2,

h1c
2
2 =

√−1ũ1(2v2v̄2 + v2
1 v̄2

1),
19



and

h3c2 =
√−1

2
(−ũ2(v1 + v̄1) + ũ1(v2 + v̄2))(v2 − v1v̄1 + v2)

=
√−1

2
(−ũ2(−v2

1 v̄1 + v1v̄2 + v2v̄1 − v1v̄
2
1) + 2ũ1v2v̄2)

=
√−1

2
(−ũ2(v1 − v̄1)(v2

1 + v̄2 − v2 − v̄2
1) + 2ũ1v2v̄2)

≡
√−1

2
(−ũ1(v2 − v̄2)(v2

1 + v̄2 − v2 − v̄2
1) + 2ũ1v2v̄2)

=
√−1

2
ũ1(v2v̄

2
1 + v2

1 v̄2),

where ‘≡’ means that the equality holds in H∗(WU2).
On the other hand, the curvature form of the Bott connection θ is given by

dθ + θ ∧ θ

=
(

dω11 − dω00 + ω12 ∧ ω21 dω12 + ω11 ∧ ω12 + ω12 ∧ ω22

dω21 + ω21 ∧ ω11 + ω22 ∧ ω21 dω22 − dω00 + ω21 ∧ ω12

)

=
(

2ω01 ∧ ω10 + ω02 ∧ ω20 −ω10 ∧ ω02

−ω20 ∧ ω01 ω01 ∧ ω10 + 2ω02 ∧ ω20

)
.

Hence

v1 = − 3
2π
√−1

(ω01 ∧ ω10 + ω02 ∧ ω20),

v2 =
( −1

2π
√−1

)2

6ω01 ∧ ω10 ∧ ω02 ∧ ω20

ũ1 =
3

2π
√−1

(ω00 + ω00).

Define a differential form (gv) by setting

(gv) =
3

(2π)5
(ω00 + ω00) ∧ ω01 ∧ ω10 ∧ ω02 ∧ ω20 ∧ ω01 ∧ ω10 ∧ ω02 ∧ ω20,

then

GV4 = h1c
4
1 = 6 · (2 · 32)2(gv) = 23 · 35 (gv),

h1c
2
1c2 =

(
(2 · 32) · 6 + 2(2 · 32)2 + 6 · (2 · 32)

)
(gv) = 25 · 33 (gv),

h1c1c3 =
(
(2 · 32) · 6 + 6 · (2 · 32)

)
(gv) = 23 · 33 (gv),

h1c4 = 62 (gv) = 22 · 32 (gv),

h1c
2
2 =

(
2 · 62 + (2 · 32)2

)
(gv) = 22 · 32 · 11 (gv),

h3c2 =
1
2

(
6 · (2 · 32) + (2 · 32) · 6)

(gv) = 22 · 33(gv).
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Hence

h1c
2
1c2(K) =

4
9
GV4(K), h1c1c3(K) =

1
9
GV4(K),

h1c4(K) =
1
54

GV4(K), h1c
2
2(K) =

11
54

GV4(K),

h3c2(K) =
1
18

GV4(K)

in H9(gR, k; C) if K is as in Example 2.3.6. These classes satisfy the following
relations;

h3c2 =
1
2
h1c1c3,

h1c4 =
1
2
h1c

2
2 −

1
12

h1c
4
1,

h1c1c3 = h1c
2
1c2 − 1

3
h1c

4
1.

These equations hold in fact for any transversely holomorphic foliations [2].

Example 2.3.8. Let G = SO(q + 2; C), g = so(q + 2; C) and g0 = so(q + 2; R).
Denote by T [ q+2

2 ] the maximal torus realized as SO(2; R)⊕· · ·⊕SO(2; R) ((q+2)/2-
times) if q is even, and SO(2; R) ⊕ · · · ⊕ SO(2; R) ⊕ {1} ((q + 1)/2-times) if q

is odd. Set Xij = Eij − Eji, where Eij is defined as in Notation 2.3.5, then
{Xij ; 0 ≤ i < j ≤ q + 1} is a basis for g. Note that this is also a basis for g0 =
so(q + 2; R) over R.

Let h± be the Lie subalgebras of g defined by

h± =
〈
X01, X0k ±

√−1X1k, Xij ; 2 ≤ k ≤ q + 1, 2 ≤ i < j ≤ q + 1
〉

C
,

and let H± be the corresponding Lie subgroups. Let K be a connected compact Lie
subgroup of G such that T [ q+2

2 ] ⊂ K ⊂ T 1 × SO(q; R) = SO(2; R)⊕ SO(q; R). We
will show that GV2q(K) is non-trivial if and only if q is odd. In what follows, the
quadruplet (G,H+,K, Γ ) is considered and h+ and H+ are simply denoted by h

and H, respectively, because the argument for (G,H−,K, Γ ) is completely parallel.
Let ωij be the dual of Xij (i 6= j), then dωij = − ∑

0≤k≤q+1

ωik ∧ωkj , where ωij =

−ωji and ωii = 0. It is easy to see that h = ker
〈
ω0i +

√−1ω1i ; 2 ≤ i ≤ q + 1
〉
,

and one has

d(ω0i +
√−1ω1i) =

√−1ω01 ∧ (ω0i +
√−1ω1i) +

q+1∑

l=2

ωli ∧ (ω0l +
√−1ω1l).
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By setting ω = t(ω02 +
√−1ω12, . . . , ω0,q+1 +

√−1ω1,q+1), the above equation
implies that dω = −θ ∧ ω, where

θ = −




√−1ω01 −ω23 −ω24 · · · −ω2,q+1

ω23

√−1ω01 −ω34 · · · −ω3,q+1

...
. . .

...
ω2,q+1 ω3,q+1 · · · · · · √−1ω01


 .

On the other hand, let σ : g/h → g be the splitting defined by σ([X0j−
√−1X1j ]) =

X0j −
√−1X1j , where j = 2, . . . , q + 1, then σ is AdT 1×SO(q+2;R)-invariant. To see

this, notice first that

[Xij , Xkl] = δjkXil + δilXjk − δikXjl − δjlXik,

where δij is the Kronecker delta. Since the Lie algebra of T 1×SO(q; R) is generated
by X01 and Xij , 2 ≤ i < j ≤ (q + 1), over R, it suffices to verify that [X01, X0l −√−1X1l] and [Xij , X0l−

√−1X1l] belong to the image of σ, where l = 2, . . . , q +1.
If l ≥ 2, then

[X01, X0l −
√−1X1l] = −X1l −

√−1X0l = −√−1(X0l −
√−1X1l).

On the other hand,

[Xij , X0l −
√−1X1l] = (δilXj0 − δjlXi0)−

√−1(δilXj1 − δjlXi1)

= −δil(X0j −
√−1X1j) + δjl(X0i −

√−1X1i).

Thus σ is AdT 1×SO(q+2;R)-invariant.
As θ is equal to 0 when restricted to the image of σ, the above θ can be used

as a Bott connection by Corollary 2.1.11. Moreover, let g be the Hermitian metric
on g/h defined by g([X], [Y ]) = 1

4 tr tσ([X])σ([Y ]) for [X], [Y ] ∈ g/h, then g is
an AdT 1×SO(q+2;R)-invariant metric with respect to which {[X0j −

√−1X1j ]} is
an orthonormal basis. Hence we may use a unitary connection represented by a
skew-Hermitian matrix.

Then by Theorem 2.1.7, one has the following equalities;

h1 =
q
√−1
2π

(ω01 − ω01),

c1 =
q
√−1
2π

q+1∑

k=2

(ω0k ∧ ω1k − ω0k ∧ ω1k).
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It follows that

GV2q(K) =
√−1

( q

2π

)2q+1

(ω01 − ω01) ∧
q+1∧
l=2

(ω0l ∧ ω1l ∧ ω0l ∧ ω1l)

as an element of H4q+1(gR, k). As {Xij} is also a basis of g0 over R, it follows from
Lemma 2.2.6 that

κ∗GV2q(K) =
√−1

( q

2π

)2q+1

(ω1
01 − ω2

01) ∧
q+1∧
l=2

(ω1
0l ∧ ω1

1l ∧ ω2
0l ∧ ω2

1l),

where {ωij} is considered as the dual basis of g∗0.
Finally by Proposition 2.2.7,

τ∗κ∗GV2q(K) =
√−1

( q

2π

)2q+1

ω1
01 ∧

q+1∧
l=2

(ω1
0l ∧ ω1

1l ∧ ω2
0l ∧ ω2

1l).

In what follows, denote SO(m;R) simply by SO(m) as usual. Denote by SO(q)
the subgroup {1}⊕{1}⊕SO(q) of SO(q+2). Recall that T 1×SO(q) = SO(2)⊕SO(q).
Let π1 : SO(q + 2) → SO(q + 2)/SO(q) and π2 : SO(q + 2) → SO(q + 2)/(T 1 ×
SO(q)) be the natural projections. Then τ∗ϕ∗GV2q(K) is a non-zero multiple of
the pull-back of the volume form of (SO(q + 2)/SO(q))×(

SO(q + 2)/(T 1 × SO(q))
)

by (π1, π2) to H∗(SO(q +2))⊗H∗(SO(q +2)/(T 1×SO(q))). It is classically known
that π∗1(volSO(q+2)/SO(q)) is non-trivial if and only if q is odd. Assume that q is
odd and write q = 2m − 1, then π∗2(volSO(2m+1)/(T 1×SO(2m−1))) is non-trivial in
H∗(SO(2m + 1)/Tm). Therefore, τ∗κ∗(GV2q(K)) is non-trivial if q is odd and
T [ q+2

2 ] ⊂ K ⊂ T 1 × SO(q), and τ∗κ∗(GV2q(K ′)) is trivial for any closed subgroup
K ′ of T 1 × SO(q) if q is even. ¤

It is well-known that SL(2;C) is a double (the universal) covering of SO(3;C).
This is still true as foliated spaces, namely, we have the following

Proposition 2.3.9. There is a covering map SL(2; C) to SO(3; C) which preserves
the foliations defined in Examples 2.3.6 and 2.3.8.

Proof. First recall a description of a covering map by following [16] and [33]. Let
{X0, X1, X2}, where

X0 =
(

1 0
0 −1

)
, X1 =

(
0 1
0 0

)
, X2 =

(
0 0
1 0

)
,

be a basis of sl(2; C), and denote by F+ the foliation of SL(2; C) induced by X1 and
denote by F− the foliation induced by X2. Let {Xij = Eij − Eji 0 ≤ i < j ≤ 2}
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be a basis of so(3; C) and denote by G± the foliation of SO(3; C) induced from
h± given in Example 2.3.8. Let ϕ be the linear isomorphism from sl(2; C) to C3

given by ϕ(aX0 +bX1 +cX2) = t
(

1
2
√−1

(b− c),
1
2
(b + c),−a

)
. For g =

(
α β
γ δ

)
,

define ι(g) ∈ GL(3; C) by ι(g)t(z1, z2, z3) = ϕ ◦Adg ◦ ϕ−1(t(z1, z2, z3)), then

ι(g) =




α2+β2+γ2+δ2

2
α2−β2+γ2−δ2

2
√−1

−√−1(αβ + γδ)
α2+β2−γ2−δ2

−2
√−1

α2−β2−γ2+δ2

2 αβ − γδ√−1(αγ + βδ) αγ − βδ αδ + βγ


 .

It follows that ι is a homomorphism from SL(2; C) to SO(3; C). The differential
ι∗ : sl(2; C) → so(3; C) is given by ι∗(X0) = −2

√−1X01, ι∗(X1) = −√−1X02+X12

and ι∗(X2) = −√−1X02 −X12. Thus ι is a local isomorphism which maps F± to
G±, respectively. Since ker ι = {±I2}, each leaf of G± is doubly covered by a leaf
of F±. Thus ι is certainly a required covering map. ¤

Example 2.3.10. Let g = sp(n+1; C), G = Sp(n+1; C), and g0 = sp(n+1; R) =
sp(n + 1) ∩ su(2n + 2). Note that

sp(n + 1; C) =
{(

A B
C −tA

)
A,B,C ∈ M(n + 1; C), B = tB and C = tC

}
,

sp(n + 1; R) =
{(

A B
C −tA

)
tA + A = 0, B = tB,C = tC and B + tC = 0

}

=
{(

A B
−B A

)
A = −tA,B = tB

}
,

Let Xij = Eij − Ej+n,i+n, Ykk = Ek,k+n, Ykl = Ek,l+n + El,k+n, Zk′k′ = Ek′+n,k′

and Zk′l′ = Ek′+n,l′ + El′+n,k′ , where 0 ≤ i, j ≤ n, 0 ≤ k < l ≤ n and 0 ≤ k′ < l′ ≤
n, then {Xij , Ykl, Zk′l′}0≤i,j≤n,0≤k≤l≤n,0≤k′≤l′≤n is a basis of g over C. Consider
sp(n; C) as a Lie subalgebra of sp(n + 1; C) by setting

sp(n; C) =
〈
Xij , Ykl, Zk′l′

∣∣∣ 1 ≤ i, j ≤ n, 1 ≤ k ≤ l ≤ n, 1 ≤ k′ ≤ l′ ≤ n
〉

C
,

then sp(n; R) is also realized as a real Lie subalgebra of sp(n + 1; C) via inclusion
to sp(n; C). Let Tn+1 be the maximal torus generated by

√−1Xii, 0 ≤ i ≤ n, over
R, and let T 1 × Sp(n; R) be the real subgroup of Sp(n + 1;C) whose Lie algebra
is generated over R by

√−1X00 and sp(n;R). Note that Tn+1 ⊂ T 1 × Sp(n; R) ⊂
Sp(n + 1; C).

In what follows, K is assumed to be a compact connected real Lie subgroup such
that T 1 × Sp(n; R) ⊃ K ⊃ Tn+1. Let ωij , ηkl and ζkl be the dual of Xij , Ykl and
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Zkl, respectively, where ηlk = ηkl and ζlk = ζkl, then

dωij = −
n∑

s=0

ωis ∧ ωsj −
n∑

t=0

ηit ∧ ζtj ,

dηkl = −
n∑

s=0

ωks ∧ ηsl +
n∑

t=0

ηkt ∧ ωlt,

dζk′l′ = −
n∑

s=0

ζk′s ∧ ωsl′ +
n∑

t=0

ωtk′ ∧ ζtl′ .

Let h = ker 〈ωi0, ζ0j〉1≤i≤n, 0≤j≤n, then h is a Lie subalgebra of g and

h =
〈
X00, Xij , Ykl, Zk′l′

∣∣∣ 1 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ k ≤ l ≤ n, 1 ≤ k′ ≤ l′ ≤ n
〉

.

The foliation induced from h is of complex codimension q = 2n + 1.
Let σ : g/h → g be the splitting defined by

σ([Xi0]) = Xi0, σ([Z0j ]) = Z0j ,

then σ is AdT 1×Sp(n;R)-invariant. An AdT 1×Sp(n;R)-invariant Hermitian metric g

on g/h is defined by setting g([X], [Y ]) = tr tσ([X])σ([Y ]), and an orthonormal
basis for g is { 1√

2
[Xi0], [Z0j ]}.

Let ω = t(
√

2ω10,
√

2ω20, . . . ,
√

2ωn0, ζ00, ζ01, . . . , ζ0n) and set

θ̃ =




ω11 − ω00 ω12 . . . ω1n

√
2η10

√
2η11 . . .

√
2η1n

ω21 ω22 − ω00 . . . ω2n

√
2η20

√
2η21 . . .

√
2η2n

.

..
. . .

.

..
.
..

.

..
.
..

ωn1 . . . ωn,n−1 ωnn − ω00

√
2ηn0

√
2ηn1 . . .

√
2ηnn

1√
2
ζ01

1√
2
ζ02 . . . 1√

2
ζ0n −2ω00 −ω10 . . . −ωn0

1√
2
ζ11

1√
2
ζ12 . . . 1√

2
ζ1n −ω01 −ω11 − ω00 . . . −ωn1

...
...

...
...

. . .
...

1√
2
ζn1

1√
2
ζn2 . . . 1√

2
ζnn −ω0n −ω1n . . . −ωnn − ω00




,

then dω = −θ̃ ∧ ω. By Definition 2.1.9 and Corollary 2.1.11, a Bott connection is
given by

θ =




ω11 − ω00 ω12 . . . ω1n

√
2η10

√
2η11 . . .

√
2η1n

ω21 ω22 − ω00 . . . ω2n

√
2η20

√
2η21 . . .

√
2η2n

..

.
. . .

..

.
..
.

..

.
..
.

ωn1 . . . ωn,n−1 ωnn − ω00

√
2ηn0

√
2ηn1 . . .

√
2ηnn

0 0 . . . 0 −2ω00 0 . . . 0
1√
2
ζ11

1√
2
ζ12 . . . 1√

2
ζ1n −ω01 −ω11 − ω00 . . . −ωn1

.

..
.
..

.

..
.
..

. . .
.
..

1√
2
ζn1

1√
2
ζn2 . . . 1√

2
ζnn −ω0n −ω1n . . . −ωnn − ω00




.
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Hence

h1 =
2n + 2

2π
(ω00 + ω00) =

q + 1
2π

(ω00 + ω00),

v1 =
q + 1

2π
√−1

dω00.

It follows that

GV2q(K)

=
(2q)!
q!q!

(
q + 1
2π

)2q+1

(ω00 + ω00) ∧ (dω00)q ∧ (dω00)q

=(2q)!
(

q + 1
2π

)2q+1

(ω00 + ω00) ∧ (
n∧

j=1

ω0j ∧ ωj0) ∧ (
n∧

j=0

η0j ∧ ζ0j)

∧ (
n∧

j=1

ω0j ∧ ωj0) ∧ (
n∧

j=0

η0j ∧ ζ0j).

Choose {√−1Xii, Xjk−Xkj ,
√−1(Xjk +Xkj), Yij−Zij ,

√−1(Yij +Zij)} as a basis
of sp(n + 1; R) and let αii, βjk, γjk, µjk, νjk (0 ≤ i ≤ n, 0 ≤ j < k ≤ n) be their
respective dual forms. Their extension to g by complexification satisfy the following
equations;

ωii =
√−1αii, ωjk = βjk +

√−1γjk, ωkj = −βjk +
√−1γjk,

ηij = µij +
√−1νij , ζij = −µij +

√−1νij .

Hence

τ∗κ∗GV2q(K) =
(

q + 1
2π

)2q+1

22q−2(2q)! α1
00 ∧ (

n∧
j=1

β1
0j ∧ γ1

0j) ∧ (
n∧

j=0

µ1
0j ∧ ν1

0j)

∧ (
n∧

j=1

β2
0j ∧ γ2

0j) ∧ (
n∧

j=0

µ2
0j ∧ ν2

0j).

Finally, as in the previous examples, the mappings π1 : Sp(n + 1) → Sp(n +
1)/Sp(n) = S2q+1 and π2 : Sp(n + 1)/Tn+1 → Sp(n + 1)/(T 1 × Sp(n)) = CP q

(note that q = 2n + 1), induce injective maps on the cohomology, where Sp(n;R)
is simply denoted by Sp(n). Hence GV2q(K) is non-trivial. ¤

The following proposition is obvious from the construction.

Proposition 2.3.11. The foliation of Sp(n+1; C) given by Example 2.3.10 is the
pull-back of the foliation of SL(2n + 2;C) given by Example 2.3.6 by the natural
inclusion.
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Hence the foliations of Sp(n + 1; C) and SL(2n + 2; C) are derived from the
same complex Γ -structure. In particular, the foliations we constructed on Sp(1;C)
and on SL(2;C) are isomorphic as foliated spaces. Consequently, there is a double
covering map from Sp(1; C) to SO(3; C) as foliated spaces.

On the other hand, the foliations obtained by using SL(q+1; C) and SO(q+2; C)
are distinct if q is an odd integer greater than 1. Denote by V2 the second Chern
character of the complex normal bundle, then V2 = v2

1 − 2v2 and we have the
following

Proposition 2.3.12. If q > 1, then V2 and v2
1 are related as follows;

V2 =
1

q + 1
v2
1 for the foliations constructed using SL(q + 1; C) in Example 2.3.6,

V2 =
q − 2
q2

v2
1 for the foliations constructed using SO(q + 2; C) in Example 2.3.8,

when evaluated by the Bott connections as in Examples 2.3.6 and 2.3.8.

Proof. Denote by θ1 the Bott connection in Example 2.3.6 for SL(q + 1; C). Recall
that

θ1 =




ω11 · · · ω1q

...
. . .

...
ωq1 · · · ωqq


− ω00Iq.

Denote by R1 = dθ1 + θ1 ∧ θ1 the curvature form of θ1, then

R1 =




−dω00 − ω10 ∧ ω01 −ω10 ∧ ω02 · · · −ω10 ∧ ω0q

−ω20 ∧ ω01 −dω00 − ω20 ∧ ω02 · · · −ω20 ∧ ω0q

...
. . .

...
−ωq0 ∧ ω01 −ωq0 ∧ ω02 · · · −dω00 − ωq0 ∧ ω0q


 .

Hence

v1 =
−1

2π
√−1

tr R1 =
(q + 1)
2π
√−1

dω00,

V2 =
−1
4π2

tr R2
1 =

−1
4π2

(q + 1)(dω00)2.

Thus V2 =
1

q + 1
v2
1 .

On the other hand, let θ2 be the Bott connection in Example 2.3.8 for SO(q +
2; C), then

θ2 = −




√−1ω01 −ω23 −ω24 · · · −ω2,q+1

ω23

√−1ω01 −ω34 · · · −ω3,q+1

...
. . .

...
ω2,q+1 ω3,q+1 · · · · · · √−1ω01


 .
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The curvature matrix R2 of θ2 is given by

R2

=




−√−1dω01 −ω20 ∧ ω03 − ω21 ∧ ω13 · · · −ω20 ∧ ω0(q+1) − ω21 ∧ ω1(q+1)

ω20 ∧ ω03 + ω21 ∧ ω13 −√−1dω01 · · · −ω30 ∧ ω0(q+1) − ω31 ∧ ω1(q+1)

...
. . .

...

ω20 ∧ ω0(q+1) + ω21 ∧ ω1(q+1) ω30 ∧ ω0(q+1) + ω31 ∧ ω1(q+1) · · · −√−1dω01.




Hence

v1 =
−1

2π
√−1

trR2 =
q

2π
dω01,

V2 =
−1
4π2

trR2
2 =

q − 2
4π2

(dω01)2.

Thus V2 =
q − 2
q2

v2
1 . ¤

Corollary 2.3.13. The foliations obtained by using SL(q +1; C) and SO(q +2; C)
determine distinct real Γ -structures if q is an odd integer greater than 1.

Proof. By Theorem 1.5, c2 = −v2+v1v̄1− v̄2 holds in WUq. Assume that vq−2
1 V2 =

kvq
1 when evaluated by a Bott connection, then

GV2q − 2h1c
2q−2
1 c2 = (

√−1)2q−1ũ1(v1 − v̄1)2q−2(v2
1 − 2v2 + v̄2

1 − 2v̄2)

=
√−1

(2q − 2)!
q!(q − 2)!

ũ1(v
q
1 v̄

q−2
1 (v̄2

1 − 2v̄2) + vq−2
1 (v2

1 − 2v2)v̄
q
1)

=
√−1

(2q − 2)!
q!(q − 2)!

(2k)ũ1v
q
1 v̄

q
1

=
k(q − 1)
2q − 1

GV2q. ¤

Corollary 2.3.13 implies that even though there is a double covering Sp(2;C) →
SO(5; C), the foliation obtained by using Sp(2; C) as in Example 2.3.10 is not iso-
morphic to the pull-back of the foliation obtained by using SO(5;C) as in Example
2.3.8.

Other classes are also compared as follows when q = 3.

Example 2.3.14. We compare the previous examples constructed by using SL(4; C),
SO(5; C) and Sp(2; C) by examining the secondary classes of degree 13. It is known
that the following classes in H13(WO6) form the so-called Vey basis [18]; h1c

6
1,

h1c
4
1c2, h1c

3
1c3, h1c

2
1c4, h1c

2
1c

2
2, h1c1c5, h1c1c2c3, h1c2c4, h1c

3
2, h1c

2
3, h1c6, h3c4,
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h3c
2
2, where h1c

6
1 = GV6. Among them, the following classes form a basis of its

image in H13(WU3) [2]: h1c
2
3, h1c1c2c3, h1c

3
1c3, h1c

4
1c2, h1c

2
1c

2
2, h1c

6
1, h3c

2
2. On the

other hand, by Theorem 1.5, the ratio of these classes to the Godbillon-Vey class
can be calculated as in Corollary 2.3.13 if there are relations of the form v1v2 = αv3

1 ,
v3 = βv3

1 as differential forms. These values (α, β) are respectively (2−3 · 3, 2−4),
(22 · 3−2, 2 · 3−3), (2−3 · 3, 2−4) for SL(4; C), SO(5; C) and Sp(2; C). Thus we have
the following table;

SL(4;C) SO(5; C) Sp(2; C)
h1c

6
1 1 1 1

h1c
4
1c2 2−2·32·5−1 2−1·3−2·5−1·43 2−2·32·5−1

h1c
3
1c3 2−5·5−1·19 3−3·5−1·19 2−5·5−1·19

h1c
2
1c

2
2 2−6·13 2−1·3−4·37 2−6·13

h1c1c2c3 2−8·3·5−1·23 2·3−5·5−1·41 2−8·3·5−1·23
h1c

2
3 2−9·5−1·37 2·3−6·5−1·37 2−9·5−1·37

h3c
2
2 2−11·5−1·11·23 2−1·3−7·5−1·709 2−11·5−1·11·23

Here the values in the table are the ratio to GV6, for example, h1c
4
1c2 = 2−2 ·32 ·

5−1h1c
6
1 for SL(4; C). From these tables and formulae in [2], one can see that if ω is

a member of the Vey basis of H13(WO6) as above, the ratio of ω to GV6 = h1c
6
1 is

always less than 1 (except the ratio to GV6 itself), for which we have no explanation.

By Proposition 2.3.11, the foliations of SL(4;C) and that of Sp(2;C) are essen-
tially the same at least on the Lie algebra level. On the other hand, it is clear that
the ratios of the classes to GV6 are already determined on the Lie algebra level.
Therefore the ratios in the table are identical.

Foliations with non-trivial Godbillon-Vey class can be also constructed by using
an exceptional Lie group.

Example 2.3.15. Let G be the exceptional complex simple Lie group G2. Let g2

be the Lie algebra of G2, then as found in [16],

g2 =

〈
Zi, Xi, Yi ; 1 ≤ i ≤ 6

∣∣∣∣∣
Z3 = Z1 + 3Z2, Z4 = 2Z2 + 3Z2,

Z5 = Z1 + Z2, Z6 = Z1 + 2Z2,

[Xi, Yi] = Zi, [Zi, Xi] = 2Xi, [Zi, Yi] = −2Yi

〉

C

.

Let γi, αi, βi be the dual of Zi, Xi, Yi, respectively, then they satisfy the following
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relations, namely,

dγ1 = −α1 ∧ β1 − α3 ∧ β3 − 2α4 ∧ β4 − α5 ∧ β5 − α6 ∧ β6,

dγ2 = −α2 ∧ β2 − 3α3 ∧ β3 − 3α4 ∧ β4 − α5 ∧ β5 − 2α6 ∧ β6,

dα1 = −2γ1 ∧ α1 + γ2 ∧ α1 + β2 ∧ α3 + 2β3 ∧ α4 − β4 ∧ α5,

dα2 = 3γ1 ∧ α2 − 2γ2 ∧ α2 − 3β1 ∧ α3 − β5 ∧ α6,

dα3 = −α1 ∧ α2 + γ1 ∧ α3 − γ2 ∧ α3 − 2β1 ∧ α4 − β4 ∧ α6,

dα4 = −2α1 ∧ α3 − γ1 ∧ α4 + β1 ∧ α5 + β3 ∧ α6,

dα5 = 3α1 ∧ α4 − 3γ1 ∧ α5 + γ2 ∧ α5 + β2 ∧ α6,

dα6 = 3α3 ∧ α4 + α2 ∧ α5 − γ2 ∧ α6,

dβ1 = 2γ1 ∧ β1 − γ2 ∧ β1 − α2 ∧ β3 − 2α3 ∧ β4 + α4 ∧ β5,

dβ2 = −3γ1 ∧ β2 + 2γ2 ∧ β2 + 3α1 ∧ β3 + α5 ∧ β6,

dβ3 = β1 ∧ β2 − γ1 ∧ β3 + γ2 ∧ β3 + 2α1 ∧ β4 + α4 ∧ β6,

dβ4 = 2β1 ∧ β3 + γ1 ∧ β4 − α1 ∧ β5 − α3 ∧ β6,

dβ5 = −3β1 ∧ β4 + 3γ1 ∧ β5 − γ2 ∧ β5 − α2 ∧ β6,

dβ6 = −3β3 ∧ β4 − β2 ∧ β5 + γ2 ∧ β6.

It is known that the following real Lie subalgebra g0 is a compact real form of
g2, namely,

g0 =
〈√−1Zi, Xi − Yi,

√−1(Xi + Yi)
〉

R
.

The compactness can be shown by verifying that the Killing form restricted on g0

is negative definite.
Let ζi, λi and µi be the dual of

√−1Zi, (Xi − Yi),
√−1(Xi + Yi), respectively,

and denote again by the same symbol their extension to g2 by complexification,
then γi =

√−1ζi, αi = λi +
√−1µi, and βi = −λi +

√−1µi.
Let h1 and h2 be complex Lie subalgebras of g2 defined respectively as follows;

h1 = ker 〈β2, β3, β4, β5, β6〉 , h2 = ker 〈β1, β3, β4, β5, β6〉 .

They are easily seen to be Lie subalgebras. Let i be either 1 or 2, and let Hi

be the Lie subgroup whose Lie algebra is hi, then Hi contains the maximal torus
T 2 generated by Z1 and Z2. Set su(2)i =

〈√−1Zi, (Xi − Yi),
√−1(Xi + Yi)

〉
R

and let dwi be the inclusion of su(2)i into g2, then dwi induces an embedding
of SU(2) into G2, which is denoted by wi. Denote the image of wi by SU(2)i.
Similarly, let u(2)i =

〈√−1Z1,
√−1Z2, (Xi − Yi),

√−1(Xi + Yi)
〉

R
and repeat the
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same construction. Denote the image by U(2)i, then U(2)i is isomorphic to U(2).
Note that SU(2)i ⊂ U(2)i ⊂ GR

2 , where GR
2 is the compact real form of G2 whose

Lie algebra is g0. In what follows, Ki is assumed to be a compact connected Lie
subgroup such that T 2 ⊂ Ki ⊂ U(2)i when the foliation induced by hi is considered.

First we study the foliation induced by h1. In order to apply Theorem 2.1.7, let
σ1 : g2/h1 → g2 be the section defined by

σ1([Yi]) = Yi, i = 2, 3, 4, 5, 6,

then σ1 is AdU(2)1 -invariant. The Hermitian metric g1 with respect to which
{√3[Y2], [Y3], [Y4],

√
3[Y5], [Y6]} is an orthonormal basis is AdU(2)1-invariant. This

is shown by direct calculations, for example,

g1([X1 − Y1, Y2], Y3) + g1(Y2, [X1 − Y1, Y3]) = g1(Y3, Y3) + g1(Y2,−3Y2) = 0.

Set ω1 = t( 1√
3
β2, β3, β4,

1√
3
β5, β6), then dω1 = −θ̃1 ∧ ω1, where

θ̃1 =




3γ1 − 2γ2 −√3α1 0 0 − 1√
3
α5

−√3β1 γ1 − γ2 −2α1 0 −α4

0 −2β1 −γ1

√
3α1 α3

0 0
√

3β1 −3γ1 + γ2
1√
3
α2

0 0 3β3

√
3β2 −γ2




.

By Definition 2.1.9 and Lemma 2.1.10, the gl(5; C)-valued 1-form

θ1 =




3γ1 − 2γ2 −√3α1 0 0 − 1√
3
α5

−√3β1 γ1 − γ2 −2α1 0 −α4

0 −2β1 −γ1

√
3α1 α3

0 0
√

3β1 −3γ1 + γ2
1√
3
α2

0 0 0 0 −γ2




is a Bott connection. Hence h1 =
3
2π

(γ2 + γ2) and v1 =
3

2π
√−1

dγ2. Since

dγ2 = −α2 ∧ β2 − 3α3 ∧ β3 − 3α4 ∧ β4 − α5 ∧ β5 − 2α6 ∧ β6

and since GV10 = 10!
5!5!h1v

5
1 v̄5

1 ,

GV10(h1, K1) =
(

3
2π

)11

(2 · 32 · (5!))2(γ2 + γ2) ∧
6∧

i=2

(αi ∧ βi) ∧
6∧

i=2

(αi ∧ βi)

=
28 · 317 · 52

(2π)11
(γ2 + γ2) ∧

6∧
i=2

(αi ∧ βi) ∧
6∧

i=2

(αi ∧ βi),
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where GV10(h1,K1) denotes the Godbillon-Vey class of the foliation given by the
quadruplet (G2,H1,K1, Γ ), where Γ is any cocompact lattice of G2/K1. By Propo-
sition 2.2.7,

τ∗κ∗GV10(h1, K1) =
218 · 317 · 52

(2π)11
√−1ζ1

2 ∧
6∧

i=2

(λ1
i ∧ µ1

i ) ∧
6∧

i=2

(λ2
i ∧ µ2

i ).

It is clear that ζ1
2 ∧

6∧
i=2

(λ1
i ∧µ1

i ) and
6∧

i=2

(λ1
i ∧µ1

i ) are the volume forms of GR
2 /SU(2)1

and GR
2 /U(2)1, respectively, where GR

2 is the compact Lie group with Lie algebra
g0. Then by Lemma 2.3.16 below, τ∗κ∗GV10(h1,K1) is non-trivial.

The foliation induced by h2 can be studied in a similar way. Define σ2 : g2/h2 →
g2 by setting σ2([Yj ]) = Yj , j = 1, 3, 4, 5, 6, then σ2 is AdU(2)2-invariant. Let g2 be
the Hermitian metric on g2/h2 with respect to which {[Y1], [Y3], [Y4], [Y5], [Y6]} is
an orthonormal basis, then g2 is AdU(2)2 -invariant.

Set ω2 = t(β1, β3, β4, β5, β6) and

θ̃2 =




−2γ1 + γ2 α2 2α3 −α4 0
β2 γ1 − γ2 −2α1 0 −α4

0 −2β1 −γ1 α1 α3

0 0 3β1 −3γ1 + γ2 α2

0 0 3β3 β2 −γ2


 ,

then dω2 = −θ̃2 ∧ ω2. Hence

θ2 =




−2γ1 + γ2 α2 2α3 −α4 0
β2 γ1 − γ2 −2α1 0 −α4

0 0 −γ1 α1 α3

0 0 0 −3γ1 + γ2 α2

0 0 0 β2 −γ2




induces a Bott connection. The characteristic homomorphism is calculated as fol-
lows. Firstly, one has

h1 =
5
2π

(γ1 + γ1),

v1 =
5

2π
√−1

dγ1

=
5

2π
√−1

(−α1 ∧ β1 − α3 ∧ β3 − 2α4 ∧ β4 − α5 ∧ β5 − α6 ∧ β6).

Hence

GV10(h2,K2) =
(

5
2π

)11

(2 · 5!)2(γ1 + γ1) ∧
∧
i 6=2

(αi ∧ βi) ∧
∧
i 6=2

(αi ∧ βi)

=
26 · 32 · 513

(2π)11
(γ1 + γ1) ∧

∧
i 6=2

(αi ∧ βi) ∧
∧
i 6=2

(αi ∧ βi).
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By Proposition 2.2.7,

τ∗κ∗GV10(h2,K2) =
√−1

216 · 32 · 513

(2π)11
γ1
1 ∧

∧
i 6=2

(λ1
i ∧ µ1

i ) ∧
∧
i 6=2

(λ2
i ∧ µ2

i ).

As in the previous case, this is the product of the volume forms of GR
2 /SU(2)2 and

GR
2 /U(2)2. Hence τ∗κ∗GV10(h2,K2) is non-trivial by Lemma 2.3.16.
The foliations defined by h1 and h2 are derived from distinct real Γ -structures.

Let R(θ) be the curvature form of θ, then v2
1 − 2v2 =

(
−1

2π
√−1

)2

trR(θ)2. Hence

v3
1(v2

1 − 2v2)(h1,K1) =
1
27

v5
1(h1,K1),

v3
1(v2

1 − 2v2)(h2,K2) =
3
25

v5
1(h2,K2).

These relations are shown as follows by using the curvature matrices R(θ1) and
R(θ2) presented after Lemma 2.3.16. Set [i, j, k] = αi ∧ βi ∧ αj ∧ βj ∧ αk ∧ βk, and
define the symbols [i, j] and [i, j, k, l, m] in the same way. When θ = θ1, one has

trR(θ1) = 3α2 ∧ β2 + 9α3 ∧ β3 + 9α4 ∧ β4 + 3α5 ∧ β5 + 6α6 ∧ β6,

(tr R(θ1))3 = 33 · 6 (9[2, 3, 4] + 3[2, 3, 5] + 6[2, 3, 6] + 3[2, 4, 5] + 6[2, 4, 6]

+ 2[2, 5, 6] + 9[3, 4, 5] + 18[3, 4, 6] + 6[3, 5, 6] + 6[4, 5, 6]),

(tr R(θ1))5 = 35 · 5! · 2 · 32[2, 3, 4, 5, 6] = 24 · 38 · 5[2, 3, 4, 5, 6].

Let tr′R(θ1)2 be the terms of tr R(θ1)2 which contain [l, m], then it is clear that
(tr R(θ1))3trR(θ1)2 = (tr R(θ1))3tr′R(θ1)2. One has

tr′R(θ1)2 =2[2, 3] + 2[2, 4]− 6[2, 5] + 8[2, 6]− 54[3, 4]

+ 2[3, 5] + 24[3, 6] + 2[4, 5] + 24[4, 6] + 8[5, 6].

Hence
(trR(θ1))3trR(θ1)2 = 24 · 35 · 5[2, 3, 4, 5, 6] = 3−3(trR(θ1))5.

When θ = θ2, calculations of the same kind show that

(trR(θ2))3trR(θ2)2 = 3 · 5−2(trR(θ2))5.

Hence the normal bundles associated with h1 and h2 are not isomorphic as complex
vector bundles. Moreover, they determine distinct Γ -structures as real foliations.
Indeed, by repeating the proof of Corollary 2.3.13, one has

h1c
10
1 (h1,K1)− 2h1c

8
1c2(h1,K1) = 22 · 3−5h1c

10
1 (h1, K1),

h1c
10
1 (h2,K2)− 2h1c

8
1c2(h2,K2) = 22 · 3−1 · 5−2h1c

10
1 (h2,K2).
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Rewriting these relations, one obtains

h1c
8
1c2(h1,K1) = 2−1 · 3−5 · 239GV10(h1,K1),

h1c
8
1c2(h2,K2) = 2

1 · 3−1 · 5−2 · 71GV10(h2,K2).

Hence these foliations are distinct as real foliations. Note that the foliation induced
by h1 is distinct also from the foliations of SL(6; C) and of SO(7; C) by Proposition
2.3.12 and Corollary 2.3.13. Indeed,

h1c
8
1c2 = 2−1 · 3−3 · 5GV10 for SL(6; C),

h1c
8
1c2 = 2

1 · 3−1 · 5−2 · 71GV10 for SO(7;C).

On the other hand, the foliation induced by h2 is obtained from the foliation of
SO(7; C) at least on the Lie algebra level. This is shown as follows. Let i : g2 ↪→
so(7; C) be the inclusion of Lie algebra determined by requiring

i(Z1) = −√−1(X01 − 2X23 + X45),

i(Z2) = −√−1(X23 −X45),

i(X1) =
1
2

(
(X05 + X14 − 2X36)−

√−1(X04 −X15 + 2X26)
)
,

i(Y1) =
1
2

(−(X05 + X14 − 2X36)−
√−1(X04 −X15 + 2X26)

)
,

i(X2) =
1
2

(−(X25 −X34)−
√−1(X24 + X35)

)
,

i(Y2) =
1
2

(
(X25 −X34)−

√−1(X24 + X35)
)
,

then i∗(h+) = h2, where h+ and Xij are as in Example 2.3.8.

The proof of non-triviality of the Godbillon-Vey class is completed by the fol-
lowing lemma.

Lemma 2.3.16. We retain the notations in Example 2.3.15.

1) The pull-back of the volume forms of GR
2 /SU(2)i, i = 1, 2, are non-trivial

in H∗(GR
2 ).

2) The classes represented by
6∧

i=2

(λi ∧ µi) and
∧
i 6=2

(λi ∧ µi) are non-trivial in

H∗(GR
2 /T 2).

Proof. First we show 2). The equation

dζ1 = −2λ1 ∧ µ1 − 2λ3 ∧ µ3 − 4λ4 ∧ µ4 − 2λ5 ∧ µ5 − 2λ6 ∧ µ6,
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implies that dζ1 determines a class in H2(GR
2 /T 2). The product (dζ1)∧

6∧
i=2

(λi∧µi)

is easily seen to be a non-zero multiple of the volume form of GR
2 /T 2. Therefore

6∧
i=2

(λi∧µi) is non-trivial in H∗(GR
2 /T 2). The non-triviality of

∧
i 6=2

(λi∧µi) is shown

by considering the product with the class represented by dζ2.
In order to show 1), we define ω1 and ω2 by setting

ωi = ζ3−i ∧
∧
j 6=i

(λj ∧ µj),

where i = 1, 2, and show that [σ] ∪ [ωi] 6= 0 for some [σ] ∈ H3(g0; R). First note
that we may work on g because H3(g0;C) ∼= H3(g0; R)⊗C ∼= H3(g2; C). Define
σ′ ∈ (g3

2)
∗ by setting σ(X, Y, Z) = tr(ad[X,Y ]adZ), then by the proof of Theorem

21.1 in [13], σ′ is a cocycle representing a non-trivial class in H3(g2; C). Up to
multiplication of a non-zero constant, σ′ is of the form

σ′ =− 9(2γ1 − γ2) ∧ α1 ∧ β1 + 3(3γ1 − 2γ2) ∧ α2 ∧ β2 + 9(γ1 − γ2) ∧ α3 ∧ β3

− 9γ1 ∧ α4 ∧ β4 − 3(3γ1 − γ2) ∧ α5 ∧ β5 − 3γ2 ∧ α6 ∧ β6

+ (terms not involving γi).

On the other hand, ωi, when complexified, is a non-zero multiple of

γ3−i ∧
∧
j 6=i

(αj ∧ βj).

Hence [σ′] ∪ [ωi] is represented by a non-zero multiple of

γ1 ∧ γ2 ∧
6∧

j=1

(αj ∧ βj). ¤

Remark 2.3.17. By following [14], one can show that the above σ′ is in fact as
follows;

σ′ = 6γ1 ∧ dγ1 − 3γ1 ∧ dγ2 − 3γ2 ∧ dγ1 + 2γ2 ∧ dγ2

+ 3α1 ∧ dβ1 + 3β1 ∧ dα1 + α2 ∧ dβ2 + β2 ∧ dα2 + 3α3 ∧ dβ3 + 3β3 ∧ dα3

+ 3α4 ∧ dβ4 + 3β4 ∧ dα4 + α5 ∧ dβ5 + β5 ∧ dα5 + α6 ∧ dβ6 + β6 ∧ dα6.

This follows from the fact that

3γ2
1 − 3γ1γ2 + γ2

2 + 3α1β1 + α2β2 + 3α3β3 + 3α4β4 + α5β5 + α6β6

is a primitive element of I(g), where I(g) is the set of left invariant symmetric
polynomials invariant also under the adjoint action. Note also that H3(g2;C) is in
fact isomorphic to C.

The curvature matrices R(θ1) and R(θ2) are presented in the next page.
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Remark 2.3.18. Some other foliations G2 with non-trivial Godbillon-Vey class can
be obtained by considering the action of the Weyl group. Let σ1 be the auto-
morphism of G2 which maps (Z1, Z2) to (2Z1 + 3Z2,−Z1 − Z2), and let σ2 be the
automorphism which maps (Z1, Z2) to (Z1,−Z1−Z2), then they generate the Weyl
group. On the other hand, set

ω1 = t(β2, β3, β4, β5, β6),

ω2 = t(β1, β3, β4, β5, β6),

ω3 = t(β1, α2, β4, β5, β6),

ω4 = t(β1, α2, α3, β5, α6),

ω5 = t(β1, α2, α3, α4, α6),

ω6 = t(β1, α2, α3, β4, β5),

ω′1 = t(α2, α3, α4, α5, α6),

ω′2 = t(α1, α3, α4, α5, α6),

ω′3 = t(α1, β2, α4, α5, α6),

ω′4 = t(α1, β2, β3, α5, β6),

ω′5 = t(α1, β2, β3, β4, β6),

ω′6 = t(α1, β2, β3, α4, α5),

and set hi = kerωi and h′i = kerω′i, then they are Lie subalgebras of g2. First
consider the action of σ1. From h1, one obtains h′4, h′3, h1, h4, h3 and then h1 again.
From h2, one obtains h′5, h′6, h′2, h5, h6 and then h2 again. On the other hand,
under the action of σ2, one obtains h′1 from h1 and h5 from h2, respectively.

The examples constructed using Aq = SL(q + 1; C), Bm = SO(2m + 1; C)
(q = 2m − 1), Cn+1 = Sp(n + 1; C) (q = 2n + 1) and G2 (q = 5) have certain
common properties. Denote by Xn one of these groups, and let Xcrf

n be the compact
real form of Xn as in the above examples, then

T ⊂ K ⊂ T 1 ×Xcrf
n−1 ⊂ T 1 ×Xn−1 ⊂ H ⊂ Xn,

where T is the maximal torus realized as above. The inclusion of Xn−1 into Xn is
realized by considering the inclusion of corresponding Dynkin diagrams. Hence we
regard G1 = SL(2; C).

The Lie algebra h defining the leaves can be described as follows. Let xn be the
Lie algebra of Xn and set x̃n−1 = t1 ⊕ xn−1, then there is a splitting xn = x̃n−1 ⊕ a

as complex vector spaces so that one can find a decomposition a = a+ ⊕ a− such
that the both x̃n−1 ⊕ a± are complex Lie subalgebras. These subalgebras are h as
above. Finally, the Godbillon-Vey class is realized as the pull-back of the product
of the volume forms of Xcrf

n /Xcrf
n−1 and Xcrf

n /(T 1 ×Xcrf
n−1).

The construction using SO(q + 2; C) in Example 2.3.8 was not successful if q is
even. In fact, we have the following
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Proposition 2.3.19. Assume that T 1× SO(2n− 2; C) and the maximal torus Tn

are realized as in Example 2.3.8. If n > 2, then there is no Lie subalgebra h of
so(2n; C) with the following properties:

1) h contains t1 ⊕ so(2n− 2;C).
2) The Godbillon-Vey class of the foliation of Γ\SO(2n; C)/Tn defined by h is

non-trivial as an element of H4q+1(so(2n; C), tn;C).

Proof. We retain the notations in Example 2.3.8. Set Y0i = X0i +
√−1X1i and

Z0i = X0i −
√−1X1i for i ≥ 2. Denote by k the Lie subalgebra t1 ⊕ so(2n− 2;C).

Let h be a Lie subalgebra having the properties 1) and 2), then h/k is invariant
under the action of adk. Define linear subspaces a± of h/k by setting

a+ = (〈Y02, Y03, . . . , Y0,2n−1〉+ k)/k,

a− = (〈Z02, Z03, . . . , Z0,2n−1〉+ k)/k,

then h/k = a+ ⊕ a−. Denote by i± the inclusions of a± to h/k, and denote by
p± the projections from h/k to a± corresponding to the above direct sum. Since
adX01Y0i =

√−1Y0i and adX01Z0i = −√−1Z0i, h/k = i+p+(h/k)⊕i−p−(h/k). Thus
it suffices to study invariant subspaces of a±.

Assume that a′ is an invariant subspace of a+. Fix integers i, j such that 2 ≤
i < j < 2n, and set V ±

ij = Y0i ±
√−1Y0j . Set b± = CV ±

ij and z = 〈Y0k | k 6= i, j〉,
then a+ = b+ ⊕ b− ⊕ z. Let ι± and ιz be the inclusions to a+, and let π± and
πz be the corresponding projections from a+ to b± and z, then a′ = ι+π+(a′) ⊕
ι−π−(a′) ⊕ ιzπz(a′). If ι±π±(a′) = {0} for any pair (i, j), then a′ = {0}. Assume
that ι+π+(a′) 6= {0} for a pair (i, j), then ι+π+(a′) = CV +

ij . In particular Y0i +√−1Y0j ∈ a′. Noticing that n > 2, choose an integer k distinct from i, j and such
that 2 ≤ k ≤ 2n − 1. For such a k, adXik

(adXik
Y0i +

√−1Y0j) = −Y0i and thus
Y0i ∈ a′. Since adXik

Y0i = −Y0k for k ≥ 2, k 6= i, and adX01Y0i = −Y1i, this implies
that a′ = a+.

By the same argument, (h/k) ∩ a− is either {0} or a−. Hence h is either t1 ×
so(2n− 2;C), so(2n;C) or the Lie algebras h± defined in Example 2.3.8. It is easy
to show that the Godbillon-Vey class of the foliation induced by t1 × so(2n− 2; C)
is trivial. We have already shown in Example 2.3.8 that the Godbillon-Vey classes
of the foliations induced respectively by h± are trivial. Thus the proposition is
proved. ¤

Remark 2.3.20. It is well-known that so(4; C) ∼= sl(2; C)⊕ sl(2; C) and so(6; C) ∼=
sl(4; C). Hence it is possible despite Proposition 2.3.19 to construct foliations with
non-trivial Godbillon-Vey classes at least on the Lie algebra level.
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As already remarked, the Godbillon-Vey class is realized as the product of volume
forms of Xcrf

n /(T 1 × Xcrf
n−1) and Xcrf

n /Xcrf
n−1. Hence if the Godbillon-Vey class is

non-trivial, then the image of the volume form of Xcrf
n /Xcrf

n−1 remains non-trivial
when pulled back to Xcrf

n . On this line, we have the following. Recall that the
inclusion of Xn−1 into Xn is realized via the inclusion of corresponding Dynkin
diagrams.

Proposition 2.3.21. The mapping π∗H∗(Xcrf
n /Xcrf

n−1) → H∗(Xcrf
n ) annihilates

the volume if the pair (Xn, Xn−1) is one of (F4,Sp(3; C)), (F4,SO(7; C)), (E6, SL(6;C)),
(E6, SO(10; C)), (E7, E6) or (E8, E7). Hence examples of the same kind as in this
article cannot be constructed for these pairs.

Proof. It is known the cohomology of these groups are as follows [14]:

H∗(f4) ∼=
∧

[e3, e11, e15, e23],

H∗(e6) ∼=
∧

[e3, e9, e11, e15, e17, e23],

H∗(e7) ∼=
∧

[e3, e11, e15, e19, e23, e27, e35],

H∗(e8) ∼=
∧

[e3, e15, e23, e27, e35, e39, e47, e59],

where ei denotes the generators of degree i. The dimensions of Sp(3; C) (or
SO(7; C)) and F4 are 21 and 52, respectively. However, H31(f4) = {0}. In or-
der to prove the claim for E6, first consider E5 = SL(6; C). Then H∗(sl(6; C)) ∼=∧

[e3, e5, e7, e9, e11]. Since the embedding is induced from the inclusion of corre-
sponding Dynkin diagrams, we may assume that the image of ei under π∗ is again
ei if and only if ei is non-trivial in the image. If π∗ does not annihilate the volume
form, there is a non-trivial class in H43(e6) written in terms of e15 and e23. It is
clearly impossible. If E5 is considered as SO(10; C), the proof is done simply by
counting dimension as in the case of F4. The claim for other groups are also shown
in this way. ¤

More systematic treatment seems appropriate for examining all possible pairs
(Xn, Xn−1). We will not pursue it here.

3. Relation with the Residue theory

The examples considered in the previous section are related to Heitsch’s residue
[21] as follows.

Let F̃ be the foliation of M̃ = SL(2; C)×C2 whose leaves are the orbits of the
right action of SL(2; C) on M̃ given by (g0, v0) · g = (g0g, g−1v0). Let T be the
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holomorphic vector field on C2 defined by T = z
∂

∂z
+ w

∂

∂w
, where (z, w) is the

natural coordinate of C2. Since the natural left action of SL(2;C) on C2 preserves
T , F̃ and T induce a foliation G̃ of M̃∗ = SL(2; C) × (C2 \ {0}). Moreover, as
these foliations are invariant under the natural left action of SL(2; C) on M̃ and
M̃∗, we have foliations F̃Γ of Γ\M̃ and G̃Γ of Γ\M̃∗ for any cocompact lattice Γ

of SL(2; C). The original construction of the residue in [21],[23] applied to these
foliations is as follows. Let ι : Γ\SL(2; C) × S3 → Γ\M̃∗ be the inclusion, then
ι∗ is an isomorphism. Moreover, since ι is transversal to G̃Γ , there is a natural
foliation ι∗G̃Γ of Γ\SL(2; C) × S3. Since the normal bundles of G̃Γ and ι∗G̃Γ are
trivial, the Bott classes u1v1(G̃Γ ) and u1v1(ι∗G̃Γ ) are defined. Let H∗

c (Γ\M̃) be
the cohomology of Γ\M̃ compactly supported in the direction of C2, then we have
the following sequence, namely,

H∗(Γ\M̃∗) ∂→ H∗+1(Γ\M̃, Γ\M̃∗) i→ H∗+1
c (Γ\M̃)

R
C2→ H∗−3(Γ\SL(2; C)),

where ∂ is the boundary homomorphism, i is the natural mapping and
∫

C2 is the
integration of compactly supported 4-forms on C2. It is shown by Heitsch [21],[23]
that there is a natural choice of a Bott connection for F̃Γ adapted to T and that if
we denote by v2

1(F̃Γ , T ) the differential form v2
1 calculated by this Bott connection,

then v2
1(F̃Γ , T ) is of compact support and it represents i(∂(u1v1(G̃Γ ))). The image

of v2
1(F̃Γ , T ) under

∫
C2 is by definition the residue of v2

1(F̃Γ ) with respect to T .
Since u1v1(ι∗G̃Γ ) = ι∗u1v1(G̃Γ ), this class is seen to be non-trivial if the residue of
v2
1 is non-trivial (which is indeed the case).

On the other hand, there is a following relation between the Bott class and
the Godbillon-Vey class (Theorem 2.3 in [4]). Let

∫
S1 : H∗(Γ\SL(2;C) × S3) →

H∗−1(Γ\SL(2;C)×CP 1) be the integration along the fiber of the Hopf fibration,
then u1v1(ι∗G̃Γ )ū1v̄1(ι∗G̃Γ ) is mapped to a non-zero multiple of GV1(H̃Γ ), where
H̃Γ is the foliation of Γ\SL(2;C) × CP 1 obtained by taking the quotient by the
natural S1 action along the fibers. Composing with the integration on the fibers of
Γ\SL(2; C)×CP 1 → Γ\SL(2; C), one obtains the following commutative diagram;

H∗(Γ\M̃∗) ∂−−→ H∗+1(Γ\M̃, Γ\M̃∗) i−−→ H∗+1
c (Γ\M̃)

ι∗
yo R

C2

y

H∗(Γ\SL(2; C)× S3)
R

S1−−→ H∗−1(Γ\SL(2; C)×CP 1) −−→ H∗−3(Γ\SL(2; C)).

However, the image of u1v1(G̃Γ )ū1v̄1(G̃Γ ) under i ◦ ∂ is trivial because

i ◦ ∂(u1v1(G̃Γ )ū1v̄1(G̃Γ )) =− u1v1v̄
2
1(F̃Γ ) + ū1v̄1v

2
1(F̃Γ )

=d(u1ū1v1v̄1(F̃Γ , T )),
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where u1ū1v1v̄1(F̃Γ , T ) is the compactly supported differential form calculated in
the same way as calculating v2

1(F̃Γ , T ). It is relevant here that u1 and ū1 are
well-defined for F̃Γ .

Take now the quotient of the above foliations by SU(2) acting on M̃ and M̃∗

from the right via the inclusion to SL(2;C). Set M = SL(2; C) ×
SU(2)

C2 and M∗ =

SL(2; C) ×
SU(2)

(C2 \ {0}), then the foliations as above induce foliations FΓ of Γ\M ,

GΓ of Γ\M∗, ι∗GΓ of Γ\SL(2; C) ×
SU(2)

S3 and HΓ of Γ\SL(2; C) ×
SU(2)

CP 1, where Γ is

now a cocompact lattice of SL(2; C)/SU(2). The diagram is as follows, namely,

H∗(Γ\M∗) ∂−→ H∗+1(Γ\M,Γ\M∗) i−→ H∗+1
c (Γ\M)

ι∗
yo R

C2

y

H∗(Γ\SL(2; C) ×
SU(2)

S3)
R

S1−−→ H∗−1(Γ\SL(2; C) ×
SU(2)

CP 1) −→ H∗−3(Γ\SL(2;C)/SU(2)),

where
∫

C2 is the integration along the fiber. The image of u1v1(G̃Γ )ū1v̄1(G̃Γ ) under∫
C2 ◦ i ◦ ∂ is a non-zero multiple of the volume form of Γ\SL(2;C)/SU(2) and

non-trivial. It is well-known that the foliation HΓ is isomorphic to the foliation
given in Example 2.3.6. The fact that GV2(HΓ ) become trivial when pulled back
to Γ\SL(2; C) ×

SU(2)
S3 corresponds to 1) of Remark 2.3.7. We remark that if π :

Γ\SL(2; C) ×
SU(2)

CP 1 → Γ\SL(2; C)/SU(2) is the projection, then π∗ ◦ ∫
C2 ◦ i ◦

∂(u1v1(G̃Γ )ū1v̄1(G̃Γ )) is a non-zero multiple of the imaginary part of the Bott class
ξ1(HΓ ).

The same kind of construction can be done in higher codimensional cases. It is
also possible to apply this construction to other examples involving SO(2n +1; C),
Sp(n;C) and G2 by using the Iwasawa decomposition and naturally associated
S1-bundles. Thus we can still say that all the known examples of transversely holo-
morphic foliations with non-vanishing secondary classes can be obtained through
the residue theory as pointed out in [25] by Hurder.

4. The rigidity theorem and Infinitesimal derivatives

In this section, infinitesimal derivatives of secondary classes are introduced by
following Heitsch [22]. It will be shown that complex secondary classes determined
by the image of H∗(WUq+1) under the natural mapping to H∗(WUq) are rigid
under actual and infinitesimal deformations. In particular, the Godbillon-Vey class
is shown to be rigid in the category of transversely holomorphic foliations. On
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the other hand, there are classes in H∗(WUq) such as the imaginary part of the
Bott class which admit continuous deformations. These classes are called variable
classes. Heitsch introduced in [22] the infinitesimal derivatives for cocycles in WUq

which represent variable classes of lowest degree. In the same paper, the infinitesi-
mal derivatives for any classes in H∗(WOq) were also introduced. The most of this
section will be devoted to completing Heitsch’s construction by defining the infin-
itesimal derivatives for any classes in H∗(WUq). The construction seems known
for specialists, indeed, the most of the definitions and the proofs are only small
modifications of Heitsch’s in [22] using notions in [15]. However, we give the details
for completeness and for their importance.

We follow Heitsch’s line of arguments for easy comparison. When definitions
and theorems are given, the number of corresponding statements in [22] will be
also given so far as possible. Finally, we remark that infinitesimal deformations are
also discussed by Girbau, Haefliger and Sundararaman [17].

§ 1. Definitions and Statement of results.

The following mapping from H∗(WUq+1) to H∗(WUq) is relevant. It is an analog
to the real case [19].

Definition 4.1.1. Let ρ be the DGA-homomorphism from WUq+1 to WUq defined
by the following formulae:

ρ(ũi) =
{

ũi if i 6= q + 1
0 if i = q + 1

ρ(vi) =
{

vi if i 6= q + 1
0 if i = q + 1

, ρ(v̄i) =
{

v̄i if i 6= q + 1
0 if i = q + 1

We denote by ρ∗ the induced homomorphism from H∗(WUq+1) to H∗(WUq).

The mapping ρ∗ is induced by the standard inclusion of Cq into Cq+1.

Definition 4.1.2. Let {Ft} be a family of transversely holomorphic foliations of
fixed complex codimension, of a fixed manifold M . Then {Ft} is said to be a con-
tinuous deformation of F0 if {Ft} is a continuous family as integrable distributions.
If the family is in fact smooth, it is said to be smooth.

1) If there exists a smooth family of diffeomorphisms which conjugate each Ft

to F0, then we call such a {Ft} as deformations preserving the diffeomor-
phism type.

2) Particularly if Ft is identical to F0 when the transverse holomorphic struc-
tures are forgotten, the family {Ft} is called as a deformation of transverse
holomorphic structures.
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The following theorems are the main results in this section.

Theorem B1. The secondary classes defined by H∗(WUq) is rigid under smooth
deformations if they belong to the image of ρ∗. More precisely, let {Fs} be a smooth
family of transversely holomorphic foliations of complex codimension q and let ω

be an element of ρ∗(H∗(WUq+1)), then ω(Fs) = ω(Ft) as elements of H∗(M) for
any s and t.

Given a transversely holomorphic foliation F of M , infinitesimal deformations
are elements of H1(M ; ΘF ) (see Definition 4.3.3 for details). The infinitesimal
derivatives of elements of H∗(WUq) are given by the mapping

D·( · ) : H1(M ; ΘF )×H∗(WUq) → H∗(M ;C)

in Definition 4.3.11. It will be shown that a smooth family {Fs} as above determines

a natural infinitesimal derivative β ∈ H1(M ; ΘF ) such that Dβ(ω) =
∂

∂s
ω(Fs)

∣∣∣∣
s=0

for ω ∈ H∗(WUq) (Theorem 4.3.25). The infinitesimal version of Theorem B1 is as
follows.

Theorem B2. The image of H1(M ; ΘF )× (ρ∗H∗(WUq+1)) under the above map-
ping D·( · ) is {0}.

Theorems B1 and B2 will be proved in steps. Before beginning the proof, we
present an important

Corollary 4.1.3. The Godbillon-Vey class is rigid under both smooth and infini-
tesimal deformations in the category of transversely holomorphic foliations.

Proof. Let q be the codimension of the foliations, then the equation

GV2q = ρ∗

(
(2q)!
q!q!

ξq+1 · chq−1
1

)
=

(2q)!
q!q!

√−1ũ1v
q
1 v̄

q
1

holds in H4q+1(WUq+1), where ξq+1 is defined in Definition 1.4. ¤

The following corollary follows from Corollary 4.1.3 and Theorem 1.5.

Corollary 4.1.4. Let Fs be a smooth family of transversely holomorphic foliations

of codimension q, then the product of ch1(F0)q and
d

ds
ξ(Fs) is identically equal

to zero. (Note that ch1(Fs)q is independent of s.) Similarly, for any infinitesimal
deformation β of F , Dβ(ξq)(F)ch1(F)q = 0 holds for the infinitesimal derivative
Dβ(ξq)(F) of ξq with respect to β.
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Let Fs be a smooth family of transversely holomorphic foliations of codimension
q and assume that GV2q(Fs) is non-trivial, then ch1(F0)q is non-trivial by Theorem
1.5. Assume that the mapping ∪ ch1(F0)q : H∗(M ; C) → H∗+2q(M ; C) is injective,

then
d

ds
ξq(Fs) is trivial because

d

ds
GV2q(Fs) =

d

ds
ξq(Fs) ch1(F0)q = 0 by Theorem

B1. This implies that the class ξq is in fact rigid in such a case. So far as we know,
any smooth family {Fs} such that ξq(Fs) varies continuously has trivial first Chern
class. In this line, we have the following

Question 4.1.5. Is there a smooth family of transversely holomorphic foliations
for which the imaginary part of the Bott class varies continuously and the first
Chern class of the complex normal bundle is non-trivial?

The infinitesimal version of this question can be also asked.

§ 2. Rigidity under smooth deformations.

The aim of this section is to prove Theorem B1. We begin with some definitions.

Definition 4.2.1. Let {Fs} be a smooth deformation of transversely holomorphic
foliations. Noticing that the complex normal bundles of the foliations remain iso-
morphic, denote them by Q and consider the same unitary connection θ0 for some
Hermitian metric on Q. Let θs

1 be a smooth family of complex Bott connections of

Fs and denote by ψs its differential with respect to s, namely, ψs =
∂

∂s
θs
1. Let f be

a homogeneous polynomial of degree 2k in vi and v̄j , then define differential forms
∆f and V as follows. First set θs

t = tθs
1 + (1− t)θ0 and denote by Ωs

t its curvature,
then set

∆f (θs
1, θ0) = k

∫ 1

0

f(θs
1 − θ0, Ωs

t , . . . , Ω
s
t )dt

Vf (θs
1, θ0) =

∫ 1

0

tf(ψs, θ
s
1 − θ0, Ωs

t , . . . , Ω
s
t )dt.

The following formulae are shown in [19];

∂

∂s
(∆f (θs

1, θ0)) = k(k − 1)dVf (θs
1, θ0) + kf(ψs, Ωs

1, . . . , Ω
s
1), and(4.2.2a)

∂

∂s
d(∆f (θs

1, θ0)) =
∂

∂s
f(Ωs

1, . . . , Ω
s
1) = kdf(ψs, Ωs

1, . . . , Ω
s
1),(4.2.2b)

where Ωs
1 denotes the curvature form of the connection θs

1 and the the exterior
derivative is considered only on M , namely, along the fibers of M ×R → R.

The following auxiliary definition will be convenient.
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Definition 4.2.3. Set W̃Uq =
∧

[ũ1, . . . , ũq] ⊗ C[v1, . . . , vq] ⊗ C[v̄1, . . . , v̄q] and
equip W̃Uq with the differential d̃ by requiring d̃ũi = vi − v̄i and d̃vi = d̃v̄i = 0.
Let Ĩq be the ideal of W̃Uq generated by cochains of the form ũIvJ v̄K with |J | > q

or |K| > q. Note then that WUq = W̃Uq/Ĩq. If ϕ is a cochain in WUq, then the
natural lift of ϕ is the cochain in W̃Uq obtained by representing ϕ as the linear
combination of cochains of the form ũIvJ v̄K with |J | ≤ q and |K| ≤ q.

These W̃Uq and d̃ correspond to WUq but the Bott vanishing is ignored. It is
easy to verify the equation d̃ ◦ d̃ = 0. In other words, d̃d̃ϕ̃ is exactly equal to 0 for
any ϕ̃ ∈ W̃Uq. This simple property is frequently used in what follows.

The following differential form is significant.

Definition 4.2.4. Let θu and θ be a unitary connection and a Bott connection
on Q(F), respectively. Let θ′ be a derivative of a family of Bott connections or an
infinitesimal derivative of a Bott connection which will be introduced in Definition
4.3.7, or a certain matrix valued function which will appear in proving Theorem
4.3.17. For ϕ̃ ∈ W̃Uq, define a differential form ∆ϕ̃(θu, θ, θ′) as follows. Firstly,
when ϕ̃ = ũIvJ v̄K , set

δ(ϕ̃)(θu, θ, θ′) = (|J |+ |K|)vJ v̄K(θ′, Ω)ũI(θ, θu),

where Ω is the curvature form of θ. Set now

∆ϕ̃(θu, θ, θ′) = δ(d̃ϕ̃)(θu, θ, θ′).

We extend δ and ∆ to the whole W̃Uq by linearity.
If ϕ̃ = ũIvJ v̄K ∈ W̃Uq and I = {i1, . . . , it} with i1 < i2 < · · · < it, then

∆ϕ̃(θu, θ, θ′)

=
∑

l

(−1)l−1(|J |+ |K|+ il) (vJ v̄K(vil
− v̄il

)) (θ′, Ω)ũI(l)(θ, θu),

where I(l) = I \ {il}.
Remark 4.2.5. We have the following formulae;

(4.2.5a) (|J |+ |K|)(vJvK)(θ′, Ω) = |J | vJ(θ′, Ω)vK(Ω) + |K| vJ(Ω)vK(θ′, Ω),

(4.2.5b)

{
vJ (θ′,Ω) = 0 as differential forms if |J | > q + 1,

v̄K(θ′, Ω) = 0 as differential forms if |K| > q + 1.

Theorem B1 will follow from the following
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Proposition 4.2.6. Let ϕ ∈ WUq be a cocycle, then
∂

∂s
χs(ϕ) is represented by

∆ϕ̃(θ0, θ
s
1, ψs), where ϕ̃ is any lift of ϕ to W̃Uq.

Proof. Let ϕ be a cocycle in WUq and compute
∂

∂s
χs(ϕ). For each i (1 ≤ i ≤ q),

there are elements αi and βi of WUq which do not involve ũi and such that ϕ =
ũiαi + βi. Note that αi is closed because ϕ is closed.

In the rest of the proof, we adopt the following notations, namely, ũi(θs
1, θ0),

vj(Ωs
1) and v̄k(Ωs

1) are simply denoted by ũi(s), vj(s) and v̄k(s), respectively. The
differential form vj(ψs,Ωs

1) is denoted by wj(s), and v̄k(ψs, Ωs
1) is denoted by w̄k(s).

Denote Vvi
(θs

1, θ0) and Vvi
(θs

1, θ0) simply by Vi and Vi, respectively. Finally, we set

Ṽi = Vi − Vi and w̃i(s) = wi(s) − w̄i(s). Thus
∂

∂s
ũi(s) = i(i − 1)dṼi + i(wi(s) −

w̄i(s)) = i(i− 1)dṼi + iw̃i.

Let
∂

∂si
be the differential operator obtained by applying

∂

∂s
only to ũi(θs

1, θ0),

vi(θs
1) and v̄i(θs

1), then
∂

∂s
is decomposed as

∂

∂s
=

∂

∂s1
+ · · · + ∂

∂sq
. In order to

compute
∂

∂si
χs(ϕ), write αi =

∑

j,k

vj
i v̄

k
i ai

j,k and βi =
∑

j,k

vj
i v̄

k
i bi

j,k so that neither

ai
j,k nor bi

j,k involves vi and v̄i. Then we have the following equation, namely,

∂

∂si
χs(ϕ) =

∂

∂si
χs(ũiαi + βi)

=
∑

j,k

(
i(i− 1)dṼi + iw̃i(s)

)
vj

i (s)v̄
k
i (s)ai

j,k(s)

+
∑

j,k

ijũi(s)v
j−1
i (s)dwi(s)v̄k

i (s)ai
j,k(s)

+
∑

j,k

ikũi(s)v
j
i (s)v̄

k−1
i (s)dw̄i(s)ai

j,k(s)

+
∑

j,k

ijvj−1
i (s)dwi(s)v̄k

i (s)bi
j,k(s)

+
∑

j,k

ikvj
i (s)v̄

k−1
i (s)dw̄i(s)bi

j,k(s).

The first term is equal to

i(i− 1)dṼiαi(s) +
∑

j,k

iw̃i(s)v
j
i (s)v̄

k
i (s)ai

j,k(s).

Note that dṼiαi(s) = d(Ṽiαi(s)) because αi is closed. The second term is cohomol-
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ogous to
∑

j,k

ij(vi(s)− v̄i(s))v
j−1
i (s)wi(s)v̄k

i (s)ai
j,k(s)

+
∑

j,k

ijũi(s)v
j−1
i (s)wi(s)v̄k

i (s)dai
j,k(s),

which is equal to
∑

j,k

ijvj
i (s)v̄

k
i (s)wi(s)ai

j,k(s)−
∑

j,k

ijvj−1
i (s)v̄k

i wi(s)ai
j,k−1(s)

−
∑

j,k

ijvj−1
i (s)wi(s)v̄k

i (s)ũi(s)dai
j,k(s),

where ai
j,−1 is understood to be zero. Similarly, the third term is cohomologous to

−
∑

j,k

ikvj
i (s)v̄

k
i (s)w̄i(s)ai

j,k(s) +
∑

j,k

ikvj
i (s)v̄

k−1
i w̄i(s)ai

j−1,k(s)

−
∑

j,k

ikvj
i (s)v̄

k−1
i (s)wi(s)ũi(s)dai

j,k(s),

where ai
−1,k = 0. The fourth and fifth terms are respectively cohomologous to

∑

j,k

ijvj−1
i (s)v̄k

i (s)wi(s)dbi
j,k(s), and

∑

j,k

ikvj
i (s)v̄

k−1
i (s)w̄i(s)dbi

j,k(s).

Hence we have the following equalities modulo exact terms, namely,

∂

∂si
χs(ϕ)

=
∑

j,k

i(j + 1)vj
i (s)v̄

k
i (s)wi(s)ai

j,k(s)−
∑

j,k

i(k + 1)vj
i (s)v̄

k
i (s)w̄i(s)ai

j,k(s)

−
∑

j,k

ijvj−1
i (s)v̄k

i wi(s)ai
j,k−1(s) +

∑

j,k

ikvj
i (s)v̄

k−1
i w̄i(s)ai

j−1,k(s)

−
∑

j,k

ijvj−1
i (s)wi(s)v̄k

i (s)ũi(s)dai
j,k(s)−

∑

j,k

ikvj
i (s)v̄

k−1
i (s)wi(s)ũi(s)dai

j,k(s)

+
∑

j,k

ijvj−1
i (s)v̄k

i (s)wi(s)dbi
j,k(s) +

∑

j,k

ikvj
i (s)v̄

k−1
i (s)w̄i(s)dbi

j,k(s)

=
∑

j,k

ijvj−1
i (s)v̄k

i wi(s)
(
ai

j−1,k(s)− ai
j,k−1(s) + dbi

j,k(s)− ũi(s)dai
j,k(s)

)

+
∑

j,k

ikvj
i (s)v̄

k−1
i w̄i(s)

(−ai
j,k−1(s) + ai

j−1,k(s) + dbi
j,k(s)− ũi(s)dai

j,k(s)
)
.
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On the other hand, if ϕ̃ is the natural lift of ϕ, then one has the following equation
for each i, namely,

d̃ϕ̃ = ((vi − v̄i)αi − ũidαi + dβi)

=
∑

j,k

(vi − v̄i)v
j
i v̄

k
i ai

j,k +
∑

j,k

vj
i v̄

k
i dbi

j,k −
∑

j,k

ũiv
j
i v̄

k
i dai

j,k

=
∑

j,k

vj
i v̄

k
i (ai

j−1,k − ai
j,k−1 + dbi

j,k − ũidai
j,k).

Proposition 4.2.6 for this choice of ϕ̃ now follows from (4.2.5a). In order to show
the proposition for other choices, it suffices to show that ∆(d̃α̃ + β̃)(θ0, θ

s
1, ψs)

is exact for α̃, β̃ ∈ W̃Uq, where β̃ ∈ Ĩq. Firstly, one has ∆(d̃α̃)(θ0, θ
s
1, ψs) =

δ(d̃(d̃α̃))(θ0, θ
s
1, ψs) = 0. On the other hand, let β̃ = ũIvJ v̄K with |J | > q. If I = φ,

then ∆(vJ v̄K)(θ0, θ
s
1, ψs) = 0 because d̃(vJ v̄K) = 0. If I 6= φ, then the following

equation holds, namely,

∆(ũIvJ v̄K)(θ0, θ
s
1, ψs)

=
∑

l

(−1)l−1(|J |+ |K|+ il)vJ v̄K(vil
− v̄il

)(ψs, Ωs)ũI(l)(θs
1, θ0)

=−
∑

l

(−1)l−1 |J | vJ (ψs,Ωs)v̄K v̄il
(Ωs)ũI(l)(θs

1, θ0)

=d (|J | vJ(ψs,Ωs)v̄K(Ωs)ũI(θs
1, θ0)) .

Here the second equality holds for vJ(Ωs) = 0 and vJ (ψs, Ωs)vil
(Ωs) = 0 by the

Bott vanishing. The last equality follows from (4.2.2b) and dvJ(ψs, Ωs) = 0.

Finally,
∂

∂s
χs(ϕ) is closed as χs(ϕ) is closed independent of s. ¤

Proof of Theorem B1. Let ϕ be a cocycle in WUq+1 and let ϕ̃ be any lift of ϕ to
W̃Uq+1, then d̃ϕ̃ is the linear combination of the monomials of the form ũIvJ v̄K

with |J | > q + 1 or |K| > q + 1. Hence ∆(ρϕ̃)(θ0, θ
s
1, ϕs) identically vanishes by

(4.2.5b). ¤

Compared with the real case, the space H∗(WUq) and the cokernel of ρ∗ are
rather complicated. For example, we have the following.

Proposition 4.2.7 (cf. Theorem 1.8 in [2]). In the lower codimensional cases, the
cokernel of ρ∗ is described as follows:

q = 1: coker ρ∗ is generated by ũ1(v1 + v̄1).
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q = 2: coker ρ∗ is generated by v1 + v̄1, v2
1 + v2 + 2v1v̄1 + v̄2

1 + v̄2 and the classes
in H∗(WU2) of degree 5, 10 or 12, namely, the following classes:

5 ũ1(v2
1 + v1v̄1 + v̄2

1), ũ1(v2 + v̄2) + ũ2(v1 + v̄1)
10 ũ1ũ2v1v̄1(v1 + v̄1)
12 ũ1ũ2v

2
1 v̄2

1 , ũ1ũ2v
2
1 v̄2, ũ1ũ2v2v̄

2
1 , ũ1ũ2v2v̄2

Here the number in the left column stands for the degree of the classes in the same
row.

The examples of Baum and Bott in [6],[10] show that the classes of the lowest
degree can vary. We do not know if the classes of higher degree can vary.

§ 3. Infinitesimal deformations, infinitesimal derivatives and rigidity un-

der infinitesimal deformations.

Recall that TCM denotes the complexified tangent bundle TM ⊗ C of M and
that E is the complex vector bundle locally spanned by TF and the transverse

antiholomorphic vectors
∂

∂z̄i
. The complex normal bundle is then defined by setting

Q(F) = TCM/E. Let ∇ be a Bott connection on Q(F).

Definition 4.3.1 (1.4). Define a derivation dO defined on Γ∞(
∧p

E∗⊗Q(F)) with
values in Γ∞(

∧p+1
E∗ ⊗Q(F)) by setting

dOσ(X0, . . . , Xp)

=
∑

0≤i≤p

(−1)i∇Xiσ(X0, . . . , X̂i, . . . , Xp)

+
∑

0≤i<j≤p

(−1)i+jσ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp),

where σ ∈ Γ∞(
∧p

E∗ ⊗Q(F)), Xi ∈ Γ∞(E) and the symbol ‘̂’ means omission.

A local description of dO is given in [15], where dO is denoted by dQ. A section σ

of Q(F) is said to be foliated and transversely holomorphic if LXσ = 0 for X ∈ E.
In other words, σ is foliated and transversely holomorphic if σ is locally constant
along the leaves and transversely holomorphic. The following fact can be found in
the proof of Theorem 1.27 of [15].

Lemma 4.3.2. Let ΘF be the sheaf of germs of foliated transversely holomorphic
vector fields, then dO ◦ dO = 0 and

0 −→ ΘF −→ Γ∞(
∧0

E∗ ⊗Q(F)) dO−→ Γ∞(
∧1

E∗ ⊗Q(F)) dO−→ · · ·
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is a resolution of ΘF .

We do not give a proof here but simply remark that the equation dO ◦ dO = 0
follows from the fact that ∇Xi

∇Xj
−∇Xj

∇Xi
−∇[Xi,Xj ] = 0 for sections Xi, Xj of

E because ∇ is a Bott connection.

Definition 4.3.3. Let ΘF be the sheaf of germs of foliated transversely holomor-
phic vector fields. We denote by H∗(M ; ΘF ) the cohomology of (Γ∞(

∧∗
E∗ ⊗

Q(F)), dO).

Remark 4.3.4. It is shown in [15] (Theorem 1.27) that H∗(M ; ΘF ) is of finite di-
mension.

The infinitesimal derivative of secondary classes will be given as a mapping from
H1(M ; ΘF )×H∗(WUq) to H∗(M ; C). In what follows, we follow the conventions
as in [22] but Bott connections on Q(F) instead of Q(F)∗ are used.

Let P be the principal bundle associated to Q(F)∗ with projection π. Let F̂
be the lift of F to P . If ω is an element of P , then ω is a q-tuple of linearly
independent elements of Q(F)∗ at π(ω). For a vector X in TωP , set ω(X) =
t(ω1(π∗X), . . . , ωq(π∗X)) and call this ω as the canonical form. The differential
forms ωi are considered as components of ω and we denote ω = t(ω1, . . . , ωq). Note
that the connection form θ of any Bott connection ∇ satisfies dω = −θ ∧ ω (Here
the sign is opposite due to convention when compared with [22]). Let Ω = dθ+θ∧θ

be the curvature form of ∇, then Ω ∧ ω = 0.
Now let β ∈ H1(M ; ΘF ) and let σ′ be a representative of β. Such a σ′ is a

section of E∗⊗Q(F) with dOσ′ = 0. By arbitrary extending, σ′ can be regarded as
a section of T ∗CM⊗Q(F). On the other hand, by pulling back to P and considering
the horizontal lifts in value, a section of

∧k
T ∗CM ⊗Q(F) is considered as a section

of
∧k

P ∗ ⊗ Q(F̂). Furthermore, a section of
∧k

P ∗ ⊗ Q(F̂) can be considered as
a Cq-valued k-form on P by composing with the canonical form ω. A section of∧k

P ∗⊗Q(F̂) is always considered as a Cq-valued k-form in this way and represented
in columns. On the contrary, a section σ projects down to a section σ′′ of

∧k
T ∗CM⊗

Q(F) if and only if

1) σ is horizontal, that is, σ(X1, . . . , Xk) = 0 if π∗(Xi) = 0 for some i,
2) L∗aσ = aσ for a ∈ GL(q;C), where La is the left action of GL(q; C) on P .

Thus the above section σ′ can be viewed as a section of P ∗ ⊗Q(F̂) satisfying the
conditions 1), 2) and

3) dσ + θ ∧ σ = 0 when restricted to π∗E.
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Let I(ω) be the ideal generated by ω1, . . . , ωq in the space of differential forms on
P , then 3) is equivalent to dσ + θ ∧ σ ∈ I(ω).

Definition 4.3.5 (Definition 3.8). Let β be an element of H1(M ; ΘF ) and let σ

be a representative of β as a Cq-valued 1-form on P . The derivative ω′ of the
canonical form ω with respect to σ is given by

ω′ = −σ.

It follows from the condition 3) above that dω′ + θ ∧ ω′ ∈ I(ω). Let θ′ be a
glqC-valued 1-form on P such that

(4.3.6) dω′ + θ ∧ ω′ = −θ′ ∧ ω.

Definition 4.3.7 (Definition 3.10). Any glqC-valued 1-form θ′ on P satisfying
(4.3.6) is called an infinitesimal derivative of θ with respect to σ.

If θ′0 and θ′1 are two infinitesimal derivatives of θ with respect to σ, then (θ′1 −
θ′0) ∧ ω = 0. Hence

(4.3.8) (θ′1 − θ′0)
i
j =

∑

k

λi
j,kωk

for some C-valued functions λi
j,k on P satisfying λi

j,k = λi
k,j .

Lemma 4.3.9 (Lemma 2.12). If θ′ is an infinitesimal derivative of θ, then

i) θ′ is horizontal,
ii) θ′ is tensorial of type ad modulo ω, namely, L∗aθ′ − aθ′a−1 ∈ I(ω).

Proof. i) Let X ∈ TωP such that π∗X = 0, then ω(X) = 0. As ω′ is horizontal, one
has also ω′(X) = 0. Let X̃ be a vector field such that X̃ω = X. Now choose vector
fields Yj , j = 1, . . . , q which are equivariant under the left action and such that
ωk((Yk)ω) = 1 and ωk((Yj)ω) = 0 if j 6= k. Set α = ω′ − Aω, where A is a matrix
valued function defined by settling A = (ω′(Y1) . . . ω′(Yq)), then α is horizontal.
Note that XA = 0 because the both Yj and ω′ are equivariant and π∗X = 0. Then
α(Y ) = 0 and ω(Y ) is the identity matrix. One has by (4.3.6)

dα = −θ ∧ ω′ − θ′ ∧ ω − dA ∧ ω + Aθ ∧ ω

= −θ ∧ α− θ′ ∧ ω − dA ∧ ω + Aθ ∧ ω − θ ∧Aω.
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As dα(X, Y ) = Xα(Y )−Y α(X)−α([X,Y ]) = 0 because π∗[X, Y ] = 0, the following
equation holds, namely,

θ′(X) = θ′(X)ω(Y )

= (θ′ ∧ ω)(X,Y )

= (−θ ∧ α− dA ∧ ω + Aθ ∧ ω − θ ∧Aω)(X,Y )

= −dA(X) + Aθ(X)− θ(X)A.

Since dA(X) = X(A) = 0, it suffices to show that θ(X) = 0. This follows from
the equations θ(X) = θ(X)ω(Y ) = (θ ∧ ω)(X, Y ) = −dω(X, Y ) and dω(X, Y ) =
Xω(Y )− Y ω(X)− ω([X, Y ]) = 0.
ii) One has L∗aθ = aθa−1, L∗aω = aω and L∗aω′ = ω′. Applying L∗a to (4.3.6) one
has −L∗aθ′∧aω = adω′+aθa−1∧aω′. The right hand side is equal to −aθ′a−1∧aω

again by (4.3.6). ¤

Definition 4.3.10. Let ϕ̃ ∈ W̃Uq be a lift of a cocycle ϕ in WUq and let β ∈
H1(M ; ΘF ) be represented by σ. Let θu be a unitary connection for some Hermitian
metric on Q(F) and let θ be a Bott connection. Let Ω be the curvature form of θ,
and let θ′ be an infinitesimal derivative of θ with respect to σ. Define a differential
form on P then by setting

Dσ(ϕ̃) = ∆ϕ̃(θu, θ, θ′),

where the right hand side is defined in Definition 4.2.4.

We will show that Dσ(ϕ̃) projects down to a closed form on M , and that its
cohomology class depends only on [ϕ] ∈ H∗(WUq) and β ∈ H1(M ; ΘF ). Then the
following definition is justified.

Definition 4.3.11. For f ∈ H∗(WUq) and β ∈ H1(M ; ΘF ), choose representa-
tives ϕ of f and σ of β. Set Dβ(f) = [Dσ(ϕ̃)], where ϕ̃ is any lift of ϕ to W̃Uq,
and call it the infinitesimal derivative of f with respect to β.

Remark 4.3.12. If ϕ = ũi1vi2 . . . vik
+ v̄i1 ũi2vi3 . . . vik

+ · · · + v̄i1 . . . v̄ik−1 ũik
, then

Dβ(ϕ̃) coincides with the one given by Definition 3.14 of [22], where this kind of ϕ

is denoted by hcI .

Remark 4.3.13. Taking (4.2.5b) into account, Definition 4.3.11 can be seen as a
complex version of (2.15) in [22]. Indeed, if one begins with the cocycles of the form
hIcJ ∈ WOq, the same differential forms are obtained by following the construction
in this paper.
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Proof of Theorem B2. Once well-definedness is established, the theorem follows
from Definition 4.3.10 by using (4.2.5b). ¤

We come back to show the well-definedness of infinitesimal derivatives.

Lemma 4.3.14 (Theorem 3.17). The differential form Dσ(ϕ̃) in Definition 4.3.10
projects down to a well-defined closed form on M which depends on σ, θ, θu and
the choice of the lift ϕ̃.

Proof. (a) Dσ(ϕ̃) is independent of the choice of θ′.
Let θ′0 and θ′1 be infinitesimal derivatives of θ with respect to σ and let g be a

monomial in v1, . . . , vq and v̄1, . . . , v̄q. Since θ′1 − θ′0 = λω by (4.3.8), g(θ′1, Ω) −
g(θ′0, Ω) = g(λω, Ω). As ϕ̃ is a lift of a cocycle, d̃ϕ̃ is the linear combination of
cochains in Ĩq. It follows that ∆ϕ̃(θu, θ, θ′1)−∆ϕ̃(θu, θ, θ′0) ∈ I(ω)q+1 ∪ I(ω)

q+1
=

{0}.
(b) Dσ(ϕ̃) projects down to M .

It suffices to show vJ v̄K(vil
− v̄il

)(θ′, Ω) projects down to M . We have

L∗a (vJ v̄K(vil
− v̄il

)(θ′, Ω))− vJ v̄K(vil
− v̄il

)(θ′, Ω)

= vJ v̄K(vil
− v̄il

)(L∗aθ′, aΩa−1)− vJ v̄K(vil
− v̄il

)(aθ′a−1, aΩa−1)

= vJ v̄K(vil
− v̄il

)(L∗aθ′ − aθ′a−1, aΩa−1).

It follows that L∗a∆ϕ̃(θu, θ, θ′) = ∆ϕ̃(θu, θ, θ′) from Lemma 4.3.9 ii) and an argu-
ment as in the proof of (a).
(c) Dσ(ϕ̃) is closed.

Recall that d̃ϕ̃ is the linear combination of cochains of the form ũIvJ v̄K with
|J | > q or |K| > q. Since Dσ(ϕ̃) = ∆ϕ̃(θu, θ, θ′) = δ(d̃ϕ̃)(θu, θ, θ′) and since
d̃(d̃ϕ̃) = 0, Dσ(ϕ̃) is closed by the following Lemma 4.3.16. This completes the
proof of Lemma 4.3.14. ¤

Before completing the proof of Lemma 4.3.14 by giving Lemma 4.3.16, we intro-
duce the following differential form.

Definition 4.3.15. Let θu
0 and θu

1 be unitary connections (not necessarily with
respect to the same Hermitian metric), and let ũIvJ v̄K ∈ W̃Uq. Decompose I =
I1∪I2 so that I1 consists only of indices less than or equal to i, and I2 consists only
of indices greater than i, then set ũ

(i)
I (θ, θu

0 , θu
1 ) = ũI1(θ, θ

u
0 )ũI2(θ, θ

u
1 ). Finally, set

δi(ũIvJ v̄K)(θu
0 , θu

1 , θ, θ′) = (|J |+ |K|)vJ v̄K(θ′, Ω)ũ(i)
I (θ, θu

0 , θu
1 ).

We extend δi to the whole W̃Uq by linearity.
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Lemma 4.3.16. Let ϕ̃ ∈ W̃Uq such that d̃ϕ̃ = 0. Assume that ϕ̃ ∈ Iq ∪ Iq,
then δi(ϕ̃)(θu

0 , θu
1 , θ, θ′) is closed. In particular, vJ v̄K(θ′, Ω) is closed if |J | > q or

|K| > q.

Proof. Assume first that |J | > q and show that vJ(θ′, Ω) is closed. Write Ωi
j =∑

k

Γ i
j,k ∧ωk and set Ω′ij =

∑
k

Γ i
j,k ∧ω′k, then Ω∧ω′ = −Ω′ ∧ω. On the other hand,

one obtains from the exterior derivative of (4.3.6), the equations Ω = dθ + θ ∧ θ,
dω = −θ ∧ ω and (4.3.6) itself the equation

−Ω ∧ ω′ = (dθ′ + [θ, θ′]) ∧ ω,

where [θ, θ′] = θ ∧ θ′ + θ′ ∧ θ. Hence vJ(dθ′ + [θ, θ′], Ω) = vJ(Ω′, Ω).
Let Is(ω) be the ideal of differential forms on P generated by ω1 +sω′1, . . . , ωq +

sω′q, then Is(ω)q+1 = {0} independent of s. Set Ω(s) = Ω+sΩ′, then Ω(s) ∈ Is(ω)
because (Ω(s))i

j =
∑
k

Γ i
j,k ∧ (ωk + sω′k). One has now the following equation;

d (vJ(θ′, Ω)) = vJ(dθ′, Ω)− (|J | − 1)vJ(θ′, dΩ,Ω)

= vJ(dθ′, Ω) + (|J | − 1)vJ(θ′, [θ, Ω],Ω)

= vJ(dθ′ + [θ, θ′],Ω)

= vJ(Ω′, Ω)

=
1
|J |

∂

∂s

∣∣∣∣
s=0

vJ(Ω(s))

= 0.

The last equality holds because vJ (Ω(s)) is identically zero. On the other hand, by
(4.2.5b),

(|J |+ |K|)vJ v̄K(θ′, Ω) = |J | vJ(θ′, Ω)v̄K(Ω) + |K| vJ(Ω)v̄K(θ′, Ω)

and vJ(Ω) = 0 because |J | > q. Hence vJ v̄K(θ′, Ω) is closed. Similarly, vJ v̄K(θ′, Ω)
is also closed if |K| > q.

Assume now that ϕ̃ =
∑
t

xtũItvJt v̄Kt , where xt ∈ C. We may assume that the

number of elements of It are constant, which is denoted by #I. If #I = 0, then
δi(ϕ̃)(θu

0 , θu
1 , θ, θ′) is already shown to be closed. If #I > 0, then one has

d (δi(ϕ̃)(θu
0 , θu

1 , θ, θ′))

=
∑

t,l

(−1)lxt(|Jt|+ |Kt|)vJt v̄Kt(θ
′, Ω)(vil

− v̄il
)(Ω)ũ(i)

It(l)
(θ, θu

0 , θu
1 ).
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Since |Jt| > q or |Kt| > q, vJt
(θ′,Ω)vil

(Ω)v̄Kt
(Ω) = vJt

(Ω)v̄Kt
(θ′, Ω)v̄il

(Ω) = 0.
Hence

d (δi(ϕ̃)(θu
0 , θu

1 , θ, θ′)) =
∑

t,l

−(−1)lxt |Jt| vJt
(θ′, Ω)v̄Kt

(Ω)v̄il
(Ω)ũ(i)

It(l)
(θu, θ)

+
∑

t,l

(−1)lxt |Kt| vJt(Ω)vil
(Ω)v̄Kt(θ

′, Ω)ũ(i)
It(l)

(θu, θ).

Now by (4.2.5a) and (4.2.5b),

(|Jt|+ |Kt|+ il)vJt
v̄Kt

v̄il
(θ′, Ω) = |Jt| vJt

(θ′, Ω)v̄Kt
v̄il

(Ω), and

(|Jt|+ |Kt|+ il)vJtvil
v̄Kt(θ

′, Ω) = |Kt| vJtvil
(Ω)v̄Kt(θ

′, Ω).

Thus

d (δi(ϕ̃)(θu
0 , θu

1 , θ, θ′)) =
∑

t,l

−(−1)lxt(|Jt|+ |Kt|+ il)vJt v̄Kt v̄il
(θ′, Ω)ũ(i)

It(l)
(θu, θ)

+
∑

t,l

(−1)lxt(|Jt|+ |Kt|+ il)vJtvil
v̄Kt(θ

′, Ω)ũ(i)
It(l)

(θu, θ)

= δi(d̃ϕ̃)(θu
0 , θu

1 , θ, θ′)

= 0

because d̃ϕ̃ = 0. This completes the proof of Lemma 4.3.16. ¤

Theorem 4.3.17 (cf. Theorem 3.17). For f ∈ H∗(WUq) and β ∈ H1(M ; ΘF ),
choose representatives ϕ of f and σ of β. Let ϕ̃ be any lift of ϕ to W̃Uq. Then the
cohomology class [Dσ(ϕ̃)] is independent of the choice of representatives and lifts.

Proof. Let θu, θ, θ′, Ω be as in Definition 4.3.10.
(a) [Dσ(ϕ̃)] is independent of the choice of the Bott connection θ.
Let θ0 and θ1 be Bott connections and choose their infinitesimal derivatives θ′0 and
θ′1 with respect to σ. Note that Dσ(ϕ̃) is independent of the choice of infinitesimal
derivatives by Lemma 4.3.14. Set θt = θ0 + t(θ1 − θ0), then θt is also a Bott
connection and one of its infinitesimal derivatives is given by θ′t = θ′0 + t(θ′1 − θ′0).

Let Ωt be the connection form of θt, and we will show that
∂

∂t
∆ϕ̃(θu, θt, θ

′
t) is exact.

Recalling that ∆ϕ̃(θu, θt, θ
′
t) is calculated by evaluating d̃ϕ̃ ∈ Ĩq, first we show the

claim when d̃ϕ̃ does not involve any ũi. One has

d (vJ v̄K(θ′t, θ1 − θ0, Ωt)) = vJ v̄K(dθ′t, θ1 − θ0, Ωt)− vJ v̄K(θ′t, dθ1 − dθ0, Ωt)

− (|J |+ |K| − 2)vJ v̄K(θ′t, θ1 − θ0, [θt,Ωt], Ωt)

= vJ v̄K(dθ′t + [θt, θ
′
t], θ1 − θ0, Ωt)

− vJ v̄K(θ′t, dθ1 − dθ0 + [θt, θ1 − θ0], Ωt).
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Note that each of the differential forms in the above equation projects down to M .
On the other hand,

∂

∂t
vJ v̄K(θ′t,Ωt)

= vJ v̄K(θ′1 − θ′0,Ωt) + (|J |+ |K| − 1)vJ v̄K(θ′t, d(θ1 − θ0) + [θt, θ1 − θ0],Ωt).

Hence
∂

∂t
vJ v̄K(θ′t, Ωt) + (|J |+ |K| − 1)d (vJ v̄K(θ′t, θ1 − θ0, Ωt))

= vJ v̄K(θ′1 − θ′0, Ωt) + (|J |+ |K| − 1)vJ v̄K(dθ′t + [θt, θ
′
t], θ1 − θ0,Ωt).

As in the proof of Lemma 4.3.16, write (Ωt)i
j =

∑
k

Γ i
j,k ∧ ωk and set (Ω′t)

i
j =

∑
k

Γ i
j,k ∧ ω′k. Then Ω′t ∧ ω = (dθ′t + [θt, θ

′
t]) ∧ ω. Since θ0 ∧ ω = θ1 ∧ ω = −dω,

(θ1 − θ0) ∧ ω = 0. Hence (θ1 − θ0)i
j =

∑
k

λi
j,kωk for some λi

j,k. Now by (4.3.6)

one has (θ′1 − θ′0) ∧ ω = −(λω) ∧ ω′ = (λω′) ∧ ω. Set Ω(s, t) = Ωt + sΩ′t, θ(s) =
(θ1− θ0)+ sλω′ and Is(ω) = I(ω1 + sω′1, . . . , ωq + sω′q), then Ω(s, t), θ(s) ∈ Is(ω).
Thus vJ v̄K(θ(s),Ω(s, t)) = 0 if |J | > q or |K| > q. Differentiating with respect to
s and setting s = 0, one obtains

vJ v̄K(λω′, Ωt) + (|J |+ |K| − 1)vJ v̄K(θ1 − θ0, Ω′t, Ωt) = 0.

As the left hand side is equal to vJ v̄K((θ′1 − θ′0, Ωt) + (|J | + |K| − 1)vJ v̄K(θ1 −
θ0, dθ′t + [θt, θ

′
t], Ωt),

∂

∂t
vJ v̄K(θ′t, Ωt) = −(|J |+ |K| − 1)d (vJ v̄K(θ′t, θ1 − θ0, Ωt))

if |J | > q or |K| > q.
If d̃ϕ̃ involves some of ũi’s, write d̃ϕ̃ =

∑
i

xivJi v̄Ki ũIi , where |Ji| > q or |Ki| > q,

and xi ∈ C. By definition,

∆ϕ̃(θu, θt, θ
′
t) =

∑

i

xi(|Ji|+ |Ki|)vJi v̄Ki(θ
′
t, Ωt)ũIi(θt, θ

u).

Hence
∂

∂t
∆ϕ̃(θu, θt, θ

′
t)

=−
∑

i

xi(|Ji|+ |Ki|)(|Ji|+ |Ki| − 1)d (vJi v̄Ki(θ
′
t, θ1 − θ0, Ωt)) ũIi(θt, θ

u)

+
∑

i,l

xi(|Ji|+ |Ki|)vJi v̄Ki(θ
′
t, Ωt)(−1)l−1il(il − 1)dṼil

(θt, θ
u)ũIi(l)(θt, θ

u)

+
∑

i,l

xi(|Ji|+ |Ki|)vJi v̄Ki(θ
′
t, Ωt)(−1)l−1ilṽil

(θ1 − θ0, Ωt)ũIi(l)(θt, θ
u),
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where Ii(l) = Ii \ {il}. Fix now an integer k and rewrite d̃ϕ̃ as d̃ϕ̃ = ũkαk + βk so
that αk and βk do not involve ũk, then d̃(d̃ϕ̃) = 0 implies that d̃αk = 0. Hence

∑

i,l
il=k

xi(|Ji|+ |Ki|)vJi
v̄Ki

(θ′t, Ωt)(−1)l−1il(il − 1)dṼil
(θt, θ

u)ũIi(l)(θt, θ
u)

= k(k − 1)d(Ṽk(θt, θ
u)δ(αk)(θu, θt, θ

′
t))

because δ(αk)(θu, θt, θ
′
t) is closed by Lemma 4.3.16. Thus

∂

∂t
∆ϕ̃(θu, θt, θ

′
t) is coho-

mologous to R, where

R =−
∑

i

xi(|Ji|+ |Ki|)(|Ji|+ |Ki| − 1)d ((vJi v̄Ki(θ
′
t, θ1 − θ0,Ωt)) ũIi(θt, θ

u)

+
∑

i,l

xi(|Ji|+ |Ki|)vJi v̄Ki(θ
′
t, Ωt)(−1)l−1ilṽil

(θ1 − θ0,Ωt)ũIi(l)(θt, θ
u).

It suffices to show that R is exact. This is indeed done as follows, namely, by (A.6b)
one has the following equation;

− (|Ji|+ |Ki|)(|Ji|+ |Ki| − 1)d (vJi v̄Ki(θ
′
t, θ1 − θ0, Ωt)) ũIi(θt, θ

u)

≡(|Ji|+ |Ki|)(|Ji|+ |Ki| − 1)vJi v̄Ki(θ
′
t, θ1 − θ0, Ωt)dũIi(θt, θ

u)

=
∑

l

(|Ji|+ |Ki|)(|Ji|+ |Ki| − 1)vJi v̄Ki(θ
′
t, θ1 − θ0, Ωt)(−1)l−1(vil

− v̄il
)(Ωt)ũIi(l)(θt, θ

u)

=−
∑

l

|Ji| (|Ji| − 1)vJi(θ
′
t, θ1 − θ0, Ωt)v̄Ki(Ωt)(−1)l−1v̄il

(Ωt)ũIi(l)(θt, θ
u)

−
∑

l

|Ji| |Ki| vJi(θ
′
t, Ωt)v̄Ki(θ1 − θ0,Ωt)(−1)l−1v̄il

(Ωt)ũIi(l)(θt, θ
u)

−
∑

l

|Ji| |Ki| vJi(θ1 − θ0,Ωt)vil
(Ωt)v̄Ki(θ

′
t,Ωt)(−1)l−1ũIi(l)(θt, θ

u)

+
∑

l

|Ki| (|Ki| − 1)vJi(Ωt)vil
(Ωt)v̄Ki(θ

′
t, θ1 − θ0, Ωt)(−1)l−1ũIi(l)(θt, θ

u),

where the symbol ‘≡’ means that the equality holds modulo exact forms. On the
other hand,

(|Ji|+ |Ki|)vJi v̄Ki(θ
′
t, Ωt)(−1)l−1ilṽil

(θ1 − θ0, Ωt)ũIi(l)(θt, θ
u)

=− |Ji| vJi(θ
′
t, Ωt)v̄Ki(Ωt)(−1)l−1ilv̄il

(θ1 − θ0, Ωt)ũIi(l)(θt, θ
u)

− |Ki| vJi(Ωt)vil
(θ1 − θ0,Ωt)v̄Ki(θ

′
t,Ωt)(−1)l−1ilũIi(l)(θt, θ

u).
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Therefore, one has

R ≡−
∑

i,l

xi |Ji| (|Ji| − 1)vJi(θ
′
t, θ1 − θ0, Ωt)v̄Ki(Ωt)v̄il

(Ωt)(−1)l−1ũIi(l)(θt, θ
u)

−
∑

i,l

xi |Ji| (|Ki|+ il)vJi
(θ′t, Ωt)v̄Ki

v̄il
(θ1 − θ0, Ωt)(−1)l−1ũIi(l)(θt, θ

u)

−
∑

i,l

xi(|Ji|+ il) |Ki| vJi
vil

(θ1 − θ0, Ωt)v̄Ki
(θ′t, Ωt)(−1)l−1ũIi(l)(θt, θ

u)

+
∑

i,l

xi |Ki| (|Ki| − 1)vJi(Ωt)vil
(Ωt)v̄Ki(θ

′
t, θ1 − θ0, Ωt)(−1)l−1ũIi(l)(θt, θ

u).

Denote by R′ the right hand side of the above equation. Now by (A.6b),

(|Ji|+ |Ki|+ il)vJivil
v̄Ki(θ

′
t, θ1 − θ0, Ωt)

=− (|Ji|+ il) |Ki| vJi
vil

(θ1 − θ0,Ωt)v̄Ki
(θ′t,Ωt)

+ |Ki| (|Ki| − 1)vJivil
(Ωt)v̄Ki(θ

′
t, θ1 − θ0, Ωt),

and

(|Ji|+ |Ki|+ il)vJi v̄Ki v̄il
(θ′t, θ1 − θ0, Ωt)

= |Ji| (|Ji| − 1)vJi(θ
′
t, θ1 − θ0,Ωt)v̄Ki v̄il

(Ωt)

+ |Ji| (|Ki|+ il)vJi(θ
′
t,Ωt)v̄Ki v̄il

(θ1 − θ0,Ωt).

Thus

R′ =
∑

i,l

xi(|Ji|+ |Ki|+ il)vJivil
v̄Ki(θ

′
t, θ1 − θ0,Ωt)(−1)l−1ũIi(l)(θt, θ

u)

−
∑

i,l

xi(|Ji|+ |Ki|+ il)vJi v̄Ki v̄il
(θ′t, θ1 − θ0, Ωt)(−1)l−1ũIi(l)(θt, θ

u)

= δ(d̃d̃ϕ̃)(θu, θt, θ
′
t)

= 0.

This completes the proof of (a).
(b) [Dσ(ϕ̃)] is independent of the choice of the unitary connection θu.

We first admit the fact that ũi(θ, θu
1 ) − ũi(θ, θu

0 ) = dṼ ′
i for some differential

form Ṽ ′
i for two unitary connections θu

0 and θu
1 . Let ϕ̃ ∈ W̃Uq be the natural lift

of ϕ and define αi and βi by requiring that d̃ϕ̃ = ũiαi + βi and that αi and βi

do not involve ũi. Then ∆ϕ̃(θu
1 , θ, θ′) = δ0(d̃ϕ̃)(θu

0 , θu
1 , θ, θ′) and ∆ϕ̃(θu

1 , θ, θ′) =
58



δq(d̃ϕ̃)(θu
0 , θu

1 , θ, θ′). Thus it suffices to show that δk−1(d̃ϕ̃)(θu
0 , θu

1 , θ, θ′) is cohomol-
ogous to δk(d̃ϕ̃)(θu

0 , θu
1 , θ, θ′) for each k. Since βk does not involve ũk,

δk−1(d̃ϕ̃)(θu
0 , θu

1 , θ, θ′)

=− ũk(θ, θu
1 )δk−1(αk)(θu

0 , θu
1 , θ, θ′) + δk−1(βk)(θu

0 , θu
1 , θ, θ′)

=− ũk(θ, θu
1 )δk−1(αk)(θu

0 , θu
1 , θ, θ′) + δk(βk)(θu

0 , θu
1 , θ, θ′).

On the other hand, d̃α̃i = 0 because d̃d̃ϕ̃ = 0. It follows that dδk−1(αk)(θu
0 , θu

1 , θ, θ′) =
0 by Lemma 4.3.16. Hence

δk−1(d̃ϕ̃)(θu
0 , θu

1 , θ, θ′) + d
(
Ṽ ′

kδk−1(αk)(θu
0 , θu

1 , θ, θ′)
)

=− ũk(θ, θu
0 )δk−1(αk)(θu

0 , θu
1 , θ, θ′) + δk(βk)(θu

0 , θu
1 , θ, θ′)

=− ũk(θ, θu
0 )δk(αk)(θu

0 , θu
1 , θ, θ′) + δk(βk)(θu

0 , θu
1 , θ, θ′)

= δk(d̃ϕ̃)(θu
0 , θu

1 , θ, θ′)

because αk does not involve ũk.
Thus it suffices to find a differential form Ṽ ′

i such that ũi(θ, θu
1 )− ũi(θ, θu

0 ) = dṼ ′
i

for each i. First fix a Hermitian metric on Q(F) and let θu
0 and θu

1 be unitary
connections. Apply (4.2.2a) after setting f = ṽi = vi − v̄i, θs

1 = θ + s(θu
1 − θ) and

θ0 = θu
0 , then integrating it with respect to s, one obtains the equation

∆evi
(θu

1 , θu
0 )−∆evi

(θ, θu
0 ) = k(k − 1)dWevi

(θu
1 , θu

0 ) + ∆evi
(θu

1 , θ),

where Wevi
(θu

1 , θu
0 ) =

∫ 1

0

Vevi
(θs

1, θ
u
0 )ds. Hence

(4.3.18) ∆evi
(θ, θu

1 )−∆evi
(θ, θu

0 ) + ∆evi
(θu

1 , θu
0 ) = k(k − 1)dWevi

(θu
1 , θu

0 ).

Set θu
t = θu

0 + t(θu
1 − θu

0 ), then by (4.2.2a),

∂

∂t
∆evi

(θu
t , θu

0 ) = k(k − 1)dVevi
(θu

t , θ0) + kṽi(θu
1 − θu

0 , Ωu
t , . . . , Ωu

t ).

Since θu
0 and θu

1 are unitary and since Vevi
= Ṽi,

∂

∂t
∆evi

(θu
t , θu

0 ) = k(k − 1)dṼi(θu
t , θ0).

Hence ũi(θ, θu
1 )− ũi(θ, θu

0 ) is exact if θu
0 and θu

1 are unitary connections for a fixed
Hermitian metric.
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Let now h0 and h1 be Hermitian metrics on Q(F) and let θu
0 and θu

1 be unitary
connections for h and h′, respectively. The equation (4.3.18) is also valid so that
it suffices to show that ∆f (θu

1 , θu
0 ) is exact for f = ṽi = vi − v̄i. Denote by ιt the

natural isomorphism from M to M × {t} and by π the projection from M × R

to R. Consider then the foliation F × R of M × R whose leaves are given by
L ×R, where L is a leaf of F . Let θ̃u be a unitary connection on Q(F ×R) for
some Hermitian metric such that θu

t = θu
0 for t ≤ 0 and θu

t = θu
1 for t ≥ 1, where

θu
t = ι∗t θ̃

u. Now write ∆evi
(θ̃u, π∗θu

0 ) = λ+µ∧dt, where λ, µ do not involve dt, and
define a differential form Ṽ ′

i (θu
1 , θu

0 ) on M by setting

Ṽ ′
i (θu

1 , θu
0 ) = −

∫ 1

0

µdt,

then dṼ ′
i (θu

1 , θu
0 ) = ∆evi

(θu
1 , θu

0 ). This is shown as follows. First,

dM×R∆evi
(θ̃u, π∗θ0) =

(
vi(θ̃u)− π∗vi(θu

0 )
)
−

(
v̄i(θ̃u)− π∗v̄i(θu

0 )
)

= 0.

Hence
∂λ

∂t
+ dMµ = 0, where dM denotes the exterior derivative along the fiber of

π : M ×R → R. On the other hand, one has

dṼ ′
i (θu

1 , θu
0 ) = −

∫ 1

0

dMµdt =
∫ 1

0

∂λ

∂t
dt = λ(1)− λ(0)

and λ(t) = ι∗t λ = ι∗t ∆evi
(θ̃u, π∗θ0) = ∆evi

(θu
t , θ0). Finally, λ(1) = ∆evi

(θu
1 , θu

0 ) and
λ(0) = ∆evi

(θu
0 , θu

0 ) = 0.
(c) [Dσ(ϕ̃)] is independent of the choice of representative of β.

Recall that representatives of β are by definition sections of E∗ ⊗ Q(F). They
are considered as Cq-valued 1-forms on P by extending them arbitrary to sections
of T ∗CM ⊗Q(F) and then lifted to P .

We first show that [Dσ(ϕ̃)] is independent of extensions as above. Suppose that
σ0 and σ1 are representatives of β and assume that σ0 = σ1 when restricted to π∗E,
where π : P → M is the projection, then σ1 − σ0 = µω for some matrix valued
function µ. Let θ′0 and θ′1 be corresponding derivatives of θ, then by (4.3.6),

(θ′1 − θ′0) ∧ ω = d(σ1 − σ0) + θ ∧ (σ1 − σ0) = (dµ + [θ, µ]) ∧ ω.

Hence

vJ v̄K(θ′1, Ω)− vJ v̄K(θ′0, Ω) = vJ v̄K(dµ + [θ, µ], Ω)

= vJ v̄K(dµ,Ω) + (|J |+ |K| − 1)vJ v̄K(µ,−[θ, Ω])

= vJ v̄K(dµ,Ω) + (|J |+ |K| − 1)vJ v̄K(µ, dΩ)

= d (vJ v̄K(µ, Ω)) .
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Let ũIvJ v̄K be an element of W̃Uq such that |J | > q, then

(|J |+ |K|)vJ v̄K(θ′1, Ω)ũI(θ, θu)− vJ v̄K(θ′0, Ω)ũI(θ, θu)

= d ((|J |+ |K|)vJ v̄K(µ,Ω)) ũI(θ, θu)

= d (|J | vJ(µ,Ω)v̄K(Ω)) ũI(θ, θu)

≡− |J | vJ(µ, Ω)v̄K(Ω)dũI(θ, θu)

=− |J |
∑

t

(−1)t−1vJ(µ, Ω)v̄K(Ω)(vit
− v̄it

)(Ω)ũI(t)(θ, θu)

= |J |
∑

t

(−1)t−1vJ (µ, Ω)v̄K(Ω)v̄it
(Ω)ũI(t)(θ, θu)

=(|J |+ |K|+ it)
∑

t

(−1)t−1vJ v̄K v̄it(µ, Ω)ũI(t)(θ, θu)

= δ(d̃(ũIvJ v̄K))(θu, θ, µ).

Similarly,

(|J |+ |K|)vJ v̄K(θ′1, Ω)ũI(θ, θu)− vJ v̄K(θ′0,Ω)ũI(θ, θu) ≡ δ(d̃(ũIvJ v̄K))(θu, θ, µ)

if |K| > q. Hence

δ(d̃ϕ̃)(θu, θ, θ′1)− δ(d̃ϕ̃)(θu, θ, θ′0) ≡ δ(d̃d̃ϕ̃)(θu, θ, µ) = 0.

In order to complete the proof of (c), it suffices to show that Dσ(ϕ̃) is exact for
sections σ corresponding to dOγ, γ ∈ Γ∞Q(F), because Dσ0+σ1(ϕ̃) = Dσ0(ϕ̃) +
Dσ1(ϕ̃), where dO is as in Definition 4.3.1. Recall briefly how such a σ is obtained.
Choose a lift Y of γ to TCM and let Ŷ be its horizontal lift. Define a function
g on P by setting g(ω) = ω(Ŷ ). Then dg + θg can be chosen as σ. By definition
ω′ = −dg − θg. An infinitesimal derivative θ′ with respect to σ is by definition a
gl(q;C)-valued 1-form satisfying θ′ ∧ ω = −dω′ − θ ∧ ω′. The right hand side is
now equal to dθg − θ ∧ dg + θ ∧ dg + θ ∧ θg = Ωg. Let {Γk} be a family of matrix
valued 1-forms such that Ω =

∑
k

Γk∧ωk, then Ωg =
∑
k

Γkg∧ωk. Note that writing

Γk = (Γ i
j,k), one has Γ i

j,k = Γ i
k,j and hence (

∑
k

Γkωk(Ŷ )) ∧ ω = (
∑
k

Γkgk) ∧ ω =
∑
j

Γjg ∧ ωj = Ωg and (
∑
k

Γk(Ŷ )ωk) ∧ ω = 0. Thus by setting θ′ = −ibY Ω,

θ′ ∧ ω =
∑

k

(Γk(Ŷ )ω)ωk + (
∑

k

Γkωk(Ŷ )) ∧ ω = Ωg.

Therefore, for this choice of θ′,

vJ v̄K(θ′, Ω) = − 1
|J |+ |K| ibY vJ v̄K(Ω) = 0
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if |J | > q or |K| > q. Hence δ(d̃ϕ̃)(θu, θ, θ′) = 0 if ϕ is closed in WUq.
(d) [Dσ(ϕ̃)] is independent of the choice of ϕ and its lift ϕ̃.
It suffices to show that Dσ(d̃ϕ̃ + α) is exact, where ϕ̃ ∈ W̃Uq and α ∈ Ĩq. First,
Dσ(d̃ϕ̃) = 0 because d̃(d̃ϕ̃) = 0. In order to show that Dσ(α) is exact for α ∈ Ĩq,
first show the claim for α = ũIvJ v̄K with |J | > q. If I is empty, then d̃α = 0 so
that Dσ(α) = ∆α(θu, θ, θ′) = 0. Suppose that I is nonempty, then by using the
equations vJ(Ω) = 0 and vJ(θ′, Ω)vil

(Ω) = 0 one obtains the following equalities;

Dσ(α) = ∆α(θu, θ, θ′)

=
∑

l

(−1)l−1(|J |+ |K|+ il) (vJ v̄K(vil
− v̄il

)) (θ′, Ω)ũI(l)(θu, θ)

=
∑

l

(−1)l |J | vJ(θ′, Ω)v̄K(Ω)v̄il
(Ω)ũI(l)(θu, θ)

= d (|J | vJ(θ′, Ω)v̄K(Ω)ũI(θu, θ)) .

The last equality holds because vJ(θ′, Ω) is closed by Lemma 4.3.16. Similarly,
Dσ(α) is exact if |K| > q. This completes the proof. ¤

Finally we show that the infinitesimal derivative of secondary classes coincide
with the actual derivative when there is an actual deformation realizing the infini-
tesimal derivative.

Definition 4.3.19 (Definition 2.7 in [20]). Let {Fs} be a smooth deformation of
transversely holomorphic foliations of M . Denote by πs the projection from TCM

to Q(Fs). Fix a Riemannian metric on TCM which is transversely Hermitian.
Assuming that s is small if necessary, one can find by using the metric as above a
smooth family of splittings TCM = Es ⊕ νs, where νs

∼= Q(Fs). Denote by π′s the
projection from TCM to νs. The infinitesimal deformation σ associated to Fs is
the smooth section σ of E∗

0 ⊗Q(F0) defined by

σ(X) = −π0

(
∂

∂s
π′s(X)

∣∣∣∣
s=0

)
.

Lemma 4.3.20 (Lemma 2.8 in [20]). σ does not depend on the choice of the split-
ting.

Proof. It suffices to work in a foliation chart. Let {e1, . . . , eq} be a local frame of
Q(F0), Fix a splitting as above and let {ẽ1, . . . , ẽq} be the lift of {e1, . . . , eq} to
TCM . We may assume that there is a smooth family of frames {ẽ1(s), . . . , ẽq(s)} of

νs such that ẽi(0) = ẽi, i = 1, . . . , q. Given X ∈ E0, write π′s(X) =
q∑

i=1

fi(X, s)ẽi(s),
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where fi’s depend on X and s but are independent of the splitting in the following
sense; choose another splitting TCM = Es ⊕ ν′s and let {ẽ′1(s), . . . , ẽ′q(s)} be the
family of frames of ν′s such that πsẽ

′
i(s) = πsẽi(s) ∈ Q(Fs). If one writes the

projection of X to ν′s as
q∑

i=1

gi(X, s)ẽ′i(s), then gi = fi.

On the other hand,
∂

∂s
ẽi(s)

∣∣∣∣
s=0

∈ E0. Indeed, π′s ◦ π′s = π′s implies that

(4.3.21)
(

∂

∂s
π′s

)
π′s + π′s

(
∂

∂s
π′s

)
=

∂

∂s
π′s.

Thus
∂

∂s
π′sẽi(s) + π′s

(
∂

∂s
π′sẽi(s)

)
=

∂

∂s
π′sẽi(s).

Hence π′0

(
∂

∂s
π′sẽi(s)

∣∣∣∣
s=0

)
= 0. It follows that

∂

∂s
π′s(X)

∣∣∣∣
s=0

=
q∑

i=1

∂fi

∂s
(X, 0)ẽi(0).

Therefore, π0

(
∂

∂s
π′s(X)

∣∣∣∣
s=0

)
=

q∑
i=1

∂fi

∂s
(X, 0)ei. Since fi’s are independent of

splittings, we are done. ¤

Lemma 4.3.22 (Corollary 2.11 in [20]). dOσ = 0.

Proof. Let X, Y ∈ E0, then ∇XZ = π0[X, Z̃] for Z ∈ Q(F), where Z̃ is any lift of
Z to TCM . Hence

dOσ(X, Y ) = ∇Xσ(Y )−∇Y σ(X)− σ([X,Y ])

= π0([X, σ̃(Y )])− π0([Y, σ̃(X)])− σ([X,Y ]),

= π0

([
X,−π′0

∂

∂s
π′s(Y )

∣∣∣∣
s=0

])
− π0

([
Y,−π′0

∂

∂s
π′s(X)

∣∣∣∣
s=0

])

+ π0

(
∂

∂s
π′s[X, Y ]

∣∣∣∣
s=0

)
.

If v ∈ Es, then π′s
∂

∂s
π′s(v) =

∂

∂s
π′s(v) by (4.3.21). Thus

∂

∂s
π′s(v) ∈ νs. Hence

π′0

([
X,−π′0

∂

∂s
π′s(Y )

∣∣∣∣
s=0

])
= −π′0

([
X,

∂

∂s
π′s(Y )

∣∣∣∣
s=0

])
.

Similarly,

π′0

([
Y,−π′0

∂

∂s
π′s(X)

∣∣∣∣
s=0

])
= −π′0

([
Y,

∂

∂s
π′s(X)

∣∣∣∣
s=0

])
.
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On the other hand,

∂

∂s
π′s [X − π′s(X), Y − π′s(Y )]

∣∣∣∣
s=0

=
∂

∂s
π′s

∣∣∣∣
s=0

[X − π′0(X), Y − π′0(Y )]

+ π′0

[
− ∂

∂s
π′s(X)

∣∣∣∣
s=0

, Y − π′0(Y )
]

+ π′0

[
X − π′0(X),− ∂

∂s
π′s(Y )

∣∣∣∣
s=0

]

=
∂

∂s
π′s

∣∣∣∣
s=0

[X, Y ]− π′0

[
∂

∂s
π′s(X)

∣∣∣∣
s=0

, Y

]
− π′0

[
X,

∂

∂s
π′s(Y )

∣∣∣∣
s=0

]

because X, Y ∈ E. Thus dOσ(X,Y ) =
∂

∂s
π′s [X − π′s(X), Y − π′s(Y )]

∣∣∣∣
s=0

. Noticing

that X − π′s(X), Y − π′s(Y ) ∈ Es and Es is integrable, dOσ(X, Y ) = 0. ¤

Remark 4.3.23. For deformations {Es} of E0 not necessarily integrable, dOσ is
called the integrability tensor in [20].

Definition 4.3.24. Let {Fs} be a smooth family of transversely holomorphic fo-
liations of M and let σ be as above. The element [σ] in H1(M ; ΘF ) is also called
the infinitesimal deformation associated to {Fs}.
Theorem 4.3.25 (Theorem 3.23). Let {Fs}s∈R be a differential family of trans-
versely holomorphic foliations of M , of complex codimension q. Let β ∈ H1(M ; ΘF )
be the infinitesimal deformation of F0 determined by {Fs}, then

Dβ(f) =
∂

∂s
f(Fs)

∣∣∣∣
s=0

for f ∈ H∗(WUq).

Proof. Let Ps be the principal bundle associated with Q(Fs)∗. We may assume
that s is small so that Ps is canonically isomorphic to P0. Hence there are families
of canonical forms ωs and complex Bott connections θs on Q(Fs) such that dωs =

−θs ∧ ωs. Setting ω̇s =
∂

∂s
ωs

∣∣∣∣
s=0

and θ̇s =
∂

∂s
θs

∣∣∣∣
s=0

, one has

dω̇s = −θ̇s ∧ ωs − θs ∧ ω̇s.

On the other hand, if σ is the infinitesimal deformation associated to {Fs}, then a
1-form σ̂ on P representing σ is given as follows. Let Ps be the principal bundle
associated to Q(F)∗ and let Q(F̂s) be the pull-back of Q(Fs) by the projection to
M . Let ωs = t(ω1

s , . . . , ωq
s) be the canonical form on Q(F̂s), then

σ̂(X̂) = −π0

(
∂

∂s
(ω1

s(X)ẽ1(s) + · · ·+ ωq
s(X)ẽq(s))

∣∣∣∣
s=0

)
,
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where ẽi(s) denotes the horizontal lift of ẽi(s) as in the proof of Lemma 4.3.20.

Since
∂

∂s
ẽi(s)

∣∣∣∣
s=0

belongs to the kernel of π0, one has

σ̂(X̂) = −π0

(
∂

∂s
ω1

s(X)
∣∣∣∣
s=0

ẽ1(0) + · · ·+ ∂

∂s
ωq

s(X)
∣∣∣∣
s=0

ẽq(0)
)

= − ∂

∂s
ω1

s(X)
∣∣∣∣
s=0

e1 − · · · − ∂

∂s
ωq

s(X)
∣∣∣∣
s=0

eq

= −ω̇(X̂).

It follows that θ̇s can be chosen as an infinitesimal derivative of θ0 along [σ]. Thus
Theorem 4.3.25 follows from Proposition 4.2.6. ¤

5. A review of Rasmussen’s examples

The following statements with several examples are presented in [36] by Ras-
mussen;

1) There are transversely holomorphic foliations of which the Godbillon-Vey
class and some other classes are non-trivial.

2) There are smooth families of transversely holomorphic foliations which re-
alizes a continuous variation of the Godbillon-Vey class.

Our Theorem B contradicts 2). We will study the reason by reviewing examples in
[36]. The part 2) is shown in § 4 of [36]. The examples given there involve an action
of Ck on CPn defined by (t1, . . . , tk) · [z0 : · · · : zn] = eλ1t1+···+λktk [z0 : · · · : zn],
where (λ1, . . . , λk) 6= (0, . . . , 0) parametrizes the variation. This action is always
trivial so that the foliations are independent of these parameters. In addition, those
foliations are constructed on a fiber bundle over M × T 2k with fiber CPn ×CPm

for some k, n and m, where T 2k = (Ck \ {0})/(t1, . . . , tk) ∼ (λt1, . . . , λtk) for some
λ ∈ C such that |λ| 6= 0, 1. The variation of the Godbillon-Vey class is claimed to
be realized by the variation of |λ|. Indeed, the Godbillon-Vey class is the multiple
of a volume form on T 2k by |λ|2k. However, this does not imply the variation of the
Godbillon-Vey class because the term |λ|2k vanishes after normalizing the volume
of T 2k. Hence thus constructed foliation and its Godbillon-Vey class remain the
same.

On the other hand, the examples showing non-triviality are essentially the same
as ours. In fact, our construction is motivated by these examples as mentioned in
Introduction, in particular, the examples in the first part of § 3 of [36] coincides with
Example 2.3.6 after taking the quotient by cocompact lattices. However, at the last
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part of § 3 [36] (page 163), locally homogeneous spaces such as Γ\SL(n; C)/SL(n−
1; C) are considered. Cocompact lattices for this kind of homogeneous spaces do
not exist in general (e.g. Example 5.21 in [28] and references there).

Appendix

Some common materials used in this article are presented in this Appendix for
completeness. Most of these can be found in Kobayashi-Nomizu [27] but they are
modified by following the convention in Matsushima [31]. Differences appear in

coefficients, for example, ω ∧ η =
1

p!q!
Alt(ω ⊗ η) for a p-form ω and a q-form η,

where Alt stands for the alternizer. Another example is the formula dω(X,Y ) =
X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

1. Invariant Polynomials.

Let G be a Lie group and let g be its Lie algebra. Denote by Ik(G) be the set
of invariant polynomials of degree k.

Definition A.1. Let f ∈ Ik(G) and let ϕ1, . . . , ϕk be g-valued differential forms
of degree q1, . . . , qk, respectively. Define a (q1 + · · · + qk)-form f(ϕ1, . . . , ϕk) as

follows. First choose a basis {E1, . . . , Er} for g and write ϕi =
r∑

j=1

Ejϕ
j
i . Set then

f(ϕ1, . . . , ϕk) =
r∑

j1,...,jk=1

f(Ej1 , . . . , Ejk
)ϕj1

1 ∧ · · · ∧ ϕjk

k .

Notation A.2 (Chern convention). Let f ∈ Ik(G) and let ϕ1, . . . , ϕl be g-valued
differential forms as above. If l < k, then set

f(ϕ1, . . . , ϕl) = f(ϕ1, . . . , ϕl, . . . , ϕl︸ ︷︷ ︸
k−l+1 times

).

Definition A.3. Let f : gl(n; C) → C be a multilinear mapping which is invari-
ant under the adjoint action. The polarization of f is the unique element f̂ of
Ik(GL(n;C)) such that

f̂(X,X, . . . , X) = f(X)

for any X ∈ gl(n; C), where k is the degree of f as a polynomial. By abuse of
notation, f̂ is denoted again by f .

Remark A.4. The polarization is compatible with the Chern convention, namely,
one has

f̂(Ω, . . . , Ω) = f(Ω)

for any even form Ω and any multilinear mapping f .
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Definition A.5. Let f ∈ Ik(G), g ∈ I l(G), define fg ∈ Ik+l(G) by setting

fg(X1, X2, . . . , Xk+l)

=
1

(k + l)!

∑

σ∈Sk+l

f(Xσ(1), . . . , Xσ(k))g(Xσ(k+1), . . . , Xσ(k+l)).

Lemma A.6. Let f ∈ Ik(G) and g ∈ I l(G). If θ, η are of odd degree and if Ω is
of even degree, then

(A.6a) (k + l)fg(θ, Ω) = kf(θ, Ω)g(Ω) + lf(Ω)g(θ, Ω)

(k + l)(k + l − 1)fg(θ, η, Ω)(A.6b)

=k(k − 1)f(θ, η, Ω) ∧ g(Ω) + klf(θ, Ω) ∧ g(η2, Ω)

− klf(η, Ω) ∧ g(θ, Ω) + l(l − 1)f(Ω) ∧ g(θ, η2, Ω).

Proof. The formula (A.6a) is easy. Let E1, . . . , Er be a basis for g and write θ =∑
Ejθ

j , η =
∑

Ejη
j and Ω =

∑
EjΩj , then

fg(θ, η, Ω) =
∑

j1,j2,...,jk+l

fg(Ej1 , . . . , Ejk+l
)θj1 ∧ ηj2 ∧ Ωj3 ∧ · · · ∧ Ωjk+l ,

where

fg(Ej1 , . . . , Ejk+l
) =

1
(k + l)!

∑

σ∈Sk+l

f(Ejσ(1) , . . . , Ejσ(k))g(Ejσ(k+1) , . . . , Ejσ(k+l)).

Set ω(j1, j2, . . . , jk+l) = θj1 ∧ ηj2 ∧ Ωj3 ∧ · · · ∧ Ωjk+l , then

(k + l)! fg(θ, η, Ω)

=(k + l)!
∑

j1,j2,...,jk+l

fg(Ej1 , . . . , Ejk+l
)ω(j1, j2, . . . , jk+l)

=
∑

j1,j2,...,jk+l

∑

σ∈Sk+l

f(Ejσ(1) , . . . , Ejσ(k))g(Ejσ(k+1) , . . . , Ejσ(k+l))ω(j1, j2, . . . , jk+l)

Elements of Sk+l are divided into four types, namely,

1) σ(1), σ(2) ≤ k,
2) σ(1) ≤ k < σ(2),
3) σ(2) ≤ k < σ(1),
4) k < σ(1), σ(2).

The number of such elements are (k + l− 2)!k(k − 1), (k + l− 2)!kl, (k + l− 2)!kl,
(k + l − 2)!l(l − 1), respectively. The formula (A.6b) follows from this. ¤
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J. 55 (2003), 361–374.

3. , The Godbillon-Vey class of Transversely holomorphic foliations, prépublication de
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