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Abstract. In this paper, we consider Maxwell’s equations in a biisotropic and inhomogeneous
medium. We discuss an inverse problem of determining the coefficients €, ¢, o in the constitutive
relations from a finite number of interior measurements. The proof is done by a H~!—Carleman

estimate.
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1 Introduction and main results

We consider Maxwell’s equations in a biisotropic and inhomogeneous medium:

OD(x,t) =V x H(x,t) =0, re, -T<t<T,

O B(x,t) +V x E(x,t) =0, zeQ, -T<t<T,
V.-D(z,t) =V -B(z,t)=0, z€Q -T<t<T, (1.1)
D(z,0) =d(z), B(z,0)=b(z), x €,

v(z) x E(x,t) = p(x,t), red, -T<t<T,
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with the constitutive relations

D(z,t) = e(z)E(x,t) + ((z)H (z,1), xeQ, -T<t<T, (1.2)
B(x,t) = C(2)E(x,t) + p(x)H(z,t), €@, -T<t<T. '

Here and henceforth = (z1,29,23) € R3, 9, = %, O = % for kK = 1,2,3, V =
(01,04, 83)T, A is the Laplacian in z, 2 is a bounded convex domain in R? with the bound
oNCC?0¢Q v(z)=(n(z),ve(z),v3(z))T is the outward unit normal vector to dQ at

z. In (1.1),

D(z,t) = (Dy(z,t), Da(z,t

9(z,t), D3(x
B(x,t) = (Bi(x, 1), Ba(

2

2

~+

the electric flux density,

B B
E(x,t) = (Ei(x,t), Ey(x,t), E3(x,t

): Ds(
x,t), Bs(x,t
( the electric field,
(

)
). the magnetic flux density,
)
)

H(z,t) = (Hi(x,t), Hy(x,t), H3(x,t the magnetic field,

and d(z), b(x), p(z,t) are given vector-value functions, €(z), ((x) and u(x) are scalar
functions. Here and henceforth -7 denotes the transpose of vectors or matrices under the
consideration.

Our consideration is based on some physical background. In fact, there exist materials
which can exhibit the magneto-electric effect. For example, some magnetic crystals such as
antiferromagnetic CroO3 and ferromagnetic GaFeOs (cf. [19], [16]). For details, we refer to
[19], [3], [16] and [17]. The constitutive relations for magneto-electric media can be written

in the following form (cf. [19], [3]):

D =¢FE +(H,

B=C E+7H,
where the three 3 x 3 matrices €, i and { are the familiar permittivity, permeability tensors
and the Dzyaloshinskii magneto-electric tensor respectively. This paper is concerned with
the biisotropic case, that is, € = eIz, ( = (I3 and T = plI3 where €, ¢ and p are scalar
functions of z and I3 denotes the 3 x 3 unit matrix.

In this paper, we consider



Inverse problem: Let w C 2 satisfy 02 C Ow and T" > 0 be suitably given. We consider

an inverse problem of determining e(x), {(z), u(x) for = € ) from the observation data

D(z,t), B(x,t), reEw, -T<t<T.

For this inverse problem, we will reduce (1.1) with (1.2) to a system composed by
equations similar to scalar hyperbolic ones and apply an H ! —Carleman estimate to those
equations. The method of applying Carleman estimate (i.e., a weighted L?—estimate) to
inverse problems is invented by Bukhgeim and Klibanov [2]. For developments of this
method, we refer to Bukhgeim [1], Imanuvilov and Yammamoto [8, 9], Isakov [11, 12],
Khaidarov [13, 14], Klibanov [15], Yamamoto [24]. For Carleman estimate, we refer to
Hormander [4, 5], Isakov [12]. Imanuvilov [6] proves a new type of Carleman estimate in
which the right hand side is estimated in a weighted H ! —space and Imanuvilov, Isakov
and Yamamoto [7] give another, shorter and independent derivation of an H~!—Carleman
estimate, which we will use in this paper. Concerning the application of the H~!—Carleman
estimate to other inverse hyperbolic problems, we refer to Imanuvilov and Yammamoto [10]
and Imanuvilov, Isakov and Yamamoto [7]. Furthermore, for other inverse problems for
Maxwell’s equations, we refer to Romanov [20], Romanov and Kabanikhin [21], Yamamoto
[22, 23] and Li and Yamamoto [18].

To state our main results, we introduce some notation. Let A = ;Ielg |z| and A = 21618 ||
We assume that

A% < 2)2, (1.3)

Let U = uﬁ7M7007017507<07H0 :{(67 C,H) € {02 (ﬁ)}g € = €g, ( = (o, b = po on 9 H€HC2(§)=
IClloa gy litlloamS M; e@). ula), e@)u(@) = ¢X(x) = 61 on 0 SdHCY
—0y on Q; 2)\3 ‘V <\/e(x)u(:c) - CQ(SC)M + B (e(x)pu(x) — ¢3(x)) < 1 — 0y on Q} where

the constants M > 0, g < 1, 6; > 0, 8 > 0 and smooth functions €y, {y and pg are

suitably given. We let D[e, ¢, ji;d,b,p)(x,t), Ble, ¢, i d.b,pl(x, 1), Ele, ¢, p;d,b,p(z,t) and



Hle, ¢, p; d, b, pl(x,t) satisfy (1.1) and (1.2).
Moreover, for any W = (wi, ..., ws)", we set |[W|? = S23_, Jwy|?. Furthermore, L? (£2),
H' (w x (=T,T)), etc. denote usual Sobolev spaces.
We will take two sets of the initial and boundary data denoted by
} : : . T ) . : . T
@ (0) = (d (@), B@), d@) , V(@) = (@00 @) , e

. . . T
P(a,t) = (bl 0w 0,04, 0) . wedn, ~T<t<T

where j = 1,2 respectively. For the sake of convenience, we assume that d’, & and p’
(j = 1,2) are sufficiently smooth and that they satisfy sufficient compatibility conditions

respectively. Denote by G the 12 x 9 matrix

0 ep xd' e; x bt 0 e X d' ey x b 0 es x d' es x bt
e x d' eg x bt 0 eo X db eg x bl 0 es x d' ez x bl 0

0 er x d? ey x b? 0 e X d? ey x b2 0 es X d? e3 x b2
er x d? e;x? 0 es X d? ey x b2 0 es x d? e x b2 0

where e; = (1,0,0)7, e3 = (0,1,0)" and e3 = (0,0,1)T.
The following is our main result.

Theorem 1 (Conditional stability). Let the domain 2 satisfy (1.3) and

A2 — )2

7 < T (1.4)

We assume that there exists a constant 3 > 0 such that
the deterninant of one of 9 x 9 minors of G > 5, for all z € Q. (1.5)

Moreover, we assume that (e, ¢, u), (€, Z, [0)E€ UB M. 00,61 ,c0,¢0,m0 a0d that Dle, ¢, u; &, v, pl],
o o~ o~  _\\3
Ble,Copisd! W, p7), DIECfizdd b, p], BIEC fisd!, b, pile (€2 (X (FT.T)) ) (G = 1,2).



Then there are constants x € (0,1) and C' > 0 such that

N P I I s

L2(Q

2 ~
(1.6)

<c|y (Hat (Dle. ¢ ¥ p7) = DEECjisd! V] )|

‘ (HL(@x (=T,T))?

j
- H@t (B[E,C,,u; &b, p') - B[, (s dj’bj’ij H(Hl(wx(—TvT)))3>> .

Remark 1.1. The initial data satisfying (1.5) exists. For example, we take d'(z) = es,
bi(z) = d*(x) = eg, b*(x) = e1 for z € Q. In fact, the 9 x 9 minor formed by rows 1, 2, 3,

4, 5,9, 10, 11 and 12 satisfies (1.5) if we take 0 < 6y < 1.

Remark 1.2. The conditions of (1.3), (1.4) and (e,(,u), (€, E, L)€ UB.M,00,601,¢0,C0,p10
correspond to those in [7] (i.e., (2.1)-(2.4) and (2.8) in [7]). For more consideration to

these conditions, we refer to p.1371 in [7].

Remark 1.3. By settling

el; (I 0 A
AOZ ’ C3 5 Ak: g 5 k:172737
¢I3 I3 —A; O
0 0 0 0 0 —1 0 10
Air=10 0 1], A=]00 0 , As=1] -10 0 [,
0 -1 0 1 0 0 0 00

and U = (El,Eg,Eg,,Hl,Hg,Hg)T, Maxwell’s equations with the constitutive relations

(1.2) can be written as
3

AgO U + ZAkakU =0.
k=1

It is obvious that Al = Ay and A{ = Ay (k= 1,2,3). Moreover, A is a 6 X 6 positive
definite matrix if there exists a constant #; such that €, u, ex — ¢2>6;. Therefore, for
the direct problem of (1.1) and (1.2), we can refer to the results on symmetric hyperbolic

equations.



This paper consists of three sections. In section 2, we will introduce two Carleman
estimates, respectively, for a second order hyperbolic equation and a first-order differential

equation. In section 3, we will give the proof of theorem 1.

2 Carleman Estimate
For 8 and A, we define the functions ¢ = p(z,t) by

pla, t) = elal=F7=2) (2.1)

with some large o > 0. By noting (1.3) and (1.4), we can assume that 7?2 < g—z

Proposition 2.1. Let ¢(z,t) be given by (2.1). We assume that (e, (, pu)€
UB M 00,01 ,¢0.Cono- Lt u€ HE(Q x (=T, T)) satisfy

3
(e(z)pu(x) — C(2))(0?u(x,t)) — Au(z,t) = g+ dhgo + Z@kgk, reQ, -T<t<T.
k=1

Then there is K1 > 0 such that for all s > K3

T T 3
IS
/ /s\u]2e25‘pdxdt§Kl/ / —2]g]2—|— g lgr|* | e**?dadt.
-T.JQ -TJao \ S =0

Proposition 2.2. Let ¢(z,t) be given by (2.1). Then there exists Ky > 0 such that

for s > K9 we have

/s\w\QeQS‘p(‘”’O)deKg/ ]VerQS‘p(“’O)dx
Q Q

for all w € C& (ﬁ)

For the proof of proposition 2.1 and 2.2, we refer to theorem 3.2 and lemma 3.6 in [7]
respectively and note that the weight function we use here coincides with that in [7] (cf.

(4.3) in [7]).



3 Proof Of Theorem 1

Let
ﬁ(xvtvj) - D[€, C,u7dj,b7,p]](x,t), B\(xatm?) = B[E, C,u7dj,b7,p]](x,t),
E(CE,t,j) = E[€7C7Hadj7bj7p]](x7t)7 ﬁ(xutaj) = H[E,C”U,,d],bj,p]](.’E,t), (3 1)
E(x,t;j) = E[€,¢, i W, p)(x, 1), H(z,t;5) = HE ¢, i d b, p](x, 1),

\

for j =1,2, 2 € Q, =T < t < T. By Dle,(, ;& 0, p7], Ble,C,pi;d,b7,p7], DI, ¢, fi; &,
. . ~ . . . @ 3

v, i), BI G jis W, ple (C2 (@5 (T,T)) ) (G = 1,2), we have

Da.t:4). Blat:j), Dlw.t:j), Blaetij) € (¢*(xTD)) . (32

Moreover, by (e, (, i), (€, E, J0)E UB M.00,61,c0,¢0,10 a0d (1.2), it is easy to see that

{ B(a,t:) = (@) D(, ) + 7 (@) B2, ),
H(z,t;§) = 72(@)D(a, t: ) +13(0) B(x, t:5), 33)
E(w,t;5) = F1(2)D(x, t; §) + Fa(z) B(x, t; ),
{ H(z,t; §) = F2(x) D(x, t; §) + Ts(2) B(x, 1; 5),
where z € ), =T <t < T and
’Yl("’”):m’ 51(90):%,
2@ = - meremr | 2@ = e ae (3.4)
Y3(w) = W’ Ys3(z) = m
It is obvious that
2 1 o)
n@e) ~3@) = e, 1€ @ (35)
Forx € Q, —T <t < T, we set
fi(@) = (@) —w(x), k=123, (3.6)



and

Z(w,t;§) = B, t:j) — B, t: ) € (C2 (2 x (=T, 7)))".
Then we can obtain that, for x € Q and —T <t < T,

{Y@¢ﬁ@ﬁ@uﬁ@m@uﬂemwax(nTmi

V.-Y(x,t;j) =V - Z(x,t;5) =0,

OY (w,1;5) = V x (2(2)Y (@, 8; ) + v3(x) Z (2, 8 5)) — Wa(z, 13 ),
hZ(z,t;7) = =V x (q(2)Y (2,8 5) +12(2)Z(2, ;7)) + Vi(z, 1 7),
(@) (OFY (x,;5)) — AY (2, t;5) = @1 (Y (2,8 ), Z (=, t; j))
+C(@) (V x Wy, 85 7)) + e(x) (V x Ui (z, 8 5)) — §(2) (O Va(x,t; 7)),
E(2) (0P Z(x,t; 7)) — AZ(z,t;§) = o (Y (2,85 5), Z(, t; 7))
(z

+C(2) (V x Wi(z,155)) + plx) (V x Ua(z,t55)) + &(2) (Wi (2, t;7))

where

il ti5) = V x (file) (AD(.:9)) + fia (@) (2B, t14)) ) & = 1,2,

&(x) = e(a)u(z) - (x),

Py (Y(2,t;), Z (2, ;)

= —((2) [(V12(2)) x (V x Y(2,7)) + (Vy3(2)) x (V x Z(2,t;j))
+V x ((Vr2(2) x Y(z,t:5) + (Vs(2)) x Z(z, 8 )]

—e(z) [(Vn(2)) x (V x Y(z,t;5)) + (Vr2(2)) x (V x Z(2,;]))
+V x (V) x Y (2, ) + (V2(2) x Z(2,t;5))]

+E(2)0 [(Vy2(2)) x Y (x,t55) + (Vs(x) x Z(2,t;5)],

Do (Y(z,t;4), Z (2,8 7))

= —((2) [(Vm(2)) x (V x Y(2,7)) + (Vr2(2)) x (V x Z(2,t;j))
+V x ((Vn(2) x Y(z,t;5) + (V2(2)) x Z(2,8 )]

—p(z) [(V2(2)) x (V x Y(2,1;5)) + (Vs(2) x (V x Z(2,t; 7))
+V x (Vra(2)) x Y(2,t) + (Vas(x) x Z(2,t;5))]

—£(2)0 [(Vmi(2)) X Y (2, 8;5) + (Vya(x)) x Z(z,t;5)] -

8

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



In fact, (3.8) is obviously true by noting (1.1), (3.1) and (3.7). By (1.1), (3.3)-(3.4) and
(3.6), we have

Y (2,8 5) = i D(w, t; ) — D(x,1;j) = V x ( (2,t7) — H(fW;J’))
=V x (@) (D, t:5) = D(a.t:9)) + (@) (Blati) - o)) (317)
~F2(2)D(a,t:5) = fo(a) Bla.1:7))

and

Z(x,t;§) = 0 B(w,t; j) — 9 B(x,1;§) = =V x ( (z,t;5) — E(w,t;j))
=~V x (n(@) (D(.t:9) - Diw,ti)) +2(2) (Bla,ti) = Ble,t:7))  (318)
—f1(@)D(w,t55) — folw) Bl t:))
Differentiating (3.17) and (3.18) with respect to ¢ and noting (3.7) and (3.13), we obtain
(3.9) and (3.10). Moreover, differentiating (3.9) with respect to ¢ and using (3.9), (3.10)

and the equality :
V x (aA) =aV x A+ (Va) x A (3.19)

for a scalar function a and a vector function A of x, we have

OFY (w,t;§) = V x (12(2) (OY (2,15 7)) +73(2) (B Z (2, ;7)) — O Wa(, t; )

= 72() (V x (0¥ (2,8, 7))) +v3(2) (V x (0:Z(, ;7)) + (Va(x)) x (8:Y (,; 7))
+ (Vys(a)) x (0.2 (2, ;7)) — 0:Wa(x,t; 7)

=72(2) (V x (V x (n2(2)Y (2, 8;j) + 13(2) Z(2,1;)))) — 72(2) (V x Ua(x, ¢ )

+73(2) (V x (=V x (m(@)Y (2,1 7) + 22 (2)Z(2,1;5)))) +73(2) (V X Ui(z, ;)
+ (Vya(a)) x (Y (2,8 §)) + (Vas(2)) x (92 (2,1 7)) — 0V (x, t; ).

)
)



By using (3.19) again, we have

OFY (z,t;§) = — (m(@)s(2) —23(@)) V x (V x Y (2,1 )
+ {12(2) [(Vya(x)) x (V x Y (2,t;5)) + (Vys(x)) x (V x Z(x,t;7))
+V % ((Vya(2)) x Y (2,85 5) + (Vys(a)) x Z(z,t; )]
—73(2) [(Vn(2)) x (V x Y(z,t;5)) + (Vya(2) x (V x Z(2,t; 7)) (3-20)
+V < ((Vn(@) x Y (2,85 5) + (V2(2)) x Z(z,t;))]
+0¢ [(Vr2(2)) x Y(z,t;5) + (V3(2)) x Z(2,t; )]}
—72(x) (V x Ua(z, 8 5)) + 3() (V x Wi(w,t; 7)) — O (x, 15 5).
Therefore, multiplying (3.20) by £(z) and using (3.4)-(3.5), (3.8), (3.14)-(3.15) and the
equality: Vx(V x Y)= V(V - Y)—AY, we obtain (3.11). Similarly, we can obtain (3.12).
By (1.4) and (2.1), we have

o(,0)>21, zeqQ,
0<p(z,-T) =¢T) <1, x €.

z,t)>1—n, x€Q, tel]-404]),
{@() n [—5,4] o)

olr,t) <1-2n, 2€Q, te[-T,-T+25U[T —25,T).

In order to apply the Carleman estimate, we introduce two cut-off functions x; and xo

satisfying 0 < x1,x2 < 1, x1 € C*(R), x2 € C§° (), x2 =1 on Q\w, and

xi(t) =

07 te [_Tv_T+5] U[T_éaT]a
1, te[-T+26T—26].

Furthermore, we let x(x,t) = x1(t)x2(z).

For j =1,2, we set

{ Yi(a,t55) = Y (.t 5)e?@0x(w,1) € (C2 (2 x (-T.7)))", (3.22)

Zy(,;5) = Z(w, t; ))es 2@y (x,t) € (C2(Q x (=T, T)))°.

10



By (3.9)-(3.10), the vector functions Y (z,t;j) and Z;(x,t; j) satisfy the equations

OYi(z,t;5) = V x (a(@)Y1(2, 15 5) + v3(2) Z1(, 85 )
=~ (2, 8)Us(z, 1 §) + 5 (Drol, 1)) Yi(x, t; )

(3.23)
=5 (Ve(z,1)) x (ya(z)Yi(z,t; ) + y3(x) Z1 (2,15 5)))
+e¥ @0 ((Opx (2, 1) Y (2, t;5) — (Vx (2, 1)) X (72(2)Y (2,85 §) + y3(2) Z (2, 13 §))) ,
Xz (x,t;7) + V x (y1(x)Y1(z,t; ) + v () Z1 (2, 7))
= e?@y (2, 1) Us(z,t; §) + s (Opp(a, 1)) Z1(w, t; 5) (3.24)

+5 (Ve(z, 1)) x (q(@)Y1(x, 8 5) + y2(2) Z1 (2, £ )))
+e @0 ((Ox (2, 1) Z(2,t:5) + (Vx(2,0) x (n(2)Y (2,85) +2(2)Z (2, ),

where x € Q, =T <t < T. In fact, we have

OYi(x,t;5) = (B (w,1; ) e*?@Dx(x, 1)
+5 (Op(z, 1) Y (2, 85 §)e*?@D y (2, ) 4+ eP@D (9yx (2, 1)) Y (2, t; 5)
= (0,Y (z,t;7)) eSW($7t)X(x, t) + s (Opp(z,t)) Yi(z, t;5) + es¢(@:t) (Orx(z,t)) Y (2, t; 7).

Moreover, we have

V x (v2(@)Y1(z, 15 §) + v3(2) Z1 (2, 85 7))

=V x (220 x(x,t) (v (@)Y (2,85 §) + y3(2) Z (2, 8; 7))

= (V (2= (2, 1)) x (va(2)Y (2,8 §) +73(2) Z (2, 1; )
+e* 00 x (2, 8) (V x ((2)Y (2,5 §) + 73(2) Z (2, 8; )

= 5™ x (2, 1) (Vep(, 1)) X (ya(2)Y (2, ; 5) + 23(2) Z (2, 8; 1))
+e* P00 (Vx(@, 1)) x (ya(2)Y (2,8 §) + 13(2) Z (2, 1; )))
+es“"(“X(9«°, ) (V x (v2(2)Y (2,;§) + 73(2) Z (2,1 7))

= e*?P0x (2, 1) (V x (ya(2)Y (2,5 §) + 73(2) Z (2, t; §)))

+5((Ve(z,1)) x (r2(2)Y1 (2,15 5) + 73(2) Z1 (2, 8 5)))

+e 00 (Vx(, 1)) x (ya(2)Y (2,65 5) +73(2) Z (2,8 7)) -

11



At the second equality, we have used (3.19). Therefore, we have

OYi(x,87) =V x (y2(2)Yi(2, 8 J) +73(x) Z1 (2, 8 7))

(2, ) {8Y (2, 8:5) = V x (2(2)Y (2,1:5) + 73(2) Z (2, 8 5)) }

+5 (Orp(x, 1)) Yi(z, ;)

=5 ((Veo(z, 1)) x (r2(2)Ya (2,8 5) + 73(2) 21 (2, 8 5)))

+e 20 ((Gx(2,0) Y (2, 1:5) — (Vx(2,1)) x (2(2)Y (2,1;5) + 73(2) Z (2, 8 5))) -

= ¢

Hence, by (3.9), we obtain (3.23). Moreover, by noting (3.10), we can similarly obtain
(3.24).
By (3.23) and (3.24), we can obtain

/ /5 {[0¢Y1(z,t;5) X (v2(2)Y1 (2,85 5) + y3(x) Z1 (2, 15 7))
Y(@)Y1(z, 5 5) +v2(x) Z1(2, 5 §)] + [0eZ1 (2, 5 §) + V X (i (@)1 (2, ¢ 5)
+y2(2) Z1 (2,15 5))] - [ye(2)Yi(z, 5 5) +y3(x) Z1 (2, t; 5)] } dedt

/ /5 [s(Orp (e, 1)Yi (2,1 )

—s((Ve(z,1)) x (v2(2)Y1(,t;5) +73(2) Z1(2, 85 5))) (3.25)
+es‘”t)((8tx(x, )Y (z,t;5) = (Vx(x, 1)) x (2(2)Y (2,8 5) +73(2) Z (2, 15 )))
ey (o, )W (. 1:5)] - @)Y, 1) + (e

+ s (Vep(a, 1) x (v (2)Ya(2,t; §) +v2(2) Z1(2, ;) + s(Dep(a, ) Z1 (2, L; 5)
+e52@0 (Bx(x,1)) Z(x,t:§) + (Vx(a, 1)) x (7 (@)Y (2, ;) + y2(@) Z(x, ;7))
ety (x, )\Ill(x,t,j)] -[72(:1:)Y1(x,t;j)+73(x)21(93,t;j)]}d9«“dt-

)Z1(x,t; )]
M /)
)

We denote the left- and the right-hand sides of (3.25), respectively, by I1(j) and I2(j).
Using (3.4)-(3.5), (3.14) and, for vector functions A; and Ag, (V x A1) -As— (V x Ag)-A1=
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V(Al X Ag), A1 X A1 :0, A1 XAQZ —AQ XAl, we have

(@) {[0Y1(z,t55) = V x (v2(2)Yi(z, £ 5) + 13(2) Z1(2, 8 )]
‘m@)Yi(z, t;5) + v2(2) Zi (2, )] + [0 Z1 (2, 85 ) + V x (n(z)Ya(z, t;5)
+y2(2) Z1(, 85 5))] - [v2 (@)1 (2,85 5) + v3(@) Z1 (@, 85 5)]}

= 30 { (@)1 (2, 4 4)1> = 2¢(x) (Yi(z, t;5) - Z1(2,89)) + e(@)| Za (2, 8 )% }
+€@) {V - |y Wi, t55) x Za(a,t:9))] }

Moreover, by (3.22) and the definition of x(z,t), we have

Yl(x,—T;j) = Zl(x, —T;j) = 0, T € Q,
Yi(z,t;7) = Z1(x,t;5) =0, z€0Q, -T<t<T.

Hence, by noting (e, , 1t)€ U 00,01 ,¢0,¢0,p0+ itegrating I1(j) by parts yields

h(j)—l/( (@)Y (2,0 )2 — 2¢(2) (Y (2, 0:) - Za(2,0; 1))

Te(@)| 1 (2, 0; ) dx—/ /5 [(Vilw,:9) % Zu(w, ) - (VE()) } dudt
>1 /( ()Y (2,05 )2 — 2¢(x) (Yi(, 05 ) - Za (2, 0:.5)) + €()| Za(x, 0; ) ) da
e / /Q 7y | 10)  Za(o. 1) - (VE(a) |
> 2/9( (2 >|Y1<:c 0 )2 — 20(x) (Yi(,0:) - Z1(,0: 1)) + ()| Zu (x, 0; ) 2) dx

—02/ /(\Yl(x,t;j)\Q+\Zl(x,t;j)12)dxdt.
-TJQ

(3.26)

Here and henceforth Cy, > 0 (k = 1,2,...) denotes generic constants depending on sg, o,

XA, B M, o, 01, 02, o, o, pio, @ T, w, X, 1, 6, di, b and || D(-,5)|

B [Bes B
H Z (H2(Qx(~T.T)))%’ L) (H2(Qx(~T.T)))® W (H2(Qx (~T,T)))3’
pendent of s > so. Furthermore, by noting (2.1), (3.4), (€,(, )€ Ug M 00,01 ,c0,C0.m0 a0

(H2(Qx (=T,T)))*’
, but inde-

using Cauchy-Bunyakovskii inequality, we have

0 2
< C4 (/ / e%w(m,t”x(x,t)‘? (Z ‘\Ilk(x,t;j)P) dadt
—-T JQ P
0

(3.27)
+/T/Qs(\Y1(x,t;j)12+yzl(x,t;j)\Q)dxdtJrIg,(j))

13



for all large s > 0, where

T
R = [ [ (0x(a. 0 + @0 + V(e OF + |ax(a. )

3
(\Y(x,t;j)P + 12, t55) ) (10kY (@, 89) 2 + [0k Z (2. £:5) 1) (3.28)
k=1
10 (.t 1) + |02, ;) ) €290 dadt

Therefore, it follows from (e, ¢, 1) EUB M.,05,61,c0,¢0.10> (3-22), (3.25)-(3.27) and the definition

of x(z,t) that
/Q (1Y (2, 0;5)° + | Z1(2,0;5)?) d=

< Ca [ 5 () ¥i(e,0:0) = (@) (Va(o,039) - 4. 055)

+e(x)| Z1(x,0;5)%) da

T 2
<C / /6255"(”) z,t)|? Uz, t; )% | dedt
5( ) x ()] ;\ k(@ ;)] (3.29)

T
o s(|Y1<x,t;j>|2+|Zl<x,t;j>|2)dxdt+13<j>>

T 2
< C ( / / e2se(®h) (Zr%w;j)!?) dadt + Is(j)
T JQ k=1
T
b s (oY (0P + o) 2o t5) ) o
T JQ

for all large s > 0.
Next, we shall first estimate the last term of (3.29) by applying proposition 2.1. We set
Uz, t;7) = x(z,0)Y (z,t;7) and V(x,t;5) = x(z,t)Z(z,t;7) for z € Q, =T < ¢t < T and

j=1,2. Then U(z,t;j) satisfies

5(1’) (8,52(](96,157])) - AU(QE,t;j) = (I)I(U(xvt§j)av(xvt§j))
+x(z,t) [C(2) (V x Ua(z, t;5)) + €(2) (V x Uy (z,t;5)) — £(x) (0 P2(x, t;5))]  (3.30)
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forz € Q, =T <t <T, where

Su(Y (2,t;5), Z(x, ;) = &(x) (2(Dex(z, 1) (BY (z,t;§)) + (0Ex(z, 1)) Y (,t; )
-2

Y (
3
(Z (Oex(z,t)) (C%Y(%t;j))) — (Ax(2,1) Y (z,t;5) + ®3(Y(, 8 5), Z (2, t; 5))
k=1
(3.31)
and ®3(Y (z,t;7), Z(x,t;7)) will be defined by (3.34). In fact, by directly calculating, we

can see that

&(x) (U (x,t;5)) — AU (,1; )

= x(@,1) (¢(@) (BB (2, 8:)) — AY (2,5))

H€(@) (2 (Drxc(@,0) (Y (w,1:.9)) + (Ox(.0) Y (w,1:7)
=2 (201 (Okx(, 1)) (06Y (2,8:9)) ) = (Ax(2,8) Y (2, 1),

(3.32)

Moreover, by (3.15), we have
xX(@, )1 (Y (2, t;4), Z(2,t;§)) = 21Uz, t:5), V (2, ;7)) + ®3(Y (2,8 4), Z(x,t;5)) (3.33)

where

O3(Y (,t54), Z(w,t;4)) =
—&(2) (Ox(z, 1)) (Vra(2)) X Y (2, 5) + (Vys()) x Z(2, ;7))

+G(@) [(Vx(, 8)) x (Vya(@) x ¥ (@, 855) + (Vya(a) x Z(,6:5)) (3.34)

)
+(Va(2)) x (Vx(x, 1) x Y (2,5)) + (Vs(z) x (Vx(,1)) x Z(2,t;5))]
+e(2) [(Vx(, 1) x (Vy(e) x Yz, 8 5) + (Vya(z)) x Z(2,t; 7))
+ (Vyi(e) x (Vx(, 1)) x Y(z, 7)) + (Vya(z)) x (Vx(2,1)) x Z(z,t;7))] -

Therefore, by (3.11) and (3.32)-(3.33), we obtain (3.30). Hence, by (3.30) and the definition
of x(z,t) and U(z,t;7), we can apply proposition 2.1 to U(-,+;j). As a result, by noting
(€, s 1) EUB M 00,61 ¢0,¢0.0> (3-15), (3.28), (3.31), (3.34) and the definition of x(z,t), we can
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obtain

T
/ /s\U(:z:,t;j)\QeQ‘s“"(x’t)dxdt
-TJQ
T 2
< Cy ( / / <Z|\Ilk(:c,t; j)|2> 2@t g dt

/ / U, t55) + [V (2, )) 29@D dad
n / [ 1040 t:0). 200, ) POzt
—T JQ

T 2
< Cy / / Z\\I/k(x,t;j)\Q e25¢(@0) qpdt
—-T JQ k=1
T
T / / (U@, 65)P + V(@ t5)) 2@ D dadt + 13<j>)
—T JQ

for all large s > 0. By noting (3.12), (3.16) and using proposition 2.1, we can similarly

T

/ /s\V(x,t;j)]2e25‘p(m’t)dxdt

T JQ
T 2

< Cy / / D 1k, 5) | e dadt (3.36)
-TJQ =1

T
# [ [0 6DR 41Vt P) o0+ BG)
T JQ

(3.35)

obtain that

for all large s > 0. Then, by (3.35) and (3.36), we can see that
T
/ / s (|U(z,t;5)1* + |V (2, 5)[%) ?¢ @0 dzdt
-TJQ

T 2
< Cio ( / / (Zwkxm >e2w<x’t>dxdt+13<j>>
=TI\

for all sufficiently large s > 0.

(3.37)

In addition, we shall estimate I3(j). By (3.7), (3.21), (3.28) and noting the definition
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of x(z,t), we have

T
L) < Cu ( / ) /Q (B, £)? + [0 x (. 1)) (1Y (o 8 ) 2

3
HZ (@, t5)1P+ Y (1Y (@, 8:5) + |0k Z (w, 15 ) )
k=1

HOY (@, 1) + 102w, 1)) D dds + T )

<on (774 [0 [ Qoo 0+ ixte®) (Vi 639

—T+6 T-26
3

HZ (@t )P+ (106 (@, 65) P + |0pZ (@, 8 ) )
k=1

+10:Y (2, t; 5)|* + |0: Z (, t;j)\2) 259t qudt + e2SF®>
< s (e25(1_2’7) + erF@)

for all sufficiently large s > 0, where I = sup o(x,t) and
(z,t)eQx (—T,T)

2
LA 12
o= Z (HY S H(Hl(wx(—T,T)))S +Z(, "j)H(Hl(wx(—T,T)))S) . (3.39)

j:

—_

Hence, by (€, ¢, 1) €EUB. M 00,01 ,¢0,¢0,m0, the definition of x(z,t), U(x,t;5) and V(x,t;7),
(3.22), (3.29), (3.37)-(3.39), we see that

V(2,05 5) + | Z (2,05 §)|?) @0 dz
< 014 x2(x !Y(a: 0;7)12 + |Z(x,0;5)|? ) 2sw(w,0)dx+e2sr@>

=Cu

E |
= Cis (/ / Z (Wk(z,t; ) ) 2@ dgdt 4 2012 4 e25r@>

3
< Cis </ /9625“’(” Z |fe(2)? 4 |V fr(2)] )dxdt—i—e%(l_?“) —I—e%F@)
-T k=1

Y:(z,0; + | Zy(x, 0; dz +e*T'e
!1 )P+ [ Z1(2,05)]%) (3.40)

for all sufficiently large s > 0 and j = 1,2. At the last inequality, We have used (3.2),
(3.13) and (3.19).
On the other hand, by (1.1) and (3.1), for j = 1,2, we have

D(x,0;4) = D(x,0;5) = d(x), B(x,0;j) = B(x,0;§) = ¥(z), z€Q.
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Therefore, by (3.17) and (3.18), we have

Y (2,0;5) = =V x (fa(x)d (x) + fa(x)V (2))

= —fo(a) (V x @ (2)) — f3(z) (V x ¥ (2)) — (01 f2(2)) (e1 x & ()

— (01 f3(2)) (ex x ¥ (x)) = (Dafa(x)) (e2 x & (x)) — (Daf3(x)) (e2 x VY (x))
— (B3f2(x)) (e3 x & (x)) — (B3 f3(x)) (e3 x ¥ (x)), = € Q,

Z(w,0:5) = V x (fl@)d (z) + fo(2)V (x))

= fi(z) (V x & (2)) + falz) (V x U (2)) + (D1 f1(2)) (e1 x & (x))
+ (01 f2(2)) (e1 x ¥ (2)) + (Daf1(2)) (e2 X d (7)) + (Dafa(x)) (e2 x ¥ ()
+ (05f1(2)) (e3 x d(2)) + (O3 f2(2)) (e3 x ¥ (2)), = € Q.

Then, we have

Y (z,0;1) 0 V x d'(z) V xbl(z)
Z(z,0;1) V xd'(z) V xb(z) 0 fi(z)
G - faz) | 341
o) 0 Vxd@) Vx#E)
fs(x)
Z(x,0;2) V X dQ(x) V x b2(.’E) 0

where F(x) = (81f1, 81f2, 81f3, 82f1, agfg, 82f3, 83f1, 83f2, 83f3)T ($) and x € Q. By (1.5)
and (3.41), we see that

3 2
S (1fe@) + |V fr@)?) < C (Z (1Y (2,0 5)* + [ Z(x, 05 )| +Z\fk
k=1

(3.42)
Therefore, by (3.40) and (3.42), we have

3
/ 25600 S (| ()P + |V fi(w) 2) da
k=1

2
< 018/ 25 (2,0) Z (|Y(:C 0; ])|2 +1Z(2,0;5)] +Z|fk |2 de.
° e (3.43)

< Cig (/ 259(2,0) | fu(2)Pda
=5
t

/ / 2N (| (@) 2 + |V i) )dxdt+e25(1—2”>+e2sFe>

k=1
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for all sufficiently large s > 0. Furthermore, by noting (e, ¢, i), (€, E, 1) EUB M.00,01 ,60,C0, 110>

we can apply proposition 2.2 to fx(z) (k =1,2,3). As a result, we obtain

/ 2sp(x,0) Z’fk \dx< 20/Z’vf ’2 25<,a;180)daj (3.44)

for all sufﬁciently large s > 0. Then it follows from (3.43) and (3.44) that

/ 25<pac0)z |fk: |2+|vfk;( )|)dx

=G (/ /Z | fu(@))? + |V fr(2)[?) 2@ dadt 4 2020 e2sr@>
: T

< Oy </ 2sp(2,0) Z | fe(z)]? + |V fr(2)) ) </ 628(¢(x7t)¢(x70))dt> &
k=1 _T

1 e2s(1-2n) +erF@)

(3.45)

for all sufficiently large s > 0. By (2.1), we have p(z,t) — ¢(z,0)< 0 when t # 0. Hence

the Lebesgue theorem implies

T
/ 25(0 (@) —e(@0) gt _, 0 (3.46)
=T

as s — 00. By (3.45) and (3.46), we can obtain that

3
/Q 2sp(x,0) Z (‘fk( )’2 + ’vfk(x)P) dz < Oy <e2s(172n) +e2sF®>
k=1

for all sufficiently large s > 0. Therefore, by noting (3.21), we have

3
Q=1

—25(1—) [ 2s0(,0) & )2 2 (3.47)
< Coe S (@) + |V fr(@) ) da
k=1

< 025 (872577 + GQSF@)
for all sufficiently large s > 0. Moreover, by (€, ¢, 11)€ U 11,60,01,¢0,¢0u00 (3-4), (3.6), (3.14)

and letting &(z)=¢(z)ji(z) — 3(z)= W for z € Q, we have

&x) — e(@) = E@)Fa(2) — E@)a(e) = @) fa(x) + (€)= €()) (),
(@) = (@) = E@)R(@) - ¢@)a() = E@)fa(@) + (€@) —6@) (@), (343)

i) — () = @) (@) — €@ (@) = E@) (@) + (@) — &) ml).

19



Then, by (3.5)-(3.6) and directly calculating, we have

@)~ () = sommRe ~ TR (3.49)
= £{(2)€(2) ((2(2) + 12(2)) fo(@) — 11 (2) fs(x) — F3(2) f1 () -
Therefore, by (€, (, 1) € Us M 00,01 ,¢0,¢0,105 (3-14), (3.47)-(3.49), we have

2

2 p ~112 _
e =y + =T g e Al < oo (727 +670) . (3.50)
In order to prove (1.6), we may assume that © is sufficiently small. So —% is
sufficiently large. Therefore we can take
In®
§=———" 3.51

2(n+7T) (3:51)

in (3.50). Then by directly calculating, we see that
e 2 = 2T = @it (3.52)

By (3.7), (3.39), (3.50) and (3.52), we obtain (1.6) with x = 77+LF The proof of theorem

1.1 is complete.
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