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Abstract

We consider an eigenvalue problem for a system in [0, 1]:
[(

0 1
1 0

)
d

dx
+

(
p11(x) p12(x)
p21(x) p22(x)

)](
ϕ(1)(x)

ϕ(2)(x)

)
= λ

(
ϕ(1)(x)

ϕ(2)(x)

)
ϕ(2)(0) cosh µ − ϕ(1)(0) sinhµ = ϕ(2)(1) cosh ν + ϕ(1)(1) sinh ν = 0

with constants µ, ν ∈ C.
Under the assumption that p21, p22 are known, we prove a uniqueness the-
orem and provide a reconstruction formula for p11 and p12 from the spec-
tral characteristics consisting of one spectrum and the associated norming
constants.

1 Introduction

In this paper, we consider an eigenvalue problem for a system:
B

dϕ
dx

(x) + P (x)ϕ(x) = λϕ(x), 0 < x < 1,

ϕ(2)(0) coshµ− ϕ(1)(0) sinhµ = ϕ(2)(1) cosh ν + ϕ(1)(1) sinh ν = 0, (1.1)

∗The first named author is supported by the Scholarship of Japanese Government.
†The second named was supported partially by Grant 15340027 from the Japan Society
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Sports and Technology
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where B =
(

0 1
1 0

)
, ϕ(x) =

(
ϕ(1)(x)
ϕ(2)(x)

)
, P =

(
p11 p12

p21 p22

)
∈ (C1[0, 1])4

is complex-valued, and the constants µ, ν ∈ C.
The eigenvalue problem (1.1) can describe proper vibrations for various phe-

nomena such as an electric oscillation in a transmission line (cf. Trooshin and
Yamamoto [19], Cox and Knobel [1]), a vibration of a string with viscous drag
(cf. Yamamoto [21]), etc. On the other hand, this eigenvalue problem can
also generalize the Sturm-Liouville problem (cf. Yamamoto [20]). Besides, the
time-independent Dirac equation with the external field (cf. Thaller[16]) for
one spatial variable is actually described by our system, which will be shown as
follows.

In the one dimensional Dirac equation with a 2 × 2 matrix-valued potential
V (x) (

i�
∂

∂t
−H

)
ψ = 0

where H = −i�cσ1
∂

∂x
+mc2σ3 +V (x) and σ1, σ3 are Pauli matrices: σ1 = B =(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, � is Planck’s constant, c the velocity of light, m

the mass of the particle, if we put ψ = exp(−iWt/�)φ where the constant W is
the energy, then we have (W −H)φ = 0, i.e.,

B
dφ
dx

+
i

�c

(
mc2σ3 + V (x)

)
φ =

iW

�c
φ. (1.2)

Hence if we consider (1.2) with suitable boundary conditions, then it is given by
our system. Especially, if V (x) = V(x)E (cf. Kostin[7]), where V(x) is a scalar
function, E the 2 × 2 unit matrix, then our main result (Theorem 2) implies
that we can determine not only V(x) but also the mass m of the Dirac particle
from the spectral characteristics (see the definition below).

For (1.1), we study an inverse spectral problem, in other words, determina-
tion of two components of P (x) from the spectral characteristics when the other
two ones of P (x) are given a priori. Without loss of generality, we can assume
that the second row p21, p22 of P (x) are given. In this paper, we shall prove a
theorem of uniqueness and provide a formula of reconstruction through a modi-
fied Gel’fand-Levitan equation (cf. Gel’fand-Levitan [3] and Levitan & Sargsjan
[12]). Without the assumption that two components of P (x) are known a priori
we prove also that the spectral characteristics determine all the four components
of P (x) uniquely under a condition on a certain eigenvector.

In 1909, for a differential equation, H. Weyl introduced a so-called spec-
tral function related to the Parseval equality which generalizes the Plancherel
theorem in the Fourier transform. For the derivation of the Parseval equality
related with Sturm-Liouville problems we refer to Titchmarsh [17], Levinson
[10, 11] and Yosida [23]. In Gel’fand and Levitan [3], they reconstructed a
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differential equation with a given spectral function. Since then, many authors
such as V. A. Marchenko (cf. [8]), B. Simon (cf. [15], [4], [5], [14] ) and M.
G. Gasymov (cf. [2]) etc. have done much work in inverse spectral problem
mainly concerning symmetric systems such as the Sturm-Liouville equation and
the one dimensional Dirac system. As for the recent work for the Dirac sys-
tem, we refer to Watson[18] and Lesch and Malamud [9]. As for more details
about inverse spectral theory, we refer for example to Pöschel and Trubowitz
[13], Yurko [25]. However, to our knowledge, most of researchers consider only
the inverse spectral problems for self-adjoint operators. For the non-selfadjoint
case, inverse problems of determining the matrix coefficient P (x) are recently
discussed by means of (i) two spectra (e.g., Yamamoto [20], Cox and Knobel [1])
(ii) the Weyl function (e.g., Yurko [24]). For the spectral characteristics which
are related with the spectral function, M. Yamamoto proved the reconstruction
and the uniqueness under the assumption that the eigenvectors of AP,µ,ν forms
a Riesz basis in (L2(0, 1))2 (cf. Yamamoto [22]). However, in general, only the
eigenvectors are not enough for a Riesz basis (cf. Cox and Knobel [1], Trooshin
and Yamamoto [19]), and so the results in [22] are not true for general P (x) in
(1.1).

The rest part of this paper is composed of four sections and one appendix.
In Section 2, we show Theorem 1 and 2 as the main results. Section 3 and 4
are devoted to the proof of Theorem 1 and that of Theorem 2 respectively. In
section 5, we give another reconstruction procedure and concluding remarks.

2 Auxiliary Propositions and Main Results

For the statement of the main results we need several propositions.
Let us introduce a nonsymmetric first-order differential operator in (L2(0, 1))2:

(APϕ)(x) = B
dϕ
dx

(x) + P (x)ϕ(x), 0 < x < 1, (2.1)

where B and P (x) are given in Section 1. We define an operator AP,µ,ν in
(L2(0, 1))2 by

(AP,µ,νϕ)(x) = (APϕ)(x), ϕ ∈ D(AP,µ,ν), 0 < x < 1, (2.2)

where

D(AP,µ,ν) =
{
ϕ ∈ (H1(0, 1)

)2 : ϕ(2)(0) coshµ− ϕ(1)(0) sinhµ = 0,

ϕ(2)(1) cosh ν + ϕ(1)(1) sinh ν = 0
}
. (2.3)

Throughout this paper, L2(0, 1) and H1(0, 1) are the Lebesgue space and the
Sobolev space of complex-valued functions respectively, and (L2(0, 1))2,(H1(0, 1))2

3



denote the product spaces. By (·, ·) we denote the scalar product in (L2(0, 1))2:

(f, g) =
∫ 1

0

fT (x)g(x)dx =
∫ 1

0

(
f (1)(x)g(1)(x) + f (2)(x)g(2)(x)

)
dx

(2.4)

for f =
(
f (1)

f (2)

)
∈ (L2(0, 1))2, g =

(
g(1)

g(2)

)
∈ (L2(0, 1))2. Here and hence-

forth c denotes the complex conjugate of c ∈ C and ·T denotes the transpose of
a vector or matrix under consideration. The quantity with the symbol ∗ denotes
the adjoint one, and the variable x is in the interval [0, 1]. Let

ξ =
(

coshµ
sinhµ

)
, η =

(
coshµ
− sinhµ

)
.

It is not hard to see that the adjoint operator A∗
P,µ,ν of AP,µ,ν in (L2(0, 1))2

is given by
(A∗

P,µ,νϕ
∗)(x) = −Bdϕ∗

dx
(x) + PT (x)ϕ∗(x), ϕ∗ ∈ D(A∗

P,µ,ν), 0 < x < 1,

D(A∗
P,µ,ν) =

{
ϕ∗ ∈ (H1(0, 1))2 : ϕ∗(2)(0) coshµ+ ϕ∗(1)(0) sinhµ = 0,

ϕ∗(2)(1) cosh ν − ϕ∗(1)(1) sinh ν = 0
} (2.5)

and A∗
P = −A−P T .

We call w �= 0 a root vector of an operator A for λ if (A − λ)mw = 0 for
some m ∈ N. Moreover we call {wn}n∈Z

a Riesz basis in (L2(0, 1))2 if each
f ∈ (L2(0, 1))2 has a unique expansion

f =
∞∑

n=−∞
cnwn

with cn ∈ C, n ∈ Z and

J−1
∞∑

n=−∞
|cn|2 ≤‖ f ‖2

(L2(0,1))2≤ J

∞∑
n=−∞

|cn|2,

where a constant J > 0 is independent of f . We note that if {wn}n∈Z
is a

Riesz basis in (L2(0, 1))2 and if, in the Hilbert space (L2(0, 1))2, an element f0
is orthogonal to each wn for n ∈ Z, then f0 = 0.

For the spectrum σ(AP,µ,ν) we have
Proposition 2.1.
(i) There exists N1 ∈ N and Σ1,Σ2 ⊂ σ(AP,µ,ν) such that σ(AP,µ,ν ) = Σ1

⋃
Σ2,

Σ1

⋂
Σ2 = ∅ and the following properties hold:
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(1) Σ1 consists of 2N1 − 1 eigenvalues including algebraic multiplicities in{
λ ∈ C :

∣∣∣∣Im(λ− 1
2

∫ 1

0

(p11 + p22)(s)ds+ µ+ ν

)∣∣∣∣ ≤ (N1 − 1
2
)π
}
.

(2) Σ2 consists of eigenvalues with algebraic multiplicity 1 in a neighborhood
of

1
2

∫ 1

0

(p11 + p22)(s)ds − µ− ν + nπ
√−1

for every |n| ≥ N1.
Moreover with a suitable numbering {λn}n∈Z of σ(AP,µ,ν), the eigenvalues

have an asymptotic behavior

λn =
1
2

∫ 1

0

(p11 + p22)(s)ds− µ− ν + nπ
√−1 +O

(
1
|n|
)

(2.6)

as |n| → ∞.
(ii) The set of all the root vectors of AP,µ,ν is a Riesz basis in (L2(0, 1))2.

For the proof, see Theorem 1.1 in [19].
Remark 2.1. We can prove that the geometric multiplicity of any eigenvalue is 1.

Here and Henceforth we say that an eigenvalue λ is simple if both the alge-
braic and geometric multiplicity of λ are 1. Henceforth, for the convenience of
notations, we reset the spectrum σ(AP,µ,ν) =Σ1

⋃
Σ2 by a suitable renumbering

as follows:

Σ1 =
{
λi ∈ σ(AP,µ,ν) : mi ≥ 2, 1 ≤ i ≤ N

}
,

Σ2 = {λn ∈ σ(AP,µ,ν) : λn is simple, n ∈ Z} , (2.7)

where mi denotes the algebraic multiplicity of λi.
Remark 2.2. If σ(AP,µ,ν) only consists of simple eigenvalues, then Σ1 does not
appear and the problem becomes much easier.

We note that σ(AP,µ,ν) = σ(A∗
P,µ,ν ) (cf. p.184 Remark 6.23 of Kato [6]). It

means that if λ ∈ σ(AP,µ,ν), then λ ∈ σ(A∗
P,µ,ν) with the same algebraic and

geometric multiplicity. Here and henceforth let ϕn = ϕn(x) be the eigenvector
of AP,µ,ν for λn such that ϕn(0) = ξ and ϕ∗

n = ϕ∗
n(x) be the eigenvector of

A∗
P,µ,ν for λn such that ϕ∗

n(0) = η (n ∈ Z). It is easy to see that

(ϕn, ϕ
∗
m) = 0 if n �= m, n,m ∈ Z. (2.8)

Proposition 2.2.
There exist root vectors

{
ϕi

j

}
1≤j≤mi

of AP,µ,ν for λi and
{
ϕi∗

j

}
1≤j≤mi

of A∗
P,µ,ν

5



for λi (1 ≤ i ≤ N) satisfying
(i) {

(AP − λi)ϕi
1 = 0, (AP − λi)ϕi

j = ϕi
j−1, 2 ≤ j ≤ mi, 1 ≤ i ≤ N,

ϕi
j(0) = ξ, ϕi

j ∈ D(AP,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N (2.9)

and
(A∗

P − λi)ϕi∗
mi

= 0, (A∗
P − λi)ϕi∗

j = ϕi∗
j+1, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,

ϕi∗
mi

(0) = η, ϕi∗
j (0) = αi

jη, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,

ϕi∗
j ∈ D(A∗

P,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N, (2.10)

where the constants αi
j (1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N) are defined through

(2), (5), (10), (12), (13) and (16) in the appendix.
(ii) (

ϕi
j , ϕ

∗
n

)
= 0,

(
ϕn, ϕ

i∗
j

)
= 0, for 1 ≤ j ≤ mi, 1 ≤ i ≤ N, n ∈ Z.

(iii)(
ϕi

j , ϕ
k∗
l

)
= 0 if i �= k or j �= l, 1 ≤ j ≤ mi, 1 ≤ l ≤ mk, 1 ≤ i, k ≤ N,

and (
ϕi

j , ϕ
i∗
j

)
=
(
ϕi

mi
, ϕi∗

mi

)
, for 1 ≤ j ≤ mi, 1 ≤ i ≤ N. (2.11)

In the appendix we will prove this proposition. The constants αi
j are intro-

duced for the sake of the orthogonality of the root vectors. We call
{
ϕi∗

j

}
1≤j≤mi

the normalized root vectors of A∗
P,µ,ν for λi with respect to

{
ϕi

j

}
1≤j≤mi

(1 ≤
i ≤ N). Noting Proposition 2.1 (ii), we see that

both
{
ϕi

j

}
1≤j≤mi,1≤i≤N

⋃ {ϕn}n∈Z
and

{
ϕ∗i

j

}
1≤j≤mi,1≤i≤N

⋃ {ϕ∗
n}n∈Z

are Riesz bases in (L2(0, 1))2. (2.12)

We set ρi =
(
ϕi

mi
, ϕi∗

mi

)
, αi = (αi

1, · · · , αi
mi−1), 1 ≤ i ≤ N , and ρn = (ϕn, ϕ

∗
n),

n ∈ Z. Obviously, noting (2.11), we have(
ϕi

j , ϕ
i∗
j

)
= ρi, ∀1 ≤ j ≤ mi. (2.13)

By (2.8), Proposition 2.1 (ii) and Proposition 2.2, it is not hard to see

ρi �= 0, 1 ≤ i ≤ N ; ρn �= 0, n ∈ Z. (2.14)
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Definition. We call S(P, µ, ν) :=
{
λi,mi, ρ

i,αi
}

1≤i≤N

⋃ {λn, ρn}n∈Z
the spec-

tral characteristics of AP,µ,ν .

Proposition 2.3. Let f, g ∈ (L2(0, 1))2.
(i) (the Parseval equality with respect to AP,µ,ν )

(f, g) =
N∑

i=1

mi∑
j=1

(
f, ϕi∗

j

) (
ϕi

j , g
)

ρi
+
∑
n∈Z

(f, ϕ∗
n) (ϕn, g)
ρn

. (2.15)

(ii) (expansion)

f =
N∑

i=1

mi∑
j=1

(
f, ϕi∗

j

)
ρi

ϕi
j +

∑
n∈Z

(f, ϕ∗
n)

ρn
ϕn, (2.16)

g =
N∑

i=1

mi∑
j=1

(
g, ϕi

j

)
ρi

ϕi∗
j +

∑
n∈Z

(g, ϕn)
ρn

ϕ∗
n, (2.17)

where both series are convergent in (L2(0, 1))2.

Proposition 2.3 can be proved by Proposition 2.1 (ii) and Proposition 2.2. Here
we omit the details.

Remark 2.3. For f, g in (L2(0, 1))2 or (L2(0, 1))4 we denote still the product of
f and g by

(f, g) =
∫ 1

0

fT (x)g(x)dx.

Then

(F,G) =
N∑

i=1

mi∑
j=1

(
F, ϕi∗

j

) (
ϕi

j , G
)

ρi
+
∑
n∈Z

(F, ϕ∗
n) (ϕn, G)
ρn

(2.18)

holds for F,G ∈ (L2(0, 1))4. In this case we call still (2.18) the Parseval equality.

For λ ∈ C, let S(x, λ) and S∗(x, λ) satisfy the following initial value problems
respectively: {

(A0 − λ)S = 0,
S(0, λ) = ξ

(2.19)

{ (A∗
0 − λ

)
S∗ = 0,

S∗(0, λ) = η.
(2.20)
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Obviously, S(x, λ) =
(

cosh(λx + µ)
sinh(λx + µ)

)
, S∗(x, λ) =

(
cosh(λx+ µ)
− sinh(λx+ µ)

)
and(

S(·, λ), S∗(·, λ)
)

= 1. For n ∈ Z, let µn ∈ σ(A0,µ,0) and let us denote
Sn(x) = S(x, µn), S∗

n(x) = S(x, µn). Here a short calculation shows that
µn = nπ

√−1 − µ, n ∈ Z.

Remark 2.4. Each µn (n ∈ Z) is simple, and hence both {Sn}n∈Z and {S∗
n}n∈Z

are Riesz bases in (L2(0, 1))2.

Let S(j)(x, λ) and S∗
(j)(x, λ) (1 ≤ j ≤ mi) satisfy the following initial value

problems respectively:{
(A0 − λ)S(1) = 0, (A0 − λ)S(j) = S(j−1), 2 ≤ j ≤ mi,
S(j)(0, λ) = ξ, 1 ≤ j ≤ mi, (2.21)

{ (A∗
0 − λ

)
S∗

(mi)
= 0,

(A∗
0 − λ

)
S∗

(j) = S∗
(j+1), 1 ≤ j ≤ mi − 1,

S∗
(mi)

(0, λ) = η, S∗
(j)(0, λ) = αi

jη, 1 ≤ j ≤ mi − 1. (2.22)

Then, we can find the solutions of (2.21) and (2.22) possess the following
forms:

S(j)(x, λ) =


j−1∑
k=0

xk

k!
γk(x, λ, µ)

j−1∑
k=0

xk

k!
δk(x, λ, µ)

 ,

S∗
(j)(x, λ) =


mi∑
k=j

αi
k

xk−j

(k − j)!
γk−j(x, λ, µ)

−
mi∑
k=j

αi
k

xk−j

(k − j)!
δk−j(x, λ, µ)

 ,

where αi
mi

= 1,

γk(x, λ, µ) =
{

cosh(λx+ µ), k even
sinh(λx+ µ), k odd , δk(x, λ, µ) =

{
sinh(λx + µ), k even
cosh(λx+ µ), k odd .

Put

C∗(x, λ) =
∫ x

0

S∗(t, λ)dt, C∗
(j)(x, λ) =

∫ x

0

S∗
(j)(t, λ)dt,

(2.23)

C(y, λ) =
∫ y

0

S(t, λ)dt, C(j)(y, λ) =
∫ y

0

S(j)(t, λ)dt, (2.24)
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and

f(x, y) =
N∑

i=1

mi∑
j=1

C∗
(j)(x, λ

i)CT
(j)(y, λ

i)

ρi

+
∑
n∈Z

{
C∗(x, λn)CT (y, λn)

ρn
− C∗(x, µn)CT (y, µn)

}
.

(2.25)

Proposition 2.4.
(i) The series in (2.25) is convergent absolutely and uniformly in [0, 1]2.

(ii) f ∈ (C[0, 1]2
)4 and

∂f

∂x
,
∂f

∂y
,
∂2f

∂x∂y
∈ (C1(Ω)

)4
, ∈

(
C1
(
(0, 1)2\Ω

))4

.

The proof of Proposition 2.4 is given in Section 4.
We further put

F (x, y) =
∂2f

∂x∂y
(x, y) (2.26)

and
Ω =

{
(x, y) ∈ [0, 1]2 : 0 < y < x < 1

}
.

We are ready to state our main results.

Theorem 1 (Uniqueness). Let P =
(
p1 p2

u v

)
, Q =

(
q1 q2
u v

)
∈(

C1[0, 1]
)4. If S(P, µ, ν) = S(Q,µ, ν), then P ≡ Q.

Proposition 2.5. Let P,Q ∈ (C1[0, 1]
)4. If S(P, µ, ν) = S(Q,µ, ν) and there

exist a sufficiently large |n| and some eigenvector ψ∗
n of A∗

Q,µ,ν such that for any
m �= n and any 1 ≤ j ≤ mi, 1 ≤ i ≤ N ,

ρmn := (ϕm, ψ
∗
n) = 0, ρi

jn := (ϕi
j , ψ

∗
n) = 0,

then P ≡ Q.

Theorem 2 (Reconstruction). Let P =
(
p1 p2

u v

)
∈ (C1[0, 1]

)4, S(P, µ, ν) ={
λi,mi, ρ

i,αi
}

1≤i≤N

⋃ {λn, ρn}n∈Z
be the spectral characteristics of AP,µ,ν and

let F (x, y) be given by (2.25) and (2.26). Then there exists M ∈ (C1
(
Ω
))4

such
that

F (x, y) +M(x, y) +
∫ x

0

M(x, τ)F (τ, y)dτ = 0, (x, y) ∈ Ω.
(2.27)
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Moreover, for 0 ≤ x ≤ 1 we have

2(M12 −M21)(x, x) = (v(x) − p1(x)) cosh
(∫ x

0

(p1 + v)(s)ds
)

+ (p2(x) − u(x)) sinh
(∫ x

0

(p1 + v)(s)ds
)
, (2.28)

2(M11 −M22)(x, x) = (v(x) − p1(x)) sinh
(∫ x

0

(p1 + v)(s)ds
)

+ (p2(x) − u(x)) cosh
(∫ x

0

(p1 + v)(s)ds
)
. (2.29)

To our knowledge the existing results on inverse spectral problems for sys-
tems of differential equations do not give any simultaneous determination of
all components of the unknown coefficient matrix, even for the Dirac system.
Proposition 2.5 guarantees the uniqueness of all the components in some case.
Theorem 2 gives a reconstruction procedure of P (x) from S(P, µ, ν). For fixed x,
integral equation (2.27) is a Fredholm equation of the second kind with respect
to M(x, y) which corresponds to the Gel’fand-Levitan equation in the Sturm-
Liouville equation. Thus we call (2.27) the Gel’fand-Levitan equation. If for
given S(P, µ, ν) and F (x, y) determined by (2.25) and (2.26), the homogeneous
equation with respect to 1 × 2 function M(y)

M(y) +
∫ x

0

M(τ)F (τ, y)dτ = 0 (2.30)

has only the trivial solution, then (2.27) admits a unique solution by Fredholm’s
alternative theorem. Then we can solve (2.28) and (2.29) with respect to p1 and
p2 since Mij(x, x), 1 ≤ i, j ≤ 2 have been obtained by (2.27).

3 Proof of Theorem 1.

First we show the unique existence of solution to a boundary value problem for
a hyperbolic system (Lemma 3.1) and a transformation formula (Lemma 3.2).
For the proofs we refer to Yamamoto [20].

Lemma 3.1. Suppose that Q =
(
q11 q12
q21 q22

)
, P =

(
p11 p12

p21 p22

)
∈ (C1[0, 1]

)4.
Let

θ1(x) =
1
2

∫ x

0

(p12 + p21 − q12 − q21)(s)ds,

θ2(x) =
1
2

∫ x

0

(p11 + p22 − q11 − q22)(s)ds

10



and µ ∈ C. Then there exists a unique K(Q,P, µ) = (Kkl(Q,P, µ)(x, y))1≤k,l≤2

∈ (C1
(
Ω
))4

satisfying (3.1)-(3.4):

B
∂K(Q,P, µ)

∂x
(x, y) +

∂K(Q,P, µ)
∂y

(x, y)B

+P (x)K(Q,P, µ)(x, y) −K(Q,P, µ)(x, y)Q(y) = 0, (x, y) ∈ Ω. (3.1){
K12(Q,P, µ)(x, 0) = − tanhµ K11(Q,P, µ)(x, 0),
K22(Q,P, µ)(x, 0) = − tanhµ K21(Q,P, µ)(x, 0), (3.2)

K12(Q,P, µ)(x, x) −K21(Q,P, µ)(x, x)
= 1

4 exp (−θ1 − θ2)(x) × (p11 + p12 − p21 − p22 − q11 + q12 − q21 + q22)(x)
+ 1

4 exp (θ2 − θ1)(x) × (p11 − p12 + p21 − p22 − q11 − q12 + q21 + q22)(x),(3.3)

K11(Q,P, µ)(x, x) −K22(Q,P, µ)(x, x)
= 1

4 exp (−θ1 − θ2)(x) × (p11 + p12 − p21 − p22 + q11 − q12 + q21 − q22)(x)
+ 1

4 exp (θ2 − θ1)(x) × (p12 − p11 − p21 + p22 − q11 − q12 + q21 + q22)(x).(3.4)

Set

R(Q,P )(x) = e−θ1(x)

(
cosh θ2(x) − sinh θ2(x)
− sinh θ2(x) cosh θ2(x)

)
. (3.5)

We notice thatR(Q,P )(x) is continuously twice differentiable andR−1(Q,P )(x)=
R(P,Q)(x). Moreover it is easy to see that

R
(
−QT ,−PT

)
(x) = R (P,Q) (x) = R−1 (Q,P ) (x). (3.6)

We note that (3.3) and (3.4) can be rewritten as follows:

K(Q,P, µ)(x, x)B −BK(Q,P, µ)(x, x)

= B
dR(Q,P )

dx
(x) + P (x)R(Q,P )(x) −R(Q,P )(x)Q(x). (3.7)

Now we define a transformation operator X(Q,P, µ) on
(
H1(0, 1)

)2 by

(X(Q,P, µ)w) (x) = R(Q,P )(x)w(x) +
∫ x

0

K(Q,P, µ)(x, y)w(y)dy.
(3.8)

Lemma 3.2. Let h =
(
h(1)

h(2)

)
∈ (C[0, 1])2 and β =

(
β(1)

β(2)

)
∈ C2 satisfy

β(2) coshµ− β(1) sinhµ = 0. For λ ∈ C, if ψ = ψ(·, λ) ∈ (C1[0, 1]
)2 satisfies{

B
dψ
dx

(x) +Q(x)ψ(x) = λψ(x) + h(x),
ψ(0) = β,

(3.9)
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then ϕ = ϕ(·, λ) ∈ (C1[0, 1]
)2 defined by

ϕ(x, λ) = R(Q,P )(x)ψ(x, λ) +
∫ x

0

K(Q,P, µ)(x, y)ψ(y, λ)dy
(3.10)

satisfies 
B

dϕ
dx

(x) + P (x)ϕ(x) = λϕ(x) +R(Q,P )(x)h(x)

+
∫ x

0

K(Q,P, µ)(x, y)h(y)dy,

ϕ(0) = β.
(3.11)

Obviously Lemma 3.2 can be rewritten as follows:

Let λ ∈ C. If h =
(
h(1)

h(2)

)
∈ (C[0, 1])2, (AQ − λ)ψ = h, ψ(0) = β, then

ϕ = X(Q,P, µ)ψ satisfies

(AP − λ)ϕ = X(Q,P, µ)h, ϕ(0) = β.

Now let Q =
(
q1 q2
u v

)
∈ (C1[0, 1]

)4, P =
(
p1 p2

u v

)
∈ (C1[0, 1]

)4. As-

sume that S(P, µ, ν) = S(Q,µ, ν) =
{
λi,mi, ρ

i,αi
}

1≤i≤N

⋃ {λn, ρn}n∈Z
. Since

the solutions of (3.9) and (3.11) are unique, in terms of Lemma 3.2 we can ob-
tain the following transformation formulae:
Lemma 3.3 (Transformation formulae). Let λ ∈ C.
(i) If (AQ − λ)ψ = 0, ψ(0) = ξ and (AP − λ)ϕ = 0, ϕ(0) = ξ, then

ϕ = X(Q,P, µ)ψ (3.12)

and

ψ = X(P,Q, µ)ϕ. (3.13)

(ii) If{
(AQ − λi)ψi

1 = 0, (AQ − λi)ψi
j = ψi

j−1, 2 ≤ j ≤ mi, 1 ≤ i ≤ N,
ψi

j(0) = ξ, ψi
j ∈ D(AQ,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N,

and {
(AP − λi)ϕi

1 = 0, (AP − λi)ϕi
j = ϕi

j−1, 2 ≤ j ≤ mi, 1 ≤ i ≤ N,
ϕi

j(0) = ξ, ϕi
j ∈ D(AP,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N,

12



then

ϕi
j = X(Q,P, µ)ψi

j , 1 ≤ j ≤ mi, 1 ≤ i ≤ N, (3.14)

and

ψi
j = X(P,Q, µ)ϕi

j , 1 ≤ j ≤ mi, 1 ≤ i ≤ N. (3.15)

(iii) If (A∗
Q − λ)ψ∗ = 0, ψ∗(0, λ) = η and (A∗

P − λ)ϕ∗ = 0, ϕ∗(0, λ) = η, then

ϕ∗ (x, λ) =
(
X
(
−QT ,−PT ,−µ

)
ψ∗
) (
x, λ

)
(3.16)

and

ψ∗ (x, λ) =
(
X
(
−PT ,−QT ,−µ

)
ϕ∗
) (
x, λ

)
. (3.17)

(iv) If
(A∗

Q − λi)ψi∗
mi

= 0, (A∗
Q − λi)ψi∗

j = ψi∗
j+1, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,

ψi∗
mi

(0) = η, ψi∗
j (0) = αi

jη, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,
ψi∗

j ∈ D(A∗
Q,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N,

and
(A∗

P − λi)ϕi∗
mi

= 0, (A∗
P − λi)ϕi∗

j = ϕi∗
j+1, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,

ϕi∗
mi

(0) = η, ϕi∗
j (0) = αi

jη, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,
ϕi∗

j ∈ D(A∗
P,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N,

then

ϕi∗
j = X

(
−QT ,−PT ,−µ

)
ψi∗

j , 1 ≤ j ≤ mi, 1 ≤ i ≤ N,
(3.18)

and

ψi∗
j = X

(
−PT ,−QT ,−µ

)
ϕi∗

j , 1 ≤ j ≤ mi, 1 ≤ i ≤ N.
(3.19)

Moveover, in order to prove Theorem 1, we need the following two lemmata.
Lemma 3.4. For 0 < b < y < a < x < 1, we have

I :=
N∑

i=1

mi∑
j=1

1
ρi

∫ x

a

R (Q,P ) (t)ϕi∗
j (t)dt

∫ y

b

(
ψi

j(t)
)T

dt

+
∑
n∈Z

1
ρn

∫ x

a

R (Q,P ) (t)ϕ∗
n(t)dt

∫ y

b

ψT
n (t)dt

= 0,

(3.20)
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and

I0 :=
N∑

i=1

mi∑
j=1

1
ρi

∫ x

a

ψi∗
j (t)dt

∫ y

b

(
ψi

j(t)
)T

dt

+
∑
n∈Z

1
ρn

∫ x

a

ψ∗
n(t)dt

∫ y

b

ψT
n (t)dt

= 0.

(3.21)

Proof. By Lemma 3.3 (i) and (ii), it is true that

ψn(t) = (X(P,Q, µ)ϕn) (t), n ∈ Z

and
ψi

j(t) =
(
X(P,Q, µ)ϕi

j

)
(t), 1 ≤ j ≤ mi, 1 ≤ i ≤ N.

By the symmetry of R(P,Q)(x), changing the order of integrals, we obtain∫ y

b

ψT
n (t)dt =

∫ y

b

(
R (P,Q) (t)ϕn(t) +

∫ t

0

K (P,Q, µ) (t, τ)ϕn(τ)dτ
)T

dt

=
∫ y

b

ϕT
n (t)R (P,Q) (t)dt+

∫ b

0

ϕT
n (t)dt

∫ y

b

KT (P,Q, µ) (τ, t)dτ

+
∫ y

b

ϕT
n (t)dt

∫ y

t

KT (P,Q, µ) (τ, t)dτ

=
∫ 1

0

ϕT
n (t)

(
χ(b,y)(t)G1(t) + χ(0,b)(t)G2(t)

)
dt

=
(
ϕn(·), χ(b,y)(·)G1(·) + χ(0,b)(·)G2(·)

)
,

where
G1(t) = R (P,Q) (t) +

∫ y

t

KT (P,Q, µ) (τ, t)dτ ,

G2(t) =
∫ y

b

KT (P,Q, µ) (τ, t)dτ .

Similarly, ∫ y

b

(
ψi

j(t)
)T

dt =
(
ϕi

j(·), χ(b,y)(·)G1(·) + χ(0,b)(·)G2(·)
)
.

Therefore

I =
N∑

i=1

mi∑
j=1

1
ρi

(
χ(a,x)(·)R(Q,P )(·), ϕi∗

j (·)) (ϕi
j(·), χ(b,y)(·)G1(·) + χ(0,b)(·)G2(·)

)

+
∑
n∈Z

1
ρn

(
χ(a,x)(·)R(Q,P )(·), ϕ∗

n(·)) (ϕn(·), χ(b,y)(·)G1(·) + χ(0,b)(·)G2(·)
)
.
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It is obvious that R(Q,P ), G1, G2 ∈ (L2(0, 1))4. By the Parseval equality with
respect to AP,µ,ν , we obtain

I =
(
χ(a,x)(·)R(Q,P )(·), χ(b,y)(·)G1(·) + χ(0,b)(·)G2(·)

)
= 0

since (a, x) ∩ {(0, b) ∪ (b, y)} = ∅.
Similarly, by the Parseval equality with respect to AQ,µ,ν ,

I0 =
(
χ(a,x)(·)E,χ(b,y)(·)E

)
= 0,

where E denotes the unit matrix
(

1 0
0 1

)
. �

Lemma 3.5. For 0 < b < y < a < x < 1, we have

I =
N∑

i=1

mi∑
j=1

1
ρi

{∫ x

a

ψi∗
j (t)dt

+
∫ x

a

R(Q,P )(t)dt
∫ t

0

K
(
−QT ,−PT ,−µ

)
(t, τ)ψi∗

j (τ)dτ
}∫ y

b

(
ψi

j(t)
)T

dt

+
∑
n∈Z

1
ρn

{∫ x

a

ψ∗
n(t)dt

+
∫ x

a

R(Q,P )(t)dt
∫ t

0

K
(
−QT ,−PT ,−µ

)
(t, τ)ψ∗

n(τ)dτ
}∫ y

b

ψT
n (t)dt

= 0.

Proof. If one notices (3.16),(3.18) and (3.6), then the proof of Lemma 3.5 is
complete.

Proof of Theorem 1. First by Lemma 3.4 and 3.5, we have

0 =
N∑

i=1

mi∑
j=1

1
ρi

{∫ x

a

R(Q,P )(t)dt
∫ t

0

K
(
−QT ,−PT ,−µ

)
(t, τ)ψi∗

j (τ)dτ
}

×
∫ y

b

(
ψi

j(t)
)T

dt

+
∑
n∈Z

1
ρn

{∫ x

a

R(Q,P )(t)dt
∫ t

0

K
(
−QT ,−PT ,−µ

)
(t, τ)ψ∗

n(τ)dτ
}∫ y

b

ψT
n (t)dt
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=
N∑

i=1

mi∑
j=1

1
ρi

{∫ a

0

[∫ x

a

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, τ)dt

]
ψi∗

j (τ)dτ

+
∫ x

a

[∫ x

y

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, τ)dt

]
ψi∗

j (τ)dτ
}∫ y

b

(
ψi

j(t)
)T

dt

+
∑
n∈Z

1
ρn

{∫ a

0

[∫ x

a

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, τ)dt

]
ψ∗

n(τ)dτ

+
∫ x

a

[∫ x

y

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, τ)dt

]
ψ∗

n(τ)dτ
}∫ y

b

ψT
n (t)dt

(by changing the order of integrals)

=

(
χ(0,a)(·)

(∫ x

a

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, ·)dt

)T

, χ(b,y)(·)E
)

+

(
χ(a,x)(·)

(∫ x

y

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, ·)dt

)T

, χ(b,y)(·)E
)

(by the Parseval equality with respect to AQ,µ,ν).

Note that (0, a)
⋂

(b, y) = (b, y) and (a, x)
⋂

(b, y) = ∅. It follows that∫ y

b

∫ x

a

R(Q,P )(t)K
(
−QT ,−PT ,−µ

)
(t, τ)dtdτ = 0

for 0 ≤ b ≤ y ≤ a ≤ x ≤ 1. It implies that

R(Q,P )(x)K
(
−QT ,−PT ,−µ

)
(x, y) = 0, (x, y) ∈ Ω. (3.22)

Since R(Q,P )(x) is invertible, we see that K
(
−QT ,−PT ,−µ

)
(x, x) = 0.

By means of (3.3) and (3.4) in Lemma 3.1, we have

exp
(

1
2

∫ x

0

(p1 + p2 − q1 − q2)(s)ds
)
× (−p1 + p2 + q1 + q2 − 2u)(x)

+exp
(

1
2

∫ x

0

(−p1 + p2 + q1 − q2)(s)ds
)
× (−p1 − p2 + q1 − q2 + 2u)(x) = 0

and

exp
(

1
2

∫ x

0

(p1 + p2 − q1 − q2)(s)ds
)
× (−p1 + p2 − q1 − q2 + 2v)(x)

+exp
(

1
2

∫ x

0

(−p1 + p2 + q1 − q2)(s)ds
)
× (p1 + p2 + q1 − q2 − 2v)(x) = 0,
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that is,

exp
(∫ x

0

(p1 − q1)(s)ds
)
× (−p1 + p2 + q1 + q2 − 2u)(x)

+(−p1 − p2 + q1 − q2 + 2u)(x) = 0 (3.23)

and

exp
(∫ x

0

(p1 − q1)(s)ds
)
× (−p1 + p2 − q1 − q2 + 2v)(x)

+(p1 + p2 + q1 − q2 − 2v)(x) = 0. (3.24)

Setting r1(x) = p1(x) − q1(x), r2(x) = p2(x) + q2(x), we rewrite (3.23) as

exp
(∫ x

0

r1(s)ds
)
× (−r1 + r2 − 2u)(x) + (−r1 − r2 + 2u)(x) = 0,

which is equivalent to

r1(x)
(

1 + exp
(∫ x

0

r1(s)ds
))

= a(x)
(

1 − exp
(∫ x

0

r1(s)ds
))

,
(3.25)

where a = 2u− r2 ∈ C1[0, 1].
Next we are going to prove that r1(x) ≡ 0. First since r1, a ∈ C1[0, 1], we

can choose a positive integer N0 such that

‖r1(·)‖C0[0,1] ≤ N0, exp
(∫ 1

0

|r1(s)|ds
)

≤ N0, ‖a(·)‖C0[0,1] ≤ N0.

Denote δ0 := 1/N0. Then for any x ∈ [0, δ0], we have∣∣∣∣∫ x

0

r1(s)ds
∣∣∣∣ ≤ δ0‖r1(·)‖C0[0,1] ≤ 1.

On the other hand, if z = z1 +
√−1z2, z1, z2 ∈ R satisfies |z| ≤ 1, then

|1 + exp(z)| =
√

(1 + exp(z1) cos z2)
2 + (exp(z1) sin z2)

2 ≥ 1+exp(z1) cos z2 ≥ 1

since −1 ≤ z1, z2 ≤ 1. This yields that for any x ∈ [0, δ0],∣∣∣∣1 + exp
(∫ x

0

r1(s)ds
)∣∣∣∣ ≥ 1.

Therefore, applying the mean value theorem to the function exp
(∣∣∫ x

0 r1(s)ds
∣∣)−

1 which is obviously not less than
∣∣1 − exp

(∫ x

0
r1(s)ds

)∣∣, we obtain from (3.25)
that for any x ∈ [0, δ0],

|r1(x)| ≤ |a(x)| ×
∣∣∣∣∫ x

0

r1(s)ds
∣∣∣∣× exp

(∫ 1

0

|r1(s)|ds
)

≤ N2
0

∫ x

0

|r1(s)|ds.
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The Gronwall inequality implies that r1(x) ≡ 0 in [0, δ0]. Similarly, we can ap-
ply the same argument to the subinterval [δ0, 2δ0], in which we obtain r1(x) ≡ 0.
Repeat the same argument in each subinterval [(k−1)δ0, kδ0], 1 ≤ k ≤ N0. Con-
sequently, it follows that r1(x) ≡ 0 in [0, 1], that is, p1(x) = q1(x). Substituting
p1 = q1 into (3.24), we have p2(x) = q2(x). Thus P (x) = Q(x) follows and the
proof is complete. �

4 Proofs of Proposition 2.5 and Theorem 2.

Let P =
(
p1 p2

u v

)
∈ (C1[0, 1])4, S(P, µ, ν) =

{
λi,mi, ρ

i,αi
}

1≤i≤N

⋃ {λn, ρn}n∈Z

be the spectral characteristics of AP,µ,ν . We should note that D(AP,µ,ν) =
D(A0,µ,ν).

We divide the proofs into three steps.

First step. In this step, we prove Proposition 2.5 and Proposition 2.4.
Similarly to Lemma 3.3, we have the following transformation formulae.

Lemma 4.1 (Transformation formulae). Let λ ∈ C and 1 ≤ i ≤ N .
(i) If (A0 − λ)S = 0, S(0, λ) = ξ and (AP − λ)ϕ = 0, ϕ(0, λ) = ξ, then

ϕ(x, λ) = (X(0, P, µ)S) (x, λ)

and
S(x, λ) = (X(P, 0, µ)ϕ) (x, λ).

(ii) If{
(A0 − λi)S(1)(x, λi) = 0, (A0 − λi)S(j)(x, λi) = S(j−1)(x, λi), 2 ≤ j ≤ mi,
S(j)(0, λi) = ξ, 1 ≤ j ≤ mi,

and {
(AP − λi)ϕi

1 = 0, (AP − λi)ϕi
j = ϕi

j−1, 2 ≤ j ≤ mi,
ϕi

j(0) = ξ, ϕi
j ∈ D(AP,µ,ν), 1 ≤ j ≤ mi,

then
ϕi

j(x) =
(
X(0, P, µ)S(j)

)
(x, λi), 1 ≤ j ≤ mi,

and
S(j)(x, λi) =

(
X(P, 0, µ)ϕi

j

)
(x), 1 ≤ j ≤ mi.

(iii) If (A∗
0 − λ)S∗ = 0, S∗(0, λ) = η and (A∗

P − λ)ϕ∗ = 0, ϕ∗(0, λ) = η, then

ϕ∗ (x, λ) =
(
X
(
0,−PT ,−µ

)
S∗
) (
x, λ

)
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and
S∗ (x, λ) =

(
X
(
−PT , 0,−µ

)
ϕ∗
) (
x, λ

)
.

(iv) If{
(A∗

0 − λi)S∗
(mi)

(x, λi) = 0, (A∗
0 − λi)S∗

(j)(x, λ
i) = S∗

(j+1)(x, λ
i), 1 ≤ j ≤ mi − 1,

S∗
(mi)

(0, λi) = η, S∗
(j)(0, λ

i) = αi
jη, 1 ≤ j ≤ mi − 1,

and{
(A∗

P − λi)ϕi∗
mi

= 0, (A∗
P − λi)ϕi∗

j = ϕi∗
j+1, 1 ≤ j ≤ mi − 1,

ϕi∗
mi

(0) = η, ϕi∗
j (0) = αi

jη, 1 ≤ j ≤ mi − 1, ϕi∗
j ∈ D(A∗

P,µ,ν), 1 ≤ j ≤ mi,

then
ϕi∗

j (x) =
(
X
(
0,−PT ,−µ

)
S∗

(j)

)
(x, λi), 1 ≤ j ≤ mi,

and
S∗

(j)(x, λi) =
(
X
(
−PT , 0,−µ

)
ϕi∗

j

)
(x), 1 ≤ j ≤ mi.

Lemma 4.2. There exists a constant δ = δ(P, µ, ν) > 0 such that |ρn| ≥ δ,
n ∈ Z.
Proof. First we see that there exists a constant c(µ) > 0 such that
|S(x, λ)| ≤ c(µ) provided that |Reλ| <∞.

Moreover, by (2.19) and integrating by parts, we have∣∣∣∣∫ x

0

K(0, P, µ)(x, y)S(y, λ)dy
∣∣∣∣

=
∣∣∣∣∫ x

0

K(0, P, µ)(x, y)
1
λ
B∂yS(y, λ)dy

∣∣∣∣
=

1
|λ|
∣∣K(0, P, µ)(x, x)BS(x, λ) −K(0, P, µ)(x, 0)BS(0, λ)

−
∫ x

0

∂yK(0, P, µ)(x, y)BS(y, λ)dy
∣∣∣∣

≤ 1
|λ|
(

2‖K(0, P, µ)‖∞ + max
0≤x≤1

∫ x

0

|∂yK(0, P, µ)(x, y)| dy
)
‖S(·, λ)‖∞

≡ c(P, µ)
|λ| .

(4.1)
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By means of Lemma 4.1 (i), from (4.1), for large |n| there existDn ∈ (L∞(0, 1))2

such that
sup

n∈Z,0≤x≤1
|Dn(x)| ≤ c(P, µ)

and

ϕn(x) = ϕ(x, λn) = R(0, P )(x)S(x, λn) +
Dn(x)
λn

. (4.2)

Similarly, in view of Lemma 4.1 (iii), there exist D∗
n ∈ (L∞(0, 1))2 such that

ϕ∗
n(x) = ϕ∗(x, λn) = R−1(0, P )(x)S∗(x, λn) +

D∗
n(x)
λn

. (4.3)

By (2.6), we have

ρn = (ϕn, ϕ
∗
n)

=
(
R(0, P )(·)S(·, λn), R−1(0, P )(·)S∗(·, λn)

)
+O

(
1
|n|
)

= 1 +O

(
1
|n|
)
,

(4.4)

which implies |ρn| ≥ 1
2 for sufficiently large |n|. Note that ρn �= 0, n ∈ Z.

Therefore we can take δ = δ(P, µ, ν) > 0 such that |ρn| ≥ δ > 0. �

Proof of Proposition 2.5. From S(P, µ, ν) = S(Q,µ, ν) we can prove that the
transformation kernel K

(
−QT ,−PT ,−µ

)
(x, y) = 0 in Ω as in the proof of

Theorem 1 (see (3.22)). Then by Lemma 3.3 (iii) we see that

ϕ∗
n(x) = R(−QT ,−PT )(x)ψ∗

n(x). (4.5)

On the other hand, from ρmn = 0, ρi
jn = 0 and Proposition 2.2 it follows that

ϕ∗
n − ψ∗

n is orthogonal to the Riesz basis
{
ϕi

j

}
1≤j≤mi,1≤i≤N

⋃ {ϕm}m∈Z
and,

consequently, ϕ∗
n − ψ∗

n ≡ 0. Substituting this into (4.5), we obtain

ϕ∗
n(x) = R(−QT ,−PT )(x)ϕ∗

n(x). (4.6)

Moreover (4.3) yields by (2.6) that

ϕ∗
n(x) = R(0,−PT )S∗(x, λn) +O(

1
n

),

which implies that (
ϕ∗(1)

n (x)
)2

−
(
ϕ∗(2)

n (x)
)2

�= 0
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for sufficiently large |n|.
Therefore, from (4.6) it follows that R(−QT ,−PT )(x) ≡ E. Consequently, in
view of (3.7), replacing Q,P by −QT ,−PT respectively, we obtain from

K
(
−QT ,−PT ,−µ

)
(x, x) = 0, R(−QT ,−PT )(x) ≡ E

that P (x) ≡ Q(x). The proof is complete. �

Proof of Proposition 2.4 (i). It is sufficient to prove∣∣∣∣∣C∗(x, λn)CT (y, λn)
ρn

∣∣∣∣∣ ≤ c1
n2
, n ∈ Z, (x, y) ∈ [0, 1]2 (4.7)

and ∣∣∣C∗(x, µn)CT (y, µn)
∣∣∣ ≤ c2

n2
, n ∈ Z, (x, y) ∈ [0, 1]2. (4.8)

Here the constants c1, c2 > 0 are independent of (x, y) ∈ [0, 1]2 and n ∈ Z.
By the definitions of C(·, λ) and C∗(x, λ), we see that

|C(y, λ)| ≤ c(µ)
|λ| ,

∣∣C∗(x, λ)
∣∣ ≤ c(µ)

|λ| .

Moreover, by Lemma 4.2 we have∣∣∣∣∣C∗(x, λn)CT (y, λn)
ρn

∣∣∣∣∣ ≤ c2(µ)
δ|λn|2 . (4.9)

Then Proposition 2.1 (i) completes the proof. �
Lemma 4.3.

I(P, µ, ν) :=
N∑

i=1

mi∑
j=1

C∗
(j)(x, λ

i)CT
(j)(y, λ

i)

ρi
+
∑
n∈Z

C∗(x, λn)CT (y, λn)
ρn

=
∫ min (x,y)

0

Ψ(x, t)ΦT (y, t)dt,

where

Ψ(x, t) =


R(0, P )(t) +

∫ x

t

K
(
−PT , 0,−µ

)
(τ, t)dτ , 0 ≤ t ≤ x ≤ 1,

0, 0 ≤ x < t ≤ 1,(4.10)
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and

Φ(y, t) =


R−1(0, P )(t) +

∫ y

t

K (P, 0, µ) (τ, t)dτ , 0 ≤ t ≤ y ≤ 1,

0, 0 ≤ y < t ≤ 1. (4.11)

Proof. By Lemma 4.1 (ii),

C(j)(y, λi) =
∫ y

0

S(j)(t, λi)dt

=
∫ y

0

{
R(P, 0)(t)ϕi

j(t) +
∫ t

0

K (P, 0, µ) (t, τ)ϕi
j(τ)dτ

}
dt

=
∫ y

0

{
R−1(0, P )(t) +

∫ y

t

K (P, 0, µ) (τ, t)dτ
}
ϕi

j(t)dt

=
∫ 1

0

Φ(y, t)ϕi
j(t)dt.

Therefore

CT
(j)(y, λ

i) =
(
ϕi

j(·),ΦT (y, ·)
)
. (4.12)

Similarly,

CT (y, λn) =
(
ϕn(·),ΦT (y, ·)

)
. (4.13)

By Lemma 4.1 (iv), noting (3.6), we have

C∗
(j)

(
x, λi

)
=

∫ x

0

S∗
(j)(t, λi)dt

=
∫ x

0

{
R(−PT , 0)(t)ϕi∗

j (t) +
∫ t

0

K
(
−PT , 0,−µ

)
(t, τ)ϕi∗

j (τ)dτ
}

dt

=
∫ x

0

{
R(0, P )(t) +

∫ x

t

K
(
−PT , 0,−µ

)
(τ, t)dτ

}
ϕi∗

j (t)dt

=
∫ 1

0

Ψ(x, t)ϕi∗
j (t)dt.
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Therefore

C∗
(j)(x, λ

i) =
(
ΨT (x, ·), ϕi∗

j (·)
)
. (4.14)

Similarly,

C∗(x, λn) =
(
ΨT (x, ·), ϕ∗

n(·)
)
. (4.15)

By (4.12), (4.13), (4.14), (4.15) and the Parseval equality with respect to
AP,µ,ν , we obtain

I(P, µ, ν) =
N∑

i=1

mi∑
j=1

(
ΨT (x, ·), ϕi∗

j (·)
)(

ϕi
j(·),ΦT (y, ·)

)
ρi

+
∑
n∈Z

(
ΨT (x, ·), ϕ∗

n(·)
)(

ϕn(·),ΦT (y, ·)
)

ρn

=
(
ΨT (x, ·),ΦT (y, ·)

)
.

Thus the proof of Lemma 4.3 is complete. �
Lemma 4.4.

I(0, µ, ν) :=
∑
n∈Z

C∗(x, µn)CT (y, µn) = min(x, y)E.

Proof. By the definition of C∗(x, µn), C(y, µn) and the Parseval equality with
respect to A0,µ,0, the proof is complete. �

Proof of Proposition 2.4 (ii). By Lemmata 4.3 and 4.4, we see that

f(x, y) =
∫ min (x,y)

0

(
Ψ(x, t)ΦT (y, t) − E

)
dt.
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In view of the definitions of Ψ and Φ a direct calculation yields

F (x, y) ≡ ∂2f

∂x∂y
(x, y)

=



K
(
−PT , 0,−µ

)
(x, y)R−1(0, P )(y)

+
∫ y

0

K
(
−PT , 0,−µ

)
(x, t)KT (P, 0, µ)(y, t)dt, (x, y) ∈ Ω,

R(0, P )(x)KT (P, 0, µ)(y, x)

+
∫ x

0

K
(
−PT , 0,−µ

)
(x, t)KT (P, 0, µ)(y, t)dt, (x, y) ∈ (0, 1)2\Ω.

Then Lemma 3.1 completes the proof of Proposition 2.4. �

Remark 4.1. The continuity of F (x, y) at the diagonal implies that

K
(
−PT , 0,−µ

)
(x, x)R−1(0, P )(x) = R(0, P )(x)KT (P, 0, µ)(x, x).

Second step. Similarly to Lemma 3.4, we apply Lemma 4.1 and the Parseval
equality with respect to AP,µ,ν to obtain:
Lemma 4.5. For 0 < b < y < a < x < 1,

Ĩ :=
N∑

i=1

mi∑
j=1

1
ρi

∫ x

a

R(0, P )(t)ϕi∗
j (t)dt

∫ y

b

ST
(j)(t, λ

i)dt

+
∑
n∈Z

1
ρn

∫ x

a

R(0, P )(t)ϕ∗
n(t)dt

∫ y

b

ST (t, λn)dt

= 0.

Now set

M(x, y) = R(0, P )(x)K
(
0,−PT ,−µ

)
(x, y) ∈ (C1(Ω)

)4
(4.16)
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and

H(x, τ) =



∫ x

a

M(t, τ)dt, 0 ≤ τ ≤ a,

∫ x

τ

M(t, τ)dt, a < τ ≤ x,

0, x < τ.

(4.17)

We establish
Lemma 4.6. For 0 < b < y < a < x < 1,

Ĩ =
N∑

i=1

mi∑
j=1

1
ρi

∫ x

a

S∗
(j)(t, λ

i)dt
∫ y

b

ST
(j)(t, λ

i)dt

+
∑
n∈Z

1
ρn

∫ x

a

S∗(t, λn)dt
∫ y

b

ST (t, λn)dt

+
N∑

i=1

mi∑
j=1

1
ρi

∫ 1

0

H(x, τ)S∗
(j)(τ, λ

i)dτ
∫ y

b

ST
(j)(t, λ

i)dt

+
∑
n∈Z

1
ρn

∫ 1

0

H(x, τ)S∗(τ, λn)dτ
∫ y

b

ST (t, λn)dt

= 0.

Proof. By Lemma 4.1,

ϕi∗
j (t) =

(
X
(
0,−PT ,−µ

)
S∗

(j)

)
(t, λi), 1 ≤ j ≤ mi, 1 ≤ i ≤ N

and
ϕ∗

n(t) =
(
X
(
0,−PT ,−µ

)
S∗
)

(t, λn), n ∈ Z.

Recalling the definition of the transformation operator and changing the order
of integrals, by (3.6) we complete the proof of Lemma 4.6 directly by Lemma
4.5. �

The Parseval equality with respect to A0,µ,0 shows
Lemma 4.7. For 0 < b < y < a < x < 1,∑

n∈Z

∫ x

a

S∗
n(t)dt

∫ y

b

ST
n (t)dt = 0.
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Third step.
Proof of Theorem 2. Lemmata 4.6 and 4.7 show that

0 = Ĩ

=


N∑

i=1

mi∑
j=1

1
ρi

∫ x

a

S∗
(j)(t, λ

i)dt
∫ y

b

ST
(j)(t, λ

i)dt

+
∑
n∈Z

(
1
ρn

∫ x

a

S∗(t, λn)dt
∫ y

b

ST (t, λn)dt−
∫ x

a

S∗
n(t)dt

∫ y

b

ST
n (t)dt

)}

+
∑
n∈Z

∫ 1

0

H(x, τ)S∗
n(τ)dτ

∫ y

b

ST
n (t)dt

+


N∑

i=1

mi∑
j=1

1
ρi

∫ 1

0

H(x, τ)S∗
(j)(τ, λ

i)dτ
∫ y

b

ST
(j)(t, λ

i)dt

+
∑
n∈Z

1
ρn

∫ 1

0

H(x, τ)S∗(τ, λn)dτ
∫ y

b

ST (t, λn)dt

−
∑
n∈Z

∫ 1

0

H(x, τ)S∗
n(τ)dτ

∫ y

b

ST
n (t)dt

}
≡ I1 + I2 + I3.

(4.18)

Next we will transform I1, I2 and I3. First let us recall definitions (2.23)-
(2.25) of C∗

(j)(·, λi), C(j)(·, λi), C∗(·, λ), C(·, λ) and f(·, ·). Then

I1 =
N∑

i=1

mi∑
j=1

1
ρi

(
C∗

(j)(x, λ
i) − C∗

(j)(a, λ
i)
)(

CT
(j)(y, λ

i) − CT
(j)(b, λ

i)
)

+
∑
n∈Z

{
1
ρn

(
C∗(x, λn) − C∗(a, λn)

) (
CT (y, λn) − CT (b, λn)

)
−
(
C∗(x, µn) − C∗(a, µn)

) (
CT (y, µn) − CT (b, µn)

)}
= f(x, y) − f(x, b) − f(a, y) + f(a, b).

(4.19)

By the Parseval equality with respect to A0,µ,0 and (4.17), we have

I2 =
∑
n∈Z

∫ 1

0

H(x, τ)S∗
n(τ)dτ

∫ y

b

ST
n (t)dt

=
∫ 1

0

H(x, τ)χ(b,y)(τ)dτ

=
∫ y

b

∫ x

a

M(t, τ)dtdτ .

(4.20)

Since
∂C∗

(j)

∂τ
(τ, λi) = S∗

(j)(τ, λi), H(x, x) = 0, ∀x ∈ [0, 1]
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and
C∗

(j)(0, λi) = 0,

integration by parts yields∫ 1

0

H(x, τ)S∗
(j)(τ, λ

i)dτ

=
(∫ a

0

+
∫ x

a

)
H(x, τ)S∗

(j)(τ, λ
i)dτ

=
[
H(x, τ)C∗

(j)(τ, λi)
]∣∣∣τ=a

τ=0
+
[
H(x, τ)C∗

(j)(τ, λi)
]∣∣∣τ=x

τ=a

−
(∫ a

0

+
∫ x

a

)
∂H

∂τ
(x, τ)C∗

(j)(τ, λ
i)dτ

= −
∫ x

0

∂H

∂τ
(x, τ)C∗

(j)(τ, λ
i)dτ.

(4.21)

Similarly, ∫ 1

0

H(x, τ)Si∗
j (τ)dτ = −

∫ x

0

∂H

∂τ
(x, τ)C∗

j (τ, µi)dτ , (4.22)

∫ 1

0

H(x, τ)S∗(τ, λn)dτ = −
∫ x

0

∂H

∂τ
(x, τ)C∗(τ, λn)dτ , (4.23)

and ∫ 1

0

H(x, τ)S∗
n(τ)dτ = −

∫ x

0

∂H

∂τ
(x, τ)C∗(τ, µn)dτ . (4.24)

Therefore, by (4.21)-(4.24) and Proposition 2.4 (i), we have

I3 =
N∑

i=1

mi∑
j=1

∫ x

0

∂H

∂τ
(x, τ)

[
− 1
ρi
C∗

(j)(τ, λ
i)
(
CT

(j)(y, λ
i) − CT

(j)(b, λ
i)
)]

dτ

+
∑
n∈Z

∫ x

0

∂H

∂τ
(x, τ)

[
− 1
ρn
C∗(τ, λn)

(
CT (y, λn) − CT (b, λn)

)
+C∗(τ, µn)

(
CT (y, µn) − CT (b, µn)

)]
dτ

=
∫ x

0

∂H

∂τ
(x, τ) (f(τ, b) − f(τ, y)) dτ

(exchange the order of sums and integrals).

27



Integrating by parts and noting that f(0, ·) = 0, we obtain

I3 =
∫ x

0

H(x, τ)
(
∂f

∂τ
(τ, y) − ∂f

∂τ
(τ, b)

)
dτ

=
∫ x

a

∫ t

0

M(t, τ)
(
∂f

∂τ
(τ, y) − ∂f

∂τ
(τ, b)

)
dτdt.

(4.25)

The last identity follows from the definition of H(x, τ) and change of the order
of integrals.

Consequently, by (4.18), (4.19), (4.20) and (4.25), we obtain

0 = f(x, y) − f(x, b) − f(a, y) + f(a, b) +
∫ y

b

∫ x

a

M(t, τ)dtdτ

+
∫ x

a

∫ t

0

M(t, τ)
(
∂f

∂τ
(τ, y) − ∂f

∂τ
(τ, b)

)
dτdt. (4.26)

Differentiating the both sides once with respect to x and then once with respect
to y, we obtain (2.27).

For completing the proof of Theorem 2, we have to derive (2.28) and (2.29).
Since

M(x, x) = R(0, P )(x)K
(
0,−PT ,−µ

)
(x, x)

by (4.16) and K
(
0,−PT ,−µ

)
(x, x) satisfies (3.3) and (3.4), by the definition

of R(0, P )(x), we can directly verify (2.28) and (2.29). �

5 Another Reconstruction Procedure and Re-
marks.

We assume that P0 = P0(x) =
(
p0
11(x) p0

12(x)
p0
21(x) p0

22(x)

)
exists such that σ(AP0,µ,ν)

has the same structure as σ(AP,µ,ν), namely, σ(AP0,µ,ν) = Σ′⋃Σ′′, where
Σ′⋂Σ′′ = ∅, Σ′ = {µi ∈ σ(AP0,µ,ν) :
m(µi) = mi ≥ 2, 1 ≤ i ≤ N}, Σ′′ = {µn ∈ σ(AP0,µ,ν) : µn is simple, n ∈ Z},
m(µi) denotes the algebraic multiplicity of µi. For convenience here we use the
same symbols as before when the zero matrix is replaced by P0. Furthermore,
we set Si

j = Si
j(x) = S(j)(x, µi), Si∗

j = Si∗
j (x) = S∗

(j)(x, µ
i) and

σi =
(
Si

(mi)
(·, µi), Si∗

(mi)
(·, µi)

)
, σn = (Sn, S

∗
n) , 1 ≤ i ≤ N, n ∈ Z.
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We define f(x, y) by:

f(x, y) =
N∑

i=1

mi∑
j=1

C
∗
(j)(x, λ

i)CT
(j)(y, λ

i)

ρi
−
C∗

(j)(x, µ
i)CT

(j)(y, µ
i)

σi


+
∑
n∈Z

{
C∗(x, λn)CT (y, λn)

ρn
− C∗(x, µn)CT (y, µn)

σn

}
,

(5.1)

and set

F (x, y) =
∂2f

∂x∂y
(x, y). (5.2)

Replacing the zero matrix by P0 and arguing similarly to Section 4, one can show

Theorem 3 (Reconstruction). Let P =
(
p1 p2

u v

)
∈ (C1[0, 1]

)4, S(P, µ, ν) ={
λi,mi, ρ

i,αi
}

1≤i≤N

⋃ {λn, ρn}n∈Z
be the spectral characteristics of AP,µ,ν . Then

there exists M ∈ (C1
(
Ω
))4

such that

F̃ (x, y) +M(x, y) +
∫ x

0

M(x, τ)F̃ (τ, y)dτ = 0, (5.3)

where

F̃ (x, y) = F (x, y) +
N∑

i=1

mi∑
j=1

1
σi

(
Si∗

j (x) − S̃i∗
j (x)

) (
Si

j(y)
)T

(5.4)

and
{
S̃i∗

j

}
1≤j≤mi

are the normalized root vectors of A∗
P0,µ,ν for µi with respect

to{
Si

j

}
1≤j≤mi

(1 ≤ i ≤ N).

Moreover, for 0 ≤ x ≤ 1 we have

2(M12 −M21)(x, x) = (v(x) − p1(x)) cosh
(∫ x

0

(p1 + v − p0
11 − p0

22)(s)ds
)

+ (p2(x) − u(x)) sinh
(∫ x

0

(p1 + v − p0
11 − p0

22)(s)ds
)

+ p0
11(x) − p0

22(x),(5.5)

2(M11 −M22)(x, x) = (v(x) − p1(x)) sinh
(∫ x

0

(p1 + v − p0
11 − p0

22)(s)ds
)

+ (p2(x) − u(x)) cosh
(∫ x

0

(p1 + v − p0
11 − p0

22)(s)ds
)

+ p0
21(x) − p0

12(x).(5.6)
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Although this paper extends the work of M. Yamamoto in [22] in some sense,
some further research on this subject need be done. First we should specify con-
ditions on spectral characteristics in order that the Gel’fand-Levitan equation
admits a unique solution. Second, for the problem of stability, can we estimate
deviation in p1 and p2 in a suitable norm when the spectral characteristics per-
turbs? In a forthcoming paper, we will discuss them.

Appendix. Proof of Proposition 2.2.

Let
{
ϕi

j

}
1≤j≤mi

and
{
ϕ̃i

j

}
1≤j≤mi

be the unique solutions to the initial value
problems:{

(AP − λi)ϕi
1 = 0, (AP − λi)ϕi

j = ϕi
j−1, 2 ≤ j ≤ mi, 1 ≤ i ≤ N,

ϕi
j(0) = ξ, ϕi

j ∈ D(AP,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N
(1)

and{
(A∗

P − λi)ϕ̃i
mi

= 0, (A∗
P − λi)ϕ̃i

j = ϕ̃i
j+1, 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N,

ϕ̃i
j(0) = η, ϕ̃i

j ∈ D(A∗
P,µ,ν), 1 ≤ j ≤ mi, 1 ≤ i ≤ N. (2)

It is easy to see that (AP −λi)miϕi
j = (A∗

P −λi)mi ϕ̃i
j = 0 (1 ≤ j ≤ mi, 1 ≤ i ≤

N), so that
{
ϕi

j

}
1≤j≤mi

and
{
ϕ̃i

j

}
1≤j≤mi

are root vectors for λi ∈ σ(AP,µ,ν)

and λi ∈ σ(A∗
P,µ,ν) (1 ≤ i ≤ N) respectively. Then by Proposition2.1(ii), both{

ϕi
j

}
1≤j≤mi,1≤i≤N

⋃ {ϕn}n∈Z
and

{
ϕ̃i

j

}
1≤j≤mi,1≤i≤N

⋃ {ϕ∗
n}n∈Z

are Riesz bases
in (L2(0, 1))2. Henceforth we set ϕi

0 = ϕ̃i
0 = ϕi

mi+1 = ϕ̃i
mi+1 = 0 (1 ≤ i ≤ N).

Lemma 1. For 1 ≤ l ≤ mi, 1 ≤ k ≤ mj , 1 ≤ i, j ≤ N, i �= j,(
ϕi

l , ϕ̃
j
k

)
= 0. (3)

Proof. We divide the proof into five steps.
(i) Since λi �= λj and λi

(
ϕi

1, ϕ̃
j
mj

)
=
(
APϕ

i
1, ϕ̃

j
mj

)
=
(
ϕi

1,A∗
P ϕ̃

j
mj

)
=(

ϕi
1, λ

jϕ̃j
mj

)
= λj

(
ϕi

1, ϕ̃
j
mj

)
, it follows that

(
ϕi

1, ϕ̃
j
mj

)
= 0.

(ii) For given k in 2 ≤ k ≤ mj , if
(
ϕi

1, ϕ̃
j
k

)
= 0 ,then

λi
(
ϕi

1, ϕ̃
j
k−1

)
=
(
APϕ

i
1, ϕ̃

j
k−1

)
=
(
ϕi

1,A∗
P ϕ̃

j
k−1

)
=
(
ϕi

1, λ
jϕ̃j

k−1 + ϕ̃j
k

)
= λj

(
ϕi

1, ϕ̃
j
k−1

)
.

By λi �= λj , it follows that
(
ϕi

1, ϕ̃
j
k−1

)
= 0.
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(iii) From (i) and (ii), by induction we have
(
ϕi

1, ϕ̃
j
k

)
= 0 for 1 ≤ k ≤ mj .

(iv) For given l in 1 ≤ l ≤ mi, if
(
ϕi

l , ϕ̃
j
k

)
= 0, 1 ≤ k ≤ mj , we claim that(

ϕi
l+1, ϕ̃

j
k

)
= 0, 1 ≤ k ≤ mj .

First by the assumption we have λi
(
ϕi

l+1, ϕ̃
j
mj

)
=
(
APϕ

i
l+1 − ϕi

l , ϕ̃
j
mj

)
=(

ϕi
l+1,A∗

P ϕ̃
j
mj

)
= λj

(
ϕi

l+1, ϕ̃
j
mj

)
, then

(
ϕi

l+1, ϕ̃
j
mj

)
= 0.

Now suppose that for given s with 1 ≤ s ≤ mi − 1,
(
ϕi

l+1, ϕ̃
j
s+1

)
= 0. Then

λi
(
ϕi

l+1, ϕ̃
j
s

)
=
(APϕ

i
l+1 − ϕi

l , ϕ̃
j
s

)
=
(
ϕi

l+1,A∗
P ϕ̃

j
s

)
=
(
ϕi

l+1, λ
jϕ̃j

s + ϕ̃j
s+1

)
= λj

(
ϕi

l+1, ϕ̃
j
s

)
,

and
(
ϕi

l+1, ϕ̃
j
s

)
= 0. By induction we have

(
ϕi

l+1, ϕ̃
j
k

)
= 0 for 1 ≤ k ≤ mj .

(v) From (iii) (iv) and by induction we obtain
(
ϕi

l , ϕ̃
j
k

)
= 0 for 1 ≤ l ≤

mi, 1 ≤ k ≤ mj . �
Lemma 2. For 1 ≤ j ≤ mi, 1 ≤ i ≤ N,n ∈ Z,(

ϕi
j , ϕ

∗
n

)
=
(
ϕn, ϕ̃

i
j

)
= 0. (4)

Proof. Since
(
ϕi

1, ϕ
∗
n

)
= 0 and

λi
(
ϕi

j , ϕ
∗
n

)
=
(APϕ

i
j − ϕi

j−1, ϕ
∗
n

)
=
(
ϕi

j ,A∗
Pϕ

∗
n

)− (ϕi
j−1, ϕ

∗
n

)
= λn

(
ϕi

j , ϕ
∗
n

)− (ϕi
j−1, ϕ

∗
n

)
,

by induction it follows that
(
ϕi

j , ϕ
∗
n

)
= 0. Similarly,

(
ϕn, ϕ̃

i
j

)
= 0. �

Lemma 3. For 1 ≤ j ≤ mi, 1 ≤ i ≤ N ,(
ϕi

j , ϕ̃
i
j

)
=
(
ϕi

mi
, ϕ̃i

mi

) ≡ ρi �= 0, (5)

and for 1 ≤ k < l ≤ mi, (
ϕi

k, ϕ̃
i
l

)
= 0. (6)

Proof. First we see that(
ϕi

j , ϕ̃
i
j

)
=
(
(AP − λi)ϕi

j+1, ϕ̃
i
j

)
=
(
ϕi

j+1, (A∗
P − λi)ϕ̃i

j

)
=
(
ϕi

j+1, ϕ̃
i
j+1

)
.

By induction it follows that
(
ϕi

j , ϕ̃
i
j

)
=
(
ϕi

mi
, ϕ̃i

mi

) ≡ ρi for 1 ≤ j ≤ mi, 1 ≤ i ≤
N .

On the other hand, for 1 ≤ k ≤ mi − 1,(
ϕi

k, ϕ̃
i
mi

)
=
(
(AP − λi)ϕi

k+1, ϕ̃
i
mi

)
=
(
ϕi

k+1, (A∗
P − λi)ϕ̃i

mi

)
= 0. (7)
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Then by Lemmata 1 and 2,
(
ϕi

mi
, ϕ̃i

mi

) �= 0 since
{
ϕi

j

}
1≤j≤mi,1≤i≤N

⋃ {ϕn}n∈Z

forms a Riesz basis in (L2(0, 1))2 and ϕ̃i
mi

�= 0.
Moreover, since(
ϕi

k, ϕ̃
i
l

)
=
(
(AP − λi)ϕi

k+1, ϕ̃
i
l

)
=
(
ϕi

k+1, (A∗
P − λi)ϕ̃i

l

)
=
(
ϕi

k+1, ϕ̃
i
l+1

)
,
(8)

(6) follows from (7). �

Proof of Proposition 2.2. We set
ϕi∗

mi
= ϕ̃i

mi
∈ D(A∗

P,µ,ν),

ϕi∗
k = ϕ̃i

k −
mi∑

j=k+1

ai
j,kϕ

i∗
j , 1 ≤ k ≤ mi − 1,

(9)

where

ai
j,k = (ϕi

j , ϕ̃
i
k)/ρi for k + 1 ≤ j ≤ mi. (10)

For given k in 1 ≤ k ≤ mi−1 and 1 ≤ i ≤ N , suppose that ϕi∗
j (k+1 ≤ j ≤ mi)

satisfies:

(
ϕi

l , ϕ
i∗
j

)
= 0, 1 ≤ l ≤ mi, l �= j,(

ϕi
j , ϕ

i∗
j

)
=
(
ϕi

mi
, ϕi∗

mi

)
= ρi, k + 1 ≤ j ≤ mi,

(A∗
P − λi)ϕi∗

j = ϕi∗
j+1, k + 1 ≤ j ≤ mi − 1, (A∗

P − λi)ϕi∗
mi

= 0.
(11)

Then we claim that the equalities in (11) still hold when the index j is replaced
by k.

First, for 1 ≤ l ≤ k − 1, by (6) and the assumption,

(
ϕi

l , ϕ
i∗
k

)
=
(
ϕi

l , ϕ̃
i
k

)− mi∑
j=k+1

ai
j,k

(
ϕi

l , ϕ
i∗
j

)
= 0.

For k + 1 ≤ l ≤ mi, by the assumption we have

(
ϕi

l , ϕ
i∗
k

)
=
(
ϕi

l , ϕ̃
i
k

)− mi∑
j=k+1

ai
j,k

(
ϕi

l , ϕ
i∗
j

)

=
(
ϕi

l , ϕ̃
i
k

)− ai
l,k

(
ϕi

l , ϕ
i∗
l

)
=
(
ϕi

l , ϕ̃
i
k

)− (
ϕi

l , ϕ̃
i
k

)
ρi

ρi = 0.

Therefore,
(
ϕi

l, ϕ
i∗
k

)
= 0 for 1 ≤ l ≤ mi, l �= k.
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Second, by (5) and the assumption

(
ϕi

k, ϕ
i∗
k

)
=
(
ϕi

k, ϕ̃
i
k

)− mi∑
j=k+1

ai
j,k

(
ϕi

k, ϕ
i∗
j

)
= ρi.

Finally, by the assumption

(A∗
P − λi)ϕi∗

k = (A∗
P − λi)ϕ̃i

k −
mi∑

j=k+1

ai
j,k(A∗

P − λi)ϕi∗
j = ϕ̃i

k+1 −
mi∑

j=k+1

ai
j,kϕ

i∗
j+1.

Moreover by (8) we see that ai
j,k = ai

j+1,k+1, and

(A∗
P − λi)ϕi∗

k = ϕ̃i
k+1 −

mi∑
j=k+2

ai
j,k+1ϕ

i∗
j = ϕi∗

k+1.

Here we note that if k = mi −1 then the last equality still holds by the assump-
tion.

Now by (7) and induction, (11) holds for 1 ≤ j ≤ mi. Therefore, since each
ϕi∗

j (1 ≤ j ≤ mi) is a linear combination of
{
ϕ̃i

k

}
j≤k≤mi

(see (9)), by Lemma 1
and Lemma 2 we can derive Proposition 2.2 (ii) and (iii).

Now it remains to prove Proposition 2.2 (i).
Let

−→
ϕi∗ :=

(
ϕi∗

1 , ϕ
i∗
2 , . . . , ϕ

i∗
mi−1, ϕ

i∗
mi

)T and
−→̃
ϕi :=

(
ϕ̃i

1, ϕ̃
i
2, . . . , ϕ̃

i
mi−1, ϕ̃

i
mi

)T .
Put

U i :=


1 ai

2,1 ai
3,1 . . . ai

mi,1

0 1 ai
3,2 . . . ai

mi,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 ai

mi,mi−1

0 . . . 0 0 1

 (12)

where ai
j,k (1 ≤ k ≤ mi − 1, k + 1 ≤ j ≤ mi) are defined by (10). It is easy to

see that U i is invertible. Hence, setting

V i = (V i
jk)1≤j,k≤mi :=

(
U i
)−1

, (13)

from (9) we have

U i
−→
ϕi∗ =

−→̃
ϕi or

−→
ϕi∗ = V i

−→̃
ϕi . (14)

The last equality yields for 1 ≤ j ≤ mi,

ϕi∗
j =

mi∑
k=j

V i
jkϕ̃

i
k (15)
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since V i
jk = 0 for k < j. Moreover, since ϕ̃i

j(0) = η (1 ≤ j ≤ mi), if we set

αi
j :=

mi∑
k=j

V i
jk for 1 ≤ j ≤ mi − 1, (16)

then it follows from (15) that ϕi∗
j (0) = αi

jη (1 ≤ j ≤ mi − 1). This completes
the proof. �
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