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In this paper, we establish Carleman estimates for the three-dimensional
isotropic non-stationary Lamé system with the homogeneous Dirichlet boundary con-
ditions. Using this estimate, we prove the uniqueness and the stability in determining
spatially varying density and two Lamé coefficients by a single measurement of solu-
tion over (0,T) X w, where T' > 0 is sufficiently large and a subdomain w satisfies a
geometric condition.

61. Introduction.

This paper is concerned with Carleman estimates for the three-dimensional non-

stationary isotropic Lamé system with the homogeneous Dirichlet boundary con-

dition and an application to an inverse problem of determining spatially varying

density and the Lamé coefficients by a single interior measurement of the solution.
We consider the three-dimensional isotropic non-stationary Lamé system:

(Pu)(zo,2") = p(2')02, u(zo, ) — (L pu)(zo,2") = £(z0,27),
r = (r9,2") €Q=(0,T) x Q, (1.1)

where

(Lxuwv)(2") = pla")Av(z") + (u(@") + Mz")) Ve divv(z')

+H(divv (2 )V M@') + (Vv + (Vo v) D) Vo u(2), z' e Q.
(1.2)

Throughout this paper, £ C R? is a bounded domain whose boundary 9 is of
class C?, ¢ and a2’ = (21, 72, x3) denote the time variable and the spatial variable

1991 Mathematics Subject Classification. 35B60, 35R25, 35R30, 74B05.
Key words and phrases. Carleman estimate, Lamé system, inverse problem.

Typeset by AMS-TEX



Z O. Y. IMANUVILOV AND M. YAMANMO1LO

respectively, and u = (uy, us,uz)? is displacement at (xq,2’) where - denotes the
transpose of matrices, Ej is the k X k unit matrix,

0 .
aacj¢:¢acj :%7 .]:0717273'
J

We set Vv = (03,v)1<j,k<3 for a vector function v = (v1,v9,v3)T and V¢ =
(O, &y Oy d, Oz, @) T for a scalar function ¢. Henceforth V means V, = (s, Oz, Oz, Ozs)
if we do not specify. Moreover the coefficients p, A, u satisfy

o\ € C3Q), p() >0, uwa') >0, \Nz')+p’) >0 fora’ €Q. (1.3)

The Carleman estimate is an L2-inequality of solution to a partial differential
equation and is involved with a large parameter and a special weight function.
The Carleman estimate was introduced by Carleman [Ca] for proving the unique
continuation for an elliptic equation and general theories have been developed for
single partial differential equations (e.g., [H6]). Moreover the Carleman estimates
have been effectively applied to the following problems:

(1) Energy estimate called ”observability inequality”: Cheng, Isakov,
Yamamoto and Zhou [CIYZ], Kazemi and Klibanov [KK], Klibanov and
Malinsky [KM], Lasiecka and Triggiani [LT], Lasiecka, Triggiani and Zhang
[LTZ].

(2) Exact controllability and related control problems: Bellassoued [B1]
- [B3], Imanuvilov [Im1], Imanuvilov and Yamamoto [IY5], [IY6].

(3) Inverse problems of determining functions in partial differential
equations by a finite number of overlateral boundary data: See
Bukhgeim and Klibanov [BuK] as a pioneering paper. There are extensive
references and we will give them in Section 3.

Thus it is first important to establish a Carleman estimate, which depends on
types of partial differential equations under consideration. Especially for a single
partial differential equation, the general theory for Carleman estimates has been
well developed (e.g., [HO], [Is2], [Is3]). In particular, for a single hyperbolic equa-
tion, see Imanuvilov [Im2]. However, for systems of partial differential equations
where the principal terms are coupled, the results are still restricted, because of the
intrinsic difficulty. The most general result for such a system is the Carleman type
estimate obtained in the proof of the Carderon uniqueness theorem (see e.g., [E],
[Zui]).

The non-stationary isotropic Lamé system is basic in the theory of elasticity, and
unfortunately it does not satisfy all the conditions of the Calderon uniqueness the-
orem. In the existing papers, Carleman estimates for the Lamé system have been
proved mainly for functions with compact supports (e.g., Eller, Isakov, Nakamura
and Tataru [EINT], Tkehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov
and Yamamoto [ITY1], Isakov [Is1]). Because of the restriction that u under con-
sideration should have compact support, for the observability inequalities and the
inverse problems, we have to take Cauchy data u and Vu on the whole boundary
(0,T) x 02 or u in a neighbourhood of 9 over (0,7). Since we need not take
Cauchy data on (0,7) x 02 or in such a neighbourhood for the wave equation (e.g.,
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Lions [Li] for the observability inequality, and Imanuvilov and Yamamoto [I1Y2],
[IY4] for the inverse problem for a single hyperbolic equation), we can naturally
expect similar results also for the non-stationary isotropic Lamé system.

In the two-dimensional case, we have recently established Carleman estimates for
u without compact supports to apply them to an inverse problem of determining
the density and two Lamé coefficients:

(1) Imanuvilov and Yamamoto [IY8] for the case of the Dirichler boundary
condition

(2) Imanuvilov and Yamamoto [IY9] for the case of the stress boundary condi-
tion.

In this paper, we will prove Carleman estimates in the case where the spatial
dimension is three and u satisfies the homogeneous Dirichlet boundary condition
and apply them to an inverse problem of determining p, A and p by an interior
measurement after suitably choosing single initial data. The three-dimensional case
is handled similarly to the two-dimensional case [IY8], but the treatment should be
modified.

We refer to Imanuvilov and Yamamoto [IY7] concerning the stationary isotropic
Lamé system, and Isakov, Nakamura and Wang [INW]|, Lin and Wang [LW] con-
cerning the Lamé system with residual stress which causes anisotropicity.

This paper is composed of seven sections. In Section 2, we state Carleman
estimates (Theorems 2.1 - 2.3) for functions which do not necessarily have compact
supports but satisfy the homogeneous Dirichlet boundary condition on (0,7) x 0f2.
Theorem 2.1 is a Carleman estimate whose right hand side is estimated in H'-space.
Theorems 2.2 and 2.3 are Carleman estimates respectively with right hand sides in
L2-space and in H'-space, and are proved from Theorem 2.1 by the same method
in [IY8]. In Section 3, we will apply the H ~!-Carleman estimate (Theorem 2.3),
and prove the uniqueness and the conditional stability in the inverse problem with
a single interior measurement. In Sections 4-7, we prove Theorem 2.1.

Notations. H!#*(Q) is the Sobolev space of scalar-valued functions equipped

with the norm
||u||H1 5(Q) \// |VU|2 + s u2)

H(Q) = H"*(Q) x --- x H"*(Q) is the corresponding space of vector-valued
functions. Henceforth we set

1
i:\/_la Da:j:gam]w j:071;273

and ¢ denotes the complex conjugate of ¢ € C. By L(X,Y’) we denote the Banach
space of all the linear bounded operators defined on a Banach space X to another
Banach space Y. We set

£: (&)751752753)7 fl = (50751752)7 C = (5750751752)-
By O(6) we denote the conic neighbourhood of a point *:

0<6>:{<;'%—¢* §5}.
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§2. Carleman estimates for the three-dimensional non-stationary Lamé
system.
Let us consider the three-dimensional Lamé system

Pu(zo,z) = p(2')02, u(xo, 2") — (L pu)(zo,2') = f(z9,2") in Q, (2.1)
ulo,myxo0 =0, u(T,z")=0,u(T,z') =u(0,2") = d,,u(0,2") =0, (2.2)

where u = (uy, uz,u3)?,f = (f1, fo, f3)1 are vector-valued functions, and the par-
tial differential operator L, , is defined by (1.2). The coefficients p, A, u € C*(Q)
are assumed to satisfy (1.3). Let w C Q be an arbitrarily fixed subdomain (not
necessarily connected). By 7i(z') = (ny ('), na(2'), n3(z’)) and #(z') respectively
denote the outward unit normal vector and a unit tangential vector to 992 at z’ and
set % = Vv -1 and ‘g—% = Vv -t Set

Q. =(0,T) X w.
We set

1\ 2 / / 2 2 2 (2'3)
p2(z,§) = p(a")&g — (A(a") + 2u(2")) (67 + &5 + &3)

for £ = (€0,&1,62,&3), and V¢ = (0g,, O¢,, O¢,, O¢, ). For arbitrary smooth functions
o(z,€) and (z, &), we define the Poisson bracket by the formula

{m(% &) = p(')&5 — n(a') (&5 + & + &3),

{0} = 3 (06,0)(0e,8) = (9, 9) (02, 9)-

We set < a,b >= 22:1 arby, for a = (a1, az,a3) and b= (by, by, bs) € C3.
We assume that the density p, the Lamé coefficients A, 4 and the domains 2, w
satisfy the following condition (cf. [HO]).

Condition 2.1. There exists a function 1 € C3(Q) such that |V,¥| # 0 on

Q\ Qu, and
{prs{px, ¥}}(2,€) > 0, Vk e {1,2} (2.4)

if (7,€) € (Q\ Qu) x (R*\ {0}) satisfies pg(x,&) =< Vepg, Vip >= 0 and
o (pe(, € — isVU(@), el €+ isVO(@)} >0, Vhe (12} (25)

if (2,€,5) € (Q\ Qu) x (R*\ {0}) x (R \ {0}) satisfies
pr(z,&+isV(x)) =< Vepr(z, &+ isVy(z)), Vip(z) >= 0.

On the lateral boundary, we assume that

VA - -
VPla| < ﬁ 'aa—? + % % for any unit tangential vector t(z'), ' € 90\ dw
oY

pi(z, Vi) <0 Vo e (0,T) x (0Q\ Ow) and 37

< 0. (2.6)
(0,T) % (8Q2\0w)
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Let ¢ (x) be the weight function in Condition 2.1. Using this function, we intro-
duce the function ¢(x) by

o(x) = eV s, (2.7)

where the parameter 7 > 0 will be fixed below. Denote

2
HUH%@),Q) :/ (Z st 2l |9eu|? 45| Vrot u) 452 |rot u[2+s|Vdivu|2+83]divul2>e2s¢’d:1:,

|a|=0

where o = (ag, 1, a2, a3), a; € Ny U {0}, j € {0,1,2,3}, 0F = 020091 052053.
Now we state our Carleman estimates as main results.

Theorem 2.1. Let f € HY(Q) and let the function v satisfy Condition 2.1 and
(1.3) holds true. Then there exists T > 0 such that for any T > 7T, there exists
so = so(7) > 0 such that for any solution u € H(Q) N L*(0, T; H?(Q2)) to problem
(2.1) - (2.2), the following estimate holds true:

2

2 s on = [l o + 8 || 226 2 N Lo

Y(6,Q) = B(e, gy ey

(©.Q) (©.Q) on H!((0,T)x %) on? L2((0,T) xd%)
<C(|lfe*?||Fre ) + Il p.0u))s V5 > s0(7), (2.8)

where the constant C' = C(7) > 0 is independent of s.

Next we formulate Carleman estimates where norms of the function f are taken
respectively in L%(Q) and L2?(0,7;H™1(Q)). In particular, the latter Carleman
estimate is used in Section 3 for obtaining our stability result in the inverse problem.

In addition to Condition 2.1, we assume that

Do (T, ") <0,  0yytb(0,2") > 0, vr' € Q. (2.9)

We have

Theorem 2.2. Let f € L?(Q) and let us assume (1.3), (2.9) and Condition 2.1.
Then there exists T > 0 such that for any T > T, there exists so = so(7) > 0 such
that for any solution u € H'(Q) to problem (2.1) - (2.2), the following estimate
holds true:

/(|Vu|2 + 2[uf?)edy
Q

<C (]\fes¢\]i2(Q) +/ (|Vul* + 32]u]2)623¢d:1:> . Vs > so(7),
Qu (2.10)

where the constant C' = C(7) > 0 is independent of s.
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Theorem 2.3. Letf =f_1+Y >, f; withf_; € L2(0,T; H1(Q)) and fo, f1, 5, f5 €
L2(Q), and let us assume (1.3), (2.9) and Condition 2.1. Then there exists T > 0

such that for any 7 > 7T, there exists sg = so(7) > 0 such that for any solution
u € L?(Q) to problem (2.1) - (2.2), the following estimate holds true:

/ lu|?e?*?dx
Q

3
<C \’f—1€s¢’\%2(o,T;H—1(Q)) + Z HfjeS(z)H%Q(Q) +/Q lul?e**?dx |, Vs > so(1),
=0

where the constant C' = C(7) > 0 is independent of s.

In Theorems 2.2 and 2.3, the solution u is defined by the transposition method
(e.g., [Li]). On the basis of Theorem 2.1, we can prove Theorems 2.2 and 2.3 exactly
in the same way as the corresponding theorems in [IY8], and it suffices to prove
only Theorem 2.1.

§3. Inverse problem of determining the density and the Lamé coefficients
by a single measurement.

Recall that the differential operator Ly , is defined by (1.2). We assume (1.3) for
P, A, . By u=u(\, u, p,p,q,n)(x), we denote the sufficiently smooth solution to

p(z")(07,u)(2) = (Lru)(z), z€Q, (3.1)
u(x) = n(z), z € (0,T) x 09, (3.2)
u(T/2,2') =p(x'), (0z,u)(T/2,2") =q(z"), 2’ €, (3.3)

with given 7, p and q. Let w C Q be a suitably given subdomain.
In this section, we discuss

Inverse Problem. Let p;,q;j,n;, 1 <j <N, be appropriately given. Then deter-
mine \(z'), u(x"), p(z'), ' € Q, by

u(A, 1, 0,P5,q5,m5)(x), € Qu=(0,T) xw. (3.4)

In particular, we are concerned with the stability of the mapping

{u()\, Py P35, dj 77j)|Qw}1§j§N - {)‘7 Hy P}~

This formulation of inverse problem is based on finite measurements and the
research originated with Bukhgeim and Klibanov [BuK] where a Carleman estimate
and an integral inequality with the weight function are combined to solve the inverse
problem. As detailed accounts for such methodology, see [Is2], [Is3], [Kl], [KT].
Moreover, according to equations, we refer to the following papers:

(1) Baudouin and Puel [BP], Bukhgeim [Bu] for an inverse problem of deter-
mining potentials in Schrodinger equations,
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(2) Imanuvilov and Yamamoto [IY1], Isakov [Is2], [Is3], Klibanov [KIl] for the
corresponding inverse problems for parabolic equations,

(3) Bellasssoued [B4], [B5], Bellassoued and Yamamoto [BY], Bukhgeim, Cheng,
Isakov and Yamamoto [BCIY], Imanuvilov and Yamamoto [1Y2] - [IY4] (es-
pecially for conditional stability), Isakov [Is1], [Is2], [Is3], Isakov and Ya-
mamoto [IsY], Khaidarov [Kh1], [Kh2], Klibanov [Kl], Puel and Yamamoto
[PY1], [PY2], Yamamoto [Ya] for inverse problems of determining coeffi-
cients in scalar hyperbolic equations.

(4) Amirov [A] for an inverse problem of ultrahyperbolic equation.

As for the inverse problem of determining some (or all) of A, u and p, we can
refer to Isakov [Isl], Tkehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov
and Yamamoto [IIY1], Imanuvilov and Yamamoto [IY8]:

[Is1] established the uniqueness in determining a single coefficient p(z’), using four
measurements (i.e., N’ =4).

[INY] decreased the number N of measurements to three for determining p.

[ITY1] proved conditional stability and the uniqueness in the determination of the
three functions A(z'), p(z’), p(z’), ' € Q, with two measurements (i.e., N' = 2).

In all the papers [Isl], [INY], [IIY1], the authors have to assume that dw D
0f2 because the technique based on Carleman estimates required that u has a
compact support in Q. In the two-dimensional case, [IY8] reduced N' = 2 to
N =1 (i.e., a single measurement) in determining all of A, i, p with more general
w, and established conditional stability. As for other inverse problems for the Lamé
systems, see Yakhno [Yak].

In this section, we will prove the conditional stability which is a three-dimensional
version of [IY8]. As for the two-dimensional Lamé system with stress boundary
condition, in [IY9] a similar inverse problem is discussed by a single measurement.

In order to formulate our main result, we will introduce notations and an admis-
sible set of unknown parameters A, u, p. Similarly to inverse hyperbolic problems,
we have to assume that the observation subdomain w should satisfy a geometric
condition and the observation time 7" has to be sufficiently large, which is a natural
consequence of the hyperbolicity of the governing partial differential equation. First
we formulate the geometric condition. Henceforth we set (z/,y") = 2321 x;y; for
' = (z1, 2, x3) and ¥y’ = (y1,y2,y3). Let a subdomain w C 2 satisfy

Ow D {2’ € 99Q; ((z' — ¥/), ni(x")) > 0} (3.5)
with some 3’ & Q.

Remark. Condition (3.5) is the same condition which yields the observability in-
equality for the wave equation 92 — A if the observation time T is larger than
2sup,cq |7 — 9’| (e.g., Section 2 of Chapter 7 in [Li]). Moreover, if (3.5) holds and
T > 0 is sufficiently large, then w and T satisfy the geometric optics condition in
[BLR].
Denote
d=(sup |2’ —y/)? — inf |2’ —y/|?)>. (3.6)
2 €N /€2

Next we define an admissible set of unknown coefficients A\, pu, p. Let My > 0,
0 <6y <1 and #; >0 be arbitrarily fixed and let us introduce the conditions on a
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function (:

Bz’ >0, >0, 2'€Q,
(Ve B(2), (=" —y/'))
26(x")

For fixed functions a, b, n on 0f) and p, q in 2 and a fixed constant M; > 0, we
set

(3.7)

18l s @y < Mo, <1—6y, 2'€\w.

W = WMO,Ml,GO,Gl,a,b = {()‘7 2 p) € (CS(Q))?,’ A= a, = b on 397

A+2u w .
p 'u, 5 satisfy (3.7), [[u(X, 1, p, P> @, M) | wr.oo (@) < M,

min{p?(z’), p(z" Y\ + p)(z")}
p(z') (A + 2p) (z')

> 61 on ﬁ} (3.8)

Remark. If \, u, p are sufficiently close to positive constant functions, then (\, i, p)
W. This suggests that W contains sufficiently many (\, p, p).

It is rather restrictive that H% and % should satisfy (3.7), which is one possi-
ble sufficient condition for the pseudoconvexity (i.e., Condition 2.1). We can relax
condition (3.7) to a more generous condition which can be related with a neces-
sary condition for a Carleman estimate, and we refer to Imanuvilov, Isakov and
Yamamoto [IIY2], where a scalar hyperbolic equation is discussed but the modifi-
cation to the Lamé system is straightforward. Such a relaxed condition guarantees
that the geodesics which are generated by the hyperbolic equations with principal
symbol (2.3), cannot remain on the level sets given by the weight function ¢. In
particular, by [IIY2], we can replace condition (3.7) by one that the Hessians

0 3 o 3
aa:jaa:k <_) ) ) (833]833k ( ) )
< K 1<5,k<2 A t 2“ 1<5,k<2

are non-negative and ’V <ﬁ)’ # 0 and ’V (r”%)’ # 0 on Q.
We choose 6 > 0 such that

Mod
VoL

Here we note that since 3/ & €, such # > 0 exists. Let E3 be the 3 x 3 identity
matrix. We note that (L) ,p)(z’) is a 3-column vector for 3-column vector p.
Moreover by {a},; we denote the matrix (or vector) obtained from a after deleting
the j-th row, and < A >; is the matrix which is obtained from A by deleting the
j-th column of A. Furthermore we assume that

0+ VO < 006, 0, inf |2 - y'|? — 0d? > 0. (3.9)

1 —1y1 £Z0 for any (x1,x9,x3) € Q. (3.10)

Now we are ready to state
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Theorem 3.1. Let (\, i, p) be an arbitrary element of W. For p = (p1,pa,p3)T
and q = (q1,q2,q3)", we assume that there exist ji, j2,j3 € {1,2,3,4,5,6} such
that

ot § o) (@) (divp(z))Es  (Varp(a') + (Verp(@)") (@' )
det { (Lxpa)( (divg(z'))Es  (Vwq(z') + (Veq(z)") (@ —y) }j1 70,

V!

ot | Laup)(@) Varp(@') + (Vap(@))”  (divp)(2' —y) e
det { (L)\,MQ)(,Q?’) vx/Q(I/) + (vx/q(x/))T (divq)(m’ . y,) }j2 3'é 0, V' € Q,

')
€ Q, (3.11)

(3.12)

o { (Prape) (GDUD < B> < (Tuple) s (bl 21 ) g
(Lau)(@) (diva(@) < By >1 < (Voa() + (Voa@)?) >4 [, 7

V2’ € Q, (3.13)

and that 5
T > —d. 3.14
NG (3.14)
Then there exist constants k = k(W,w,Q, T, \, i, p) € (0,1) and
Cy =Ci(W,w,Q, T, \, u, p) > 0 such that

IA =AMLz + I8 = pllez@) + lp = pllz-1()
<Ci Hu<>\7 m, P, P, 4q, 77) - u()‘7 ﬁa ﬁa b, q, 77)“?14(0,T;L2(w))

for any (X, i, p) € W.

Our stability and uniqueness result requires only one measurement: N = 1. In
the case where xy —yi # 0 for k = 2 or 3, the conclusion is true if we replace (3.13)
by

g { (D)) (@vBle) < B < (ople) + (om0 ) g
(L)) (diva(e) < Bs > < (Vwal@) + (Voa@)T) > [, 7

vz € Q.

For the determination of the three coefficients by a single measurement, we have
to choose initial data which satisfy strong conditions (3.11) - (3.13) which do not
generically hold, and we should satisfy them artificially and a posteriori. Moreover,
as the following example shows, we can take such p and q.

Example of 0, p, q meeting (3.11) - (3.13). For simplicity, we assume that

= (0,0,0), Q does not intersect any of the planes {z; = 0}, {x2 = 0}, {z3 = 0}
and {1 + x5 = 0}, and A, p are positive constants. Noting that the fifth columns
of the matrices in (3.11) and (3.12) have =’ — ¢ as factors, we will take quadratic
functions in z’. For example, we take



O.Y. IMANUVILOV AND M. YANMANMO1U

Then, choosing j; = jo = j3 = 6, we can verify that (3.11) - (3.13) are all satisfied.
We set

2
() =z =y -0 (370 — g) , Plx) = V@ g = (xo,2") € Q.  (3.15)

By v € Q, we note that |V | # 0, z € Q.
First, in terms of (3.5), (3.8) and (3.9), we can prove the following lemma in the
same way as in [IY8].

Lemma 3.1. Let (A, u,p) € W, and let us assume (3.9) and (3.14). Then, for
sufficiently large 7 > 0, the function 1 given by (3.15) satisfies Condition 2.1 and
(2.9). Therefore the conclusion of Theorem 2.3 holds and the constants Cy(7), T
and so(7) in (2.11) can be taken independently of (A, u, p) € W.

Next we consider a first order partial differential operator

(Pog)( ZPO,J (),

where po; € C1(Q), j = 1,2,3. Then, by integration by parts, we can directly
prove two Carleman estimates for Py (see [IY8] for the proof).

Lemma 3.2. We assume
Zpo,] o(T/2,2') >0, z' €. (3.16)

Then there exists a constant 1q > 0 such that for all T > 719, there exist sg =
so(7) > 0 and Cy = Cs(s0, 70, 2, w) > 0 such that

/32\g|2623¢(T/2’m/>da:’ng/ | Pyg|2e250T/2") gy
@ Q

for all s > sg and g € H(Q) satisfying

g=0 on< 2 € Zpoyj(a:')nj(a:') >0

J=1

Lemma 3.3. We assume
ZPO,] &(T/2,2') #0, o' €. (3.17)

Then the conclusion of Lemma 3.2 is true for all s > so and g € H ().

Now we proceed to
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Proof of Theorem 3.1. The proof is done by modifying the argument in Imanuvilov
and Yamamoto [IY8]. We can separate 0f2 into two relatively open subsets I'; and
I's such that

[y Uy =09, ny(2') <0 for 2’ € Ty, ny(z') >0 for 2’ € Ty,

and for any o’ = (21,72, 73) € €, there exists a unique point ' = (77, 72, x3) € Ty

such that the segment connecting 2’ and 7’ is on .
(3.18)
In fact, we can choose straight lines parallel to the x;-axis which divide €2 into parts
Qq,...,Q,, such that

Q; = {2's 11(x2,23) < 21 < Yj2(w2, x3), (T2, 23) € D;}

where D; is a domain in R? and 71, 72; are continuous functions on ﬁ] We set
m
I'h = U{»’Bl; z1 =mj(z2,23), (72,23) € D;}
j=1

and 'y = 9Q \ T;. Then we can easily see that condition (3.18) is satisfied.
By (3.18), for any =’ = (x1, 2, z3) € 2, we can prove that there exists a unique
(v(z2,x3), z2,23) € I'1. By (3.10), z1 —y1 < 0 for any 2’ € Q or 1 —y; > 0 for

any ' € Q. First let 1 —y; < 0. We set

F(x1,20,23) = / f(& o, 23)dE, o' € Q. (3.19)
v(z2,23)
Then OF
a—xl(:v’) = f(2), 7 € Q. (3.20)

On the other hand, if 21 —y; > 0, then instead of I'1, we take (v(x2, z3), 2, 23) € I'y
in (3.19), and we can argue similarly to the case of 1 — y; < 0. Therefore we will
exclusively assume that x; —y; < 0.

Henceforth, for simplicity, we set

u=ul\u,pp,9q,7), v=ul\upp,qn)

and B
Then
po2y =L, Yy +Gu inQ, (3.21)
T T
y (E,m') = Oy, ¥ (5,:6’) =0, A=) (3.22)
and

y=0 in (0,T) x 0. (3.23)
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Here we set
Gu(z) = —0,, F(')02,u(z) + (g + h) (') V. (divu)(z) + h(z')Au(z)

+(divu)(z)Varg(2') + (Veu(z) + (Veu(z) D) Vh(z). (3.24)
By (3.14), we have the inequality g > d?. Therefore, by (3.6) and definition
(3.15) of the function ¢, we have

¢(T/27 93/) > d1> gb(O, :I:I) = ¢(T7 :LJ) < dla I‘/ € ﬁ
with
di = exp(T 1/IéfQ 12" — /). (3.25)

Thus, for given € > 0, we can choose a sufficiently small § = §(¢) > 0 such that

¢(x)>dy—e, x€ {g—&%—f—(;] x Q (3.26)
and
d(r) <dy —2e, z€([0,20)U[T —25,T]) x Q. (3.27)

In order to apply Lemma 3.1, it is necessary to introduce a cut-off function y
satisfying 0 < x < 1, x € C*°(R) and
_J0 on [0,0|U [T —4,T],
L1 on[20,T —24].
In the sequel, C; > 0 denote generic constants depending on sy, 7, Mo, My, 09, 01,
n, T,y w, x and p, q, &, §, but independent of s > sy. Setting z; = X@zoy,
zo = x93 y and z3 = x93y, we have

(3.28)

poz,z1 = Ly 71 + XG(9Z,0) + 20(02, X) 03,y + P(97,X) 02,
poz,272 = Ly 72 + XG(5,0) + 20(02y X) 0,y + P(97,X) 35, (3.29)

Henceforth we set
6=A<mgﬂ+mgﬁﬂﬁgﬂﬁwﬁ

Noting that u € W7>°(Q), in view of (3.28) and Lemma 3.1, we can apply Theorem
2.3 to (3.29), so that

4
Z/Q 02, y1Px*e*dr < C3(||Fe*®|[T2(q) + 9¢°?172q) + 1he*?[[72(q))
j=2

5 .
+C5 Y 11020 X) (D2, 3)e* 120 111 0
j=3
4

+Cs Z H(3§0x)(3§;0y)65¢Hiqo,rp;nfl(m) + 03¢

j=2

<Cy(|Fe* 7200y + 19> 1720y + 1he*?]132(q)) + Cye® =2 4 Oy 50
3.30



LAME SYS1EM 1o

for all large s > 0. On the other hand,

/’ T/2 .%’)’2 2s¢>(T/2x)da:

T/2
[ / \(aioyxa:o,x'>\2x2<xo>e2s¢da:') o
0 0
T/2
/ / 26259y
T/2 T/2
v [ [yic@uoe s [ [ 102yPon 00 s

<Cj /Q s> (102, y[* + 102,y [?)e**?dx + Cse?* (=29,
Therefore (3.30) yields
/| 2 V)(T/2,2)[2e 256(T/2,2") 71/
<Cgs /Q(|F|2 + |g|? 4 |n)?)e**?da + Cgse?(1729) 4 CgsE

for all large s > 0. Similarly we can estimate [, [(93 y)(T/2, ') [2e259(T/2:27) d/ 1o
obtain

@232 + (@2, 3)(T /2.0 Py T2
<Cos [ (PP +1gf? + [W)e**do + Cose™ @20 4 Cose (331)
Q
for all large s > 0.

Now we will consider first order partial differential equations satisfied by h, g
and F. That is, by (3.21), (3.22) and u,v € W"°°(Q), we have

T T
PO,y (g:z:’) = Gu (g:ﬂ') , POy (E,x') = G0Oy,u (5,:1;') . (3.32)

For simplicity, we set

( _lL)\,up
a= ‘1’ ,
_;L)\,uq
divp 0 0
0 divp 0
bl = O ) b2 = 0 ) b3 = dlvp )
divq 0 0
0 divg 0 (3.33)
0 0 divq
Vp + (Vp)T)
dy,dy, ds) =
p02 y (£.2") — (9+ h)Va (divp) — RAp —
G = Q.
\ ( 503y (L2} — (g+ h)Va(divg) — hAg)
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Then we can rewrite (3.32) as
a@xlF + b16xlg + anmQQ + bg@ng =G — d16x1h — d26x2h — dgamsh.
Therefore for j; € {1,2,3,4,5,6}, we have

{2}, 00, F + {b1};,0:,9 + {ba};, 02,9 + {b3};,02,9
:{G}j1 - {dl}haﬂmh - {d2}j1aﬂﬂ2h - {dS}haﬂﬂsh? on €. (334)

Equality (3.34) is a system of five linear equations with respect to four unknowns
0x, F, 0,9, 02,9, 02,9, and so for the existence of solutions, we need the consistency
of the coefficients, that is,

det {a, bl, b2, bg, G — dlamlh - dgamQh — dgaxgh}jl =0 on ﬁ,
that is,
3
> det {a, by, by, bs,di}j, 0u,h = det {a, b1, by, bs, G};, on O (3.35)
k=1
by the linearity of the determinant. In terms of condition (3.11) and h=pu—p =0

on 0f), considering (3.35) as a first order partial differential operator in h, we can
apply Lemma 3.3, so that

82 / |h|2628¢(T/2’m/)d$l S C’7Hdetj1 (a, bl, b2, b3, G)68¢(T/2") ||%2(Q)
Q

SCg/ ( aﬂ%oy (z7gj/) 8§0y (z7gj/)
0 2 2

+C’8/(\g!2+ |h|?)e?50(T/2:27) ! (3.36)
Q

2
+

2
) e2s¢)(T/2,:c’)dx/

in view of (3.33). Similarly to (3.34), we rewrite (3.32) and, by (3.12) we can

similarly deduce
T T
8£0y (E’m/) 8§0y (5,90/)

32/ ‘g|2625¢(T/2,a:/)dx/§09/ (
Q Q

+Cy / (lg|? + |n]?)e2s¢T /22" g’ (3.37)
Q

2
+

2
) 625¢(T/2,a:/)dx/

for all large s > 0. By (3.36) and (3.37), for sufficiently large s > 0, we have

82/9(’.9‘2_'_ ’h‘2)62s¢(T/2’x/)dx/

T T
Scm/ < 2y (gaxl) Ry (§,$’>
Q

2
+

2
) e2s¢)(T/2,;r')dm/.
(3.38)
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Finally, replacing j; by js € {1,2,3,4,5,6}, we consider (3.34) as a system of five
linear equations with respect to four unknowns 0,9, 0:,9, Oz, h, Oz,h. By the
condition for the existence of solutions, we have

det {b27 b37 d27 d37 G — a8$1F - blaxlg - dlaﬂ?lh}jS =0
on Q. Therefore

— Oz, (e1F + e2g + e3h) + (O, 1) F
= —(02,€2)9 — (Oz,e3)h — detj, (b2, b3, d2,d3, G)

on Q. Here we set
€1 = det {b27b37d27d37a}j37
€y = det {b2>b37d27d37b1}j3

and

€3 = det {b2> b37 d27 d37 dl}jg .
In Lemma 3.2, we consider the case of pp; = —1 and pp2 = pp3 = 0. By (3.18),
(3.19) and g = h = 0 on 01, we see that if —n;(z') = Z?Zl po,;j(x')n;(z") > 0,
then (F + g + h)(2') = 0. Moreover by x; —y; < 0 for 2’ € €, condition (3.16)

is satisfied. Consequently, choosing s > 0 sufficiently large and using (3.38), by
Lemma 3.3 and (3.13), we obtain

52/ ‘F|2e2s¢(T/2,;r')dm/
Q

Scll/ ( aioy (gvx/) agoy (gwfnl)
Q

for all large s > 0. Consequently, substituting (3.38) and (3.39) into (3.31) and
using ¢(T'/2,2") > ¢(xg,x’) for (zg,2") € Q, we obtain

2
+

2
) e2s¢)(T/2,:c’)dx/
(3.39)

/ (I + lgI” + [n[*)ee /2% da!

Q

C1oT Ca
S S

< £

/ C
/(‘F‘2 + ‘9’2 + ’h‘2)628¢(T/2’m )d.fI?l + %628(d172€) +
Q

for all large s > 0. Taking s > 0 sufficiently large and noting e250(T/22") > g2sdy
for 2/ € Q, we obtain

/ (FP + g]2 + [B2)da’ < Crge=5e 4 CpaeCrag (3.40)
Q

for all large s > sg: a constant which is dependent on 7, but independent of s.
Next we take in (3.40) instead of the constant C3 the constant Cy3e250¢14. Now
this inequality holds true for all s > 0.
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Now we choose s > 0 such that e25¢14€ = ¢~4%¢ that is,

1
———— In€.
s 4€+2014 .

Here we may assume that £ < 1 and so s > 0. Then it follows from (3.40) that
/UFP +[gl® + [h*)da’ < 20€ 5.
Q

By definition (3.19) of F', we have

/erdx,:/g(ﬁxlF)rdx'=/§2F(8x1r)dx'

for all r € H}(Q) by integration by parts. Hence we can directly verify that
| fll -1 < Cl|F|L2(q), so that the proof of Theorem 3.1 is complete. W

84. Proof of Theorem 2.1.

Without loss of generality, we may assume that p = 1. Otherwise we introduce
new coefficients py = pu/p, A1 = \/p to argue similarly. We can directly verify that
the functions rotu and divu satisfy the equations

92 rot u — pArotu =my, 92 divu— (A + 2p)Adiva = my in@, (4.1
where
mq = Kirotu+ Kodivu + Kiu +rotf, mo = Kzrotu + Kydivu + Cou + divf
and K, K}, are first order differential operators with L>° coefficients. Thanks to

Condition 2.1 on the weight function 1), there exists 7 such that for all 7 > 7, we
have (see [Tal):

2

s||(rot u)68¢’|%_11,s(Q) + 8||(divu)es¢||%{1,s(Q) < ersd’H%Il,s(Q) +5 ?esd’
n H.5((0,T) x9%)
0%u ?
+s W@ ¢ + HUH%(QW)>7 Vs 2 30(7—)7 (42)
L2((0,T)x0%)

where the constant O is independent of s. In order to estimate the H!(Q)-norm
of the function u, we rewrite equations (1.1) in the form

p@iou —pAu="F, ulpg =0,
where

F = f+(\(2))+pu(z") Ve divu(z)+(diva(z)) Ve Mo ) +(Veu+ (V) )V p().
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Thanks to Condition 2.1 we can apply the Carleman estimate in [Im2] to this
equation

slue™ |l ) < CollFe™ Lz () + sllue™|lf . q.,)

SCQ(”(diVU)63¢"%2(Q) + H(Vx/divu)es“pH%z(Q) + HUQS(ZSH%_Il,s(Q)
HIfe £z () + slue™ s q.)):

This estimate and inequality (4.2) imply

52||11€S¢||%{1,s(¢9)4‘3”(1"0t U)BWH%{Ls(Q)+3||(diVU)€S¢H%{1,s(Q) < Cy <’|f68¢’|%—11a3(Q)

2 2

2
ues¢

+ s oz

HL5((0,T)x0)

+ HUH%(QM)>7 Vs > s.

L2((0,T) x %) (4.3)

Next we estimate the second derivatives of the function u. Denote rotu = y.
Using a well-known formula: rotrot = —A, + V,.div, we obtain

—Aypu=—roty — Vydivu in Q, ulgpg =0.

Using the standard a priori estimate for the Laplace operator we have:

3

D (0, 02, 0)e* |[L2(q) < Calsllue® |[gr.s @)+l (divw)e®? g )+l (rotu)e™® | gr.s (q))-
jk=1

By (4.3) one can estimate the left hand side of this inequality by the right hand
side of (4.2).

Next using this estimate and equation (1.1), we obtain the estimate for the norm
(92, u)es® HLQ(Q via the right hand side of (4.2). Finally we obtain the estimate for

H(@xoamj w)e*?||{z oy and s?[|(0z,u)e*? ({2 oy by an interpolation argument. There-
fore, combining these estimates with (4.2) and (4.3), we have

2
8u¢

82
s¢
Gn iz

TS on?

H.((0,T)x0%)

350y < Cs (!\f68¢!\H1 s TS
L2((0,T) x09)

+||u||l23(¢,Qw)>a Vs > s0(7), (4.4)

where the constant Cf is independent of s.

Now we need to estimate the boundary integrals at the right hand side of (4.4).
In order to do that, it is convenient to use another weight function ¢ such that
©lo,myxe0 = Olo,rxen and p(x) < ¢(z) for all z in a small neighbourhood of
(0,7) x 092. We construct such a function ¢ locally near the boundary 9€:

pla) = VD, G(a) = 9le) — 330() + NE),
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where N > 0 is a large positive parameter, and ¢; € C3() is a function such that
6(2') >0, Va'e€Q, fliloa =0, Vulilag #0.

Denote Q
that

= {2’/ € Q; dist (2/,00) < 7z }. Obviously there exists Ny > 0 such

1
N2

o(z) < p(z), Vre|0,T]x Qs , N € (Ny, 00).
N2
The following lemma plays a key role in our proof.

Lemma 4.1. Under the conditions of Theorem 2.1, there exists T > 0 such that
for all T > T, there exists so(7) > 0 such that

2
[ull3 o) VN > s 2008 0)e™ 2 o) < Calllfe™ 3.0 0
|a|=0

—|—||u||l23(<p’Qw))7 Vs > so(1,N), suppu C [0,T] x

(4.5)

1
N2’

where the constant Cy is independent of s and N.

We will postpone the proof of Lemma 4.1 and by means of the lemma, we
continue the proof of Theorem 2.1. Let us fix the parameter N such that (4.5)

holds true. We take & € (0, #) sufficiently small such that

o(z) > p(z), Vz € [0,T] x Q, \ Q4

S (4.6)

We consider a cut-off function 6 € C3(Qy) such that 5]95 =1 and 5‘95\935 = 0.

2
The function fu satisfies the equation

P(fu) = 0f + [P, 0, ulo,ryxa0 = 0,
u(0,:) = uy, (0,-) =u(T,-) =u,,(T,:) =0. (4.7)

Applying Carleman estimate (4.5) to (4.7), and using the fact that (¢—¢)|0,7)x00 =
0, we obtain

2

811 S ’ 8211 S S m S
S F@ ¢ + s ﬁe ¢ S C5(Hf€ ('DH%_Il,s(Q) + ||[P, 9]116 (pH%_Il,s(Q)
n H#((0,T)x0Q) n L2((0,T)x8%)
HlulBpg.)): Vs> so(r). (4.8)

Since the supports of the coefficients of the commutator [P, 8] are in [0, T]x 2 s\ /2
by (4.6), we have

2
I[P, 6lue*?|[fpciq) < Co | Y " 207 we T2 + Iullsq., |- (49)
|a|=0



LAME SYS1EM 19

Combining (4.8) and (4.9), we obtain

2 2

ou

Ou 0*u s
on

s¢
(& —5€
on?

+ s
H5((0,T)%x09Q)

2
<C7 (erwH%ILs(Q) + Z 33_2|a|’\(a?u)€s¢\’i2(Q) + \|qu23(¢,Qw)>7 Vs > fo(ﬂ)-
Jal=0 4.10

S

L2((0,T)x9%)

Finally we will estimate the surface integrals at the right hand side of (4.4) by the
right hand side of (4.10). In the new inequality, the term

2
Y SO we R g

|ex|=0

which appears at the right hand side, can be absorbed by ||u||§/( 4.0)- Thus the
proof of Theorem 2.1 is complete. l

The rest of the paper is devoted to the proof of the Lemma 4.1.

Proof of Lemma 4.1. First we note that, thanks to the large parameter N, it
suffices to prove (4.5) only locally by assuming

suppu C Bs N ([0,7] x Q1 ),
N2

where By is the ball of the radius § > 0 centered at some point y* € [0,7] x 0f.
In the case of Bs N ((0,T) x 9Q2) = ), we can prove the lemma in a usual way for
a function with compact support (see e.g., [H6]). Without loss of generality, we
may assume that y* = (yg,0,0,0). Moreover the parameter § > 0 can be chosen
arbitrarily small. Assume that near (0,0,0), the boundary 92 is locally given by
the equation z3 —£(x1, x2) = 0. Furthermore, since the function u = Qu(zg, O~ ta’)
satisfies system (2.1) and (2.2) with £ = Of(zg, O~ '2’) for any orthogonal matrix
O, we may assume that

(%(0,0), 88—31(0,0)) = 0. (4.11)

Next we make the change of variables y; = x1,y2 = x5 and y3 = x3 — {(x1,x2). We

set Yo = To, Y = (y07y17y27y3)7 yl = (ylay27y3)‘ By A(y7D) denote the Laplace
operator after the change of variables. One can check that the principal symbol of

this operator is equal to a(y, &) = —€7 —&5 —|G|?&5+2(Vy £, €)Es, |G =+/1 + | V]2
In the new coordinates, the Lamé system has the form
P(y, D)yu= D} u— pA(y, D)u

0 ou
—(\ y = Vo l— diva — | =— v
A+ 4) (Vy Ve aw)(”“ (%’Vy ))

+Kju=—f, (4.12)
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where we use the same notations u, f after the change of variables and K 1 is the
partial differential operator of the first order. Denote by (z1, 22, 23) and z4 the
functions rot u and divu in the y coordinates. These functions satisfy the equations:

P,(y,D)zj = D§z; — pA(y,D)z; =m; j€{1,2,3}, (4.13)
Pri2u(y, D)za = Dzg — (A + 2p) A(y, D)z4 = ma. (4.14)

Here we set w = (w', w4) where

w’ = (rotu)e®?, wy = (divu)e®? in the y-coordinate,

WI’J = XV(S7 D,)Wl = / XV(S, fl)V/V\/(SO, 517 527 ys)@i(yOSOerl&+y2§2)d§0d51d§27
R3

where w’ is the Fourier transform of w’ with respect to the variables (vo, y1 yg)
We consider a finite covering of the unit sphere S% = {(s, &, &1, &2); 8% + &3 +

E+& =1} That is, $* € ULT{(s,60,61,6) € S%[C— G| < a1} where

¢k e 83, and by {x.,(¢ )}1§V§K(51) we denote the corresponding partition of unity:

ZK(&) xv(¢) = 1 for any ¢ € S and supp x,, C {¢ € S3;|¢ — (| < §;}. Henceforth
we extend x, to the set {(;|¢| > 1} as the homogeneous function of the order zero
such that x, € C°°(R3) and

< 51} .

We set G = B x [0, ). Let 7 = (7, C%) = (y7, 5% &, £0,€5) € 9G x 5% be an
arbitrary point. In order to finish the proof, we need the following lemma.

supp x», C O(61) = {C; - ¢,

Lemma 4.2. Let v = (y*,(*) € 9G x S3 be an arbitrary point and suppy, C
O(61). Then for all sufficiently small 61 > 0, the following estimate holds true:

()

Assume for the moment that Lemma 4.2 holds true. Using Carleman estimate
(4.15) we have

aw
VIs|Iwller. gy +v/ |8 || W)||L2(0g) x H1-# (96)

<Z\/ sl wlle.sg) +v/1s || W)Lz (06) <111+ 06)

§C’8(er| ) r1e gy + |Juel® WHHz,s(g)) V|s| > so. (4.16)

< Cs(||fe!*!? || g1, (g) || uel 1 gg2.c (g).
L2(8G)xH15(8G)

(4.15)

By Proposition 5.1 and the argument similar to (5.10) and (5.11) in [IY8], we obtain

2

), > DGy | < ol oy ). Vil > s
|a| 0
(4.17)
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Directly from equations (2.1) we can obtain the estimates for (852u)e|s|“" and

(6yoay1u)€|s‘(p :

1
2 2
Ni / ST s Druel e Py | < Co(lIfel1 e gy +uel* |z g)), Vs] > so.
9 Jal=0
(4.18)
Since the constant Cs is independent of N, estimate (4.18) implies

0ys3

< Col|fe!*®||ggre gy V|s| > s0. (4.19)

) 3
v / > sl D ue e Py | /8]

Y Jal=0

L2(0G)xH!#(8G)

This estimate immediately implies (4.5). B

Now it suffices to prove Lemma 4.2.

Before starting the proof of Lemma 4.2, we need to recall some facts from the
theory of pseudodifferential operators and Carleman estimates.

We set

Pu,s(yasvD):Pu(yaD)7 P)\+2,u,s(y737D>:P)\+2,u(yaD>7 D:D—{—Z'|S‘V(p.
Denote

pﬁ(ya 3751) = _(50 + Z'|S|Q0y0)2 + 5[(51 + i|8|90y1)2 + (52 + i|8|90y2)2

=2y, (E1+ils]py, ) (Ea+ilslpy;) =20y, (€2+i|8|90y2)(§3+i|8|90y3)+(§3+i|8|90y3)2|(G|2],)
4.20

where 8 € {u, A\ + 2u} and s # 0 is a parameter. The roots I’g:(y,s,f’) of the
polynomial pg with respect to the variable {3 are given by

T3 (y,s,¢8") = —ilsley, + a5 (y,s,), (4.21)

where
+i]8|@y, )y, + (§2 + 1]5]py, )by,
Ozéc(y,s,f') _ (&1 Ei2m y‘G‘2(f2 |s]pys )4y + /7“,8(3/,8,5'), (4.22)

{0 Filsley,)? = B((& +ilsley,)* + (&2 +ilsley,)) HGI + B(E +ils| Ve, VI)?

(4.23)
In some situations we can factorize the operator Pg ¢ as a product of two first order
pseudodifferential operators.
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Proposition 4.1. Let 5 € {u, A+ 2u} and |rz(y, Q)| > SKP > 0 for all (y,¢) €
(BsNG) x O(201). Then we can factorize the operator Pg s into the product of two
first order pseudodifferential operators:

Pg,sxv (s, D")V = B|G*(Dy, — T5(y, 5, D) (Dy, — L5 (y,5,D)xu (s, D)V + T3V,
(4.24)
where suppV C Bs NG and Tp is a continuous operator:

Tp : L?(0,1; HY*(R?)) — L*(0,1; L*(R?)).
Let us consider the equation

(Dy3 - PE(% 8, D/))XV(S7D,)V =4, V|y3= =0, supp V C BsNg.

ﬁ
For solutions of this problem, similarly to Proposition 5.4 in [IY8], we can prove
Proposition 4.2. Let § € {u, A+ 2u} and |rz(y, )| > g!dg > 0 for all (y,() €
Bs x O(261). Then there exists a constant Cy¢ > 0 independent of N such that

IV1s1xw (8, D)V |ys=ollL2®s) < CrollallL2(g)- (4.25)

Let w(y) be a function which satisfies

ow

Pss(y,s, D) w=¢q inG, —
5.5(y, 8, D)w = q 90

- - 1
= W|y,—1/n2> =0, suppw C Bsx|0, m)

y3=1/N?
Let Pj be the formally adjoint operator to Pg g, where § € {u, A + 2u}. Set

Pﬁ’S+P* Pfgysf

Lig= = and L_ g = %. Obviously Ly gw+ L_ gw = q. For almost

all s € RY, the following equality holds true:

5ﬂ+||L,5@H2L2(g)+||L+,5717||2L2(g)+Re/g([L+,ﬁaL,B]@,E)dyz 1117 2(g), (4.26)
where

Ep = /BQ Dy, Vo, —€1) (151D (y, Vi, V@) — |s*ps(y, V)@ dyody: dys

+Re [ pp(y, Vw, —€4) L gwdyodydys, (4.27)

g

& = (0,0,0,1) and

—

Ps(Y, €,€) = €ofo — B(E1EL + Eaba — Ly, (€163 + E3E1) — £y, (263 + E362) + |G|2E3E3).

We note that ¢, |ag = ¢y, log for k € {0,1,2}. Therefore on 9G, the function
V¢ is independent of N and |V¢(y') — V(y')| < C/N? with the constant C
independent of N. It is convenient for us to rewrite (4.27) in the form

= _ =), =2
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=(1) w ow ow

= =R 2 ) —— L *) R P X *

O=re [ ol (ﬁ(y )2 o 4) + B0 o)
ow ow

+5(y )Byg Pys (y )_ 3yo Pyo (y ))dyodyldy2

= [ 8 >{% ~ Bly") (]35 )}

—[s* (02, (") = By (@2, (y") + 2, (") + @2, (y*))|@|*)dyodyrdys.

Then N
(5 Y3’ )

where €(d) — 0 as § — +0. We can prove that there exists a parameter 7 > 1 such
that for any 7 > 7 there exists so(7) such that

2 ’afw

2 N ' 0w
0y

0ys3

2
—(2
EUETOIE : (4.28)

L2(0G)x H'-#(8G)

3 - 3 - =
Z!IL,ﬁw\liz‘(g) + 1||L+,,8w||%2(g) + Re ([L g, L— glw, W)Lz (g)
+Ch1ls|l|w] 2 86) | Oys W]l L2 (06)
2012’8‘”@“%{1,5(g), V|S’ 2 SQ(T), (429)

where C12 > 0 is independent of s. The proof of (4.29) is done exactly same as in
Appendix II in [IY8]. Combining (4.26) and (4.29), we arrive at

—HL 82y + 5 HL+ﬁwHLz<g>+012\ 11171+ (g) + Zs
< Ci3(llallZz(g) + 15/1@l22(09)|0ys Bll2(0g)): Vs = s0(7). (4.30)

By Rot, Div, Nab denote the operators obtained from rot, div, V, after the change
of variables. In that case, on G we can rewrite equation (4.12) and identity
divrotu = 0 in the following way:

iuRot (y, D)w'—i(A+2u)Nab (y, D)ywy = fe*I*+ K (y, D, 5)(uel*¥),  Div (y, D)w’ =0,
(4.31)

where K(y, D, s) is the first order differential operator. Applying the operator

Xv (s, D) to equation (4.31), we have

iuRot(y, D)w,,—i(A+2u)Nab(y, D)w, , = F1, Div(y, D)W, +[x.,Div]w’ =0 y € 93,
(4.32)

where
F1 = x,fel*? —i[x,, uRot(y, D)]w’ + i[x., (A + 2u)Nab(y, D)Jws + x, K (y, D, s)(uel*1#).

We will prove Lemma 4.2 separately in the following three cases:

(1) ru(v) = 0, rag2u(y) # 0 (Section 5)
(2) ru(v) # 0, rag2u(y) =0 (Section 6)
(3) ru(v) # 0, ragau(y) # 0 or 7, () = rat2u(y) = 0 (Section 7).
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§5. The case : 7,(y) =0 and ry;9,(y) # 0.
In this section, we treat the case where 7,(v) = 0 and rxy2,(y) # 0. Taking the
parameters § and J; sufficiently small, we can assume that there exists a constant

6 > 0 such that

Pagon(y, O)) > CIC%, V(y,¢) € Bs x O(61), [¢] > 1.

We note by (4.30) that there exist C7 > 0 and Cy > 0 such that

/
v /
( Yo V)
—=(1)

and the parameter € can be taken sufficiently small if we decrease J. Note that = L
can be written in the form:

—(1 *
515,/1 :/ (!S\(uzsoyg)(y )
og

8wku awku 8wkv
e [ 3025 (G 2+ a0 2 P
e o |s|p(y™) 0 sy, ) (y*) o (1spy, ) () 9 Dyo (Y*)

Culslllwep 1310 (g) + ZSh

2

< CQ(erLW||%{1,s(g)+||W||%{1,s(g))+€( )|s . ke{1,2,3}

L2(0G) xH1#(9G) (5.1)

2
awk,u

0ys3

+ \3\3(M28023)(3/*)’wk,u’2> dx

+ /89 |5 (1py ) (W ES — w(y™)(EF + €3) — 05, () + s>y ) (@3, (V) + @5, (")) Dy, [ *dS
=J" 4 g 4 JP (5.2)
By (4.21) - (4.23), there exists C's > 0 such that

166 — P02, (") — n(y*) (€] + &) + n(y*)s* (v, () + ¢, ("))
+[8]|€00yo (W) = (¥ )&y, (¥°) — 1y )20y, (¥7)|
<6:1C3(|¢|* + 61 + [&2* + 5%), V(€ O(6). (5.3)

Next we take the parameter §; sufficiently small such that
€ol* < Ca(&F + &5 +5%), V(e O6), (5.4)

where the constant Cy > 0 is independent of . Then, by (5.3), we have

(8W,, )
- s Wy
dy3

Moreover we claim that there exists dp > 0 such that if 6; € (0,dp), then there
exists Cs > 0 such that

2

3
E:Lé)\<51u¢mﬂy)bl (5.5)

L2(9G)xH#(8G)

[Sol < C5(I&1] + 182 + [s]), V¢ € O1). (5.6)
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We set V-

A2u T (D F+

ni24 (Y8, D'))wa,,. Then by Proposition 4.1
PA+2IJJ,Sw4,V = (/\ + 2/~L)|G|2(Dy3 - F;+2ﬂ(y7 S, D,))V):_Qu + T)\+2uw4,ua

where Th1o, € L(H"*(G), L?(G)). This decomposition and Proposition 4.2 imme-
diately imply

INV[8[(Dys = TX 2, (Y 8, D)) waplys=oll L2 (0)
<Co(||fe!*1||gr1.c gy + [ Wll1.(5))- (5.7)

Next we estimate the term J, (}) " First we note that thanks to the homogeneous
Dirichlet boundary conditions, we have the a priori estimate

awy
VIslllwsw |l g1 ag) < € (6W/]s| ( )

Using (5.8), from (4.30) with w3, instead of w, we have

811)3,1, w
8y3 ,» W3,v

(5.8)

L2(8G)xH!5(9G)

< O7(|Ife*? [l11.e gy + I Wllrre (o))
L2(8G) x HY#(8G)

5]

ow,
( hid ) . (5.9)
L2(0G)xH#(9G)
Now we consider the following two cases:
Case 1. Assume that s* # 0. In this case by (5.3)
3 / 2
51+ 105 < el | (G w ) .
k=1 Y3 L2(8G)xH:5(8G)
Therefore for some constant Cg > 0
3 2
8 /
> Eh) = IsICs ( W”,w;) . (5.10)
’ dys3 L2(8G)xH!:#(9G)

k=1

Combining (5.10) and (5.1), we have

(GW; , )
) WV
0y3

Using (5.11) we obtain from equations (4.32)

< Co([|el*?||mro(g) + [Wleme(g)).  (5.11)
L2(0G) xH*(9G)

V|sl[[Nab(y, D)wy .|| £2(a0)

ow,,
<Cro([£9 [eg1.0(g) + W[z (gy) + €(0) H (@w)

L2(0G) xH1*(99) (5.12)
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On the other hand, thanks to (5.7) we have

/ 8u}4,1/
’S‘ 6 Y w4,1/
Y3 L2(0G)x H'#(8G)

ow,,
<Cun/TFl[Nab(y, DY 1200, + €(9) H (WW)

L2(9G)xH:#(8G) '

Combining this estimate with (5.11) and (5.12), we obtain

ow,,
NE H (—ay3 ,wy)

< Cro(|/fe*® || g1e @) + || WlErregy)-  (5.13)
L2(8G)x H1:#(9G)

Inequalities (5.13) and (5.1) imply (4.15).
Case 2. Assume that s* = 0. By (4.32) the following equality is true:

R(y, S, Dl)(wLy, wg,,,) = (Dlwl’y + D2’U)27U, —DQ’U}LU —+ Dle’y)

A+ 2
= (Fla Tua;\r+2ﬂ(y7 S, D,)w4,1/ + FQ) y
where

VIslI|[(F1, Fa)|lL2ag) < €(ON/ 3]

+C13(]|£e*1? | g1 () + Wl 112 (6))-
L2(9G) xH*(9G)

(8W,, )
o s Wy
0ys3

The principal symbol of the operator R is

" _ [ & tilsley, (y) S +ilsley, (y7)
mos e = (SR RLI).

Since det R(y*, s*,£7,£5) # 0, there exists a parametrix of the operator R such that

_ A+2
(wrsw2) = Rlyes. D)7 (02520t 5 D),
+R(y,s, D) HFy, Fp) + T_1 (w1, wa,). (5.14)

By the first and second equations in (4.32), we have

A+2
(D3w1,uaD3w2,U) = 7 a

(Daws,y, —Dywy,y) + (Fy, Fs), (5.15)

where

(awy )
- s Wy
dys3

VIsl||(Fa, F5)||L2ag) < €(0, 610/ |5
L2(9G)xHY#(9G)

+C1a([|£e1? g1 gy + [[W[Ere g))-
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Using equalities (5.14) and (5.15), we can reduce J2(1), JQ(Q) to the form

o OWy, ) — . -
Sy = Re /w 2018+ 20)(5") =5 = (i) () D + i) (57) D2 = i (57) Do}

(R(y, s, D)0, a} 5, (y, 5, D")wa,,,) J1)dS+ I, (5.16)

o OWa, : :
1 = Re [ 24l 2") S i 1D T 050 )57) D~ i () Do}

(R(y,$, D) 10,0, (4, 8, D')wa) - j2)dS + I, (5.17)

where j; = (1,0), jo = (0,1), I and I, are terms which are estimated by

(o)
ayg Y v

Since Rea} (y) = 0 and Im R(y)~! = 0, by Géarding’s inequality we obtain from

(

(5.16) and (5.17) that
(1 2 ow, s

’J )H_|']( )’ <€ H( » Wy +016(Hf€| ‘(‘DH%_ps(g)—f—HWH%_ps(g))

L2(0G)xH:5(8G)

This inequality and (5.5) imply for k£ € {1,2,3}

—~(1 *
== | {\srw%)(y)
og

(GW,, ) 2
—-—, Wy .
dys L2(8G) xH5(dG)

In terms of (5.15) and (5.18), we have

11|+ I2] < €(9)]s s ([ a1 gy Wl 0):

L2(8G)xH!5(9G)

"
(

2

2
awa/

0y3

+ !S!?’(u%is)(y*)!wkﬁ} %

(5.18)

2
sllewa e ogy < 0172

1) Geom)

a WV .
dy3 L2(8G)xH!5(9G)
This inequality and (5.7) 1mply

8w47,, 2 3 _ .
|s] H( P ,w4,u) < Cis (Z: + ||fel |90H%_11,s(g) - HWH%{Ls(g)
Y3 L2(8G)x H1:#(8G) —
(8WV )
- s Wy
Jys3

2
(5.14), (5.18) and (5.19), we obtain

aw,, 2 3 B )
"H( ) < C1 (Z: ot e '@u%{l,s(g)+kugl,s(g)>
k=1

()
a8 WV .
dys L2(8G)xH5(dG)

This estimate and (4.30) imply (4.15). B

+ Cus(|Ife!*?|[p1.0 (g) + [Wll3r.e (g))-
L2(9G) xH1*(9G) (5.19)

L2(8G) xH5(9G)
2
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§6. The case: ry;2,(y) =0 and r,(v) # 0.

Let v = (y*,¢*) = (y*, s%,&5,&5,&5) be a point on G x S? such that 7y;2,(y) =
0,7,(y) # 0 and suppyx, C O(d;). Taking the parameters 6 and §; sufficiently
small, we can assume that there exists a constant C > 0 such that

(v, Q)| > CIC12 Y(y,C) € Bs x O(81), [¢] > 1.

By (4.21)-(4.23), there exist do > 0 and Cy; > 0 such that for all §; € (0,dp) we
have
& <Ol +& +5°), Ve o). (6.1)

We consider the following three cases.

1 * *\ ek *\ ek *
Case A. Assume that s* =0 and ¢, (y*) > |70 Pu0 W)~ Ei o (01765 0, )‘.

A () | (7,63

In that case, there exists a constant Cy > 0 such that
~Im T3 (y, ) = Calsl,  ¥(y,<) € By x O(31),
provided that || 4 [61] is sufficiently small. Since s* = 0, we may assume that
[€ol? + 5% < Ca(&1 +&3), V¢ e O(B) (6.2)

for some constant C3 > 0, taking a sufficiently small §;. We set Vf = (Dy, —
I’/jf(y, s, D"))w!,. Then, by Proposition 4.1, we have

Pyus(y, D)w,, = |GPPu(Dy, — T (y, 5, D)) VE + T,7wy,
=|G|*u(Dy, — F;’(y, s, DNV, +T,w,, (6.3)

where TF € L(H"*(G),L?(G)). This decomposition and Proposition 4.2 imply

VIsI(Dys = T3 (5, 5, D)W lya=ollizog) < Calllfe[lrre(g) + HW'HHLS(@)))-
6.4

We have

(—VNJr + V. )ys=0 = (a:(y, 5,D") =, (y,s,D'))w, on dG. (6.5)

Since &j(y*,(*) —a, (y*,¢*) = 2/ru(y*,¢*) # 0, by (6.4), (6.5) and Garding’s

inequality we have

VIslIW) s ag) < Cs(I1fe!*!# [ (g) + W ll1.+(6))- (6.6)

By (6.6) and (6.4), we obtain

2
¥ < C'G(erlst%Il,s(g) + Wl e gy)- (6.7)

/
v
3

ow
|s| | 55—
og
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Finally, by (6.6) and (6.7) combined with (4.32), we obtain

6104 v
8 Y3 v
Inequalities (6.6) - (6.8) and (4.30) imply (4.15).
Case B. Assume that s* = 0 and

2
s < Gl e o) + Wl (68)
L2(8G)x H:# (9G)

|7 60%0 (U7) — &l () — &304 (y7)]
LI &)

Py (y") < (6.9)

In that case lim¢_, ¢+ Imr, (y*, () /|s| # 0. Since s* = 0, we note that Rer, (y*,(*) >
0. Set I = sign lim¢_,¢« Im7,(y*,¢)/|s|. Then we have

Ly (", ¢") = Iy/Rery(y*, ). (6.10)

Therefore

—Re T (5%, ) ((2y, ) ()ET + (1epy,) (W)€ — 0y, (y7)EG) > 0

Taking the parameters 6 > 0 and é; > 0 sufficiently small, we obtain

—Re T (y, O) (1py, (V) €1+ 110y, (¥) 2=y, (¥)€0) > 0, V(y,¢) € BsxO(d1). (6.11)

Using the definition of V", we have

ow'! ow! ow!, ow!
Jo=Re [ 2sluly*) 2 ( p(y) r g, (y*) + ) T e () )
o= Re [ 2lsluls) Gt (o) G )+ ) G 07) = G ) )
ow’ ow’

=Re [ 2|s .8, D")w . + pu(y*) =20y, (Y*) — ==y, (y*) |dE
[ 2ty s 0, () G ) u(y)ay290y(y) ()

ow ow ow,, §
+Re/8g2\slu( YV >(< V)G (5) + 1) o) — ))dE

=Re | 2leliy") Wy Dy 20, () + 107) Dy 0) = Daon (07 )5 0,5, D S

—|—Re/8g 2|s|u(y*)iV, (-,0) (u( )ay (y*) + p(y )8y Py, (Y*) — o oo (Y ))dz.(ﬁ )

By (6.11) we obtain from Garding’s inequality that the first integral at the right
hand side of (6.12) is negative. Consider two cases. First let

(g (Y)E + 0y, (¥)EIT S (¥, C7) 2 0
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This inequality and (6.11) yield that |£50y, (Y")| > €70y, (¥7) + oy, (y7)]. If

£y (™) > 0, then T0(y*, (%) = Nru()| and &1@y, (y7) + 50y, (y7) = 0. By
the first condition in (2 6), we obtain

B (P WE + 0 (1)) | VEVA T H

Y TR (GRG] Sz )
Z’@yo(y*ﬂ'

Again by the third condition in (2.6), we note that |¢,, (v*)| = @y, (y*). On the

other hand, from ry12,(y, 0,43, &7, €3) = 0, we see that |£5] = /(A + 2p) (y*)[(£7, €3)]-
By &5y, (y*) > 0, we obtain

—y (Y& — py, (¥7)E5 + “D,Z?gfy )Eo
AL (&7, 6))

©ys (Y") >

This contradicts (6.9).
If &5py, (y™) < 0, then I'f(y*, ¢*) = —N/ru(Y)] and §@y, (¥7) + &3¢y, (y7) <0

Therefore

[Pu ()EF + 0y, (y7) €5 — 00 |
AL ()] (&7, €5)]

e W+ e g - 29 )fo

. X () (€5, €5)]

Oy (y*) >

By (2.6) this again contradicts (6.9).

As the second case, one has to consider (o, (¥*)&5 + @y, (¥*)E)TH (y*,¢F) <0
By Garding’s inequality, for k& € {1, 2}, we have

awk v
Y2

Re | 20l VT 0 D s (4D () T+ ) )

)d¥ < 0.

This inequality and the fact that .J; is negative implies that

owg, Owg.,
((/\ +20) (1) " oy (5) + (A4 200) (y*) s () Tl — T 0 (y*))dE > 0.
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Note that

2
8w47,,

zﬂzu:l;<M«A+mmw%xw> —Hd%@+ﬂm%%9wﬂmmf>d2

8w47,,
+Re/8g2| O+ 2u)(57) %
(4 20000 G+ (O 2000 5 = o (07) T )

+/‘wuu+QM¢%xwxﬁ—4A+mo@w@%+$>—fwiww
oG

S0+ 20)(5*) (0%, () + 92, (")) [wa o [2dS
=J1 + Jo + Js.

Using equalities (4.32), we can transform Jy as

2 awku
Jo = —R
eZ/ )\+2u 0ys %

6wk v ka v ka WV
A+ 2 * ’ A+ 2 *)— — * d¥+ 1,
(( + 2)py, (y*) i + (A + 2) 0y, (¥*) 9 Pyo (Y*) o ) +
where
ow 2
Il < O)ls ( 0 sy ) L2(8G) x H1* (9G) + Ca(fe ¥ IlEg: - (g) + Wl 0))-

2

(8W’V , )
7WU
0y3

| J5| < C1161]s]

— Co (1 |1 f1.0 (g + 1Wl[311.0 ()
L2(9G) x H'#(9G)

811)2,1, w
Gyg y» W2 v

(6.14)

Since
2

L2(8G)xH1 5 (9G) '

(3WL w')
8y3’ v

- C9(||f€‘s|¢“%{1»s(g) + 1WlEe6)-
L2(8G)xH#(9G) (6.15)

This inequality and (6.14) imply

:Q%>ch{/ (
@] (G )

2
L2(0G) xH# (9G) }
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Now we will estimate .J3. By (4.21) and (4.23), there exists a constant Cy3 > 0 such
that

—IsP*@3, (1) = A+ 2) ()& + (A + 2m) 5, ) (y7) sl

—(A+2m)(y")E3 + (A + 2wy, ) (y™)] I
<Ci36,(|€'|? + s?), V¢ e O®6). (6.16)
Using (6.16), we obtain

& — n(y)E — w(y)Ed — s*02 (%) + 57 (uel ) (") + s> (uey,) ()
=\ + ) ()N + 6 — %00 (y") — s son( )}
+65 — (AN 2) ()T — (A +2u)(y)EF — sl (v*)
s2 (A + 295 ) (%) + 2 (A + 20)93,) (y")
>N+ ) (E + 65 — 200 (v") — s°02, (y*)} — Cradi (€] + 57).
Therefore, for all sufficiently small d1, there exists C15 > 0 such that for all { €
O(61)

&6 —nly")ET — ly")&3 — 50y, () +5% (e, ) (™) +5° (g, ) (y™) = Crsd ([8]7 +57).
(6.17)
By (6.17), we see that J3 > 0. Hence by (6.15) and (6.1), there exist constants

Ch6, C17,C1g > 0 such that
ow!,
S W,
Jys
—018(5, 01)([|fe® WHHLS(Q) + ||W||%{1,s(g))~

(GW,, )

- Wy

dys L2(8G)xH5(9G)

—Chis(6,01) (Ifel*?] 31,0 gy + Wl (gy)- (6.18)

By (6.18), (5.1) and (4.30), we obtain (4.15).
Case C. Assume that s* # 0. If 6; > 0 is small enough, then there exists a
constant Csg > 0 such that

[0@yo (W) — (A 421) () E10y, (%) — (A +20) (Y™ ) €20y, (W) < 67C20(E7 + €5 (+ 32)).
6.19

2

3
ZE +Cl6~)\422‘u = 017’8‘
k= L2(8G)xH15(8G)

This inequality and (4.32) imply

2

By (4.30), there exists C2; > 0 such that

—(1
=, + OV IslwaslZ .- )
2

s Wy
ys

<Cor (||e"*? 31,5 gy + W15 () 2 1 ( )
L2(0G)xH(89) (6.20
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8u}4,1/ w
8y3 , W4 v

By (6.21) we see from (6.19) that there exists a constant C23 > 0 such that

=(1 Wy,
‘_’)(\422/.1, = _6‘ ‘ H( V? ,IJ)

+Ca3 /8g <\8|((/\+2/~L)290y3)( ")

By (6.16) and (6.19), we have

2

’jz + js‘ < 0225%]3\

(6.21)
L2(0G)x H':#(9G)

2

L2(89)><H1»5(8g)

+ s (A + 2#)2¢§3)(y*)|w4,u\2> dx.
(6.22)

6104 v

dys3

Since s* # 0, without loss of generality, taking d; sufficiently small, we can assume
that
€' < Caals], V¢ € O@1). (6.23)

By (6.22) and (6.23) for some constants Ca5 > 0 and Css > 0, we have
aU)4,1/
W4q,v
dys +

pRot(y, D)w!, = F* on 0G, (6.25)

where we set F* = %F1+()\+2,u)Nab(y, D)w47y and ||F1HL2(Q) S CQ7||f€|SWHL2(g)—|—
|uel*!®||g1.s(gy). Next in the operator Rot, we put instead of Dzwg,, the function
a™(y, s, D wg, + V}...- We can represent

2
=(1)
A 2u =

— Cog £l || Fpre gy (6.24)
L2(0G)x H':#(dG)

By (4.32) we have

uG(y,s, D" Yw!, =F* + PL(VM—). (6.26)
By (6.4)
VISRV, L2 0g) < Cos((Ifel*?[lrnsg) + [Wl|r1s(g))- (6.27)
The principal symbol of the operator G at the point v is given by the matrix
0 a; (v) —&5 — ils" ey, (¥7)
G(v) = —a; (7) 0 & +ils* oy, (y*) |- (6.28)
=& —ils™|py, (y7) &7+ ils™[y, (¥7) 0

Thanks to the Dirichlet boundary condition, we note that

| s < Y
s -0y < €(0) | (G, )

This inequality and (6.4) imply

811)3,1,
( a s 7w3,1/)

ow,,
H ( dys ' )

L2(0G)xH#(8G) .

< Coo([|fe!*1?|[t11.5 gy + [ W/ || e115 0
L2(8G) x H1-+(89)

BE

. (6.29)
L2(8G)xH15(8G)



O. Y. IMANUVILOV AND M. YAMAMOL1O
By the first two equations of (6.26) and r,(y) # 0, we obtain

1512 [|wk,u || 1.0 (96) < Coo(||fel™ ][ gae gy + W/ |E1e gy + 1512 |F* [|L2(a6))
#e0)| (G )
5y3
By (6.4), (6.29) and (6.30)
()
W,
8y3
o) (G )
5y3

By (6.21) and the definition of the function F*, we obtain

()
Wy,

dys

In view of (6.32) and (4.30), we obtain (4.15). W

§7. The case r,(7) # 0 and rxy2,(7) # 0 or 7,(y) = rayeu(y) =0.
In order to treat this case, we use the Calderon method. First we introduce the

new variables U = (U, ..., Us), where

k=1,2. (6.30)

L2(0G)xH1:¢(8G)

s 1
< O (|1£*®||g1.e () + [|W || 111 (6) + 82 [ F*|I12(00) )
Hl,S(ag)xL2(8g)

5]

(6.31)

L2(8G)xH5(9G) .

2

s —~(1
< Cao(|Ife! |<P’|%{1,s(g) + ||W’H%117s(g) + “§\422u)
H!.=(9G) xL2(9G)

5]

(6.32)

(U1, Uz, Us) = A(s, D"Yuell®, (U4, Us, Us) = (Ds + | s|py, Jue*#,

and A is the pseudodifferential operator with the symbol (s2 + |¢'|2 4+ 1)z. In the
new notations, problem (4.12) can be written in the form

D, U= M(y,s,DYU+F inR*>x[0,1], (Uy,Usz,Us)(y)|ys=0 =0, Ulys=a, =0,

(7.1)
where F = (0, fel*|#). Here M(y,s, D') is the matrix pseudodifferential operator
with principal symbol M (y, () given by

- 0 MEs
Ml(?J;C) - (A1M21A11 A1M22) Z|3|90y3E6

(see [Y]). Here we set = (&1 + P]s|y, €2 + 1]S]|py,, 0),
G(y1,y2) = (=0€(y1,y2)/0y1, =0L(y1, y2)/Dya, 1), Ay = [C], Mo (y, &' +i[s|Vyrp(y)) =
(60 + ilslpye (1))® = (&1 + ilslipy, (1)) + (€2 +ilsloys (4)2) Es — (A + 1)(y)d7"0,
Maa(y, &) = = (A1) () (07 G+GT6)—200G" B3, A = (A1) (y)GT G+1u(y) |G| Es.
Here 67 denotes the transpose of the row vector 0.

Case A. Suppose that r,(v) = rx42,(7) = 0. Then Im Fff (7) < 0and Im F/\+2u (v) <
0, Therefore all the eigenvalues of the matrix M;(y, () have negative imaginary
parts. There exists C; > 0 such that

Imri(?JaC) < _01|C|7 Imr;\:_zu(yaC) < _Cl‘dv v(yJC) € B5 X 0(51)
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Using the arguments in §4 of Chapter 7 in [Ku|, we obtain

Ul (g) < Ca(l[fel*?][ns(g) + lue*¥ | mrsg)). (7.2)

This estimate implies (4.15).

Case B. Suppose that r,(7) # Txp2u(7),7u(v) # 0,7a42,(y) # 0. In this

case, the matrix M; has four smooth eigenvalues given by (4.21)-(4.23) and the

corresponding six smooth eigenvectors sli, SQi, sgt given by the following formulae

(e.g., [IY8], [Y]):

= <(§+ O‘irzuG)Alila airzu(é"" af+2uG)A;2) >32i = (w%,af/\flwgz),

+

+
51
+ _ o+ a1
53 —(wsaauA1 wy ),

where we set

wg: = Afl(_§2 - i|8|90y2 + ogi:gwal + Z'|S|90y1 - afﬁyl,O), (73)

2
w::))t = <O‘/:i:(§1 + Z"‘9|90?J1 - ai:gyl)v ai:(éé + i’3|90y2 - ai:ng)? - Z(gk + i’3|90yk o a/:itgyk>2> A1_2'

k=1

Now we describe the construction of the pseudodifferential operator S. We take
the symbol S in the form S = (s, s3, 55,57, 55,53 ). Denote

_ (Su(y, Q) Si2(y,¢) 9
S(y,{) N (S2l(y;<) 522(%0)7 ’C’ =1 (7'4)

Let S71(y,¢) be the inverse matrix to S. We extend the matrices S and S—!
within the C3-class in ¢ such that for [¢| > 1, the elements of these matrices are
the homogeneous functions of order zero. Following [T] and using the change of
variables W = S~1(y, s, D')U which is constructed above, we can reduce system
(7.1) to the form

D,,W = M(y,s,D')W +T(y,s,D')W +F, (7.5)
where the matrix M is diagonal and T € L*(0, +; £(H"*(R?), H"*(R?))). Now

using a standard argument (see [Ku], p.241), we can estimate the last three com-
ponents of W as follows:

Vsl (Wa, Ws, We)llrr.2 o) < Cs(lIfe!?[[mr.(g) + luel*!¥||g2.+(g)), (7.6)

where the constant C3 is independent of N. Since the Lopatinskii determinant
det S11(7) is not equal to zero, by (7.6) we have

VIS (W1, Wo, W3) i1 a6y < Ca([|fel1]|g1.c gy + [lue!*!?|[g2.c g))- (7.7)

By (7.6), (7.7) and (4.30) we have (4.15).
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Case C. Suppose that r,(v) = rat2,(7) # 0. Obviously we may assume
Im —£ () > 0. (7.8)

Otherwise (4.15) has been already obtained in Case A. The matrix M;(y) has only
two eigenvalues given by (4.21)-(4.23). Moreover it is known that the Jordan form
of the matrix M;j(vy) has two Jordan blocks of the form

I (7) 1 0
M* = 0 Ty 0
+
0 VI 4 C0)

Similarly to Case B, following [T] and using the change of variables W = S~1(y, s, D"\U
where S™! is constructed through S, we can reduce the system to (7.5) where the

matrix M (y, ¢) is represented by

W= (M0 0 )

0 M_(y,¢)
with N N
N Fqu(y,C) 0 my3(y, C)
M:t (y7 C) = 0 F/:i: (y7 C) métB (ya C) )
0 0 I (y, ¢)

and the operator T'is in L* (0, =; L(H*(R3), H"*(R?))), m(y, s, D), mE(y, s, D)
are first order operators and

IF | L2 e o rey) < Cs (1! [gxr ) + 1U | 2o s o))

Now we describe the construction of the pseudodifferential operator S. We take
the symbol S in the form S = (s, s5,53,s],5,,55 ). Here

n — + n — + — +
SI_L = ((9 + O‘f+2uG)A1 17 O‘>\+2u(0 + O‘f+2uG)A1 2) ) 32i = (w; s oAy 1w2 )

are the eigenvectors of the matrix M (y, ¢) on the sphere ¢ € S® which corresponds

to the eigenvalue Fj\—LHH (with wi given by (7.3)) and the vector si is given by the

formula

1
s =Byst, Bi=—— [ (2= My, Q) 'dz,
271 Cc*

where C* are small circles, oriented counterclockwise, centered at I‘ff (7), and s*

solves the equation Mi(y)s™ —I'F (y)s™ = sE (7). For the explicit formula for the

vector st see [IY7]. By (7.8) the circles C* may be taken such that the disks
bounded by these circles do not intersect, provided that d;,d are taken sufficiently
small. Note that the vectors sf € C?*(Bs x Os,) are homogeneous functions of the
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order zero in . Now using a standard argument (see [Ku], p.241), we can estimate
the last three components of W as follows:

[(Wa, Ws, We)| < Co(|Ife’*|lmre(g) + [luel¥ gz g)),  (7.9)

H2°(90)

where the constant Cy is independent of N. Now we need to estimate the first three
components of the vector function W on 9G. Thanks to the homogeneous boundary
conditions for Uy, Us, and Ug, we have

Sll(yl70;87D1>(W17W27W3>
= 512(?/7 07 S8, Dl)(W4> W57 WG) + Tfl(yla 07 S8, D/)U7 (710)

where T_; € L(HY*(R?), H>*(R?)) and we set
S1(y, Q) Sa(y C))
S(y,C) = ’ ’ :
(. ) (521(,% ¢) S2(y,Q)
The principal symbol of the pseudodifferential operator Sy is a 3 x 3 matrix such

that the j-th column equals the last three coordinates of the vector s;r. Therefore
det S11(7y) # 0. From (7.9), (7.10) and Garding’s inequality, we obtain

|Gl

dy2’
where the constant C7 is independent of N. By (7.11) and (4.30), we obtain (4.15).
n

< Cr(|[fel*? || g1 () + || wel*®|lg2(g)),  (7.11)
L2(9G) xH:(9G)
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