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In this paper, we establish Carleman estimates for the three-dimensional

isotropic non-stationary Lamé system with the homogeneous Dirichlet boundary con-
ditions. Using this estimate, we prove the uniqueness and the stability in determining

spatially varying density and two Lamé coefficients by a single measurement of solu-

tion over (0, T ) × ω, where T > 0 is sufficiently large and a subdomain ω satisfies a
geometric condition.

§1. Introduction.
This paper is concerned with Carleman estimates for the three-dimensional non-
stationary isotropic Lamé system with the homogeneous Dirichlet boundary con-
dition and an application to an inverse problem of determining spatially varying
density and the Lamé coefficients by a single interior measurement of the solution.

We consider the three-dimensional isotropic non-stationary Lamé system:

(Pu)(x0, x
′) ≡ ρ(x′)∂2

x0
u(x0, x

′) − (Lλ,µu)(x0, x
′) = f(x0, x

′),

x ≡ (x0, x
′) ∈ Q ≡ (0, T ) × Ω, (1.1)

where

(Lλ,µv)(x′) ≡ µ(x′)∆v(x′) + (µ(x′) + λ(x′))∇x′divv(x′)

+(divv(x′))∇x′λ(x′) + (∇x′v + (∇x′v)T )∇x′µ(x′), x′ ∈ Ω.
(1.2)

Throughout this paper, Ω ⊂ R
3 is a bounded domain whose boundary ∂Ω is of

class C3, x0 and x′ = (x1, x2, x3) denote the time variable and the spatial variable

1991 Mathematics Subject Classification. 35B60, 35R25, 35R30, 74B05.

Key words and phrases. Carleman estimate, Lamé system, inverse problem.
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respectively, and u = (u1, u2, u3)T is displacement at (x0, x
′) where ·T denotes the

transpose of matrices, Ek is the k × k unit matrix,

∂xj
φ = φxj

=
∂φ

∂xj
, j = 0, 1, 2, 3.

We set ∇x′v = (∂xk
vj)1≤j,k≤3 for a vector function v = (v1, v2, v3)T and ∇x′φ =

(∂x1φ, ∂x2φ, ∂x3φ)T for a scalar function φ. Henceforth ∇ means ∇x = (∂x0 , ∂x1 , ∂x2 , ∂x3)
if we do not specify. Moreover the coefficients ρ, λ, µ satisfy

ρ, λ, µ ∈ C2(Ω), ρ(x′) > 0, µ(x′) > 0, λ(x′) + µ(x′) > 0 for x′ ∈ Ω. (1.3)

The Carleman estimate is an L2-inequality of solution to a partial differential
equation and is involved with a large parameter and a special weight function.
The Carleman estimate was introduced by Carleman [Ca] for proving the unique
continuation for an elliptic equation and general theories have been developed for
single partial differential equations (e.g., [Hö]). Moreover the Carleman estimates
have been effectively applied to the following problems:

(1) Energy estimate called ”observability inequality”: Cheng, Isakov,
Yamamoto and Zhou [CIYZ], Kazemi and Klibanov [KK], Klibanov and
Malinsky [KM], Lasiecka and Triggiani [LT], Lasiecka, Triggiani and Zhang
[LTZ].

(2) Exact controllability and related control problems: Bellassoued [B1]
- [B3], Imanuvilov [Im1], Imanuvilov and Yamamoto [IY5], [IY6].

(3) Inverse problems of determining functions in partial differential
equations by a finite number of overlateral boundary data: See
Bukhgeim and Klibanov [BuK] as a pioneering paper. There are extensive
references and we will give them in Section 3.

Thus it is first important to establish a Carleman estimate, which depends on
types of partial differential equations under consideration. Especially for a single
partial differential equation, the general theory for Carleman estimates has been
well developed (e.g., [Hö], [Is2], [Is3]). In particular, for a single hyperbolic equa-
tion, see Imanuvilov [Im2]. However, for systems of partial differential equations
where the principal terms are coupled, the results are still restricted, because of the
intrinsic difficulty. The most general result for such a system is the Carleman type
estimate obtained in the proof of the Carderon uniqueness theorem (see e.g., [E],
[Zui]).

The non-stationary isotropic Lamé system is basic in the theory of elasticity, and
unfortunately it does not satisfy all the conditions of the Calderon uniqueness the-
orem. In the existing papers, Carleman estimates for the Lamé system have been
proved mainly for functions with compact supports (e.g., Eller, Isakov, Nakamura
and Tataru [EINT], Ikehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov
and Yamamoto [IIY1], Isakov [Is1]). Because of the restriction that u under con-
sideration should have compact support, for the observability inequalities and the
inverse problems, we have to take Cauchy data u and ∇u on the whole boundary
(0, T ) × ∂Ω or u in a neighbourhood of ∂Ω over (0, T ). Since we need not take
Cauchy data on (0, T )×∂Ω or in such a neighbourhood for the wave equation (e.g.,
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Lions [Li] for the observability inequality, and Imanuvilov and Yamamoto [IY2],
[IY4] for the inverse problem for a single hyperbolic equation), we can naturally
expect similar results also for the non-stationary isotropic Lamé system.

In the two-dimensional case, we have recently established Carleman estimates for
u without compact supports to apply them to an inverse problem of determining
the density and two Lamé coefficients:

(1) Imanuvilov and Yamamoto [IY8] for the case of the Dirichler boundary
condition

(2) Imanuvilov and Yamamoto [IY9] for the case of the stress boundary condi-
tion.

In this paper, we will prove Carleman estimates in the case where the spatial
dimension is three and u satisfies the homogeneous Dirichlet boundary condition
and apply them to an inverse problem of determining ρ, λ and µ by an interior
measurement after suitably choosing single initial data. The three-dimensional case
is handled similarly to the two-dimensional case [IY8], but the treatment should be
modified.

We refer to Imanuvilov and Yamamoto [IY7] concerning the stationary isotropic
Lamé system, and Isakov, Nakamura and Wang [INW], Lin and Wang [LW] con-
cerning the Lamé system with residual stress which causes anisotropicity.

This paper is composed of seven sections. In Section 2, we state Carleman
estimates (Theorems 2.1 - 2.3) for functions which do not necessarily have compact
supports but satisfy the homogeneous Dirichlet boundary condition on (0, T )×∂Ω.
Theorem 2.1 is a Carleman estimate whose right hand side is estimated inH1-space.
Theorems 2.2 and 2.3 are Carleman estimates respectively with right hand sides in
L2-space and in H−1-space, and are proved from Theorem 2.1 by the same method
in [IY8]. In Section 3, we will apply the H−1-Carleman estimate (Theorem 2.3),
and prove the uniqueness and the conditional stability in the inverse problem with
a single interior measurement. In Sections 4-7, we prove Theorem 2.1.

Notations. H1,s(Q) is the Sobolev space of scalar-valued functions equipped
with the norm

‖u‖H1,s(Q) =

√∫
Q

(|∇u|2 + s2u2)dx,

H1,s(Q) = H1,s(Q) × · · · × H1,s(Q) is the corresponding space of vector-valued
functions. Henceforth we set

i =
√−1, Dxj

=
1
i
∂xj

, j = 0, 1, 2, 3

and c denotes the complex conjugate of c ∈ C. By L(X, Y ) we denote the Banach
space of all the linear bounded operators defined on a Banach space X to another
Banach space Y . We set

ξ = (ξ0, ξ1, ξ2, ξ3), ξ′ = (ξ0, ξ1, ξ2), ζ = (s, ξ0, ξ1, ξ2).

By O(δ) we denote the conic neighbourhood of a point ζ∗:

O(δ) =
{
ζ;
∣∣∣∣ ζ|ζ| − ζ∗

∣∣∣∣ ≤ δ

}
.
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§2. Carleman estimates for the three-dimensional non-stationary Lamé
system.
Let us consider the three-dimensional Lamé system

Pu(x0, x
′) ≡ ρ(x′)∂2

x0
u(x0, x

′) − (Lλ,µu)(x0, x
′) = f(x0, x

′) in Q, (2.1)

u|(0,T )×∂Ω = 0, u(T, x′) = ∂x0u(T, x′) = u(0, x′) = ∂x0u(0, x′) = 0, (2.2)

where u = (u1, u2, u3)T , f = (f1, f2, f3)T are vector-valued functions, and the par-
tial differential operator Lλ,µ is defined by (1.2). The coefficients ρ, λ, µ ∈ C2(Ω)
are assumed to satisfy (1.3). Let ω ⊂ Ω be an arbitrarily fixed subdomain (not
necessarily connected). By 	n(x′) = (n1(x′), n2(x′), n3(x′)) and 	t(x′) respectively
denote the outward unit normal vector and a unit tangential vector to ∂Ω at x′ and
set ∂v

∂�n = ∇x′v · 	n and ∂v
∂�t

= ∇x′v · 	t. Set

Qω = (0, T )× ω.

We set {
p1(x, ξ) = ρ(x′)ξ20 − µ(x′)(ξ21 + ξ22 + ξ23),

p2(x, ξ) = ρ(x′)ξ20 − (λ(x′) + 2µ(x′))(ξ2
1 + ξ22 + ξ23)

(2.3)

for ξ = (ξ0, ξ1, ξ2, ξ3), and ∇ξ = (∂ξ0 , ∂ξ1 , ∂ξ2 , ∂ξ3). For arbitrary smooth functions
ϕ(x, ξ) and ψ(x, ξ), we define the Poisson bracket by the formula

{ϕ, ψ} =
3∑
j=0

(∂ξj
ϕ)(∂xj

ψ) − (∂ξj
ψ)(∂xj

ϕ).

We set < a, b >=
∑3
k=1 akbk for a = (a1, a2, a3) and b = (b1, b2, b3) ∈ C3.

We assume that the density ρ, the Lamé coefficients λ, µ and the domains Ω, ω
satisfy the following condition (cf. [Hö]).

Condition 2.1. There exists a function ψ ∈ C3(Q) such that |∇xψ| �= 0 on

Q \Qω, and
{pk, {pk, ψ}}(x, ξ) > 0, ∀k ∈ {1, 2} (2.4)

if (x, ξ) ∈ (Q \Qω) × (R4 \ {0}) satisfies pk(x, ξ) =< ∇ξpk,∇ψ >= 0 and

1
2is

{pk(x, ξ − is∇ψ(x)), pk(x, ξ + is∇ψ(x))} > 0, ∀k ∈ {1, 2} (2.5)

if (x, ξ, s) ∈ (Q \Qω) × (R4 \ {0}) × (R+ \ {0}) satisfies

pk(x, ξ + is∇ψ(x)) =< ∇ξpk(x, ξ + is∇ψ(x)),∇ψ(x) >= 0.

On the lateral boundary, we assume that

√
ρ|ψx0 | <

µ√
λ+ 2µ

∣∣∣∣∂ψ∂	t
∣∣∣∣ +

√
µ
√
λ+ µ√

λ+ 2µ

∣∣∣∣∂ψ∂	n
∣∣∣∣ for any unit tangential vector 	t(x′), x′ ∈ ∂Ω \ ∂ω

p1(x,∇ψ) < 0 ∀x ∈ (0, T ) × (∂Ω \ ∂ω) and
∂ψ

∂	n

∣∣∣∣
(0,T )×(∂Ω\∂ω)

< 0. (2.6)
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Let ψ(x) be the weight function in Condition 2.1. Using this function, we intro-
duce the function φ(x) by

φ(x) = eτψ(x), τ > 1, (2.7)

where the parameter τ > 0 will be fixed below. Denote

‖u‖2
B(φ,Q) =

∫
Q

(
2∑

|α|=0

s4−2|α||∂αxu|2+s|∇rotu|2+s3|rotu|2+s|∇divu|2+s3|divu|2
)
e2sφdx,

where α = (α0, α1, α2, α3), αj ∈ N+ ∪ {0}, j ∈ {0, 1, 2, 3}, ∂αx = ∂α0
x0
∂α1
x1
∂α2
x2
∂α3
x3
.

Now we state our Carleman estimates as main results.

Theorem 2.1. Let f ∈ H1(Q) and let the function ψ satisfy Condition 2.1 and
(1.3) holds true. Then there exists τ̂ > 0 such that for any τ > τ̂ , there exists
s0 = s0(τ) > 0 such that for any solution u ∈ H1(Q)∩L2(0, T ;H2(Ω)) to problem
(2.1) - (2.2), the following estimate holds true:

‖u‖2
Y (φ,Q) ≡ ‖u‖2

B(φ,Q) + s

∥∥∥∥∂u∂	nesφ
∥∥∥∥2

H1((0,T )×∂Ω)

+ s

∥∥∥∥∂2u
∂	n2

esφ
∥∥∥∥2

L2((0,T )×∂Ω)

≤C(‖fesφ‖2
H1,s(Q) + ‖u‖2

B(φ,Qω)), ∀s ≥ s0(τ), (2.8)

where the constant C = C(τ) > 0 is independent of s.

Next we formulate Carleman estimates where norms of the function f are taken
respectively in L2(Q) and L2(0, T ;H−1(Ω)). In particular, the latter Carleman
estimate is used in Section 3 for obtaining our stability result in the inverse problem.

In addition to Condition 2.1, we assume that

∂x0ψ(T, x′) < 0, ∂x0ψ(0, x′) > 0, ∀x′ ∈ Ω. (2.9)

We have

Theorem 2.2. Let f ∈ L2(Q) and let us assume (1.3), (2.9) and Condition 2.1.
Then there exists τ̂ > 0 such that for any τ > τ̂ , there exists s0 = s0(τ) > 0 such
that for any solution u ∈ H1(Q) to problem (2.1) - (2.2), the following estimate
holds true: ∫

Q

(|∇u|2 + s2|u|2)e2sφdx

≤C
(
‖fesφ‖2

L2(Q) +
∫
Qω

(|∇u|2 + s2|u|2)e2sφdx
)
, ∀s ≥ s0(τ),

(2.10)

where the constant C = C(τ) > 0 is independent of s.
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Theorem 2.3. Let f = f−1+
∑3

j=0 ∂xj
fj with f−1 ∈ L2(0, T ;H−1(Ω)) and f0, f1, f2, f3 ∈

L2(Q), and let us assume (1.3), (2.9) and Condition 2.1. Then there exists τ̂ > 0
such that for any τ > τ̂ , there exists s0 = s0(τ) > 0 such that for any solution
u ∈ L2(Q) to problem (2.1) - (2.2), the following estimate holds true:∫

Q

|u|2e2sφdx

≤ C

‖f−1e
sφ‖2

L2(0,T ;H−1(Ω)) +
3∑
j=0

‖fjesφ‖2
L2(Q) +

∫
Qω

|u|2e2sφdx
 , ∀s ≥ s0(τ),

(2.11)

where the constant C = C(τ) > 0 is independent of s.

In Theorems 2.2 and 2.3, the solution u is defined by the transposition method
(e.g., [Li]). On the basis of Theorem 2.1, we can prove Theorems 2.2 and 2.3 exactly
in the same way as the corresponding theorems in [IY8], and it suffices to prove
only Theorem 2.1.

§3. Inverse problem of determining the density and the Lamé coefficients
by a single measurement.
Recall that the differential operator Lλ,µ is defined by (1.2). We assume (1.3) for
ρ, λ, µ. By u = u(λ, µ, ρ,p,q, η)(x), we denote the sufficiently smooth solution to

ρ(x′)(∂2
x0

u)(x) = (Lλ,µu)(x), x ∈ Q, (3.1)

u(x) = η(x), x ∈ (0, T ) × ∂Ω, (3.2)

u(T/2, x′) = p(x′), (∂x0u)(T/2, x′) = q(x′), x′ ∈ Ω, (3.3)

with given η, p and q. Let ω ⊂ Ω be a suitably given subdomain.
In this section, we discuss

Inverse Problem. Let pj ,qj , ηj, 1 ≤ j ≤ N , be appropriately given. Then deter-
mine λ(x′), µ(x′), ρ(x′), x′ ∈ Ω, by

u(λ, µ, ρ,pj,qj , ηj)(x), x ∈ Qω ≡ (0, T ) × ω. (3.4)

In particular, we are concerned with the stability of the mapping

{u(λ, µ, ρ,pj,qj, ηj)|Qω
}1≤j≤N −→ {λ, µ, ρ}.

This formulation of inverse problem is based on finite measurements and the
research originated with Bukhgeim and Klibanov [BuK] where a Carleman estimate
and an integral inequality with the weight function are combined to solve the inverse
problem. As detailed accounts for such methodology, see [Is2], [Is3], [Kl], [KT].
Moreover, according to equations, we refer to the following papers:

(1) Baudouin and Puel [BP], Bukhgeim [Bu] for an inverse problem of deter-
mining potentials in Schrödinger equations,
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(2) Imanuvilov and Yamamoto [IY1], Isakov [Is2], [Is3], Klibanov [Kl] for the
corresponding inverse problems for parabolic equations,

(3) Bellasssoued [B4], [B5], Bellassoued and Yamamoto [BY], Bukhgeim, Cheng,
Isakov and Yamamoto [BCIY], Imanuvilov and Yamamoto [IY2] - [IY4] (es-
pecially for conditional stability), Isakov [Is1], [Is2], [Is3], Isakov and Ya-
mamoto [IsY], Khăıdarov [Kh1], [Kh2], Klibanov [Kl], Puel and Yamamoto
[PY1], [PY2], Yamamoto [Ya] for inverse problems of determining coeffi-
cients in scalar hyperbolic equations.

(4) Amirov [A] for an inverse problem of ultrahyperbolic equation.
As for the inverse problem of determining some (or all) of λ, µ and ρ, we can

refer to Isakov [Is1], Ikehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov
and Yamamoto [IIY1], Imanuvilov and Yamamoto [IY8]:
[Is1] established the uniqueness in determining a single coefficient ρ(x′), using four
measurements (i.e., N = 4).
[INY] decreased the number N of measurements to three for determining ρ.
[IIY1] proved conditional stability and the uniqueness in the determination of the
three functions λ(x′), µ(x′), ρ(x′), x′ ∈ Ω, with two measurements (i.e., N = 2).

In all the papers [Is1], [INY], [IIY1], the authors have to assume that ∂ω ⊃
∂Ω because the technique based on Carleman estimates required that u has a
compact support in Q. In the two-dimensional case, [IY8] reduced N = 2 to
N = 1 (i.e., a single measurement) in determining all of λ, µ, ρ with more general
ω, and established conditional stability. As for other inverse problems for the Lamé
systems, see Yakhno [Yak].

In this section, we will prove the conditional stability which is a three-dimensional
version of [IY8]. As for the two-dimensional Lamé system with stress boundary
condition, in [IY9] a similar inverse problem is discussed by a single measurement.

In order to formulate our main result, we will introduce notations and an admis-
sible set of unknown parameters λ, µ, ρ. Similarly to inverse hyperbolic problems,
we have to assume that the observation subdomain ω should satisfy a geometric
condition and the observation time T has to be sufficiently large, which is a natural
consequence of the hyperbolicity of the governing partial differential equation. First
we formulate the geometric condition. Henceforth we set (x′, y′) =

∑3
j=1 xjyj for

x′ = (x1, x2, x3) and y′ = (y1, y2, y3). Let a subdomain ω ⊂ Ω satisfy

∂ω ⊃ {x′ ∈ ∂Ω; ((x′ − y′), 	n(x′)) ≥ 0} (3.5)

with some y′ �∈ Ω.

Remark. Condition (3.5) is the same condition which yields the observability in-
equality for the wave equation ∂2

x0
− ∆ if the observation time T is larger than

2 supx′∈Ω |x′−y′| (e.g., Section 2 of Chapter 7 in [Li]). Moreover, if (3.5) holds and
T > 0 is sufficiently large, then ω and T satisfy the geometric optics condition in
[BLR].

Denote
d = ( sup

x′∈Ω
|x′ − y′|2 − inf

x′∈Ω
|x′ − y′|2) 1

2 . (3.6)

Next we define an admissible set of unknown coefficients λ, µ, ρ. Let M0 > 0,
0 < θ0 ≤ 1 and θ1 > 0 be arbitrarily fixed and let us introduce the conditions on a
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function β:
β(x′) ≥ θ1 > 0, x′ ∈ Ω,

‖β‖C3(Ω) ≤M0,
(∇x′β(x′), (x′ − y′))

2β(x′)
≤ 1 − θ0, x′ ∈ Ω \ ω. (3.7)

For fixed functions a, b, η on ∂Ω and p, q in Ω and a fixed constant M1 > 0, we
set

W = WM0,M1,θ0,θ1,a,b =

{
(λ, µ, ρ) ∈ (C3(Ω))3;λ = a, µ = b on ∂Ω,

λ+ 2µ
ρ

,
µ

ρ
satisfy (3.7), ‖u(λ, µ, ρ,p,q, η)‖W 7,∞(Q) ≤M1,

min{µ2(x′), µ(x′)(λ+ µ)(x′)}
ρ(x′)(λ+ 2µ)(x′)

≥ θ1 on Ω

}
. (3.8)

Remark. If λ, µ, ρ are sufficiently close to positive constant functions, then (λ, µ, ρ) ∈
W. This suggests that W contains sufficiently many (λ, µ, ρ).

It is rather restrictive that λ+2µ
ρ

and µ
ρ

should satisfy (3.7), which is one possi-
ble sufficient condition for the pseudoconvexity (i.e., Condition 2.1). We can relax
condition (3.7) to a more generous condition which can be related with a neces-
sary condition for a Carleman estimate, and we refer to Imanuvilov, Isakov and
Yamamoto [IIY2], where a scalar hyperbolic equation is discussed but the modifi-
cation to the Lamé system is straightforward. Such a relaxed condition guarantees
that the geodesics which are generated by the hyperbolic equations with principal
symbol (2.3), cannot remain on the level sets given by the weight function φ. In
particular, by [IIY2], we can replace condition (3.7) by one that the Hessians(

∂xj
∂xk

(
ρ

µ

) 1
2
)

1≤j,k≤2

,

(
∂xj

∂xk

(
ρ

λ+ 2µ

) 1
2
)

1≤j,k≤2

are non-negative and
∣∣∣∇(

ρ
µ

)∣∣∣ �= 0 and
∣∣∣∇(

ρ
λ+2µ

)∣∣∣ �= 0 on Ω.
We choose θ > 0 such that

θ +
M0d√
θ1

√
θ < θ0θ1, θ1 inf

x′∈Ω
|x′ − y′|2 − θd2 > 0. (3.9)

Here we note that since y′ �∈ Ω, such θ > 0 exists. Let E3 be the 3 × 3 identity
matrix. We note that (Lλ,µp)(x′) is a 3-column vector for 3-column vector p.
Moreover by {a}j we denote the matrix (or vector) obtained from a after deleting
the j-th row, and < A >j is the matrix which is obtained from A by deleting the
j-th column of A. Furthermore we assume that

x1 − y1 �= 0 for any (x1, x2, x3) ∈ Ω. (3.10)

Now we are ready to state
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Theorem 3.1. Let (λ, µ, ρ) be an arbitrary element of W. For p = (p1, p2, p3)T

and q = (q1, q2, q3)T , we assume that there exist j1, j2, j3 ∈ {1, 2, 3, 4, 5, 6} such
that

det

{
(Lλ,µp)(x′) (divp(x′))E3 (∇x′p(x′) + (∇x′p(x′))T )(x′ − y′)
(Lλ,µq)(x′) (divq(x′))E3 (∇x′q(x′) + (∇x′q(x′))T )(x′ − y′)

}
j1

�= 0,

∀x′ ∈ Ω, (3.11)

det

{
(Lλ,µp)(x′) ∇x′p(x′) + (∇x′p(x′))T (divp)(x′ − y′)
(Lλ,µq)(x′) ∇x′q(x′) + (∇x′q(x′))T (divq)(x′ − y′)

}
j2

�= 0, ∀x′ ∈ Ω,

(3.12)

det

{
(Lλ,µp)(x′) (divp(x′)) < E3 >1 < (∇x′p(x′) + (∇x′p(x′))T >1

(Lλ,µq)(x′) (divq(x′)) < E3 >1 < (∇x′q(x′) + (∇x′q(x′))T ) >1

}
j3

�= 0,

∀x′ ∈ Ω, (3.13)

and that

T >
2√
θ
d. (3.14)

Then there exist constants κ = κ(W, ω,Ω, T, λ, µ, ρ) ∈ (0, 1) and
C1 = C1(W, ω,Ω, T, λ, µ, ρ)> 0 such that

‖λ̃− λ‖L2(Ω) + ‖µ̃− µ‖L2(Ω) + ‖ρ̃− ρ‖H−1(Ω)

≤C1‖u(λ, µ, ρ,p,q, η)− u(λ̃, µ̃, ρ̃,p,q, η)‖κH4(0,T ;L2(ω))

for any (λ̃, µ̃, ρ̃) ∈ W.

Our stability and uniqueness result requires only one measurement: N = 1. In
the case where xk−yk �= 0 for k = 2 or 3, the conclusion is true if we replace (3.13)
by

det
{

(Lλ,µp)(x′) (divp(x′)) < E3 >k < (∇x′p(x′) + (∇x′p(x′))T >k
(Lλ,µq)(x′) (divq(x′)) < E3 >k < (∇x′q(x′) + (∇x′q(x′))T ) >k

}
j3

�= 0,

∀x′ ∈ Ω.

For the determination of the three coefficients by a single measurement, we have
to choose initial data which satisfy strong conditions (3.11) - (3.13) which do not
generically hold, and we should satisfy them artificially and a posteriori. Moreover,
as the following example shows, we can take such p and q.

Example of Ω, p, q meeting (3.11) - (3.13). For simplicity, we assume that
y′ = (0, 0, 0), Ω does not intersect any of the planes {x1 = 0}, {x2 = 0}, {x3 = 0}
and {x1 + x3 = 0}, and λ, µ are positive constants. Noting that the fifth columns
of the matrices in (3.11) and (3.12) have x′ − y′ as factors, we will take quadratic
functions in x′. For example, we take

p(x′) =

 0
x1x2

0

 , q(x′) =

x2
2

0
x2

2

 .
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Then, choosing j1 = j2 = j3 = 6, we can verify that (3.11) - (3.13) are all satisfied.
We set

ψ(x) = |x′ − y′|2 − θ

(
x0 − T

2

)2

, φ(x) = eτψ(x), x = (x0, x
′) ∈ Q. (3.15)

By y′ �∈ Ω, we note that |∇x′ψ| �= 0, x ∈ Q.
First, in terms of (3.5), (3.8) and (3.9), we can prove the following lemma in the

same way as in [IY8].

Lemma 3.1. Let (λ, µ, ρ) ∈ W, and let us assume (3.9) and (3.14). Then, for
sufficiently large τ > 0, the function ψ given by (3.15) satisfies Condition 2.1 and
(2.9). Therefore the conclusion of Theorem 2.3 holds and the constants C1(τ), τ̂
and s0(τ) in (2.11) can be taken independently of (λ, µ, ρ) ∈ W.

Next we consider a first order partial differential operator

(P0g)(x′) =
3∑
j=1

p0,j(x′)∂xj
g(x′),

where p0,j ∈ C1(Ω), j = 1, 2, 3. Then, by integration by parts, we can directly
prove two Carleman estimates for P0 (see [IY8] for the proof).

Lemma 3.2. We assume

3∑
j=1

p0,j(x′)∂xj
φ(T/2, x′) > 0, x′ ∈ Ω. (3.16)

Then there exists a constant τ0 > 0 such that for all τ > τ0, there exist s0 =
s0(τ) > 0 and C2 = C2(s0, τ0,Ω, ω) > 0 such that∫

Ω

s2|g|2e2sφ(T/2,x′)dx′ ≤ C2

∫
Ω

|P0g|2e2sφ(T/2,x′)dx′

for all s > s0 and g ∈ H1(Ω) satisfying

g = 0 on

x′ ∈ ∂Ω;
3∑
j=1

p0,j(x′)nj(x′) ≥ 0

.
Lemma 3.3. We assume

3∑
j=1

p0,j(x′)∂xj
φ(T/2, x′) �= 0, x′ ∈ Ω. (3.17)

Then the conclusion of Lemma 3.2 is true for all s > s0 and g ∈ H1
0 (Ω).

Now we proceed to
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Proof of Theorem 3.1. The proof is done by modifying the argument in Imanuvilov
and Yamamoto [IY8]. We can separate ∂Ω into two relatively open subsets Γ1 and
Γ2 such that

Γ1 ∪ Γ2 = ∂Ω, n1(x′) ≤ 0 for x′ ∈ Γ1, n1(x′) ≥ 0 for x′ ∈ Γ2,

and for any x′ = (x1, x2, x3) ∈ Ω, there exists a unique point x̃′ = (x̃1, x2, x3) ∈ Γ1

such that the segment connecting x′ and x̃′ is on Ω.
(3.18)

In fact, we can choose straight lines parallel to the x1-axis which divide Ω into parts
Ω1, ...,Ωm such that

Ωj = {x′; γ1j(x2, x3) < x1 < γj2(x2, x3), (x2, x3) ∈ Dj}

where Dj is a domain in R2 and γ1j , γ2j are continuous functions on Dj . We set

Γ1 =
m⋃
j=1

{x′; x1 = γ1j(x2, x3), (x2, x3) ∈ Dj}

and Γ2 = ∂Ω \ Γ1. Then we can easily see that condition (3.18) is satisfied.
By (3.18), for any x′ = (x1, x2, x3) ∈ Ω, we can prove that there exists a unique

(γ(x2, x3), x2, x3) ∈ Γ1. By (3.10), x1 − y1 < 0 for any x′ ∈ Ω or x1 − y1 > 0 for
any x′ ∈ Ω. First let x1 − y1 < 0. We set

F (x1, x2, x3) =
∫ x1

γ(x2,x3)

f(ξ, x2, x3)dξ, x′ ∈ Ω. (3.19)

Then
∂F

∂x1
(x′) = f(x′), x′ ∈ Ω. (3.20)

On the other hand, if x1−y1 > 0, then instead of Γ1, we take (γ(x2, x3), x2, x3) ∈ Γ2

in (3.19), and we can argue similarly to the case of x1 − y1 < 0. Therefore we will
exclusively assume that x1 − y1 < 0.

Henceforth, for simplicity, we set

u = u(λ, µ, ρ,p,q, η), v = u(λ̃, µ̃, ρ̃,p,q, η)

and
y = u− v, f = ρ− ρ̃, g = λ− λ̃, h = µ− µ̃.

Then
ρ̃∂2
x0

y = Lλ,µy + Gu in Q, (3.21)

y
(
T

2
, x′

)
= ∂x0y

(
T

2
, x′

)
= 0, x′ ∈ Ω (3.22)

and
y = 0 in (0, T )× ∂Ω. (3.23)
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Here we set

Gu(x) = −∂x1F (x′)∂2
x0

u(x) + (g + h)(x′)∇x′(divu)(x) + h(x′)∆u(x)

+(divu)(x)∇x′g(x′) + (∇x′u(x) + (∇x′u(x))T )∇h(x′). (3.24)

By (3.14), we have the inequality θT 2

4 > d2. Therefore, by (3.6) and definition
(3.15) of the function φ, we have

φ(T/2, x′) ≥ d1, φ(0, x′) = φ(T, x′) < d1, x′ ∈ Ω

with
d1 = exp(τ inf

x′∈Ω
|x′ − y′|2). (3.25)

Thus, for given ε > 0, we can choose a sufficiently small δ = δ(ε) > 0 such that

φ(x) ≥ d1 − ε, x ∈
[
T

2
− δ,

T

2
+ δ

]
× Ω (3.26)

and
φ(x) ≤ d1 − 2ε, x ∈ ([0, 2δ] ∪ [T − 2δ, T ]) × Ω. (3.27)

In order to apply Lemma 3.1, it is necessary to introduce a cut-off function χ
satisfying 0 ≤ χ ≤ 1, χ ∈ C∞(R) and

χ =
{

0 on [0, δ] ∪ [T − δ, T ],
1 on [2δ, T − 2δ].

(3.28)

In the sequel, Cj > 0 denote generic constants depending on s0, τ , M0, M1, θ0, θ1,
η, Ω, T , y′, ω, χ and p, q, ε, δ, but independent of s > s0. Setting z1 = χ∂2

x0
y,

z2 = χ∂3
x0

y and z3 = χ∂4
x0

y, we have
ρ̃∂2
x0

z1 = Lλ,µz1 + χG(∂2
x0

u) + 2ρ̃(∂x0χ)∂3
x0

y + ρ̃(∂2
x0
χ)∂2

x0
y,

ρ̃∂2
x0

z2 = Lλ,µz2 + χG(∂3
x0

u) + 2ρ̃(∂x0χ)∂4
x0

y + ρ̃(∂2
x0
χ)∂3

x0
y,

ρ̃∂2
x0

z3 = Lλ,µz3 + χG(∂4
x0

u) + 2ρ̃(∂x0χ)∂5
x0

y + ρ̃(∂2
x0
χ)∂4

x0
y in Q.

(3.29)

Henceforth we set

E =
∫
Qω

(|∂2
x0

y|2 + |∂3
x0

y|2 + |∂4
x0

y|2)e2sφdx.

Noting that u ∈W 7,∞(Q), in view of (3.28) and Lemma 3.1, we can apply Theorem
2.3 to (3.29), so that

4∑
j=2

∫
Q

|∂jx0
y|2χ2e2sφdx ≤ C3(‖Fesφ‖2

L2(Q) + ‖gesφ‖2
L2(Q) + ‖hesφ‖2

L2(Q))

+C3

5∑
j=3

‖(∂x0χ)(∂jx0
y)esφ‖2

L2(0,T ;H−1(Ω))

+C3

4∑
j=2

‖(∂2
x0
χ)(∂jx0

y)esφ‖2
L2(0,T ;H−1(Ω)) + C3E

≤C4(‖Fesφ‖2
L2(Q) + ‖gesφ‖2

L2(Q) + ‖hesφ‖2
L2(Q)) + C4e

2s(d1−2ε) + C4E
(3.30)
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for all large s > 0. On the other hand,∫
Ω

|(∂2
x0

y)(T/2, x′)|2e2sφ(T/2,x′)dx′

=
∫ T/2

0

∂

∂x0

(∫
Ω

|(∂2
x0

y)(x0, x
′)|2χ2(x0)e2sφdx′

)
dx0

=
∫ T/2

0

∫
Ω

2(∂3
x0

y, ∂2
x0

y)χ2e2sφdx

+2s
∫ T/2

0

∫
Ω

|∂2
x0

y|2χ2(∂x0φ)e2sφdx+
∫ T/2

0

∫
Ω

|∂2
x0

y|2(∂x0(χ
2))e2sφdx

≤C5

∫
Q

sχ2(|∂3
x0

y|2 + |∂2
x0

y|2)e2sφdx+ C5e
2s(d1−2ε).

Therefore (3.30) yields∫
Ω

|(∂2
x0

y)(T/2, x′)|2e2sφ(T/2,x′)dx′

≤C6s

∫
Q

(|F |2 + |g|2 + |h|2)e2sφdx+ C6se
2s(d1−2ε) + C6sE

for all large s > 0. Similarly we can estimate
∫
Ω
|(∂3

x0
y)(T/2, x′)|2e2sφ(T/2,x′)dx′ to

obtain ∫
Ω

(|(∂2
x0

y)(T/2, x′)|2 + |(∂3
x0

y)(T/2, x′)|2)e2sφ(T/2,x′)dx′

≤C6s

∫
Q

(|F |2 + |g|2 + |h|2)e2sφdx+ C6se
2s(d1−2ε) + C6sE (3.31)

for all large s > 0.
Now we will consider first order partial differential equations satisfied by h, g

and F . That is, by (3.21), (3.22) and u,v ∈W 7,∞(Q), we have

ρ̃∂2
x0

y
(
T

2
, x′

)
= Gu

(
T

2
, x′

)
, ρ̃∂3

x0
y
(
T

2
, x′

)
= G∂x0u

(
T

2
, x′

)
. (3.32)

For simplicity, we set

a =
(− 1

ρ
Lλ,µp

− 1
ρ
Lλ,µq

)
,

b1 =


divp

0
0

divq
0
0

 , b2 =


0

divp
0
0

divq
0

 , b3 =


0
0

divp
0
0

divq

 ,

(d1,d2,d3) =
(∇p + (∇p)T

∇q + (∇q)T

)
,

G =
(
ρ̃∂2
x0

y
(
T
2
, x′

)− (g + h)∇x′(divp) − h∆p
ρ̃∂3
x0

y
(
T
2 , x

′)− (g + h)∇x′(divq) − h∆q

)
on Ω.

(3.33)
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Then we can rewrite (3.32) as

a∂x1F + b1∂x1g + b2∂x2g + b3∂x3g = G − d1∂x1h− d2∂x2h− d3∂x3h.

Therefore for j1 ∈ {1, 2, 3, 4, 5, 6}, we have

{a}j1∂x1F + {b1}j1∂x1g + {b2}j1∂x2g + {b3}j1∂x3g

={G}j1 − {d1}j1∂x1h− {d2}j1∂x2h− {d3}j1∂x3h, on Ω. (3.34)

Equality (3.34) is a system of five linear equations with respect to four unknowns
∂x1F , ∂x1g, ∂x2g, ∂x3g, and so for the existence of solutions, we need the consistency
of the coefficients, that is,

det {a,b1,b2,b3,G− d1∂x1h− d2∂x2h− d3∂x3h}j1 = 0 on Ω,

that is,

3∑
k=1

det {a,b1,b2,b3,dk}j1∂xk
h = det {a,b1,b2,b3,G}j1 on Ω (3.35)

by the linearity of the determinant. In terms of condition (3.11) and h ≡ µ− µ̃ = 0
on ∂Ω, considering (3.35) as a first order partial differential operator in h, we can
apply Lemma 3.3, so that

s2
∫

Ω

|h|2e2sφ(T/2,x′)dx′ ≤ C7‖detj1(a,b1,b2,b3,G)esφ(T/2,·)‖2
L2(Ω)

≤C8

∫
Ω

(∣∣∣∣∂2
x0

y
(
T

2
, x′

)∣∣∣∣2 +
∣∣∣∣∂3
x0

y
(
T

2
, x′

)∣∣∣∣2
)
e2sφ(T/2,x′)dx′

+C8

∫
Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′ (3.36)

in view of (3.33). Similarly to (3.34), we rewrite (3.32) and, by (3.12) we can
similarly deduce

s2
∫

Ω

|g|2e2sφ(T/2,x′)dx′ ≤ C9

∫
Ω

(∣∣∣∣∂2
x0

y
(
T

2
, x′

)∣∣∣∣2 +
∣∣∣∣∂3
x0

y
(
T

2
, x′

)∣∣∣∣2
)
e2sφ(T/2,x′)dx′

+C9

∫
Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′ (3.37)

for all large s > 0. By (3.36) and (3.37), for sufficiently large s > 0, we have

s2
∫

Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′

≤C10

∫
Ω

(∣∣∣∣∂2
x0

y
(
T

2
, x′

)∣∣∣∣2 +
∣∣∣∣∂3
x0

y
(
T

2
, x′

)∣∣∣∣2
)
e2sφ(T/2,x′)dx′.

(3.38)
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Finally, replacing j1 by j3 ∈ {1, 2, 3, 4, 5, 6}, we consider (3.34) as a system of five
linear equations with respect to four unknowns ∂x2g, ∂x3g, ∂x2h, ∂x3h. By the
condition for the existence of solutions, we have

det {b2,b3,d2,d3,G − a∂x1F − b1∂x1g − d1∂x1h}j3 = 0

on Ω. Therefore

− ∂x1(e1F + e2g + e3h) + (∂x1e1)F

= −(∂x1e2)g − (∂x1e3)h− detj3 (b2,b3,d2,d3,G)

on Ω. Here we set
e1 = det {b2,b3,d2,d3, a}j3,
e2 = det {b2,b3,d2,d3,b1}j3

and
e3 = det {b2,b3,d2,d3,d1}j3 .

In Lemma 3.2, we consider the case of p0,1 = −1 and p0,2 = p0,3 = 0. By (3.18),
(3.19) and g = h = 0 on ∂Ω, we see that if −n1(x′) =

∑3
j=1 p0,j(x′)nj(x′) ≥ 0,

then (F + g + h)(x′) = 0. Moreover by x1 − y1 < 0 for x′ ∈ Ω, condition (3.16)
is satisfied. Consequently, choosing s > 0 sufficiently large and using (3.38), by
Lemma 3.3 and (3.13), we obtain

s2
∫

Ω

|F |2e2sφ(T/2,x′)dx′

≤C11

∫
Ω

(∣∣∣∣∂2
x0

y
(
T

2
, x′

)∣∣∣∣2 +
∣∣∣∣∂3
x0

y
(
T

2
, x′

)∣∣∣∣2
)
e2sφ(T/2,x′)dx′

(3.39)

for all large s > 0. Consequently, substituting (3.38) and (3.39) into (3.31) and
using φ(T/2, x′) ≥ φ(x0, x

′) for (x0, x
′) ∈ Q, we obtain∫

Ω

(|F |2 + |g|2 + |h|2)e2sφ(T/2,x′)dx′

≤C12T

s

∫
Ω

(|F |2 + |g|2 + |h|2)e2sφ(T/2,x′)dx′ +
C12

s
e2s(d1−2ε) +

C12

s
E

for all large s > 0. Taking s > 0 sufficiently large and noting e2sφ(T/2,x′) ≥ e2sd1

for x′ ∈ Ω, we obtain∫
Ω

(|F |2 + |g|2 + |h|2)dx′ ≤ C13e
−4sε + C13e

2sC14E (3.40)

for all large s > s0: a constant which is dependent on τ , but independent of s.
Next we take in (3.40) instead of the constant C13 the constant C13e

2s0C14 . Now
this inequality holds true for all s > 0.
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Now we choose s > 0 such that e2sC14E = e−4sε, that is,

s = − 1
4ε+ 2C14

ln E .

Here we may assume that E < 1 and so s > 0. Then it follows from (3.40) that∫
Ω

(|F |2 + |g|2 + |h|2)dx′ ≤ 2CE 4ε
4ε+2C .

By definition (3.19) of F , we have∫
Ω

frdx′ =
∫

Ω

(∂x1F )rdx′ =
∫

Ω

F (∂x1r)dx
′

for all r ∈ H1
0 (Ω) by integration by parts. Hence we can directly verify that

‖f‖H−1(Ω) ≤ C‖F‖L2(Ω), so that the proof of Theorem 3.1 is complete. �

§4. Proof of Theorem 2.1.
Without loss of generality, we may assume that ρ ≡ 1. Otherwise we introduce

new coefficients µ1 = µ/ρ, λ1 = λ/ρ to argue similarly. We can directly verify that
the functions rotu and divu satisfy the equations

∂2
x0

rot u− µ∆rotu = m1, ∂2
x0

divu− (λ+ 2µ)∆divu = m2 in Q, (4.1)

where

m1 = K1rotu +K2divu + K1u + rot f , m2 = K3rotu +K4divu + K2u + div f

and Kj, Kk are first order differential operators with L∞ coefficients. Thanks to
Condition 2.1 on the weight function ψ, there exists τ̂ such that for all τ > τ̂ , we
have (see [Ta]):

s‖(rotu)esφ‖2
H1,s(Q) + s‖(divu)esφ‖2

H1,s(Q) ≤ C1

(
‖fesφ‖2

H1,s(Q) + s

∥∥∥∥∂u∂	nesφ
∥∥∥∥2

H1,s((0,T )×∂Ω)

+s
∥∥∥∥∂2u
∂	n2

esφ
∥∥∥∥2

L2((0,T )×∂Ω)

+ ‖u‖2
B(Qω)

)
, ∀s ≥ s0(τ), (4.2)

where the constant C1 is independent of s. In order to estimate the H1(Q)-norm
of the function u, we rewrite equations (1.1) in the form

ρ∂2
x0

u− µ∆u = F, u|∂Ω = 0,

where

F = f+(λ(x′)+µ(x′))∇x′divu(x)+(divu(x))∇x′λ(x′)+(∇x′u+(∇x′u)T )∇x′µ(x′).
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Thanks to Condition 2.1 we can apply the Carleman estimate in [Im2] to this
equation

s‖uesφ‖2
H1,s(Q) ≤ C2(‖Fesφ‖2

L2(Q) + s‖uesφ‖2
H1,s(Qω))

≤C2(‖(divu)esφ‖2
L2(Q) + ‖(∇x′divu)esϕ‖2

L2(Q) + ‖uesφ‖2
H1,s(Q)

+‖fesφ‖2
L2(Q) + s‖uesφ‖2

H1,s(Qω)).

This estimate and inequality (4.2) imply

s2‖uesφ‖2
H1,s(Q)+s‖(rotu)esφ‖2

H1,s(Q)+s‖(divu)esφ‖2
H1,s(Q) ≤ C2

(
‖fesφ‖2

H1,s(Q)

+ s

∥∥∥∥∂u∂	nesφ
∥∥∥∥2

H1,s((0,T )×∂Ω)

+ s

∥∥∥∥∂2u
∂	n2

esφ
∥∥∥∥2

L2((0,T )×∂Ω)

+ ‖u‖2
B(Qω)

)
, ∀s ≥ s0.

(4.3)

Next we estimate the second derivatives of the function u. Denote rotu = y.
Using a well-known formula: rot rot = −∆x′ + ∇x′div, we obtain

−∆x′u = −roty −∇x′divu in Ω, u|∂Ω = 0.

Using the standard a priori estimate for the Laplace operator we have:

3∑
j,k=1

‖(∂xj
∂xk

u)esφ‖L2(Q) ≤ C2(s‖uesφ‖H1,s(Q)+‖(divu)esφ‖H1,s(Q)+‖(rotu)esφ‖H1,s(Q)).

By (4.3) one can estimate the left hand side of this inequality by the right hand
side of (4.2).

Next using this estimate and equation (1.1), we obtain the estimate for the norm
‖(∂2

x0
u)esφ‖2

L2(Q) via the right hand side of (4.2). Finally we obtain the estimate for
‖(∂x0∂xj

u)esφ‖2
L2(Q) and s2‖(∂x0u)esφ‖2

L2(Q) by an interpolation argument. There-
fore, combining these estimates with (4.2) and (4.3), we have

‖u‖2
Y (φ,Q) ≤ C3

(
‖fesφ‖2

H1,s(Q) + s

∥∥∥∥∂u∂	nesφ
∥∥∥∥2

H1,s((0,T )×∂Ω)

+ s

∥∥∥∥∂2u
∂	n2

esφ
∥∥∥∥2

L2((0,T )×∂Ω)

+‖u‖2
B(φ,Qω)

)
, ∀s ≥ s0(τ), (4.4)

where the constant C3 is independent of s.
Now we need to estimate the boundary integrals at the right hand side of (4.4).

In order to do that, it is convenient to use another weight function ϕ such that
ϕ|(0,T )×∂Ω = φ|(0,T )×∂Ω and ϕ(x) < φ(x) for all x in a small neighbourhood of
(0, T ) × ∂Ω. We construct such a function ϕ locally near the boundary ∂Ω:

ϕ(x) = eτψ(x), ψ̃(x) = ψ(x) − 1
N2

�1(x′) +N�21(x
′),
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where N > 0 is a large positive parameter, and �1 ∈ C3(Ω) is a function such that

�1(x′) > 0, ∀x′ ∈ Ω, �1|∂Ω = 0, ∇x′�1|∂Ω �= 0.

Denote Ω 1
N2

= {x′ ∈ Ω; dist (x′, ∂Ω) ≤ 1
N2 }. Obviously there exists N0 > 0 such

that
ϕ(x) < φ(x), ∀x ∈ [0, T ] × Ω 1

N2
, N ∈ (N0,∞).

The following lemma plays a key role in our proof.

Lemma 4.1. Under the conditions of Theorem 2.1, there exists τ̂ > 0 such that
for all τ > τ̂ , there exists s0(τ) > 0 such that

‖u‖2
Y (ϕ,Q) +

√
N

2∑
|α|=0

s4−2|α|‖(∂αxu)esϕ‖2
L2(Q) ≤ C4(‖fesϕ‖2

H1,s(Q)

+‖u‖2
B(ϕ,Qω)), ∀s ≥ s0(τ,N), supp u ⊂ [0, T ]× Ω 1

N2
, (4.5)

where the constant C4 is independent of s and N .

We will postpone the proof of Lemma 4.1 and by means of the lemma, we
continue the proof of Theorem 2.1. Let us fix the parameter N such that (4.5)
holds true. We take δ̃ ∈ (

0, 1
N2

)
sufficiently small such that

φ(x) > ϕ(x), ∀x ∈ [0, T ]× Ω
δ
\ Ω

δ/2
. (4.6)

We consider a cut-off function θ̃ ∈ C3(Ωδ) such that θ̃|Ω
δ
2

= 1 and θ̃|Ω
δ
\Ω

3δ
4

= 0.

The function θ̃u satisfies the equation

P (θ̃u) = θ̃f + [P, θ̃]u, u|(0,T )×∂Ω = 0,

u(0, ·) = ux0(0, ·) = u(T, ·) = ux0(T, ·) = 0. (4.7)

Applying Carleman estimate (4.5) to (4.7), and using the fact that (ϕ−φ)|(0,T )×∂Ω =
0, we obtain

s

∥∥∥∥∂u∂	nesφ
∥∥∥∥2

H1,s((0,T )×∂Ω)

+ s

∥∥∥∥∂2u
∂	n2

esφ
∥∥∥∥2

L2((0,T )×∂Ω)

≤ C5(‖fesϕ‖2
H1,s(Q) + ‖[P, θ̃]uesϕ‖2

H1,s(Q)

+‖u‖2
B(φ,Qω)), ∀s ≥ s0(τ). (4.8)

Since the supports of the coefficients of the commutator [P, θ̃] are in [0, T ]×Ωδ \ Ωδ/2
by (4.6), we have

‖[P, θ̃]uesϕ‖2
H1,s(Q) ≤ C6

 2∑
|α|=0

s3−2|α|‖(∂αxu)esφ‖2
L2(Q) + ‖u‖2

B(φ,Qω)

 . (4.9)
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Combining (4.8) and (4.9), we obtain

s

∥∥∥∥∂u∂	nesφ
∥∥∥∥2

H1,s((0,T )×∂Ω)

+ s

∥∥∥∥∂2u
∂	n2

esφ
∥∥∥∥2

L2((0,T )×∂Ω)

≤C7

(
‖fesφ‖2

H1,s(Q) +
2∑

|α|=0

s3−2|α|‖(∂αxu)esφ‖2
L2(Q) + ‖u‖2

B(φ,Qω)

)
, ∀s ≥ s0(τ).

(4.10)

Finally we will estimate the surface integrals at the right hand side of (4.4) by the
right hand side of (4.10). In the new inequality, the term

2∑
|α|=0

s3−2|α|‖(∂αxu)esφ‖2
L2(Q)

which appears at the right hand side, can be absorbed by ‖u‖2
Y (φ,Q). Thus the

proof of Theorem 2.1 is complete. �
The rest of the paper is devoted to the proof of the Lemma 4.1.
Proof of Lemma 4.1. First we note that, thanks to the large parameter N , it

suffices to prove (4.5) only locally by assuming

supp u ⊂ Bδ ∩ ([0, T ]× Ω 1
N2

),

where Bδ is the ball of the radius δ > 0 centered at some point y∗ ∈ [0, T ] × ∂Ω.
In the case of Bδ ∩ ((0, T ) × ∂Ω) = ∅, we can prove the lemma in a usual way for
a function with compact support (see e.g., [Hö]). Without loss of generality, we
may assume that y∗ = (y∗0 , 0, 0, 0). Moreover the parameter δ > 0 can be chosen
arbitrarily small. Assume that near (0, 0, 0), the boundary ∂Ω is locally given by
the equation x3−�(x1, x2) = 0. Furthermore, since the function ũ = Ou(x0,O−1x′)
satisfies system (2.1) and (2.2) with f̃ = Of(x0,O−1x′) for any orthogonal matrix
O, we may assume that (

∂�

∂x1
(0, 0),

∂�

∂x2
(0, 0)

)
= 0. (4.11)

Next we make the change of variables y1 = x1, y2 = x2 and y3 = x3 − �(x1, x2). We
set y0 = x0, y = (y0, y1, y2, y3), y′ = (y1, y2, y3). By A(y,D) denote the Laplace
operator after the change of variables. One can check that the principal symbol of
this operator is equal to a(y, ξ) = −ξ2

1−ξ22−|G|2ξ23 +2(∇y′�, ξ)ξ3, |G| =
√

1 + |∇�|2.
In the new coordinates, the Lamé system has the form

P(y,D)u = D2
y0

u− µA(y,D)u

−(λ+ µ)
(
∇y′ −∇y′�

∂

∂y3

)(
divu−

(
∂u
∂y3

,∇y′�

))
+K̃1u = −f, (4.12)
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where we use the same notations u, f after the change of variables and K̃1 is the
partial differential operator of the first order. Denote by (z1, z2, z3) and z4 the
functions rotu and divu in the y coordinates. These functions satisfy the equations:

Pµ(y,D)zj = D2
0zj − µA(y,D)zj = mj j ∈ {1, 2, 3}, (4.13)

Pλ+2µ(y,D)z4 = D2
0z4 − (λ+ 2µ)A(y,D)z4 = m4. (4.14)

Here we set w = (w′, w4) where

w′ = (rotu)esϕ, w4 = (divu)esϕ in the y-coordinate,

w′
ν = χν(s,D′)w′ ≡

∫
R3
χν(s, ξ′)ŵ′(ξ0, ξ1, ξ2, y3)ei(y0ξ0+y1ξ1+y2ξ2)dξ0dξ1dξ2,

where ŵ′ is the Fourier transform of w′ with respect to the variables (y0, y1, y2).
We consider a finite covering of the unit sphere S3 ≡ {(s, ξ0, ξ1, ξ2); s2 + ξ20 +

ξ21 + ξ22 = 1}. That is, S3 ⊂ ∪K(δ1)
ν=1 {(s, ξ0, ξ1, ξ2) ∈ S3; |ζ − ζ∗ν | < δ1} where

ζ∗ν ∈ S3, and by {χν(ζ)}1≤ν≤K(δ1) we denote the corresponding partition of unity:∑K(δ1)
ν=1 χν(ζ) = 1 for any ζ ∈ S3 and suppχν ⊂ {ζ ∈ S3; |ζ−ζ∗ν | < δ1}. Henceforth

we extend χν to the set {ζ; |ζ| > 1} as the homogeneous function of the order zero
such that χν ∈ C∞(R3) and

suppχν ⊂ O(δ1) ≡
{
ζ;

∣∣∣∣ ζ|ζ| − ζ∗ν

∣∣∣∣ < δ1

}
.

We set G = R
3 × [0, 1

N2 ). Let γ = (y∗, ζ∗) ≡ (y∗, s∗, ξ∗0 , ξ
∗
1 , ξ

∗
2) ∈ ∂G × S3 be an

arbitrary point. In order to finish the proof, we need the following lemma.

Lemma 4.2. Let γ = (y∗, ζ∗) ∈ ∂G × S3 be an arbitrary point and suppχν ⊂
O(δ1). Then for all sufficiently small δ1 > 0, the following estimate holds true:√
|s|‖wν‖H1,s(G)+

√
|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C8(‖fe|s|ϕ‖H1,s(G)+‖ue|s|ϕ‖H2,s(G)).

(4.15)

Assume for the moment that Lemma 4.2 holds true. Using Carleman estimate
(4.15) we have√

|s|‖w‖H1,s(G) +
√

|s|‖( ∂w
∂y3

,w)‖L2(∂G)×H1,s(∂G)

≤
K∑
ν=1

√
|s|‖χνw‖H1,s(G) +

√
|s|‖(∂wν

∂y3
,wν)‖L2(∂G)×H1,s(∂G)

≤C8(‖fe|s|ϕ‖H1,s(G) + ‖ue|s|ϕ‖H2,s(G)) ∀|s| ≥ s0. (4.16)

By Proposition 5.1 and the argument similar to (5.10) and (5.11) in [IY8], we obtain

√
N

∫
G

2∑
|α|=0

|s|4−2|α||Dα
y′ue

|s|ϕ|2dy


1
2

≤ C8(‖fe|s|ϕ‖H1,s(G)+‖ue|s|ϕ‖H2,s(G)), ∀|s| ≥ s0.

(4.17)
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Directly from equations (2.1) we can obtain the estimates for (∂2
y2
0
u)e|s|ϕ and

(∂y0∂y1u)e|s|ϕ :

N
1
4

∫
G

2∑
|α|=0

|s|4−2|α||Dαue|s|ϕ|2dy


1
2

≤ C8(‖fe|s|ϕ‖H1,s(G)+‖ue|s|ϕ‖H2,s(G)), ∀|s| ≥ s0.

(4.18)
Since the constant C8 is independent of N , estimate (4.18) implies

N
1
4

∫
G

2∑
|α|=0

|s|4−2|α||Dαue|s|ϕ|2dy


1
2

+
√

|s|
∥∥∥∥( ∂w∂y3 ,w

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C9‖fe|s|ϕ‖H1,s(G) ∀|s| ≥ s0. (4.19)

This estimate immediately implies (4.5). �
Now it suffices to prove Lemma 4.2.
Before starting the proof of Lemma 4.2, we need to recall some facts from the

theory of pseudodifferential operators and Carleman estimates.
We set

Pµ,s(y, s,D) = Pµ(y,D), Pλ+2µ,s(y, s,D) = Pλ+2µ(y,D), D = D + i|s|∇ϕ.

Denote

pβ(y, s, ξ′) = −(ξ0 + i|s|ϕy0)2 + β[(ξ1 + i|s|ϕy1)2 + (ξ2 + i|s|ϕy2)2
−2�y1(ξ1+i|s|ϕy1)(ξ3+i|s|ϕy3)−2�y2(ξ2+i|s|ϕy2)(ξ3+i|s|ϕy3)+(ξ3+i|s|ϕy3)2|G|2],

(4.20)

where β ∈ {µ, λ + 2µ} and s �= 0 is a parameter. The roots Γ±
β (y, s, ξ′) of the

polynomial pβ with respect to the variable ξ3 are given by

Γ±
β (y, s, ξ′) = −i|s|ϕy3 + α±

β (y, s, ξ′), (4.21)

where

α±
β (y, s, ξ′) =

(ξ1 + i|s|ϕy1)�y1 + (ξ2 + i|s|ϕy2)�y2
|G|2 ±

√
rβ(y, s, ξ′), (4.22)

rβ(y, ζ) =
{(ξ0 + i|s|ϕy0)2 − β((ξ1 + i|s|ϕy1)2 + (ξ2 + i|s|ϕy2)2)}|G|2 + β(ξ + i|s|∇ϕ,∇�)2

β|G|4 .

(4.23)
In some situations we can factorize the operator Pβ,s as a product of two first order
pseudodifferential operators.
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Proposition 4.1. Let β ∈ {µ, λ + 2µ} and |rβ(y, ζ)| ≥ δ̂|ζ|2 > 0 for all (y, ζ) ∈
(Bδ ∩G)×O(2δ1). Then we can factorize the operator Pβ,s into the product of two
first order pseudodifferential operators:

Pβ,sχν(s,D′)V = β|G|2(Dy3 − Γ−
β (y, s,D′))(Dy3 − Γ+

β (y, s,D′))χν(s,D′)V + TβV,

(4.24)
where supp V ⊂ Bδ ∩ G and Tβ is a continuous operator:

Tβ : L2(0, 1;H1,s(R3)) → L2(0, 1;L2(R3)).

Let us consider the equation

(Dy3 − Γ−
β (y, s,D′))χν(s,D′)V = q, V |y3= 1

N2
= 0, supp V ⊂ Bδ ∩ G.

For solutions of this problem, similarly to Proposition 5.4 in [IY8], we can prove

Proposition 4.2. Let β ∈ {µ, λ + 2µ} and |rβ(y, ζ)| ≥ δ̂|ζ|2 > 0 for all (y, ζ) ∈
Bδ ×O(2δ1). Then there exists a constant C10 > 0 independent of N such that

‖
√

|s|χν(s,D′)V |y3=0‖L2(R3) ≤ C10‖q‖L2(G). (4.25)

Let w̃(y) be a function which satisfies

Pβ,s(y, s,D)w̃ = q̃ in G, ∂w̃

∂y3

∣∣∣∣
y3=1/N2

= w̃|y3=1/N2 = 0, supp w̃ ⊂ Bδ×[0,
1
N2

).

Let P ∗
β,s be the formally adjoint operator to Pβ,s, where β ∈ {µ, λ + 2µ}. Set

L+,β =
Pβ,s+P ∗

β,s

2 and L−,β =
Pβ,s−P ∗

β,s

2 . Obviously L+,βw̃+L−,βw̃ = q̃. For almost
all s ∈ R1, the following equality holds true:

Ξβ+‖L−,βw̃‖2
L2(G)+‖L+,βw̃‖2

L2(G)+Re
∫
G
([L+,β, L−,β]w̃, w̃)dy = ‖q̃‖2

L2(G), (4.26)

where

Ξβ =
∫
∂G
p̃β(y,∇ϕ,−	e4)(|s|p̃β(y,∇w̃,∇w̃) − |s|3pβ(y,∇ϕ)|w̃|2)dy0dy1dy2

+Re
∫
∂G
p̃β(y,∇w̃,−	e4)L−,βw̃dy0dy1dy2, (4.27)

	e4 = (0, 0, 0, 1) and

p̃β(y, ξ, ξ̃) = ξ0ξ̃0 − β(ξ1ξ̃1 + ξ2ξ̃2 − �y1(ξ1ξ̃3 + ξ3ξ̃1) − �y2(ξ2ξ̃3 + ξ3ξ̃2) + |G|2ξ3ξ̃3).

We note that φyk
|∂G = ϕyk

|∂G for k ∈ {0, 1, 2}. Therefore on ∂G, the function
∇y′ϕ is independent of N and |∇φ(y′) − ∇ϕ(y′)| ≤ C/N2 with the constant C
independent of N. It is convenient for us to rewrite (4.27) in the form

Ξβ = Ξ
(1)
β + Ξ

(2)
β ,
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Ξ
(1)
β = Re

∫
y3=0

2|s|β(y∗)
∂w̃

∂y3

(
β(y∗)

∂w̃

∂y1
ϕy1(y∗) + β(y∗)

∂w̃

∂y2
ϕy2(y∗)

+β(y∗)
∂w̃

∂y3
ϕy3(y∗) −

∂w̃

∂y0
ϕy0(y∗)

)
dy0dy1dy2

+
∫
y3=0

|s|β(y∗)ϕy3(y
∗)

{∣∣∣∣ ∂w̃∂y0
∣∣∣∣2 − β(y∗)

(∣∣∣∣ ∂w̃∂y1
∣∣∣∣2 +

∣∣∣∣ ∂w̃∂y2
∣∣∣∣2 +

∣∣∣∣ ∂w̃∂y3
∣∣∣∣2
)}

−|s|2(ϕ2
y0

(y∗) − β(y∗)(ϕ2
y1

(y∗) + ϕ2
y2

(y∗) + ϕ2
y3

(y∗)))|w̃|2)dy0dy1dy2.
Then

|Ξ(2)
β | ≤ ε(δ)|s|

∥∥∥∥( ∂w̃

∂y3
, w̃

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

, (4.28)

where ε(δ) → 0 as δ → +0. We can prove that there exists a parameter τ̂ > 1 such
that for any τ > τ̂ there exists s0(τ) such that

3
4
‖L−,βw̃‖2

L2(G) +
3
4
‖L+,βw̃‖2

L2(G) + Re ([L+,β, L−,β]w̃, w̃)L2(G)

+C11|s|‖w̃‖L2(∂G)‖∂y3w̃‖L2(∂G)

≥C12|s|‖w̃‖2
H1,s(G), ∀|s| ≥ s0(τ), (4.29)

where C12 > 0 is independent of s. The proof of (4.29) is done exactly same as in
Appendix II in [IY8]. Combining (4.26) and (4.29), we arrive at

1
4
‖L−,βw̃‖2

L2(G) +
1
4
‖L+,βw̃‖2

L2(G) + C12|s|‖w̃‖2
H1,s(G) + Ξβ

≤ C13(‖q‖2
L2(G) + |s|‖w̃‖L2(∂G)‖∂y3w̃‖L2(∂G)), ∀|s| ≥ s0(τ). (4.30)

By Rot, Div, Nab denote the operators obtained from rot, div, ∇y′ after the change
of variables. In that case, on ∂G we can rewrite equation (4.12) and identity
div rotu = 0 in the following way:

iµRot (y,D)w′−i(λ+2µ)Nab (y,D)w4 = fe|s|ϕ+K(y,D, s)(ue|s|ϕ), Div (y,D)w′ = 0,
(4.31)

where K(y,D, s) is the first order differential operator. Applying the operator
χν(s,D′) to equation (4.31), we have

iµRot(y,D)w′
ν−i(λ+2µ)Nab(y,D)w4,ν = F1, Div(y,D)w′

ν+[χν ,Div]w′ = 0 y ∈ ∂G,
(4.32)

where

F1 = χνfe|s|ϕ − i[χν , µRot(y,D)]w′ + i[χν , (λ+ 2µ)Nab(y,D)]w4 + χνK(y,D, s)(ue|s|ϕ).

We will prove Lemma 4.2 separately in the following three cases:
(1) rµ(γ) = 0, rλ+2µ(γ) �= 0 (Section 5)
(2) rµ(γ) �= 0, rλ+2µ(γ) = 0 (Section 6)
(3) rµ(γ) �= 0, rλ+2µ(γ) �= 0 or rµ(γ) = rλ+2µ(γ) = 0 (Section 7).
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§5. The case : rµ(γ) = 0 and rλ+2µ(γ) �= 0.
In this section, we treat the case where rµ(γ) = 0 and rλ+2µ(γ) �= 0. Taking the

parameters δ and δ1 sufficiently small, we can assume that there exists a constant
Ĉ > 0 such that

|rλ+2µ(y, ζ)| ≥ Ĉ|ζ|2, ∀(y, ζ) ∈ Bδ ×O(δ1), |ζ| ≥ 1.

We note by (4.30) that there exist C1 > 0 and C2 > 0 such that

C1|s|‖wk,ν‖2
H1,s(G) +Ξ

(1)
µ,k

≤ C2(‖fe|s|ϕ‖2
H1,s(G)+‖w‖2

H1,s(G))+ε(δ)|s|
∥∥∥∥(∂w′

ν

∂y2
,w′

ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

, k ∈ {1, 2, 3}
(5.1)

and the parameter ε can be taken sufficiently small if we decrease δ. Note that Ξ(1)
k,µ

can be written in the form:

Ξ
(1)
k,µ =

∫
∂G

(
|s|(µ2ϕy3)(y

∗)
∣∣∣∣∂wk,ν∂y3

∣∣∣∣2 + |s|3(µ2ϕ3
y3)(y

∗)|wk,ν |2
)
dΣ

+Re
∫
∂G

2|s|µ(y∗)
∂wk,ν
∂y3

(
(µϕy1)(y∗)

∂wk,ν
∂y1

+ (µϕy2)(y∗)
∂wk,ν
∂y2

− ϕy0(y∗)
∂wk,ν
∂y0

)
dΣ

+
∫
∂G

|s|(µϕy3)(y∗){ξ20 − µ(y∗)(ξ21 + ξ22) − s2ϕ2
y0(y

∗) + s2µ(y∗)(ϕ2
y1(y

∗) + ϕ2
y2(y

∗))}|ŵk,ν |2dΣ

≡J(k)
1 + J

(k)
2 + J

(k)
3 . (5.2)

By (4.21) - (4.23), there exists C3 > 0 such that

|ξ20 − s2ϕ2
y0

(y∗) − µ(y∗)(ξ21 + ξ22) + µ(y∗)s2(ϕ2
y1

(y∗) + ϕ2
y2

(y∗))|
+|s||ξ0ϕy0(y∗) − µ(y∗)ξ1ϕy1(y

∗) − µ(y∗)ξ2ϕy2(y
∗)|

≤δ1C3(|ξ0|2 + |ξ1|2 + |ξ2|2 + s2), ∀ζ ∈ O(δ1). (5.3)

Next we take the parameter δ1 sufficiently small such that

|ξ0|2 ≤ C4(ξ21 + ξ22 + s2), ∀ζ ∈ O(δ1), (5.4)

where the constant C4 > 0 is independent of ζ. Then, by (5.3), we have

3∑
k=1

|J (k)
3 | ≤ δ1(µϕy3)(y

∗)|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

. (5.5)

Moreover we claim that there exists δ0 > 0 such that if δ1 ∈ (0, δ0), then there
exists C5 > 0 such that

|ξ0| ≤ C5(|ξ1| + |ξ2| + |s|), ∀ζ ∈ O(δ1). (5.6)
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We set V +
λ+2µ = (Dy3 − Γ+

λ+2µ(y, s,D
′))w4,ν . Then by Proposition 4.1

Pλ+2µ,sw4,ν = (λ+ 2µ)|G|2(Dy3 − Γ−
λ+2µ(y, s,D

′))V +
λ+2µ + Tλ+2µw4,ν ,

where Tλ+2µ ∈ L(H1,s(G), L2(G)). This decomposition and Proposition 4.2 imme-
diately imply

‖
√

|s|(Dy3 − Γ+
λ+2µ(y, s,D

′))w4,ν |y3=0‖L2(∂G)

≤C6(‖fe|s|ϕ‖H1,s(G) + ‖w‖H1,s(G)). (5.7)

Next we estimate the term J
(k)
2 . First we note that thanks to the homogeneous

Dirichlet boundary conditions, we have the a priori estimate

√
|s|‖w3,ν‖H1,s(∂G) ≤ ε(δ)

√
|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

. (5.8)

Using (5.8), from (4.30) with w3,ν instead of w̃, we have

√
|s|

∥∥∥∥(∂w3,ν

∂y3
, w3,ν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C7(‖fe|s|ϕ‖H1,s(G) + ‖w‖H1,s(G))

+ε(δ)
√

|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

. (5.9)

Now we consider the following two cases:
Case 1. Assume that s∗ �= 0. In this case by (5.3)

3∑
k=1

|J (k)
2 | + |J (k)

3 | ≤ ε(δ)|s|
∥∥∥∥(∂w′

ν

∂y3
,w′

ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

.

Therefore for some constant C8 > 0

3∑
k=1

Ξ
(1)
k,µ ≥ |s|C8

∥∥∥∥(∂w′
ν

∂y3
,w′

ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

. (5.10)

Combining (5.10) and (5.1), we have

√
|s|

∥∥∥∥(∂w′
ν

∂y3
,w′

ν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C9(‖fe|s|ϕ‖H1,s(G) + ‖w‖H1,s(G)). (5.11)

Using (5.11) we obtain from equations (4.32)√
|s|‖Nab(y,D)w4,ν‖L2(∂G)

≤C10(‖fe|s|ϕ‖H1,s(G) + ‖w‖H1,s(G)) + ε(δ)
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

.
(5.12)
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On the other hand, thanks to (5.7) we have

√
|s|

∥∥∥∥(∂w4,ν

∂y3
, w4,ν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤C11

√
|s|‖Nab(y,D)w4,ν‖L2(∂G) + ε(δ)

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

.

Combining this estimate with (5.11) and (5.12), we obtain

√
|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C12(‖fe|s|ϕ‖H1,s(G) + ‖w‖H1,s(G)). (5.13)

Inequalities (5.13) and (5.1) imply (4.15).
Case 2. Assume that s∗ = 0. By (4.32) the following equality is true:

R(y, s,D′)(w1,ν , w2,ν) ≡ (D1w1,ν + D2w2,ν ,−D2w1,ν + D1w2,ν)

=
(
F1,

λ+ 2µ
µ

α+
λ+2µ(y, s,D

′)w4,ν + F2

)
,

where

√
|s|‖(F1, F2)‖L2(∂G) ≤ ε(δ)

√
|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

+C13(‖fe|s|ϕ‖H1,s(G)+‖w‖H1,s(G)).

The principal symbol of the operator R is

R(y∗, s, ξ1, ξ2) =
(
ξ1 + i|s|ϕy1(y∗) ξ2 + i|s|ϕy2(y∗)
−ξ2 − i|s|ϕy2(y∗) ξ1 + i|s|ϕy1(y∗)

)
.

Since detR(y∗, s∗, ξ∗1 , ξ
∗
2) �= 0, there exists a parametrix of the operator R such that

(w1,ν , w2,ν) = R(y, s,D′)−1

(
0,
λ+ 2µ
µ

α+
λ+2µ(y, s,D

′)w4,ν

)
+R(y, s,D′)−1(F1, F2) + T−1(w1,ν , w2,ν). (5.14)

By the first and second equations in (4.32), we have

(D3w1,ν , D3w2,ν) =
λ+ 2µ
µ

(D2w4,ν ,−D1w4,ν) + (F4, F5), (5.15)

where

√
|s|‖(F4, F5)‖L2(∂G) ≤ ε(δ, δ1)

√
|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

+C14(‖fe|s|ϕ‖H1,s(G) + ‖w‖H1,s(G)).
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Using equalities (5.14) and (5.15), we can reduce J (1)
2 , J

(2)
2 to the form

J
(1)
2 = Re

∫
∂G

2|s|(λ+ 2µ)(y∗)
∂w4,ν

∂y2
{i(µϕy1)(y∗)D1 + i(µϕy2)(y∗)D2 − iϕy0(y∗)D0}

(R(y, s,D)−1(0, α+
λ+2µ(y, s,D′)w4,ν) ·	j1)dΣ + I1, (5.16)

J
(2)
2 = −Re

∫
∂G

2|s|(λ+ 2µ)(y∗)
∂w4,ν

∂y1
{i(µϕy1)(y∗)D1 + i(µϕy2)(y∗)D2 − iϕy0(y∗)D0}

(R(y, s,D)−1(0, α+
λ+2µ(y, s,D′)w4,ν) ·	j2)dΣ + I2, (5.17)

where 	j1 = (1, 0), 	j2 = (0, 1), I1 and I2 are terms which are estimated by

|I1|+|I2| ≤ ε(δ)|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

+C15(‖fe|s|ϕ‖2
H1,s(G)+‖w‖2

H1,s(G)).

Since Reα+
µ (γ) = 0 and ImR(γ)−1 = 0, by G̊arding’s inequality we obtain from

(5.16) and (5.17) that

|J (1)
2 |+|J (2)

2 | ≤ ε(δ)
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

+C16(‖fe|s|ϕ‖2
H1,s(G)+‖w‖2

H1,s(G)).

This inequality and (5.5) imply for k ∈ {1, 2, 3}

Ξ
(1)
k,µ ≥

∫
∂G

{
|s|(µ2ϕy3)(y

∗)
∣∣∣∣∂wk,ν∂y3

∣∣∣∣2 + |s|3(µ2ϕ3
y3

)(y∗)|wk,ν |2
}
dΣ

−ε|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

. (5.18)

In terms of (5.15) and (5.18), we have

|s|‖w4,ν‖2
H1,s(∂G) ≤ C17

3∑
k=1

Ξ
(1)
k,µ + ε|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

.

This inequality and (5.7) imply

|s|
∥∥∥∥(∂w4,ν

∂y3
, w4,ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

≤ C18

(
3∑
k=1

Ξ
(1)
k,µ + ‖fe|s|ϕ‖2

H1,s(G) + ‖w‖2
H1,s(G)

)

+ ε|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

+ C18(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)).
(5.19)

By (5.14), (5.18) and (5.19), we obtain

|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

≤ C19

(
3∑
k=1

Ξ
(1)
k,µ + ‖fe|s|ϕ‖2

H1,s(G) + ‖w‖2
H1,s(G)

)

+ε|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

.

This estimate and (4.30) imply (4.15). �
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§6. The case: rλ+2µ(γ) = 0 and rµ(γ) �= 0.
Let γ = (y∗, ζ∗) = (y∗, s∗, ξ∗0 , ξ

∗
1 , ξ

∗
2) be a point on ∂G × S3 such that rλ+2µ(γ) =

0, rµ(γ) �= 0 and suppχν ⊂ O(δ1). Taking the parameters δ and δ1 sufficiently
small, we can assume that there exists a constant Ĉ > 0 such that

|rµ(y, ζ)| ≥ Ĉ|ζ|2, ∀(y, ζ) ∈ Bδ ×O(δ1), |ζ| ≥ 1.

By (4.21)-(4.23), there exist δ0 > 0 and C1 > 0 such that for all δ1 ∈ (0, δ0) we
have

ξ20 ≤ C1(ξ21 + ξ22 + s2), ∀ζ ∈ O(δ1). (6.1)

We consider the following three cases.

Case A. Assume that s∗ = 0 and ϕy3(y
∗) >

| 1
µ(y∗) ξ

∗
0ϕy0 (y∗)−ξ∗1ϕy1 (y∗)−ξ∗2ϕy2 (y∗)|

λ+µ
µ (y∗)|(ξ∗1 ,ξ∗2 )|

.

In that case, there exists a constant C2 > 0 such that

−Im Γ±
µ (y, ζ) ≥ C2|s|, ∀(y, ζ) ∈ Bδ ×O(δ1),

provided that |δ| + |δ1| is sufficiently small. Since s∗ = 0, we may assume that

|ξ0|2 + s2 ≤ C3(ξ21 + ξ22), ∀ζ ∈ O(δ1) (6.2)

for some constant C3 > 0, taking a sufficiently small δ1. We set V ±
µ = (Dy3 −

Γ±
µ (y, s,D′))w′

ν . Then, by Proposition 4.1, we have

Pµ,s(y,D)w′
ν = |G|2µ(Dy3 − Γ−

µ (y, s,D′))V +
µ + T+

µ w′
ν

=|G|2µ(Dy3 − Γ+
µ (y, s,D′))V −

µ + T−
µ w′

ν , (6.3)

where T±
µ ∈ L(H1,s(G),L2(G)). This decomposition and Proposition 4.2 imply

‖
√
|s|(Dy3 − Γ±

µ (y, s,D′))w′
ν |y3=0‖L2(∂G) ≤ C4(‖fe|s|ϕ‖H1,s(G) + ‖w′‖H1,s(G)).

(6.4)

We have

(−V +
µ + V −

µ )|y3=0 = (α+
µ (y, s,D′) − α−

µ (y, s,D′))w′
ν on ∂G. (6.5)

Since α+
µ (y∗, ζ∗) − α−

µ (y∗, ζ∗) = 2
√
rµ(y∗, ζ∗) �= 0, by (6.4), (6.5) and G̊arding’s

inequality we have√
|s|‖w′

ν‖H1,s(∂G) ≤ C5(‖fe|s|ϕ‖H1,s(G) + ‖w′‖H1,s(G)). (6.6)

By (6.6) and (6.4), we obtain∫
∂G

|s|
∣∣∣∣∂w′

ν

∂y3

∣∣∣∣2 dΣ ≤ C6(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)). (6.7)
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Finally, by (6.6) and (6.7) combined with (4.32), we obtain

|s|
∥∥∥∥(∂w4,ν

∂y3
, w4,ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

≤ C7(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)). (6.8)

Inequalities (6.6) - (6.8) and (4.30) imply (4.15).
Case B. Assume that s∗ = 0 and

ϕy3(y
∗) ≤

| 1
µ(y∗)

ξ∗0ϕy0(y
∗) − ξ∗1ϕy1(y

∗) − ξ∗2ϕy2(y
∗)|√

λ+µ
µ (y∗)|(ξ∗1 , ξ∗2)|

. (6.9)

In that case limζ→ζ∗ Im rµ(y∗, ζ)/|s| �= 0. Since s∗ = 0, we note that Re rµ(y∗, ζ∗) >
0. Set I = sign limζ→ζ∗ Im rµ(y∗, ζ)/|s|. Then we have

Γ+
µ (y∗, ζ∗) = I

√
Re rµ(y∗, ζ∗). (6.10)

Therefore

−Re Γ+
µ (y∗, ζ∗)((µϕy1)(y

∗)ξ∗1 + (µϕy2)(y
∗)ξ∗2 − ϕy0(y

∗)ξ∗0) > 0.

Taking the parameters δ > 0 and δ1 > 0 sufficiently small, we obtain

−Re Γ+
µ (y, ζ)(µϕy1(y)ξ1+µϕy2(y)ξ2−ϕy0(y)ξ0) > 0, ∀(y, ζ) ∈ Bδ×O(δ1). (6.11)

Using the definition of V +
µ , we have

J2 = Re
∫
∂G

2|s|µ(y∗)
∂w′

ν

∂y3

(
µ(y∗)

∂w′
ν

∂y1
ϕy1(y∗) + µ(y∗)

∂w′
ν

∂y2
ϕy2(y∗) −

∂w′
ν

∂y0
ϕy0(y∗)

)
dΣ

=Re
∫
∂G

2|s|µ(y∗)iΓ+
µ (y, s,D′)w′

ν

(
µ(y∗)

∂w′
ν

∂y1
ϕy1(y∗) + µ(y∗)

∂w′
ν

∂y2
ϕy2(y∗) −

∂w′
ν

∂y0
ϕy0(y∗)

)
dΣ

+Re
∫
∂G

2|s|µ(y∗)iV +
µ (·, 0)

(
µ(y∗)

∂w′
ν

∂y1
ϕy1(y∗) + µ(y∗)

∂w′
ν

∂y2
ϕy2(y∗) −

∂w′
ν

∂y0
ϕy0(y∗)

)
dΣ

=Re
∫
∂G

2|s|µ(y∗)(µ(y∗)Dy1ϕy1(y
∗) + µ(y∗)Dy2ϕy2(y

∗) −Dy0ϕy0(y
∗))Γ+

µ (y, s,D′)w′
νw′

νdΣ

+Re
∫
∂G

2|s|µ(y∗)iV +
µ (·, 0)

(
µ(y∗)

∂w′
ν

∂y1
ϕy1(y∗) + µ(y∗)

∂w′
ν

∂y2
ϕy2(y∗) −

∂w′
ν

∂y0
ϕy0(y∗)

)
dΣ.

(6.12)

By (6.11) we obtain from G̊arding’s inequality that the first integral at the right
hand side of (6.12) is negative. Consider two cases. First let

(ϕy1(y
∗)ξ∗1 + ϕy2(y

∗)ξ∗2)Γ+
µ (y∗, ζ∗) ≥ 0.



30 O.Y. IMANUVILOV AND M. YAMAMOTO

This inequality and (6.11) yield that |ξ∗0ϕy0(y∗)| > |ξ∗1ϕy1(y∗) + ξ∗2ϕy2(y
∗)|. If

ξ∗0ϕy0(y
∗) > 0, then Γ+

µ (y∗, ζ∗) = |√rµ(γ)| and ξ∗1ϕy1(y
∗) + ξ∗2ϕy2(y

∗) ≥ 0. By
the first condition in (2.6), we obtain

µ√
λ+ 2µ

(ϕy1(y
∗)ξ∗1 + ϕy2(y

∗)ξ∗2)
|(ξ∗1 , ξ∗2)| +

√
µ
√
λ+ µ√

λ+ 2µ
|ϕy3(y∗)|

≥|ϕy0(y∗)|.

Again by the third condition in (2.6), we note that |ϕy3(y∗)| = ϕy3(y
∗). On the

other hand, from rλ+2µ(y∗, 0, ξ∗0 , ξ
∗
1 , ξ

∗
2) = 0, we see that |ξ∗0 | =

√
(λ+ 2µ)(y∗)|(ξ∗1 , ξ∗2)|.

By ξ∗0ϕy0(y
∗) > 0, we obtain

ϕy3(y
∗) >

−ϕy1(y∗)ξ∗1 − ϕy2(y
∗)ξ∗2 + ϕy0 (y∗)

µ(y∗) ξ
∗
0√

λ+µ
µ

(y∗)|(ξ∗1 , ξ∗2)|
.

This contradicts (6.9).
If ξ∗0ϕy0(y

∗) < 0, then Γ+
µ (y∗, ζ∗) = −|√rµ(γ)| and ξ∗1ϕy1(y

∗) + ξ∗2ϕy2(y
∗) < 0.

Therefore

ϕy3(y
∗) >

|ϕy1(y∗)ξ∗1 + ϕy2(y
∗)ξ∗2 − ϕy0 (y∗)ξ∗0

µ(y∗) |√
λ+µ
µ

(y∗)|(ξ∗1 , ξ∗2)|

=
ϕy1(y

∗)ξ∗1 + ϕy2(y
∗)ξ∗2 − ϕy0 (y∗)

µ(y∗) ξ
∗
0√

λ+µ
µ

(y∗)|(ξ∗1 , ξ∗2)|
.

By (2.6) this again contradicts (6.9).
As the second case, one has to consider (ϕy1(y

∗)ξ∗1 + ϕy2(y
∗)ξ∗2)Γ+

µ (y∗, ζ∗) < 0.
By G̊arding’s inequality, for k ∈ {1, 2}, we have

Re
∫
∂G

2|s|µ(y∗)iΓ+
µ (y,D′)wk,ν(µ(y∗)ϕy1(y∗)

∂wk,ν
∂y1

+ µ(y∗)ϕy2(y∗)
∂wk,ν
∂y2

)dΣ < 0.

This inequality and the fact that J2 is negative implies that

− Re
∫
∂G

2|s|µ(y∗)iΓ+
µ (y,D′)wk,ν×(

(λ+ 2µ)(y∗)
∂wk,ν
∂y1

ϕy1(y∗) + (λ+ 2µ)(y∗)ϕy2(y∗)
∂wk,ν
∂y2

− ∂wk,ν
∂y0

ϕy0(y∗)
)
dΣ > 0.

(6.13)
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Note that

Ξ
(1)
λ+2µ =

∫
∂G

(
|s|((λ+ 2µ)2ϕy3)(y

∗)
∣∣∣∣∂w4,ν

∂y3

∣∣∣∣2 + |s|3((λ+ 2µ)2ϕ3
y3

)(y∗)|w4,ν |2
)
dΣ

+Re
∫
∂G

2|s|(λ+ 2µ)(y∗)
∂w4,ν

∂y3

×
(

((λ+ 2µ)ϕy1)(y∗)
∂w4,ν

∂y1
+ ((λ+ 2µ)ϕy2)(y∗)

∂w4,ν

∂y2
− ϕy0(y∗)

∂w4,ν

∂y0

)
dΣ

+
∫
∂G

|s|((λ+ 2µ)ϕy3)(y
∗)(ξ20 − (λ+ 2µ)(y∗)(ξ21 + ξ22) − s2ϕ2

y0
(y∗)

+s2(λ+ 2µ)(y∗)(ϕ2
y1

(y∗) + ϕ2
y2

(y∗)))|w4,ν |2dΣ
≡J̃1 + J̃2 + J̃3.

Using equalities (4.32), we can transform J̃2 as

J̃2 = −Re
2∑

k=1

∫
∂G

2|s| µ2

λ+ 2µ
∂wk,ν
∂y3

×
(

(λ+ 2µ)ϕy1(y∗)
∂wk,ν
∂y1

+ (λ+ 2µ)ϕy2(y∗)
∂wk,ν
∂y2

− ϕy0(y∗)
∂wk,ν
∂y0

)
dΣ + I,

where

|I| ≤ ε(δ)|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

+ C8(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)).

Then by (6.13)

J̃2 > C10|s|
∥∥∥∥(∂w′

ν

∂y3
,w′

ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

− C9(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)).

(6.14)
Since

|J̃3| ≤ C11δ1|s|
∥∥∥∥(∂w2,ν

∂y3
, w2,ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

.

This inequality and (6.14) imply

Ξ(1)
λ+2µ ≥ C12

{∫
∂G

(
|s|

∣∣∣∣∂w4,ν

∂y3

∣∣∣∣2 + |s|3|w4,ν |2
)
dΣ + |s|

∥∥∥∥(∂w′
ν

∂y3
,w′

ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

}

− ε(δ)|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

− C9(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)).
(6.15)
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Now we will estimate J̃3. By (4.21) and (4.23), there exists a constant C13 > 0 such
that ∣∣∣∣ξ20 − |s|2ϕ2

y0
(y∗) − (λ+ 2µ)(y∗)ξ21 + ((λ+ 2µ)ϕ2

y1
)(y∗)|s|2

−(λ+ 2µ)(y∗)ξ22 + ((λ+ 2µ)ϕ2
y2

)(y∗)|s|2
∣∣∣∣

≤C13δ1(|ξ′|2 + s2), ∀ζ ∈ O(δ1). (6.16)

Using (6.16), we obtain

ξ20 − µ(y∗)ξ21 − µ(y∗)ξ22 − s2ϕ2
y0

(y∗) + s2(µϕ2
y1

)(y∗) + s2(µϕ2
y2

)(y∗)

=(λ+ µ)(y∗){ξ21 + ξ22 − s2ϕ2
y1(y

∗) − s2ϕ2
y2(y

∗)}
+ξ20 − (λ+ 2µ)(y∗)ξ21 − (λ+ 2µ)(y∗)ξ22 − s2ϕ2

y0(y
∗)

+s2((λ+ 2µ)ϕ2
y1

)(y∗) + s2((λ+ 2µ)ϕ2
y2

)(y∗)

≥(λ+ µ)(y∗){ξ21 + ξ22 − s2ϕ2
y1

(y∗) − s2ϕ2
y2

(y∗)} − C14δ1(|ξ′|2 + s2).

Therefore, for all sufficiently small δ1, there exists C15 > 0 such that for all ζ ∈
O(δ1)

ξ20 −µ(y∗)ξ21 −µ(y∗)ξ22 −s2ϕ2
y0(y

∗)+s2(µϕ2
y1)(y

∗)+s2(µϕ2
y2)(y

∗) ≥ C15δ1(|ξ|2+s2).
(6.17)

By (6.17), we see that J̃3 ≥ 0. Hence by (6.15) and (6.1), there exist constants
C16, C17, C18 > 0 such that

3∑
k=1

Ξ
(1)
k,µ + C16Ξ

(1)
λ+2µ ≥ C17|s|

∥∥∥∥(∂w′
ν

∂y3
,w′

ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

−C18(δ, δ1)(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)).

This inequality and (4.32) imply

3∑
k=1

Ξ
(1)
k,µ ≥ C19|s|

∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

−C18(δ, δ1)(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)). (6.18)

By (6.18), (5.1) and (4.30), we obtain (4.15).
Case C. Assume that s∗ �= 0. If δ1 > 0 is small enough, then there exists a

constant C20 > 0 such that

|ξ0ϕy0(y∗)− (λ+2µ)(y∗)ξ1ϕy1(y
∗)− (λ+2µ)(y∗)ξ2ϕy2(y

∗)|2 ≤ δ21C20(ξ21 + ξ22 + s2).
(6.19)

By (4.30), there exists C21 > 0 such that

Ξ
(1)
λ+2µ + C21‖

√
|s|w4,ν‖2

H1,s(G)

≤C21(‖fe|s|ϕ‖2
H1,s(G) + ‖w‖2

H1,s(G)) + ε|s|
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

.
(6.20)
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By (6.16) and (6.19), we have

|J̃2 + J̃3| ≤ C22δ
2
1 |s|

∥∥∥∥(∂w4,ν

∂y3
, w4,ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

. (6.21)

By (6.21) we see from (6.19) that there exists a constant C23 > 0 such that

Ξ
(1)
λ+2µ ≥ −ε|s|

∥∥∥∥(∂w4,ν

∂y3
, w4,ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

+C23

∫
∂G

(
|s|((λ+ 2µ)2ϕy3)(y

∗)
∣∣∣∣∂w4,ν

∂y3

∣∣∣∣2 + |s|3((λ+ 2µ)2ϕ3
y3

)(y∗)|w4,ν |2
)
dΣ.
(6.22)

Since s∗ �= 0, without loss of generality, taking δ1 sufficiently small, we can assume
that

|ξ′| ≤ C24|s|, ∀ζ ∈ O(δ1). (6.23)

By (6.22) and (6.23) for some constants C25 > 0 and C26 > 0, we have

Ξ
(1)
λ+2µ ≥ C25|s|

∥∥∥∥(∂w4,ν

∂y3
, w4,ν

)∥∥∥∥2

L2(∂G)×H1,s(∂G)

− C26‖fe|s|ϕ‖2
H1,s(G). (6.24)

By (4.32) we have
µRot(y,D)w′

ν = F∗ on ∂G, (6.25)

where we set F∗ = 1
i
F1+(λ+2µ)Nab(y,D)w4,ν and ‖F1‖L2(G) ≤ C27‖fe|s|ϕ‖L2(G)+

‖ue|s|ϕ‖H1,s(G)). Next in the operator Rot, we put instead of D3wk,ν the function
α+(y, s,D′)wk,ν + V −

k,µ. We can represent

µG(y, s,D′)w′
ν = F∗ + R̃(V −

µ ). (6.26)

By (6.4) √
|s|‖R̃(V −

µ )‖L2(∂G) ≤ C28(‖fe|s|ϕ‖H1,s(G) + ‖w′‖H1,s(G)). (6.27)

The principal symbol of the operator G at the point γ is given by the matrix

G(γ) =

 0 α+
µ (γ) −ξ∗2 − i|s∗|ϕy2(y∗)

−α+
µ (γ) 0 ξ∗1 + i|s∗|ϕy1(y∗)

−ξ∗2 − i|s∗|ϕy2(y∗) ξ∗1 + i|s∗|ϕy1(y∗) 0

 . (6.28)

Thanks to the Dirichlet boundary condition, we note that

‖w3,ν‖H1,s(∂G) ≤ ε(δ)
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

.

This inequality and (6.4) imply

|s| 12
∥∥∥∥(∂w3,ν

∂y3
, w3,ν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C29(‖fe|s|ϕ‖H1,s(G) + ‖w′‖H1,s(G))

+ε(δ)
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

. (6.29)
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By the first two equations of (6.26) and rµ(γ) �= 0, we obtain

|s| 12 ‖wk,ν‖H1,s(∂G) ≤ C29(‖fe|s|ϕ‖H1,s(G) + ‖w′‖H1,s(G) + |s| 12 ‖F∗‖L2(∂G))

+ε(δ)
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

k = 1, 2. (6.30)

By (6.4), (6.29) and (6.30)

|s| 12
∥∥∥∥(∂wν

∂y3
wν

)∥∥∥∥
H1,s(∂G)×L2(∂G)

≤ C29(‖fe|s|ϕ‖H1,s(G) + ‖w′‖H1,s(G) + |s| 12 ‖F∗‖L2(∂G))

+ε(δ)
∥∥∥∥(∂wν

∂y3
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

. (6.31)

By (6.21) and the definition of the function F∗, we obtain

|s|
∥∥∥∥(∂wν

∂y3
wν

)∥∥∥∥2

H1,s(∂G)×L2(∂G)

≤ C30(‖fe|s|ϕ‖2
H1,s(G) + ‖w′‖2

H1,s(G) + Ξ
(1)
λ+2µ).

(6.32)
In view of (6.32) and (4.30), we obtain (4.15). �
§7. The case rµ(γ) �= 0 and rλ+2µ(γ) �= 0 or rµ(γ) = rλ+2µ(γ) = 0.
In order to treat this case, we use the Calderon method. First we introduce the
new variables U = (U1, . . . , U6), where

(U1, U2, U3) = Λ(s,D′)ue|s|ϕ, (U4, U5, U6) = (D3 + i|s|ϕy3)ue|s|ϕ,

and Λ is the pseudodifferential operator with the symbol (s2 + |ξ′|2 + 1)
1
2 . In the

new notations, problem (4.12) can be written in the form

Dy3U = M(y, s,D′)U+F in R
3× [0, 1], (U1, U2, U3)(y)|y3=0 = 0, U |y3= 1

N2
= 0,
(7.1)

where F = (0, fe|s|ϕ). Here M(y, s,D′) is the matrix pseudodifferential operator
with principal symbol M1(y, ζ) given by

M1(y, ζ) =
(

0 Λ1E3

A−1M21Λ−1
1 A−1M22

)
− i|s|ϕy3E6

(see [Y]). Here we set 	θ = (ξ1 + i|s|ϕy1 , ξ2 + i|s|ϕy2 , 0),
G(y1, y2) = (−∂�(y1, y2)/∂y1,−∂�(y1, y2)/∂y2, 1), Λ1 = |ζ|,M21(y, ξ′+i|s|∇y′ϕ(y)) =
((ξ0 + i|s|ϕy0(y))2 − µ((ξ1 + i|s|ϕy1(y))2 + (ξ2 + i|s|ϕy2(y))2))E3 − (λ+ µ)(y)	θT 	θ,
M22(y, ξ′) = −(λ+µ)(y)(	θTG+GT 	θ)−2µ	θGTE3, A = (λ+µ)(y)GTG+µ(y)|G|2E3.
Here 	θT denotes the transpose of the row vector 	θ.

Case A. Suppose that rµ(γ) = rλ+2µ(γ) = 0. Then ImΓ±
µ (γ) < 0 and ImΓ±

λ+2µ(γ) <
0, Therefore all the eigenvalues of the matrix M1(y, ζ) have negative imaginary
parts. There exists C1 > 0 such that

ImΓ±
µ (y, ζ) < −C1|ζ|, Im Γ±

λ+2µ(y, ζ) < −C1|ζ|, ∀(y, ζ) ∈ Bδ ×O(δ1).
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Using the arguments in §4 of Chapter 7 in [Ku], we obtain

‖χνU‖H2,s(G) ≤ C2(‖fe|s|ϕ‖H1,s(G) + ‖ue|s|ϕ‖H1,s(G)). (7.2)

This estimate implies (4.15).
Case B. Suppose that rµ(γ) �= rλ+2µ(γ), rµ(γ) �= 0, rλ+2µ(γ) �= 0. In this

case, the matrix M1 has four smooth eigenvalues given by (4.21)-(4.23) and the
corresponding six smooth eigenvectors s±1 , s±2 , s±3 given by the following formulae
(e.g., [IY8], [Y]):

s±1 =
(
(	θ + α±

λ+2µG)Λ−1
1 , α±

λ+2µ(	θ + α±
λ+2µG)Λ−2

1

)
, s±2 = (w±

2 , α
±
µΛ−1

1 w±
2 ),

s±3 = (w±
3 , α

±
µΛ−1

1 w±
3 ),

where we set

w±
2 = Λ−1

1 (−ξ2 − i|s|ϕy2 + α±
µ �y2 , ξ1 + i|s|ϕy1 − α±

µ �y1 , 0), (7.3)

w±
3 =

(
α±
µ (ξ1 + i|s|ϕy1 − α±

µ �y1), α
±
µ (ξ2 + i|s|ϕy2 − α±

µ �y2),−
2∑
k=1

(ξk + i|s|ϕyk
− α±

µ �yk
)2
)

Λ−2
1 .

Now we describe the construction of the pseudodifferential operator S. We take
the symbol S in the form S = (s+1 , s

+
2 , s

+
3 , s

−
1 , s

−
2 , s

−
3 ). Denote

S(y, ζ) =
(
S11(y, ζ) S12(y, ζ)
S21(y, ζ) S22(y, ζ)

)
, |ζ|2 = 1. (7.4)

Let S−1(y, ζ) be the inverse matrix to S. We extend the matrices S and S−1

within the C3-class in ζ such that for |ζ| ≥ 1, the elements of these matrices are
the homogeneous functions of order zero. Following [T] and using the change of
variables W = S−1(y, s,D′)U which is constructed above, we can reduce system
(7.1) to the form

Dy3W = M̃(y, s,D′)W + T (y, s,D′)W + F̃, (7.5)

where the matrix M̃ is diagonal and T ∈ L∞(0, 1
N2 ;L(H1,s(R3),H1,s(R3))). Now

using a standard argument (see [Ku], p.241), we can estimate the last three com-
ponents of W as follows:

√
s‖(W4,W5,W6)‖H1,s(∂G) ≤ C3(‖fe|s|ϕ‖H1,s(G) + ‖ue|s|ϕ‖H2,s(G)), (7.6)

where the constant C3 is independent of N. Since the Lopatinskii determinant
detS11(γ) is not equal to zero, by (7.6) we have√

|s|‖(W1,W2,W3)‖H1,s(∂G) ≤ C4(‖fe|s|ϕ‖H1,s(G) + ‖ue|s|ϕ‖H2,s(G)). (7.7)

By (7.6), (7.7) and (4.30) we have (4.15).
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Case C. Suppose that rµ(γ) = rλ+2µ(γ) �= 0. Obviously we may assume

Im
Γ+
µ

|s| (γ) ≥ 0. (7.8)

Otherwise (4.15) has been already obtained in Case A. The matrix M1(γ) has only
two eigenvalues given by (4.21)-(4.23). Moreover it is known that the Jordan form
of the matrix M1(γ) has two Jordan blocks of the form

M± =

Γ±
µ (γ) 1 0
0 Γ±

µ (γ) 0
0 0 Γ±

µ (γ)

 .

Similarly to Case B, following [T] and using the change of variablesW = S−1(y, s,D′)U
where S−1 is constructed through S, we can reduce the system to (7.5) where the
matrix M̃(y, ζ) is represented by

M̃(y, ζ) =
(
M̃+(y, ζ) 0

0 M̃−(y, ζ)

)
with

M̃±(y, ζ) =

Γ±
λ+2µ(y, ζ) 0 m±

13(y, ζ)
0 Γ±

µ (y, ζ) m±
23(y, ζ)

0 0 Γ±
µ (y, ζ)

 ,

and the operator T is in L∞ (
0, 1

N2 ;L(H1,s(R3),H1,s(R3))
)
,m±

13(y, s,D
′),m±

23(y, s,D
′)

are first order operators and

‖F̃‖L2(R1;H1,s(R3)) ≤ C5(‖fe|s|ϕ‖H1,s(G) + ‖U‖L2(R1;H1,s(R3))).

Now we describe the construction of the pseudodifferential operator S. We take
the symbol S in the form S = (s+1 , s

+
2 , s

+
3 , s

−
1 , s

−
2 , s

−
3 ). Here

s±1 =
(
(	θ + α±

λ+2µG)Λ−1
1 , α±

λ+2µ(	θ + α±
λ+2µG)Λ−2

1

)
, s±2 = (w±

2 , αµΛ
−1
1 w±

2 )

are the eigenvectors of the matrix M1(y, ζ) on the sphere ζ ∈ S3 which corresponds
to the eigenvalue Γ±

λ+2µ (with w±
2 given by (7.3)) and the vector s±3 is given by the

formula

s±3 = E±s±, E± =
1

2πi

∫
C±

(z −M1(y, ζ))−1dz,

where C± are small circles, oriented counterclockwise, centered at Γ±
µ (γ), and s±

solves the equation M1(γ)s± − Γ±
µ (γ)s± = s±1 (γ). For the explicit formula for the

vector s± see [IY7]. By (7.8) the circles C± may be taken such that the disks
bounded by these circles do not intersect, provided that δ1, δ are taken sufficiently
small. Note that the vectors s±j ∈ C2(Bδ ×Oδ1) are homogeneous functions of the



LAME SYSTEM 37

order zero in ζ. Now using a standard argument (see [Ku], p.241), we can estimate
the last three components of W as follows:

‖(W4,W5,W6)‖
H

3
2 ,s(∂G)

≤ C6(‖fe|s|ϕ‖H1,s(G) + ‖ue|s|ϕ‖H2,s(G)), (7.9)

where the constant C6 is independent of N. Now we need to estimate the first three
components of the vector function W on ∂G. Thanks to the homogeneous boundary
conditions for U4, U5, and U6, we have

S11(y′, 0, s,D′)(W1,W2,W3)

= − S12(y′, 0, s,D′)(W4,W5,W6) + T−1(y′, 0, s,D′)U, (7.10)

where T−1 ∈ L(H1,s(R3),H2,s(R3)) and we set

S(y, ζ) =
(
S11(y, ζ) S12(y, ζ)
S21(y, ζ) S22(y, ζ)

)
.

The principal symbol of the pseudodifferential operator S11 is a 3 × 3 matrix such
that the j-th column equals the last three coordinates of the vector s+j . Therefore
detS11(γ) �= 0. From (7.9), (7.10) and G̊arding’s inequality, we obtain∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥
L2(∂G)×H1,s(∂G)

≤ C7(‖fe|s|ϕ‖H1,s(G) + ‖ ue|s|ϕ‖H2(G)), (7.11)

where the constant C7 is independent of N . By (7.11) and (4.30), we obtain (4.15).
�

Acknowledgements. Most of this paper has been written during the stays of the
first named author at Graduate School of Mathematical Sciences of the University
of Tokyo in 2003 and 2004. The author thanks the school for the hospitality.
The authors are deeply indebted to Prof. Kazuhiro Yamamoto for the careful
explanation of the results of the paper [Y]. The authors are grateful to Dr. S.
Guerrero for suggestions which improved the manuscript. The first named author
was supported partially by the NSF Grant DMS-0205148. The second author was
supported partly by Grant 15340027 from the Japan Society for the Promotion of
Science and Grant 15654015 from the Ministry of Education, Cultures, Sports and
Technology.

References

[A] A. Kh. Amirov, Integral Geometry and Inverse Problems for Kinetic Equa-
tions, VSP, Utrecht, 2001.

[BLR] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the
observation, control, and stabilization of waves from the boundary, SIAM J.
Control and Optim. 30 (1992), 1024 – 1065.

[BP] L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem
for the Schrödinger equation, Inverse Problems 18 (2002), 1537 – 1554.



38 O.Y. IMANUVILOV AND M. YAMAMOTO

[B1] M. Bellassoued, Distribution of resonances and decay of the local energy for
the elastic wave equations, Comm. Math. Phys. 215 (2000), 375-408.

[B2] M. Bellassoued, Carleman estimates and decay rate of the local energy for
the Neumann problem of elasticity, Progr. Nonlinear Differential Equations
Appl. 46 (2001), 15-36.
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[Hö] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin,
1963.

[INY] M. Ikehata, G. Nakamura and M. Yamamoto, Uniqueness in inverse prob-
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with stress boundary condition and the application to an inverse problem,
http://kyokan.ms.u-tokyo.ac.jp/users/preprint/preprint2004.html, Preprint
series UTMS 2004-2, (2004), Graduate School of Mathematical Sciences,
The University of Tokyo.

[Is1] V. Isakov, A nonhyperbolic Cauchy problem for �b�c and its applications
to elasticity theory, Comm. Pure and Applied Math. 39 (1986), 747–767.

[Is2] V. Isakov, Inverse Source Problems, American Mathematical Society, Prov-
idence, Rhode Island, 1990.

[Is3] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-
Verlag, Berlin, 1998.

[INW] V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the
Cauchy problem for the elasticity system with residual stress, Contemp.
Math. 333 (2003), 99–113.

[IsY] V. Isakov and M. Yamamoto, Carleman estimate with the Neumann bound-
ary condition and its applications to the observability inequality and inverse
hyperbolic problems, Contemp. Math. 268 (2000), 191–225.

[KK] M.A. Kazemi and M.V. Klibanov, Stability estimates for ill-posed Cauchy
problems involving hyperbolic equations and inequalities, Appl. Anal. 50
(1993), 93-102.



40 O.Y. IMANUVILOV AND M. YAMAMOTO
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