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Abstract. For a hyperbolic equation p(x, t)∂2
t u(x, t) = ∆u(x, t)+

∑n
j=1 qj(x, t)∂ju+

qn+1(x, t)∂tu+r(x, t)u in R
n×R with p ∈ C1 and q1, ...., qn+1, r ∈ L∞, we consider

the unique continuation and an inverse problem across a non-convex hypersurface

Γ. Let Γ be a part of the boundary of a domain and let ν(x) be the inward unit

normal vector to Γ at x. Then we prove the unique continuation near a point x0

across Γ if ∇p(x0, t) · ν(x0) < 0. Moreover we establish the conditional stability in

the continuation. Next we prove the conditional stability in the inverse problem of

determining a coefficient r(x) from Cauchy data on Γ over a time interval. The key

is a Carleman estimate in level sets of paraboloid shapes.

§1. Introduction and main result.
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2 A. AMIROV AND M. YAMAMOTO

We consider a hyperbolic equation:

(Au)(x, t) ≡ p(x, t)∂2
t u(x, t) − ∆u(x, t)

−
n∑

k=1

qk(x, t)∂ku(x, t)− qn+1(x, t)∂tu(x, t) − r(x, t)u(x, t),

x ∈ R
n, t ∈ R, (1.1)

where p ∈ C1(Rn
x × Rt), > 0, qj , r ∈ L∞

loc(R
n
x × Rt) for 1 ≤ j ≤ n + 1. We always

set x = (x1, ..., xn) ∈ R
n, ∂t = ∂

∂t
, ∂2

t = ∂2

∂t2
, ∂j = ∂

∂xj
, 1 ≤ j ≤ n, etc. and

∆ =
∑n

j=1 ∂
2
j , Bρ(x0) = {x ∈ R

n; |x− x0| < ρ} with x0 ∈ R
n and ρ > 0.

Let Γ ⊂ R
n
x be a hypersurface of class C2. For small ρ > 0 and x0 ∈ Γ, the

hypersurface Γ divides the open ball Bρ(x0) into D+ and D−. Let ν = ν(x) be the

unit normal vector to Γ at x which is oriented inward to D+ and we set ∂u
∂ν

= ∇u ·ν.

In this paper, we discuss

(1) unique continuation

(2) inverse problem

First we consider:

Unique continuation. Let u = u(x, t) satisfy Au = 0 in D+ × (−T, T ) and

u = ∂u
∂ν

= 0 on Γ × (−T, T ). Then can we find a neighbourhood U of x0 where

u = 0?

This is the classical unique continuation, and there are many results. In the case

where the coefficients p, qj , r, 1 ≤ j ≤ n+1, are analytic, we can apply the Holmgren

theorem or Fritz John’s global Holmgren theorem (e.g., Rauch [28]), so that one can

prove the unique continuation across Γ, provided that Γ is not the characteristics

of the hyperbolic operator P . In the case where the coefficients are not analytic,
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for proving the unique continuation, one can apply Carleman estimates, and the

unique continuation holds if D+ is convex near Γ (e.g., Hörmander [11], Isakov [18],

[19], Khăıdarov [20]).

In particular, in the case where the coefficients are independent of t, Robbiano

[29] proved the unique continuation for not necessarily convex D+. Also see Lerner

[27]. The result by Robbiano was generalized by Hörmander [12] and Tataru [30]

where the analyticity of the coefficients in some components of (x, t) is essential. See

Eller, Isakov, Nakamura and Tataru [10] for applications to the Maxwell’s system

and the Lamé system.

The Carleman estimates used in Hörmander [12] and Tataru [30], are very diffi-

cult to be applied to inverse problems which we are going to consider in this paper.

On the other hand, even for the analytic coefficient case, the unique continuation

breaks for general domain D+ (i.e., in the case where Γ is across the characteristics

of P ). Moreover, in the case where D+ is not convex near Γ, there are very few

trials by classical Carleman estimates, which are applicable also to the inverse prob-

lems. In the case where Γ is flat and A is a ultrahyperbolic operator, Amirov [2] -

[4] proved a Carleman estimate to apply it to an inverse problem of determining a

source term by lateral Cauchy data. Isakov [19] established a Carleman estimate

for a hyperbolic operator A and proved a unique continuation result across flat Γ.

In Amirov [2] - [4], Isakov [19], we note that the principal coefficient p cannot be

constant. On the other hand, in the case of p ≡ 1, Khăıdarov [20] showed a coun-

terexample of the nonuniqueness in the continuation: there exists u ∈ C∞(Rn ×R)
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and q ∈ C∞(Rn × R) such that




∂2
t u = ∆u− q(x, t)∂tu in R

n × R,

u = 0 in x1 ≥ 0,

u 6= 0 in x1 < 0.

Note that q depends on t also. As for other counterexmples, see Alinhac [1],

Kumano-go [25]. If q is t-independent or analytic for some component of (x, t),

then we can know that if





∂2
t u = ∆u− q(x, t)∂tu in R

n × R,

u = 0 in x1 ≥ 0,

then for any x̃ = (0, x2, ..., xn), there exist a neighbourhood U of x̃ and t0 > 0 such

that u = 0 in U × (−t0, t0).

In this paper, in contrast with those existing papers, we will discuss a suffi-

cient condition on the principal coefficient p and the boundary Γ for the unique

continuation, under that

(1) the coefficients p, qj , r, 1 ≤ j ≤ n + 1, are not analytic in any components

of (x, t).

(2) D+ is not necessarily convex near Γ.

As is seen by the counterexample by Alinhac [1], Khăıdarov [20] and Kumano-go

[25] and by Amirov [2] - [4] and Isakov [19], we cannot expect the unique continua-

tion if p is constant. Furthermore for any Γ, we cannot have the unique continuation

across Γ. For this, we will assume that the normal derivative of p at x0 ∈ Γ is neg-

ative. For specifying the condition on Γ, we introduce

Definition. Let x0 ∈ Γ and κ > 0. We say that Γ satisfies the outer paraboloid

condition with κ at x0 if there exist a neighbourhood V of x0 and a paraboloid
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P which is tangential to Γ at x0 and that P ∩ V ⊂ D− and P is congruent to

x1 = κ
∑n

j=2 |xj |2 (after rotations, translation and symmetric transforms).

Now we are ready to state our first main result.

Theorem 1. Let x0 ∈ Γ \ ∂Γ. In (1.1), let us assume that





p ∈ C1(Rn
x × Rt), p > 0 in R

n
x × Rt,

qj , r ∈ L∞
loc(R

n
x × Rt), 1 ≤ j ≤ n+ 1,

(1.2)

∂p

∂ν
(x0, 0) < 0. (1.3)

Moreover Γ is assumed to satisfy the outer paraboloid condition with

κ <
− ∂p

∂ν
(x0, 0)

4(‖p‖L∞(Bρ(x0,0)) + 1)
. (1.4)

Let u ∈ H2(D+ × (−T, T )) satisfy

Au = 0 in D+ × (−T, T ) (1.5)

and

u =
∂u

∂ν
= 0 on Γ × (−T, T ). (1.6)

Then there exist a neighbourhood V of x0 and T1 ∈ (0, T ) such that

u = 0 in (V ∩D+) × (−T1, T1). (1.7)

Remark 1. Physically, V (x, t) = 1√
p(x,t)

corresponds to the wave speed, and so

assumption (1.3) means that ∂V
∂ν

(x0, 0) > 0, that is, the wave speed increases near

x0 along a transverse direction.

Notice that assumption (1.3) excludes constant principal coefficients, so that our

result is compatible with the counterexamples by [1], [20], [25].

By the definition, we see that a hyperplane Γ always satisfies condition (1.4),

because we can take κ = 0. Therefore Theorem 1 yields
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Corollary. We assume (1.2), (1.3), (1.5), (1.6) and that Γ is a hyperplane. Then

the conclusion of Theorem 1 is true.

The corollary corresponds with Isakov’s unique continuation [19].

Remark 2. As is seen from the proof, we can further specify V and T1 in conclusion

(1.7).

Thus we can sum up the unique continuation across Γ for the equation p(x, t)∂2
t u =

∆u+ q(x, t)∂tu as follows:

(1) Let p(x, t) and q(x, t) be t-independent. Then we can prove the unique

continuation across Γ which is flat or satisfies some geometric constraint

([12], [29], [30]).

(2) Let p ≡ 1 and q(x, t) be t-dependent without any analyticity. Then the

unique continuation across the flat Γ is not true in general (e.g., [20], [25]).

(3) Let ∂p
∂ν

< 0 and q ∈ L∞
loc(R

n
x × Rt). Then the unique continuation across Γ

is true under assumption (1.4).

Furthermore we can prove the conditional stability in the continuation.

Theorem 2. Under the same assumptions as in Theorem 1, let u ∈ H2(D+ ×

(−T, T )) satisfy

Au = f in D+ × (−T, T ) (1.8)

and

u = g,
∂u

∂ν
= h on Γ × (−T, T ). (1.9)

Then there exist a neighbourhood V of x0, T1 ∈ (0, T ) and constants C > 0,
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θ ∈ (0, 1) such that

‖u‖H1((V∩D+)×(−T1,T1)) ≤ CEθ(E1−θ + ‖u‖1−θ
H1(D+×(−T,T ))

). (1.10)

Here we set

E = ‖f‖L2(D+×(−T,T )) + ‖g‖
H

3
2 (Γ×(−T,T ))

+ ‖g‖H2(−T,T ;L2(Γ))

+‖h‖H2(−T,T ;L2(Γ)) + ‖h‖
L2(−T,T ;H

1
2 (Γ))

.

Next we will discuss an inverse problem: In (1.1), we assume that the zeroth

order coefficient r = r(x) is t-independent. Then determine r(x) by means of

lateral Cauchy data on Γ × (−T, T ).

Inverse Problem. Determine r = r(x) in some neighbourhood of x0 ∈ Γ by

u|Γ×(−T,T ) and ∂u
∂ν

|Γ×(−T,T ) where u satisfies Au = 0 in D+ × (−T, T ), and u(·, 0)

and ∂tu(·, 0) are given suitably in D+.

This kind of inverse problem is related with the unique continuation and the

paper by Bukhgeim and Klibanov [9] is the first work, where a Carleman esti-

mate and an inequality for a Volterra integral operator in t are essential. After

Bukhgeim and Klibanov [9], there are many papers with similar methodology con-

cerning determination of coefficients in hyperbolic or ultrahyperbolic equations by

lateral Cauchy data; Amirov [2] - [4], Bellassoued [6], Bellassoued and Yamamoto

[7], Bukhgeim [8], Imanuvilov and Yamamoto [14], [15], [16], Isakov [19], Khăıdarov

[20], [21], Klibanov [22], Klibanov and Timonov [23], Klibanov and Yamamoto [24],

Yamamoto [31]. As for similar inverse problems for a Schrödinger equation and a

parabolic equation, we refer to Baudouin and Puel [5], and Imanuvilov, Isakov and

Yamamoto [13], Imanuvilov and Yamamoto [17], respectively.
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In all the papers treating hyperbolic inverse problems except for Amriov [3], [4],

we have to assume that D+ is convex near Γ, because the grounding Carleman

estimate requires the convexity of D+. Therefore the uniqueness in the inverse

problem has been not studied for non-convex D+. We will solve this open problem:

the uniqueness and the conditional stability, which are local around x0.

Theorem 3. Let x0 ∈ Γ \ ∂Γ, and let us assume that (1.3) and (1.4) hold, and

let p = p(x) ∈ C1(D+), qj , ∂tqj ∈ L∞(D+ × (−T, T )), 1 ≤ j ≤ n + 1. Let

uℓ ∈ H2(D+ × (−T, T )), ℓ = 1, 2, satisfy

∂tuℓ ∈ H2(D+ × (−T, T )) ∩ L∞(D+ × (−T, T )), (1.11)

p(x)∂2
t uℓ(x, t) = ∆uℓ(x, t)

+

n∑

k=1

qk(x, t)∂kuℓ(x, t) + qn+1(x, t)∂tuℓ(x, t) + rℓ(x)uℓ(x, t),
(1.12)

uℓ(x, 0) = a(x), ∂tuℓ(x, 0) = b(x), x ∈ D+ (1.13)

and

‖∂tuℓ‖L∞(D+×(−T,T )), ‖uℓ‖H2(D+×(−T,T )), ‖∂tuℓ‖H2(D+×(−T,T )),

‖rℓ‖L∞(D+) ≤M, ℓ = 1, 2. (1.14)

We assume that

|a(x)| > 0 on D+. (1.15)

Then there exist a neighbourhood V of x0 and constants C > 0, θ ∈ (0, 1) which
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are dependent on M , a, b, p, qj , 1 ≤ j ≤ n+ 1, such that

‖r1 − r2‖L2(V∩D+)

≤C
{

1∑

k=0

(
‖∂k

t (u1 − u2)‖
H

3
2 (Γ×(−T,T ))

+‖∂k
t (u1 − u2)‖H2(−T,T ;L2(Γ)) +

∥∥∥∥∂
k
t

(
∂

∂ν
(u1 − u2)

)∥∥∥∥
H2(−T,T ;L2(Γ))

+

∥∥∥∥∂
k
t

(
∂

∂ν
(u1 − u2)

)∥∥∥∥
L2(−T,T ;H

1
2 (Γ))

}θ

. (1.16)

The proofs of our main theorems are based on a Carleman estimate with an

uncommon choice of a weight function whose derivation is, however, quite conven-

tional. Our grounding Carleman estimate is proved Section 2, where the weight

function is same as in Amirov [2] and different from Isakov’s one in [19], and our

Carleman estimate is suitable for treating non-convex D+.

This paper is composed of four sections. In Secion 2, we will establish a key

Carleman estimate and in Section 3, we will complete the proofs of Theorems 1

and 2. In Section 4, we will prove Theorem 3.

§2. A key Carleman estimate.

Let Γ ⊂ R
n be a C2-hypersurface such that 0 = (0, ..., 0) ∈ Γ \ ∂Γ and ν(0) =

(1, 0, ..., 0). Near 0, we will parametrize Γ by

x1 = γ(x2, ..., xn), |x2|2 + · · ·+ |xn|2 < ρ2. (2.1)

We assume that

−α0 ≡ (∂1p)(0, 0) < 0 (2.2)

κ <
α0

4(‖p‖L∞(Bρ(0,0)) + 1)
(2.3)



10 A. AMIROV AND M. YAMAMOTO

and

−κ
n∑

j=2

|xj |2 < γ(x2, ..., xn) if

n∑

j=2

|xj|2 < ρ2. (2.4)

Here and henceforth we set

Bρ(0, 0) = {(x, t) ∈ R
n+1; |x|2 + t2 < ρ2}, Bρ(0) = {x ∈ R

n; |x| < ρ}.

Furthermore we set

M1 = max{‖p‖C1(Bρ(0,0)), 1} (2.5)

Let

D− = {x ∈ Bρ(0) ⊂ R
n; x1 < γ(x2, ..., xn)}

and

D+ = Bρ(0) \D−.

First let us choose α > 0 arbitrarily such that α0 > α. Then there exists a

sufficiently small δ0 > 0 such that 0 < δ0 < min{1, ρ2} and

(∂1p)(x, t) < −α if |x|2 + t2 ≤ δ0. (2.6)

This is possible by (2.2).

Next by (2.3), we can choose N > 0 such that

κ <
1

2N
<

α

4(M0 + 1)
, (2.7)

where we set

M0 = ‖p‖L∞(Bρ(0,0)).

For κ and N , we will further choose sufficiently small ε ∈ (0, 1) such that

ε2
∣∣∣∣max

{
κ

1 − 2Nκ
,

1

2N

}∣∣∣∣
2

+
ε

1 − 2Nκ
+ ε+

2κNε

1 − 2Nκ
≤ δ0 (2.8)
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and

αN − 2(M2
0 +M0) > 2(M2

1 +M1)

×
{
ε2
∣∣∣∣max

{
κ

1 − 2Nκ
,

1

2N

}∣∣∣∣
2

+
ε

1 − 2Nκ
+ ε+

2κNε

1 − 2Nκ

} 1
2

,

N2 > M1

{
ε2
∣∣∣∣max

{
κ

1 − 2Nκ
,

1

2N

}∣∣∣∣
2

+
ε

1 − 2Nκ
+ ε+

2κNε

1 − 2Nκ

}
.

(2.9)

Here we note that (2.7) implies that 1 − 2Nκ > 0 and αN − 2(M0 + 1) > 0. We

define a weight function by

ψ(x, t) = Nx1 +
1

2

n∑

j=2

|xj |2 +
1

2
t2 +

1

2
ε (2.10)

and

Qµ =

{
(x, t) ∈ R

n+1; x1 > −κ
n∑

j=2

|xj|2,
n∑

j=2

|xj|2 < δ0, ψ(x, t) < µ

}
(2.11)

with ε
2
< µ.

We note that

ψ(x, t) >
ε

2
if x1 > −κ

n∑

j=2

|xj|2. (2.12)

In fact, by x1 > −κ∑n
j=2 |xj|2, we have

−Nκ
n∑

j=2

|xj|2 +
1

2

n∑

j=2

|xj |2 +
ε

2
≤ Nx1 +

1

2

n∑

j=2

|xj|2 +
1

2
t2 +

ε

2
= ψ(x, t).

By (2.7), we obtain

ε

2
≤ ε

2
+

(
1

2
−Nκ

) n∑

j=2

|xj|2 ≤ ψ(x, t).

In particular, we see by (2.12) that

Qµ 6= ∅ if µ >
ε

2
.

Then we show our key Carleman estimate:
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Lemma 1. Let ‖qj‖L∞(Bρ(0,0)), ‖r‖L∞(Bρ(0,0)) ≤M2 for 1 ≤ j ≤ n+ 1. Under the

above assumptions, there exist constants C = C(p, ε,M2) > 0, η = η(p, ε,M2) > 0

and s0 = s0(p, ε,M2) > 0 such that

∫

Qε

(s|∇u|2 + s|∂tu|2 + s3u2) exp(2sψ−η)dxdt

≤C
∫

Qε

|Au|2 exp(2sψ−η)dxdt (2.13)

for all u ∈ H2
0 (Qε) and s ≥ s0.

Remark 3. In our Carleman estimate (2.13), choice (2.10) of the weight function

is a key and was established in Amirov [2]. In fact, ψ is same as in a Carleman esti-

mate for a parabolic operator (p.73 in Lavrent’ev, Romanov and Shishat·skĭı[26]),

which is not conventional for the hyperbolic operator. For example, for the unique

continuation across flat Γ, Isakov [19] uses the weight function

exp(2s exp[η(−2(x1 − β1)
2 −

n∑

j=2

|xj |2 − θ2t2 + β2)])

where β1 > 0, β2, θ > 0 are constants. His weight function is isotropic with respect

to t and all the components x1, ..., xn. With our choice, we can prove the unique

continuation whose character has a similarity to the parabolic case.

Proof of Lemma 1. Let us set

t = xn+1, ζ = (ζ1, ..., ζn+1), ξ = (ξ1, ..., ξn+1),

ζ ′ = (ζ1, ..., ζn), ξ′ = (ξ1, ..., ξn), ∇ = (∂1, ..., ∂n), ∇x,t = (∂1, ...., ∂n, ∂t),

A0 = p(x, t)∂2
t − ∆, A(x, t, ζ) = p(x, t)ζ2

n+1 −
n∑

k=1

ζ2
k .

Then it is sufficient to prove

∫

Qε

(s|∇u|2 + s|∂tu|2 + s3u2) exp(2sψ−η)dxdt

≤C
∫

Qε

|A0u|2 exp(2sψ−η)dxdt (2.14)
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for all u ∈ C∞
0 (Qε) and for all sufficiently large s > 0.

In fact, since

|Au|2 ≤ |A0u|2 + C(|u|2 + |∇u|2 + |∂tu|2)

in Qε by (1.2), estimate (2.14) implies conclusion (2.13) for all u ∈ C∞
0 (Qε) by

taking s sufficiently large. Since C∞
0 (Qε) is dense in H2(Qε), a usual density

argument completes the proof.

In order to prove (2.14), we can apply a general result by Hörmander [11], Isakov

[18], [19], which gives a sufficient condition on ψ−η and A0 in order that a Carleman

estimate holds true. Here we use the version by Isakov (e.g., Theorem 3.2.1 in [19]).

We set

ϕ = ψ−η, A = A(x, t, ζ).

By [19], we have to verify: If

A(x, t, ζ) = 0, ζ = ξ + is∇x,tϕ, ζ 6= 0, ξ ∈ R
n+1, (x, t) ∈ Qε, (2.15)

then

J(x, t, ζ) ≡
n+1∑

j,k=1

(∂j∂kϕ)
∂A

∂ζj

∂A

∂ζk
+

1

s
ℑ
(

n+1∑

k=1

(∂kA)
∂A

∂ζk

)
> 0, (x, t) ∈ Qε. (2.16)

By J1 and J2, we denote the first and the second terms at the right hand side of

(2.16) respectively. First we have





∂jϕ = −η(∂jψ)ψ−η−1,

∂j∂kϕ = η(η + 1)(∂jψ)(∂kψ)ψ−η−2

−η(∂j∂kψ)ψ−η−1, 1 ≤ j, k ≤ n+ 1,

ζ = ξ − isηψ−η−1∇x,tψ.

(2.17)
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Therefore (2.15) is equivalent to

p(ξ2n+1 − s2η2ψ−2η−2(∂n+1ψ)2) = |ξ′|2 − s2η2ψ−2η−2|∇ψ|2 (2.18)

and

pξn+1∂n+1ψ = (ξ′ · ∇ψ). (2.19)

Then, by (2.17), we have

J1(x, t, ζ) =
n+1∑

j,k=1

η(η + 1)(∂jψ)(∂kψ)ψ−η−2 ∂A

∂ζj

∂A

∂ζk

−
n+1∑

j,k=1

η(∂j∂kψ)ψ−η−1 ∂A

∂ζj

∂A

∂ζk

=η(η + 1)ψ−η−2

∣∣∣∣∣∣

n+1∑

j=1

(∂jψ)
∂A

∂ζj

∣∣∣∣∣∣

2

−
n+1∑

j=2

ηψ−η−1

∣∣∣∣
∂A

∂ζj

∣∣∣∣
2

≡J11 + J12.

Here, by (2.17) and (2.19), we have

n+1∑

j=1

(∂jψ)
∂A

∂ζj

=(2p(∂n+1ψ)ξn+1 − 2(∇ψ · ξ′)) + 2isηψ−η−1(|∇ψ|2 − p|∂n+1ψ|2)

=2isηψ−η−1(|∇ψ|2 − p|∂n+1ψ|2),

so that

J11(x, t, ζ) = 4s2η3(η + 1)ψ−3η−4(|∇ψ|2 − p|∂n+1ψ|2)2.

Similarly we can calculate to obtain

J12(x, t, ζ) = −4ηψ−η−1




n∑

j=2

|ξj|2 + p2|ξn+1|2


− 4s2η3ψ−3η−3




n∑

j=2

|∂jψ|2 + p2|∂n+1ψ|2




≥− 4ηψ−η−1(|ξ′|2 + p2|ξn+1|2) − 4s2η3ψ−3η−3(|∇ψ|2 + p2|∂n+1ψ|2).
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Therefore, by (2.18) we obtain

J1(x, t, ζ) ≥ −4ηψ−η−1(|ξ′|2 + p2|ξn+1|2)

+4s2η3ψ−3η−4





(η + 1)


N2 +

n∑

j=2

|xj|2 − pt2




2

− ψ


N2 +

n∑

j=2

|xj |2 + p2t2









= − 4ηψ−η−1(p+ 1)pξ2n+1

+4s2η3ψ−3η−4

{
(η + 1)



N2 +

n∑

j=2

|xj |2 − pt2




2

−ψ


2N2 + 2

n∑

j=2

|xj |2 + (p2 − p)t2



}
. (2.20)

Next we will calculate J2. For 1 ≤ k ≤ n, we have

(∂kA)
∂A

∂ζk
= (∂kp)ζ

2
n+1(−2)ζk

= − 2(∂kp){(ξ2n+1 − s2η2ψ−2η−2|∂n+1ψ|2) − 2isηψ−η−1(∂n+1ψ)ξn+1}

×{ξk + isηψ−η−1(∂kψ)}

and

ℑ
(

(∂kA)
∂A

∂ζk

)

=2sηψ−η−1(∂kp){2(∂n+1ψ)ξn+1ξk − (∂kψ)(ξ2n+1 − s2η2ψ−2η−2|∂n+1ψ|2)}.

Moreover we have

(∂tA)
∂A

∂ζn+1

=2p(∂tp){(ξ2n+1 − s2η2ψ−2η−2|∂n+1ψ|2) − 2isηψ−η−1(∂n+1ψ)ξn+1}

×{ξn+1 + isηψ−η−1(∂n+1ψ)}

and

ℑ
(

(∂tA)
∂A

∂ζn+1

)

=2p(∂tp)sηψ
−η−1{(∂n+1ψ)(ξ2n+1 − s2η2ψ−2η−2|∂n+1ψ|2) − 2(∂n+1ψ)ξ2n+1}.
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Therefore we obtain

J2(x, t, ζ) = 2ηψ−η−1[−{(∇p · ∇ψ) + p(∂tp)(∂n+1ψ)}ξ2n+1 + 2(∇p · ξ′)(∂n+1ψ)ξn+1]

+2s2η3ψ−3η−3|∂n+1ψ|2{(∇p · ∇ψ) − p(∂tp)∂n+1ψ}. (2.21)

On the other hand, let (x, t) ∈ Qε. Then

−κ
n∑

j=2

|xj|2 ≤ x1 < − 1

2N

n∑

j=2

|xj |2 −
1

2N
t2 +

ε

2N
≤ ε

2N
, (2.22)

so that

1 − 2Nκ

2N

n∑

j=2

|xj|2 <
ε

2N
,

that is,
n∑

j=2

|xj |2 ≤ ε

1 − 2Nκ
. (2.23)

By (2.22), we have

|x1| ≤ max

{
εκ

1 − 2Nκ
,
ε

2N

}
. (2.24)

Moreover, by (2.22) and (2.23), we obtain

−κ εN

1 − 2Nκ
+

1

2
t2 < Nx1 +

1

2
t2 +

n∑

j=2

|xj |2 <
ε

2
,

that is,

t2 < ε+
2κNε

1 − 2Nκ
. (2.25)

Therefore, in terms of (2.8), we have

|x|2 + t2 ≤ ε2
∣∣∣∣max

{
κ

1 − 2Nκ
,

1

2N

}∣∣∣∣
2

+
ε

1 − 2Nκ
+ ε+

2κNε

1 − 2Nκ

≡µ0(ε) ≤ δ0. (2.26)
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Hence, by (2.18) and the Schwarz inequality, we obtain

− {(∇p · ∇ψ) + p(∂tp)(∂n+1ψ)}ξ2n+1 + 2(∇p · ξ′)(∂n+1ψ)ξn+1

≥− {(∇p · ∇ψ) + p(∂tp)(∂n+1ψ)}ξ2n+1 − |∇p||∂n+1ψ|(|ξ′|2 + |ξn+1|2)

= − {(∇p · ∇ψ) + p(∂tp)(∂n+1ψ) + |∇p||∂n+1ψ|(p+ 1)}ξ2
n+1

−|∇p||∂n+1ψ|s2η2ψ−2η−2(|∇ψ|2 − p|∂n+1ψ|2).

Therefore, in terms of (2.26), inequality (2.21) yields

J2(x, t, ζ) ≥ −2ηψ−η−1{(∇p · ∇ψ) + p(∂tp)(∂n+1ψ) + |∇p||∂n+1ψ|(p+ 1)}ξ2
n+1

+2s2η3ψ−3η−3{((∇p · ∇ψ) − p(∂tp)∂n+1ψ)(∂n+1ψ)2 − |∇p||∂n+1ψ|(|∇ψ|2 − p|∂n+1ψ|2)}

≥ − 2ηψ−η−1{N(∂1p) + 2(M2
1 +M1)

√
µ0(ε)}ξ2n+1 − 2s2η3ψ−3η−3 × C(N,M1, δ0).

(2.27)

Here and henceforth C(N,M1, δ0) > 0 denotes generic constants which are inde-

pendent of η > 0 and s > 0. Similarly, by (2.26), we have

(p+ 1)ξ2n+1 < (M0 + 1)ξ2n+1

and

(η + 1)


N2 +

n∑

j=2

|xj|2 − pt2




2

−


2N2 + 2

n∑

j=2

|xj |2 + (p2 − p)t2


ψ

≥(η + 1)(N2 −M1µ0(ε))
2 − C(N,M1, δ0),

so that (2.20) implies

J1(x, t, ζ) ≥ 4s2η3ψ−3η−4{η(N2 −M1µ0(ε))
2 − C(N,M1, δ0)}

−4ηψ−η−1(M2
0 +M0)ξ

2
n+1. (2.28)
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Estimates (2.27) and (2.28) yield

J(x, t, ζ) ≥ 2ηψ−η−1ξ2n+1(−N(∂1p) − 2(M2
0 +M0) − 2(M2

1 +M1)
√
µ0(ε))

+4s2η3ψ−3η−3
{
η(N2 −M1µ0(ε))

2 − (1 + ε)C(N,M1, δ0)
}
.

By the first inequality in (2.9) and (2.6), we have

−N(∂1p) − 2(M2
0 +M0) − 2(M2

1 +M1)
√
µ0(ε)

>αN − 2(M2
0 +M0) − 2(M2

1 +M1)
√
µ0(ε) ≡ µ1(N,M1, δ0, ε) > 0.

Moreover, by the second inequality in (2.9), we choose η > 0 sufficiently large, so

that

η(N2 −M1µ0(ε))
2 − (1 + ε)C(N,M1, δ0) ≡ µ2(N,M1, δ0, ε) > 0.

Hence we obtain

J(x, t, ζ) ≥ 2ηψ−η−1ξ2n+1µ1(N,M1, δ, ε) + 4s2η3ψ−3η−3µ2(N,M1, δ0, ε)

for (x, t) ∈ Qε if (2.15) holds. Thus the proof of Lemma 1 is complete.

§3. Proof of Theorem 2.

It is sufficient to prove Theorem 2 because Theorem 1 follows directly from Theorem

2. On the basis of Lemma 1, a Carleman estimate, we introduce a cut-off function

and apply a usual argument (e.g., Chapter VII in Hörmander [11], Chapter 3 in

Isakov [19]).

Since ∆ is invariant with respect to rotations, translation and symmetric trans-

forms of the coordinate system, without loss of generality, we may assume that

x0 = 0 = (0, ..., 0), ν(x0) = (1, 0, ..., 0) and that Γ is given by (2.1) near 0. There-

fore for κ > 0 satisfying (1.4), we choose δ0, N , ε such that (2.6) - (2.9) hold. Let

ψ be defined by (2.10) and let us set ϕ = ψ−η for sufficiently large η > 0.
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First we will determine the boundary of Qε. By (2.10) and (2.11), for 0 < µ ≤ ε,

we have

∂Qµ =

{
(x, t) ∈ R

n+1; x1 = γ(x2, ..., xn),

n∑

j=2

|xj|2 < δ0, ψ(x, t) < µ

}

⋃
{

(x, t) ∈ R
n+1; x1 > γ(x2, ..., xn),

n∑

j=2

|xj |2 < δ0, ψ(x, t) = µ

}

⋃
{

(x, t) ∈ R
n+1; x1 > γ(x2, ..., xn),

n∑

j=2

|xj |2 = δ0, ψ(x, t) < µ

}

≡∂Q1
µ ∪ ∂Q2

µ ∪ ∂Q3
µ. (3.1)

We can prove that

∂Q3
µ = ∅.

In fact, since x1 > −κ∑n
j=2 |xj |2 and

∑n
j=2 |xj|2 ≤ δ0 by (2.23), we have

−2Nκ
n∑

j=2

|xj|2 +
n∑

j=2

|xj |2 + t2 < 2Nx1 +
n∑

j=2

|xj |2 + t2 = 2ψ(x, t)− ε < 2µ− ε ≤ ε,

that is, (1− 2Nκ)δ0 + t2 < ε by 1− 2Nκ > 0. Moreover (2.8) implies ε
1−2Nκ

< δ0,

so that ε+ t2 < ε, which is impossible.

Moreover

∂Qj
µ ⊂ Q

j
ε, j = 1, 2,

and it follows from (2.25) that (x, t) ∈ Qε implies

|t| ≤
(
ε+

2κNε

1 − 2Nκ

) 1
2

≡ t0, (3.2)

so that

∂Q1
µ ⊂ {x; x1 = γ(x2, ..., xn)} × {|t| ≤ t0},

∂Q2
µ ⊂ {x; ψ(x, t) = µ} for 0 < µ ≤ ε. (3.3)
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Now we will proceed to the proof of Theorem 2. By the extension theorem, there

exists F ∈ H2(D+ × (−T, T )) such that





F = g,
∂F

∂ν
= h on Γ × (−T, T ),

‖F‖2
H2(D+×(−T,T )) ≤ C

(
‖g‖2

H
3
2 (Γ×(−T,T ))

+ ‖g‖2
H2(−T,T ;L2(Γ))

+‖h‖2
H2(−T,T ;L2(Γ)) + ‖h‖2

L2(−T,T ;H
1
2 (Γ))

)
≡ CD.

(3.4)

Set u− F = v, and we have






Av = f − AF in D+ × (−T, T ),

v =
∂v

∂ν
= 0 on Γ × (−T, T ).

(3.5)

Let us fix 0 < ε0 <
ε
8 arbitrarily and let us introduce a cut-off function χ =

χ(x, t) ∈ C∞
0 (Rn+1) such that 0 ≤ χ ≤ 1 and

χ(x, t) =

{
1, ψ(x, t) ≤ ε− 2ε0,

0, ε− ε0 ≤ ψ(x, t) ≤ ε.
(3.6)

We set

w = χv.

Then, by the choice of ε,N, κ, noting (3.2) - (3.4), we see that

w ∈ H2
0 (Qε).

By (3.5), we have

Aw = 2p(∂tp)(∂tχ) + pv(∂2
t χ)

−2∇v · ∇χ− v∆χ−
n+1∑

j=1

(qj∂jχ)v + χ(f − AF ) in Qε.
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Henceforth C > 0 denotes generic constants which are independent of s > 0.

Therefore we can apply Lemma 1 to Aw, so that

∫

Qε

(s3|w|2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C
∫

Qε

∣∣∣∣∣∣
2p(∂tp)(∂tχ) + pv(∂2

t χ) − 2∇v · ∇χ− v∆χ−
n+1∑

j=1

(qj∂jχ)v

∣∣∣∣∣∣

2

e2sϕdxdt

+C

∫

Qε

|f − AF |2e2sϕdxdt.

By (3.6), the first integral at the right hand side is not zero only if ε − 2ε0 ≤

ψ(x, t) ≤ ε− ε0, that is, ψ(x, t)−η ≤ (ε− 2ε0)
−η. Hence (3.4) yields

∫

Qε

(s3|w|2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C‖u‖2
H1(Qε) exp(2s(ε− 2ε0)

−η) + Ce2sC(‖f‖2
L2(Qε) + D)

for all large s > 0. Since

∫

Qε

(s3|w|2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≥
∫

Qε−3ε0

(s3|v|2 + s|∇v|2 + s|∂tv|2)e2sϕdxdt

≥ exp(2s(ε− 3ε0)
−η)

∫

Qε−3ε0

(s3|v|2 + s|∇v|2 + s|∂tv|2)dxdt,

by means of (3.6), we obtain

exp(2s(ε− 3ε0)
−η)

∫

Qε−3ε0

(s3|v|2 + s|∇v|2 + s|∂tv|2)dxdt

≤C‖u‖2
H1(Qε) exp(2s(ε− 2ε0)

−η) + Ce2sC(‖f‖2
L2(D+×(−T,T )) + D),

that is, there exists a constant s0 > 0 such that

‖v‖2
H1(Qε−3ε0

) ≤ C‖u‖2
H1(Qε)e

−sµ3 + Ce2sCD1 (3.7)
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for all s ≥ s0. Here we set µ3 = 2((ε − 3ε0)
−η − (ε − 2ε0)

−η) > 0 and D1 =

D + ‖f‖2
L2(D+×(−T,T )).

In (3.7), setting s+ s0 by s, we replace C by C′ = Ce2s0C , so that we see that

(3.7) holds for all s ≥ 0. If D1 = 0 in (3.7), then u = v and

‖u‖2
H1(Qε−3ε0

) ≤ C‖u‖2
H1(Qε)e

−sµ3

for all s > 0, so that letting s −→ ∞, we have u = 0 in Qε−3ε0
. Therefore conclusion

(1.10) holds. Next let D1 > 0. If ‖u‖2
H1(Qε) ≤ D1, then conclusion (1.10) is obtained

already.

If ‖u‖2
H1(Qε) > D1, then we can set

s =
1

2C + µ3
log

‖u‖2
H1(Qε)

D1
> 0.

Then (3.7) yields

‖v‖2
H1(Qε−3ε0

) ≤ 2CD
µ3

2C+µ3

1 ‖u‖
4C

2C+µ3

H1(Qε).

By definition (2.11) of Qε−3ε0
and ε− 3ε0 >

1
2ε, we see that Qε−3ε0

is a non-empty

open set. Hence (1.10) follows. Thus the proof of Theorem 2 is complete.

§4. Proof of Theorem 3.

We follow the argument by Imanuvilov and Yamamoto [14], [15], and the new

ingredient is our Carleman estimate Lemma 1. Let us set

u = u1 − u2, d = r1 − r2.

Then

(Au)(x, t) ≡ p(x)∂2
t u(x, t) − ∆u(x, t)

−
n∑

k=1

qk(x, t)∂ku(x, t) − qn+1(x, t)∂tu(x, t)− r1(x)u(x, t) = d(x)u2(x, t)

in D+ × (−T, T ), (4.1)
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u(x, 0) = ∂tu(x, 0) = 0, x ∈ D+ (4.2)

and

u(x, t) = (u1 − u2)(x, t) ≡ g(x, t),

∂u

∂ν
(x, t) =

∂

∂ν
(u1 − u2)(x, t) ≡ h(x, t), (x, t) ∈ Γ × (−T, T ). (4.3)

Here, by the smoothness of u1 − u2, we note that ∂k
t u = ∂k

t
∂u
∂ν

= 0, k = 0, 1 on

Γ × {t = 0}.

Similarly to (3.4), we can choose F ∈ H2(D+ × (−T, T )) ∩H3(−T, T ;L2(D+))

such that

F = g,
∂F

∂ν
= h on Γ × (−T, T ), (4.4)

1∑

k=0

‖∂k
t F‖2

H2(D+×(−T,T )) ≤ C

(
1∑

k=0

(‖∂k
t g‖2

H
3
2 (Γ×(−T,T ))

+ ‖∂k
t g‖2

H2(−T,T ;L2(Γ))

+‖∂k
t h‖2

H2(−T,T ;L2(Γ)) + ‖∂k
t h‖2

L2(−T,T ;H
1
2 (Γ))

)

)
≡ CD2. (4.5)

Set

v = u− F.

Then we have

Av = d(x)u2(x, t) −AF in D+ × (−T, T ) (4.6)

v(x, 0) = −F (x, 0), ∂tv(x, 0) = −(∂tF )(x, 0), x ∈ D+ (4.7)

and

v =
∂v

∂ν
= 0 on Γ × (−T, T ). (4.8)

Similarly to Section 3, we can assume that x0 = (0, ..., 0), ν(x0) = (1, 0, ..., 0)

and that Γ is given by (2.1) near 0. For κ > 0 satisfying (1.4), we can choose

δ0, N, ε such that (2.6) - (2.9) hold. We note (3.3).
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For fixed ε0 ∈
(
0, ε

8

)
, we choose the cut-off function χ defined by (3.6). We set

t = xn+1, ∂t = ∂n+1,

ϕ(x, t) = ψ(x, t)−η (4.9)

with η > 0 given in Lemma 1, and

z = (∂tv)e
sϕχ in Qε. (4.10)

Then, by (3.3) and (3.6), we see that

z ∈ H2
0 (Qε). (4.11)

Moreover, by (4.6), we can verify

Az = d(∂tu2)e
sϕχ− ∂t(AF )esϕχ+

n+1∑

j=1

(∂tqj)(∂jv)e
sϕχ

+s{−2∇ϕ · ∇z + 2p(∂tϕ)(∂tz) + (Aϕ+ r1ϕ)z} − s2(p|∂tϕ|2 − |∇ϕ|2)z

+2esϕ{p(∂2
t v)(∂tχ) − (∇(∂tv) · ∇χ)} + (∂tv)e

sϕ(Aχ+ r1χ) in Qε.

(4.12)

In fact,

∂jz = (∂t∂jv)e
sϕχ+ (∂tv)s(∂jϕ)esϕχ+ (∂tv)e

sϕ∂jχ, (4.13)

that is,

(∂t∂jv)e
sϕχ = ∂jz − (∂tv)s(∂jϕ)esϕχ− (∂tv)e

sϕ∂jχ, 1 ≤ j ≤ n+ 1. (4.14)
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Therefore, by (4.13) and (4.14), we have

∂2
j z = (∂t∂

2
j v)e

sϕχ+ 2(∂t∂jv)s(∂jϕ)esϕχ+ 2(∂t∂jv)e
sϕ∂jχ

+2(∂tv)s(∂jϕ)esϕ∂jχ+ (∂tv)s(∂
2
jϕ)esϕχ+ (∂tv)s

2|∂jϕ|2esϕχ+ (∂tv)e
sϕ∂2

jχ

=(∂t∂
2
j v)e

sϕχ+ 2s(∂jϕ){∂jz − (∂tv)s(∂jϕ)esϕχ− (∂tv)e
sϕ∂jχ}

+2(∂t∂jv)e
sϕ∂jχ+ 2(∂tv)s(∂jϕ)esϕ∂jχ+ (∂tv)s(∂

2
jϕ)esϕχ

+(∂tv)s
2|∂jϕ|2esϕχ+ (∂tv)e

sϕ∂2
jχ

=(∂t∂
2
j v)e

sϕχ+ 2s(∂jϕ)∂jz + (s(∂2
jϕ) − s2|∂jϕ|2)(∂tv)e

sϕχ

+2(∂t∂jv)e
sϕ∂jχ+ (∂tv)e

sϕ∂2
jχ, 1 ≤ j ≤ n+ 1.

Therefore direct substitution yields (4.12).

Moreover we set

w = (∂tv)χ.

Then, setting s = 0 in (4.12), we have

Aw = d(∂tu2)χ− ∂t(AF )χ+

n+1∑

j=1

(∂tqj)(∂jv)χ

+2{p(∂2
t v)(∂tχ) − (∇(∂tv) · ∇χ)} + (∂tv)(Aχ+ r1χ) in Qε

(4.15)

and

w ∈ H2
0 (Qε). (4.16)

Consequently we apply Lemma 1 to w:

∫

Qε

(s3w2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C
∫

Qε

(|d(∂tu2)χ|2 + |∂t(AF )χ|2)e2sϕdxdt+ C

n+1∑

j=1

∫

Qε

|(∂tqj)(∂jv)χ|2e2sϕdxdt

+C

∫

Qε

|2{p(∂2
t v)(∂tχ) − (∇(∂tv) · ∇χ)} + (∂tv)(Aχ+ r1χ)|2e2sϕdxdt
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for all large s > 0.

Henceforth C, Cj denote generic positive costants which depend on p, qj , 1 ≤

j ≤ n+ 1, r1, M1, N , η, ρ, ε, ε0, but independent of s.

The third term at the right hand side contains derivatives of χ as factors, and

so it is not zero only if ϕ ≤ (ε − 2ε0)
−η by means of (3.6). Therefore, noting for

the second integral that ∂j(vχ) = (∂jv)χ+ v∂jχ, 1 ≤ j ≤ n+ 1, in terms of (1.14),

we obtain

∫

Qε

(s3w2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C1

∫

Qε

|d(∂tu2)χ|2e2sϕdxdt+ C1e
C2s‖∂t(AF )‖2

L2(Qε)

+C

∫

Qε

(|∇(vχ)|2 + |∂t(vχ)|2 + |vχ|2)e2sϕdxdt

+C1 exp(2s(ε− 2ε0)
−η) (4.17)

for all large s > 0.

On the other hand, setting y = vχ ∈ H2
0 (Qε), we have

Ay = du2χ− (AF )χ+ 2p(∂tv)(∂tχ) − 2∇v · ∇χ+ v(Aχ+ r1χ) in Qε.

Therefore, similarly to (4.17), Lemma 1 yields

∫

Qε

(s3|vχ|2 + s|∇(vχ)|2 + s|∂t(vχ)|2)e2sϕdxdt

≤C1

∫

Qε

|dχ|2e2sϕdxdt+ C1e
C2s‖AF‖2

L2(Qε) + C1 exp(2s(ε− 2ε0)
−η)

(4.18)

for all large s > 0. Substitution of (4.18) into (4.17) yields

∫

Qε

(s3w2 + s|∇w|2 + s|∂tw|2)e2sϕdxdt

≤C1

∫

Qε

|dχ|2e2sϕdxdt+ C1e
C2s‖AF‖2

H1(−T,T ;L2(D+)) + C1 exp(2s(ε− 2ε0)
−η)
(4.19)
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for all large s > 0.

Noting s3w2e2sϕ = s3z2 and

s|∂jz|2 = s|∂jw + s(∂jϕ)w|2e2sϕ ≤ C(s|∇x,tw|2e2sϕ + s3w2e2sϕ),

we see from (4.19) that

∫

Qε

(s3z2 + s|∇z|2 + s|∂tz|2)dxdt

≤C1

∫

Qε

|dχ|2e2sϕdxdt+ C1e
C2s‖AF‖2

H1(−T,T ;L2(D+)) + C1 exp(2s(ε− 2ε0)
−η)
(4.20)

for all large s > 0.

Set Q−
ε = {(x, t) ∈ Qε; t < 0}. Multiply (4.12) by ∂tz and integrate over Q−

ε :

∫

Q
−

ε

(Az)(∂tz)dxdt =

∫

Q
−

ε

{d(∂tu2)e
sϕχ∂tz − ∂t(AF )esϕχ∂tz}dxdt

+

∫

Q−

ε

(∂tz)

n+1∑

j=1

(∂tqj)(∂jv)e
sϕχdxdt

+

∫

Q
−

ε

[
s{−2∇ϕ · ∇z + 2p(∂tϕ)(∂tz) + (Aϕ+ r1ϕ)z}

−s2(p|∂tϕ|2 − |∇ϕ|2)z
]
∂tzdxdt

+

∫

Q
−

ε

[
2esϕ{p(∂2

t v)(∂tχ) − (∇(∂tv) · ∇χ)} + (∂tv)e
sϕ(Aχ+ r1χ)

]
∂tzdxdt.

By I1 and I2 we denote the left and the right hand sides respectively. Then, by

integration by parts, z ∈ H2
0 (Qε) and the Schwarz inequality, we have

I1 ≥ 1

2

∫

Q−

ε

∂t(p|∂tz|2)dxdt+
1

2

∫

Q−

ε

∂t(|∇z|2)dxdt

−C3

∫

Q
−

ε

(|∇z|2 + |∂tz|2 + |z|2)dxdt

=
1

2

∫

Qε∩{t=0}
(p(x)|(∂tz)(x, 0)|2 + |∇z(x, 0)|2)dxdt

−C3

∫

Q−

ε

(|∇z|2 + |∂tz|2 + |z|2)dxdt.
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Furthermore by (1.15), (4.5) - (4.7) and (4.10), we obtain

|(∂tz)(x, 0)| =
∣∣∣∣(∂tv)(x, 0)

∂(esϕχ)

∂t
(x, 0) + (∂2

t v)(x, 0)esϕ(x,0)χ(x, 0)

∣∣∣∣

≥|p(x)−1esϕ(x,0)d(x)a(x)χ(x, 0)− esϕ(x,0)χ(x, 0)(∂2
tF )(x, 0)|

−|(∂tF )(x, 0)||s(∂tϕ)(x, 0)χ(x, 0) + (∂tχ)(x, 0)|esϕ(x,0)

≥C4|d(x)||esϕ(x,0)χ(x, 0)| − C5e
C6sD2.

We can estimate |∇z(x, 0)|2 similarly, so that

I1 ≥ C7

∫

Qε∩{t=0}
|d(x)|2|χ(x, 0)|2e2sϕ(x,0)dx− C7e

sC8D2

−C3

∫

Qε

(|∇z|2 + |∂tz|2 + |z|2)dxdt

≥C7

∫

Qε∩{t=0}
|d(x)|2|χ(x, 0)|2e2sϕ(x,0)dxdt− C7

∫

Q(ε)

|dχ|2e2sϕdxdt

−C7e
sC8D2 − C7 exp(2s(ε− 2ε0)

−η) (4.21)

by (4.20). Moreover, arguing similarly to the estimate of the last term at the right

hand side of (4.17), by the Schwarz inequality, we obtain

I2 ≤ C9

∫

Qε

|d|2e2sϕχ2dxdt+ C9

∫

Qε

|∂t(AF )|2e2sϕχ2dxdt

+C9

∫

Qε

(s3|z|2 + s|∇z|2 + s|∂tz|2)dxdt

+C9

∫

Qε




n+1∑

j=1

|∂jv|2 + |v|2


χ2e2sϕdxdt+ C9 exp(2s(ε− 2ε0)
−η).

Applying (4.5), (4.18) and (4.20), we have

I2 ≤ C9

∫

Qε

|d|2e2sϕχ2dxdt+ C9e
C10sD2 + C9 exp(2s(ε− 2ε0)

−η) (4.22)

for all large s > 0. Hence (4.21) and (4.22) yield

∫

Qε∩{t=0}
|d(x)|2|χ(x, 0)|2e2sϕ(x,0)dx ≤ C9

∫

Qε

|d|2e2sϕχ2dxdt

+C9e
sC10D2 + C9 exp(2s(ε− 2ε0)

−η)
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for all large s > 0. Replacing the integral at the left hand side over Qε ∩ {t = 0}

by the one over Qε−3ε0
∩ {t = 0}, in terms of (3.6), we have

∫

Qε−3ε0
∩{t=0}

|d(x)|2e2sϕ(x,0)dx ≤ C9

(∫

Qε−3ε0

|d|2e2sϕdxdt+

∫

Qε\Qε−3ε0

|d|2e2sϕχ2dxdt

)

+C9e
sC10D2 + C9 exp(2s(ε− 2ε0)

−η)

≤C9

∫

Qε−3ε0

|d|2e2sϕdxdt+ C9 exp(2s(ε− 3ε0)
−η)

+C9e
sC10D2 + C9 exp(2s(ε− 2ε0)

−η) (4.23)

for all large s > 0. Since Qε−3ε0
⊂ (Qε−3ε0

∩ {t = 0}) × (−T, T ), we have

∫

Qε−3ε0

|d|2e2sϕdxdt

≤
∫

Qε−3ε0
∩{t=0}

|d|2e2sϕ(x,0)

(∫ T

−T

e2s(ϕ(x,t)−ϕ(x,0))dt

)
dx.

Here the mean value theorem implies

ϕ(x, t) − ϕ(x, 0) = ψ(x, t)−η − ψ(x, 0)−η

=ηΛ−η−1(ψ(x, 0)− ψ(x, t)) = ηΛ−η−1

(
−1

2
t2
)
,

where Λ is a number such that ψ(x, 0) < Λ < ψ(x, t). Here ψ(x, t) ≤ 1
2ε+N |x1| +

1
2

(∑n
j=2 |xj |2 + t2

)
and

ψ(x, t) ≥ −κN
n∑

j=2

|xj |2 +
1

2

n∑

j=2

|xj |2 +
1

2
t2 +

ε

2
≥ ε

2

for (x, t) ∈ Qε. Therefore we apply (2.26) and can take constants C′
11 > 0 and

C′′
11 > 0 such that C′′

11 ≤ ψ(x, t) ≤ C′
11 for (x, t) ∈ Qε. Therefore

ϕ(x, t) − ϕ(x, 0) ≤ −1

2
ηψ(x, t)−η−1t2 ≤ −1

2
C11t

2.
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Hence
∫ T

−T

e2s(ϕ(x,t)−ϕ(x,0))dt ≤
∫ T

−T

e−C11st2dt =
C12√
s
.

Substituting this inequality into (4.23), we obtain

(
1 − C13√

s

)∫

Qε−3ε0
∩{t=0}

|d(x)|2e2sϕ(x,0)dx

≤C9 exp(2s(ε− 3ε0)
−η) + C9e

sC10D2.

Again replacing the integral over Qε−3ε0
∩ {t = 0} at the left hand side by the one

over Qε−4ε0
∩{t = 0}, noting that e2sϕ(x,0) ≥ exp(2s(ε−4ε0)

−η) in Qε−4ε0
∩{t = 0},

and 1 − C13√
s
≥ 1

2 for sufficiently large s > 0, we obtain

∫

Qε−4ε0
∩{t=0}

|d(x)|2dx

≤C14 exp[−2s{(ε− 4ε0)
−η − (ε− 3ε0)

−η}] + C14e
sC10D2

for all large s > 0. Therefore we argue similarly to the derivation of (1.10) from

(3.7) in the proof of Theorem 2.

We note that (x, 0) ∈ Qε−4ε0
implies that

−κ
n∑

j=2

|xj|2 < x1 < − 1

2N

n∑

j=2

|xj |2 +
ε− 8ε0

2N
.

By 0 < ε0 <
ε
8

and κ < 1
2N

, in terms of definition (2.11) of Qε−4ε0
, we see that

there exists a non-empty neighbourhood V of 0 such that Qε−4ε0
∩ {t = 0} ⊃ V.

Thus the proof of Theorem 3 is complete.
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France Seminar, Elsevier, Amsterdam (2002), 329–349.
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tions.

2004–15 Shushi Harashita: Ekedahl-Oort strata contained in the supersingular locus.

2004–16 Mourad Choulli and Masahiro Yamamoto: Stable identification of a semilinear
term in a parabolic equation.

2004–17 J. Noguchi, J. Winkelmann and K. Yamanoi: The second main theorem for
holomorphic curves into semi-abelian varieties II.

2004–18 Yoshihiro Sawano and Hitoshi Tanaka: Morrey spaces for non-doubling mea-
sures.

2004–19 Yukio Matsumoto: Splitting of certain singular fibers of genus two.

2004–20 Arif Amirov and Masahiro Yamamoto: Unique continuation and an inverse
problem for hyperbolic equations across a general hypersurface.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


