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Abstract. We consider a semilinear parabolic equation in a rectangular domain

Ω ⊂ Rn: (∂tu)(x, t) = ∆u(x, t) + a(u(x, t)) with the zero initial value and suitable

Dirichlet data. We discuss an inverse problem of determining the nonlinear term

a(·) from Neumann data ∂u
∂n on ∂Ω × (0, T ). Under appropriate Dirichlet data,

we prove conditional stability of the Hölder type in this inverse problem within a

suitable admissible set of unknown functions a(·).

§1. Introduction.

Let Ω ⊂ Rn, n ≥ 1, be a rectangular domain: Ω = (0, ℓ1) × · · · × (0, ℓn) with

ℓ1, ...., ℓn > 0. We consider an initial/boundary value problem:

(1.1) (∂tu)(x, t) = ∆u(x, t) + a(u(x, t)), x ∈ Ω, 0 < t < T,

(1.2) u(x, 0) = 0, x ∈ Ω,

(1.3) u(x, t) = ϕ(x, t), x ∈ ∂Ω, 0 < t < T.
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2 M. CHOULLI AND M. YAMAMOTO

Under suitable conditions on a and ϕ, we can prove the unique existence of the

solution to (1.1) - (1.3) (e.g., Henry [5], Ladyženskaja, Solonnikov and Ural’ceva

[10]) and we denote the solution by ua(x, t) for specifying the dependence on the

semilinear term a(·). In this paper, we discuss

Inverse Problem. Determine a = a(·) from the boundary observations ∂ua

∂n |∂Ω×(0,T ).

The semilinear parabolic equation of form (1.1) appears, for example, in mod-

elling enzyme kinetics (e.g., Kernevez [8]). See also [1], [13] for other models. In our

inverse problem, we are requested to model nonlinear dynamics in order to match

with the boundary output.

More precisely, we are concerned with

Uniqueness. Does

∂ua

∂n
=

∂ub

∂n
on ∂Ω × (0, T )

imply a(η) = b(η) for η ∈ I: some interval?

Stability. With suitable norms, estimate a − b by ∂ua

∂n − ∂ub

∂n .

For theoretical results for inverse problems for parabolic equations of determining

a semilinear term, we refer to DuChateau and Rundell [4], Klibanov [9], Lorenzi [11],

Pilant and Rundell [14], Yamamoto [16]. Lorenzi [11] established the uniqueness

and the stability in the inverse problem in the case where Ω = (0,∞) and ϕ satisfies

(1.4)
dϕ

dt
≥ a(ϕ(t)), t ≥ 0.

The paper [14] proved the existence of a semilinear term realizing given boundary

observations with numerical examples. In [16], determination of scalar parameters

in a semilinear term a is discussed and the stability was proved by the one-point
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observation at a fixed moment. In particular, DuChateau and Rundell [4] proved

the uniqueness by means of an interesting lower inequality of the difference ua−ub.

In the above papers, we do not change Dirichlet boundary data ϕ. On the

other hand, by changing the Dirichlet boundary input arbitrarily and observing

the corresponding Neumann data, we can consider determination of a semilinear

term a which is called a formulation by Dirichlet-to-Neumann map. As such papers,

we refer to Isakov [6], Nakamura [12].

In this paper, we will prove conditional stability for our inverse problem (not by

the Dirichlet-to-Neumann map) without assumptions such as (1.4).

The present paper is composed of 5 sections.

Section 1. Introduction.

Section 2. Main results.

Section 3. Proof of Theorem 1.

Section 4. Proof of Theorem 2.

Section 5. Proof of Theorem 3.

§2. Main results.

Let α ∈ (0, 1) be arbitrarily fixed. Henceforth Hα+2, α+2
2 (Ω×[0, T ]), Hα+2, α+2

2 (∂Ω×

[0, T ]) and Hα+1(Ω), etc. denote the Hölder spaces (e.g., [10]).

In (1.3), we assume that ϕ ∈ Hα+2, α+2
2 (∂Ω × [0, T ]) and that

(2.1) ϕ ≥ 0, ϕ(·, 0) = 0, ϕ 6≡ 0 on ∂Ω × [0, T ].

We set

(2.2) L = max
(x,t)∈∂Ω×[0,T ]

ϕ.
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Then, by Lemma 1 (i) below, we see that 0 ≤ ua(x, t) ≤ L for (x, t) ∈ Ω × [0, T ].

For arbitrarily fixed α ∈ (0, 1), M0 > 0 and M > 0, we define an admissible set U

of unknown semilnear terms a’s by:

U ={a ∈ H1+α[0, L]; ‖a‖H1+α[0,L] ≤ M0, a(η) ≤ 0 for η ∈ [0, L],

a(0) = 0 and there exists a unique solution

ua ∈ Hα+2, α+2
2 (Ω × [0, T ]) such that‖ua‖

Hα+2,
α+2

2 (Ω×[0,T ])
≤ M}.(2.3)

In definition (2.3), the uniform boundedness of ‖ua‖
Hα+2,

α+2
2 (Ω×[0,T ])

requires

boundedness and regularity of a and ϕ, the compatibility conditions (e.g., [10]).

Moreover, since Ω is a rectangular domain (although Ω is not smooth), we can

explicitly give the fundamental solution of ∂t − ∆ with a boundary condition (cf.

(3.13)), we can discuss estimates of ua by the boundary data ϕ and the semilin-

ear term a by following the arguments in Chapter IV of [10]. However we will

not here state them explicitly, in order to concentrate on discussions of the in-

verse problem. In other words, we a priori assume the existence of ua such that

‖ua‖
Hα+2,

α+2
2 (Ω×[0,T ])

≤ M .

For a, b ∈ C[0, L], we further set

(2.4) m(a, b) =






sup{η ∈ [0, L]; a ≥ b or b ≥ a on [0, η]},
if a − b changes signs finite times near 0,

0, otherwise.

We note that a(m(a, b)) = b(m(a, b)).

Here and henceforth by the finiteness of changes of signs we mean: for any a, b ∈

C[0, L], there exist N ∈ N and a partition 0 ≡ d0 < d1 < · · · < dN < dN+1 ≡ L
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such that






a − b ≥ 0 (respectively ≤ 0) on [d0, d1] ∪ [d2, d3] ∪ · · · [dN1−1, dN1
],

where N1 =

{
N + 1 if N is even,

N, if N is odd,

a − b ≤ 0 (respectively ≥ 0) on [d1, d2] ∪ [d3, d4] ∪ · · · [dN2−1, dN2
],

where N2 =

{
N, if N is even,

N + 1, if N is odd.

Now we are ready to state our first result on conditional stability between 0 and

the first point where a − b changes signs.

Theorem 1. We arbitrarily fix ρ > 2. There exists a constant C = C(U , Ω, T, ρ) >

0 such that

(2.5) ‖a − b‖C[0,m(a,b)] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

1
n+2

Lρ(0,T ;L∞(∂Ω))

for any a, b ∈ U .

This theorem yields the uniqueness of a and b on [0, L] if a and b are analytic

functions, which can be regarded as a special case of Corollary in DuChateau and

Rundell [4] although the paper takes a different formulation.

Remark. Our proof is based on pointwise lower bound (3.14) of the fundamental

solution of ∂t−∆ in Ω with the homogeneous Neumann boundary condition. To the

authors’ knowledge, suitable lower bounds are not proved for a general parabolic

operator in a general bounded domain (see Chapter 3 in Davies [3] for Ω = Rn). In

the case of rectangular domain Ω, we directly have a suitable lower bound, because

the fundamental solution is explicitly given.

We do not look for the optimal exponent at the right hand side of (2.5). However,

the exponent 1
n+2 is optimal as long as we apply our argument of Section 3.
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Theorem 1 does not assert the stability on [0, L]. However, within analytic

functions, we can prove a more global estimate.

Theorem 2. For arbitrarily given M1, M2, M3 > 0 such that M1 ≥ L and M2 > L
2 ,

we set

Û ={a ∈ U ; a can be extended analytically to the rectangle

D0 ≡ {z ∈ C; 0 < Re z < M1, |Im z| < M2},

a ∈ C(D0) and ‖a‖C(D0)
≤ M3} .

Let ρ > 2 be arbitrary. Then there exists a constant C = C(Û , Ω, T, ρ) > 0 such

that

(2.6) ‖a − b‖C[0,L] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

µ(m(a,b))
n+2

Lρ(0,T ;L∞(∂Ω))

for any a, b ∈ Û . Here we set






µ(m(a, b)) =
1

3

(
1 − L

M1

) 1
α

,

α = α(m(a, b)) =
2

π
arctan

m(a, b)

2
√

3M1 −
√

3m(a, b)
.

Inequality (2.6) is not uniform in a, b ∈ Û , because µ(m(a, b)) −→ 0 as m(a, b) −→

0. In the case where we can take M1 = ∞ in Û , we have

Corollary 1. For arbitrarily given M2, M3 > 0 with M2 > L
2 , we set

Û1 ={a ∈ U ; a can be extended analytically to

D1 ≡ {z ∈ C; Rez > 0, |Im z| < M2},

a ∈ C(D1) and ‖a‖C(D1)
≤ M3} .
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Let ρ > 2 be arbitrary. Then, for any δ ∈
(
0, 1

3

)
, there exists a constant C =

C(Û1, Ω, T, ρ, δ) > 0 such that

‖a − b‖C[0,km(a,b)] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

1
n+2 (

1
3−δ) exp(

√
3π( 1

2−k))

Lρ(0,T ;L∞(∂Ω))

for any a, b ∈ Û1 and any k ∈ N, provided that km(a, b) ≤ L.

Finally we show

Theorem 3. We arbitrarily fix ρ > 2. There exists a constant C = C(U , Ω, T, ρ) >

0 such that

‖a − b‖C[0,L] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

1

(n+2)N

Lρ(0,T ;L∞(∂Ω))

provided that a, b ∈ U and a − b changes signs N -times over [0, L].

Applying Theorem 3 to a class of piecewise fractional functions, we can directly

obtain the following corollary.

Corollary 2. Let us set

PN,n1,n2
= {a ∈ U ; there exist

N1 ∈ {1, ..., N} and a partition 0 ≡ d0 < d1 < ... < dN1−1 < dN1
≡ L

such that a|[dj,dj+1] =
pj

qj
, 0 ≤ j ≤ N1 − 1,

pj and qj are polynomials whose orders are at most n1 and n2 respectively

qj(η) 6= 0 for η ≥ 0}

and let us arbitrarily fix ρ > 2. There exists a constant C = C(PN,n1,n2
, Ω, T, ρ) > 0

such that

‖a − b‖C[0,L] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

1

(n+2)Nn1n2

Lρ(0,T ;L∞(∂Ω))

for any a, b ∈ PN,n1,n2
.
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§3. Proof of Theorem 1.

First we will show

Lemma 1. Let a ∈ U and let ϕ ∈ Hα+2, α+2
2 (Ω × [0, T ]) satisfy (2.1).

(i) 0 ≤ ua(y, s) ≤ max∂Ω×[0,t] ϕ for y ∈ Ω and 0 ≤ s ≤ t.

(ii) For any η ∈ ua(Ω × [0, T ]), there exist y0 ∈ ∂Ω and s0 ∈ [0, T ] such that

ϕ(y0, s0) = η.

Proof of Lemma 1. By the mean value theorem and a(0) = 0, we have

a(u(x, t)) = a(u(x, t))− a(0) = a′(λ(x, t))u(x, t),

where λ(x, t) is some value between u(x, t) and 0, and we can take λ(x, t) as a

continuous function. Therefore

∆ua + a′(λ)ua − ∂tua = 0 in Ω × (0, T ).

Setting v = e−M0tua, we have

∆v + (a′(λ) − M0)v − ∂tv = 0 in Ω × (0, T ).

Let us assume contrarily that inf(x,t)∈Ω×(0,T ) v(x, t) < 0. Then, since v|∂Ω×(0,T ) =

e−M0tϕ ≥ 0 and v(·, 0) = 0, we see that v attains the minimum at (x0, t0) ∈

Ω × (0, T ]. By a ∈ U , we have a′(λ) − M0 ≤ 0. Therefore the strong maximum

principle (e.g., Renardy and Rogers [15, p.122]), we see that v is constant in Ω ×

(0, T ). By v(·, 0) = 0, we arrive at v ≡ 0, which contradicts that ϕ 6≡ 0. Hence

inf(x,t)∈Ω×(0,T ) v(x, t) ≥ 0, and the first inequality in (i) follows.

Next we will prove the second inequality in (i). Let us set P0v = ∆v−∂tv. Then,

by a ≤ 0, we have

(P0ua)(x, s) ≥ 0, x ∈ Ω, 0 ≤ s ≤ t.
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Therefore the weak maximum principle (e.g., p.121 in [15]) yields the second in-

equality in (i). Thus the proof of (i) is complete.

Finally we will complete the proof of (ii). Let η ∈ ua(Ω× [0, T ]). Then (i) yields

that η ∈ [0, max∂Ω×[0,T ] ϕ]. Since ϕ ≥ 0 and ϕ is continuous, the set ϕ(∂Ω × [0, t])

is an interval, so that there exists (y0, s0) ∈ ∂Ω × [0, T ] such that η = ϕ(y0, s0).

Henceforth C, C0, etc. denote generic positive constants depending only on U ,

Û , Ω, T , but independent of choices of a and b.

Proof of Theorem 1. We set m = m(a, b). We may assume that ‖a−b‖C[0,m] > 0.

Otherwise conclusion (2.5) is trivial by a(0) = b(0) = 0. Without loss of generality,

we may assume that

(3.1) a − b > 0 on (0, m).

Then we can choose Tm ∈ (0, T ] such that m ∈ ϕ(∂Ω × [0, Tm]), that is,

(3.2) [0, m] = ϕ(∂Ω × [0, Tm]).

Let |(a − b)(η)| attain the maximum ‖a − b‖C[0,m] at η0. Then 0 < η0 < m by

a(0) = b(0) and ‖a − b‖C[0,m] > 0. By (3.2) and Lemma 1 (ii), we choose y0 ∈ ∂Ω

and s0 ∈ (0, Tm) such that

(3.3) ϕ(y0, s0) = η0.

In terms of ϕ(·, 0) = 0 and 0 < η0 < m, we note that we can choose s0 such that

(3.4) s0 < Tm.

In fact, let us assume contrarily that ϕ(y, s) < η0 for any y ∈ ∂Ω and s0 < Tm.

Then, by (3.2), we have m ≤ η0, which contradicts that m > η0. Hence there
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exist y0 ∈ ∂Ω and s0 < Tm such that ϕ(y0, s0) ≥ η0. If ϕ(y0, s0) = η0, then

(3.3) is clearly seen. Let ϕ(y0, s0) > η0. Since ϕ(y0, s) is continuous in s and

ϕ(y0, 0) = 0, the intermediate value theorem yields the existence s1 ∈ (0, s0) such

that ϕ(y0, s1) = η0. Thus (3.4) follows.

By the mean value theorem and a, b ∈ U , we have

‖a − b‖C[0,m] = |(a − b)(η0)|

=|(a − b)(η0) − (a − b)(0)| ≤ Cη0.(3.5)

By (3.3), (1.2), (1.3) and ϕ(y0, 0) = 0, we apply the mean value theorem again, so

that

η0 = |ϕ(y0, s0) − ϕ(y0, 0)| = |(∂tϕ)(y0, θ)s0| ≤ Cs0,

where θ is some value in (0, s0). Therefore, by (3.5), we obtain

(3.6) ‖a − b‖C[0,m] ≤ Cs0.

Let us set

(3.7) d =

∥∥∥∥
∂(ua − ub)

∂n

∥∥∥∥
Lρ(0,T ;L∞(∂Ω))

.

If s0 ≤ d
1

n+2 , then (3.6) finishes the proof of (2.5). Hence we can assume that

(3.8) d
1

n+2 < s0.

Let us set v = ua − ub on Ω × [0, T ]. Then

(3.9) ∂tv − ∆v − q(x, t)v = a(ub(x, t))− b(ub(x, t)), x ∈ Ω, 0 < t < Tm

(3.10) v(x, 0) = 0, x ∈ Ω,
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(3.11) v = 0 on ∂Ω × (0, Tm),

where

q(x, t) =

{
a(ua(x,t))−a(ub(x,t))

ua(x,t)−ub(x,t) , if ua(x, t) 6= ub(x, t),

a′(ua(x, t)), if ua(x, t) = ub(x, t).

Then

(3.12) a(ub(x, t)) − b(ub(x, t)) ≥ 0 on Ω × [0, Tm]

by (3.1).

Let G = G(t, x, s, y) be the fundamental solution to ∂t − ∆ − q· with the homo-

geneous Neumann condition.

We will prove

Lemma 2. There exists a constant µ0 > 0 such that

lim inf
r→0

1

rn+1

∫ s0

s0−r

∫

|y−y0|<r

G(Tm, y0, s, y)dyds ≥ µ0

for every y0 ∈ Ω and s0 ∈ (0, Tm). Here the constant µ0 > 0 is independent of

Tm, y0, s0.

Proof. By the mean value theorem, for any (x, t) ∈ Ω × [0, T ], by Lemma 1,

there exists λ = λ(x, t) such that 0 ≤ λ(x, t) ≤ L and q(x, t) = a′(λ(x, t)) for

(x, t) ∈ Ω × [0, T ]. Therefore, by a ∈ U , we have

q(x, t) ≤ ‖a′‖C[0,L] ≤ M0, (x, t) ∈ Ω × [0, T ].

Let G0 = G0(t, x, s, y) be the fundamental solution to ∂t − ∆ + M0 with the ho-

mogeneous Neumann boundary condition. Then the comparison theorem for the

fundamental solution yields

G(t, x, s, y) ≥ G0(t, x, s, y), t > s > 0, x, y ∈ Ω
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(e.g., Theorem 11.1 (p.85) in Itô [7]). Hence, by noting that G0(t, x, s, y) = G0(t−

s, x, 0, y) for 0 < s < t and x, y ∈ Ω, it suffices to prove

lim inf
r→0

1

rn+1

∫ s0

s0−r

∫

|y−y0|<r

G0(Tm − s, y0, 0, y)dyds ≥ µ0.

Since we can directly verify that eM0tG0(t, x, s, y) is the fundamental solution for

∂t − ∆ with the homogeneous Neumann condition, we can assume that M0 = 0

without loss of generality. For M0 = 0, we can directly prove that

G0(t, x, s, y) =
1

(4π(t − s))
n
2

×Πn
j=1

∞∑

k=−∞

{
exp

(
−(xj − yj + 2kℓj)

2

4(t − s)

)
+ exp

(
−(xj + yj + 2kℓj)

2

4(t − s)

)}
,

0 < s < t, x, y ∈ Ω,(3.13)

so that we have

(3.14) G0(t, x, s, y) ≥ 1

(4π(t − s))
n
2

e
− |x−y|2

4(t−s) , 0 < s < t, x, y ∈ Ω.

Therefore we use the polar coordinate to obtain

1

rn+1

∫ s0

s0−r

∫

|y−y0|<r

G0(Tm − s, y0, 0, y)dyds

≥ 1

rn+1

∫ Tm−s0+r

Tm−s0

∫

|y−y0|<r

1

(4πη)
n
2

e−
|y−y0|2

4η dydη

=
c0

rn+1

∫ Tm−s0+r

Tm−s0

∫ r

0

1

η
n
2

e−
ξ2

4η ξn−1dξdη.

Here c0 > 0 is depends only on n. Noting that

1

η
n
2

e−
ξ2

4η ≥ 1

(Tm − s0 + r)
n
2

e
− ξ2

4(Tm−s0)

≥ 1

(T + r)
n
2

e
− ξ2

4(Tm−s0) ,
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we have

lim inf
r→0

1

rn+1

∫ s0

s0−r

∫

|y−y0|<r

G0(Tm − s, y0, 0, y)dyds

≥ lim inf
r→0

c0

(T + r)
n
2

1

rn

∫ r

0

e
− ξ2

4(Tm−s0) ξn−1dξ

=
c0

nT
n
2

by the de L’Hôpital theorem. Thus the proof of Lemma 2 is complete.

On the other hand,

v(x, t) =

∫ t

0

∫

Ω

G(t, x, s, y){a(ub(y, s))− b(ub(y, s))}dyds

+

∫ t

0

∫

∂Ω

G(t, x, s, y)
∂(ua − ub)

∂n
(y, s)dσyds, x ∈ Ω, t > 0(3.15)

(e.g., Theorem 9.1 (pp.68-69) in [7]). Here
∫

∂Ω
· · ·dσy is the surface integral. By

(3.11), we have

∫ t

0

∫

Ω

G(t, x, s, y){a(ub(y, s))− b(ub(y, s))}dyds

=

∫ t

0

∫

∂Ω

G(t, x, s, y)
∂(ub − ua)

∂n
(y, s)dσyds, x ∈ ∂Ω, t > 0.

(3.16)

We denote the right and left hand sides of (3.16) respectively by I1(x, t) and I2(x, t).

We will first estimate |I1(x, Tm)|. We recall that ρ > 2 and we set ρ′ = ρ
ρ−1

. Then

1 < ρ′ < 2. By

∫

∂Ω

|G(t, x, s, y)|dσy ≤ C(t − s)−
1
2 , x ∈ Ω, t, s ∈ [0, T ]

(e.g., (7.10) (p.53) in [7]), in terms of the Hölder inequality, we have

|I1(x, Tm)| ≤
∫ Tm

0

∥∥∥∥
∂(ua − ub)

∂n
(·, s)

∥∥∥∥
L∞(∂Ω)

∫

∂Ω

|G(Tm, x, s, y)|dσyds

≤C

(∫ Tm

0

(Tm − s)−
ρ′

2

) 1
ρ′ ∥∥∥∥

∂(ua − ub)

∂n

∥∥∥∥
Lρ(0,T ;L∞(∂Ω))

=C

(
2

2 − ρ′
T

2−ρ′

2
m

) 1
ρ′
∥∥∥∥

∂(ua − ub)

∂n

∥∥∥∥
Lρ(0,T ;L∞(∂Ω))

.
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Consequently

(3.17) |I1(x, Tm)| ≤ C1d, x ∈ Ω.

Here we recall that d is defined by (3.7).

We set

B0 ={y ∈ Ω; |y − y0| < d
1

n+2 }

×{s ∈ (0, Tm); s0 − d
1

n+2 < s < s0} ≡ By0
× Bs0

.

Since s0 > d
1

n+2 by (3.8), we have

(3.18) |Bs0
| = d

1
n+2 .

Next we will establish a lower estimate of I2(y0, Tm). In terms of (3.12), Lemma

2 and (3.18), for sufficiently small d > 0, we have

I2(y0, Tm) =

∫ Tm

0

∫

Ω

G(Tm, y0, s, y){a(ub(y, s))− b(ub(y, s))}dyds

≥
∫

B0

G(Tm, y0, s, y){a(ub(y, s))− b(ub(y, s))}dyds

≥ min
(y,s)∈B0

{a(ub(y, s))− b(ub(y, s))}
∫

B0

G(Tm, y0, s, y)dyds

≥µ0d
n+1
n+2 min

(y,s)∈B0

{a(ub(y, s))− b(ub(y, s))}.
(3.19)

By (3.17) and (3.19), we obtain

(3.20) min
(y,s)∈B0

{a(ub(y, s))− b(ub(y, s))} ≤ C2d
1

n+2 .



DETERMINATION OF SEMILINEAR TERM 15

On the other hand, for (y, s) ∈ B0, by (3.18), we have

|a(ub(y, s))− b(ub(y, s))|

=|a(ub(y0, s0)) − b(ub(y0, s0)) + a(ub(y, s))− a(ub(y0, s0))

+b(ub(y0, s0)) − b(ub(y, s))|

≥‖a − b‖C[0,m] − (‖a′‖L∞(0,M) + ‖b′‖L∞(0,M))

× sup
(y,s)∈B0

|ub(y, s)− ub(y0, s0)|

≥‖a − b‖C[0,m] − C3M0Md
1

n+2(3.21)

Therefore (3.21) and (3.20) yield

‖a − b‖C[0,L] ≤ C4d
1

n+2 .

Thus the proof of Theorem 1 is complete.

§4. Proofs of Theorem 2 and Corollary 1.

We may assume that

d =

∥∥∥∥
∂(ua − ub)

∂n

∥∥∥∥
Lρ(0,T ;L∞(∂Ω))

is sufficiently small. First we show

Lemma 3. Let 0 < m < M1

2 , m ≤ L ≤ M1, ε ≤ 1 and C > 1. Let f = f(z)

be analytic in D0 = {z ∈ C; 0 < Re z < M1, |Im z| < M2} with M2 > m
2

and

f ∈ C(D0). Suppose that |f | ≤ C on D0 and that |f(x)| ≤ ε for x ∈ [0, m]. Then

(4.1) |f(x)| ≤ C1−µεµ, 0 ≤ x ≤ L,

where we set

(4.2)






µ = µ(m) =
1

3

(
1 − L

M1

) 1
α

,

α = α(m) =
2

π
arctan

m

2
√

3M1 −
√

3m
.
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Proof of Lemma 3. We will argue similarly to the proof of Lemma 10.6.6 (pp.124-

125) in Cannon [2]. Let 0 < δ < γ < m−δ and let us set A = (γ−δ, 0), B = (γ+δ, 0)

and P = (γ,
√

3δ). Applying the Lindelöf theorem (e.g., Lemma 10.6.4 (p.123) in

[2]) to f in the regular triangle △ABP and noting that ε ≤ C, we obtain

∣∣∣∣f
(

γ +

√
−1√
3

δ

)∣∣∣∣ ≤ C
2
3 ε

1
3

if 0 < δ < γ < m − δ. Set O = (0, 0), P1 = (m, 0), P2 =
(

m
2

, 1
2
√

3
m
)

and

P3 =
(

m
2 ,− 1

2
√

3
m
)
. Changing (γ, δ) such that 0 < δ < γ < m − δ, we see that

|f(z)| ≤ C
2
3 ε

1
3 , z ∈ △OP1P2.

Arguing similarly in the case of Im z < 0, we obtain

(4.3) |f(z)| ≤ C
2
3 ε

1
3 , z ∈ D̂0 ≡ △OP1P2 ∪△OP1P3.

Here and henceforth we identify z = z1 +
√
−1z2, z1, z2 ∈ R with z ∈ R2.

We consider the circle Γ whose centre is (M1, 0) and passes P2 and P3. That is,

Γ: (z1 − M1)
2 + z2

2 = R2, where

R = R(M1) =

√
m2 − 3mM1 + 3M2

1

3
.

The z1-coordinate of the rest intersection points of Γ with the infinite straight line

OP2, is 3M1−m
2 , and the assumption m < M1

2 implies that 3M1−m
2 > m

2 , so that the

inferior arc P2P3 of Γ is included in D̂0. Therefore (4.3) yields

(4.4) |f(z)| ≤ C
2
3 ε

1
3 , z ∈ inferior arc P2P3 of Γ.

On the other hand, we introduce the sector defined by

{
z ∈ C; 0 < |z − M1| < R, −απ

2
< arg(z − M1) <

απ

2

}
.
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By the assumption that ε < C and M2 > m
2 , we see that |f | ≤ C on the closure of

the sector, and C
2
3 ε

1
3 < C. Therefore we can apply a theorem by Carleman (e.g.,

p.121 in [2]), so that

|f(x)| ≤ C1−(M1−x
R )

1
α
(
C

2
3 ε

1
3

)(M1−x
R )

1
α

for m
2
≤ x ≤ M1. Therefore, for m

2
≤ x ≤ L, noting that M1 − x ≥ M1 − L, ε ≤ 1

and C ≥ 1, we have

(4.5) |f(x)| ≤ C1− 1
3(

M1−L
R )

1
α

ε
1
3 (

M1−L
R )

1
α

,
m

2
≤ x ≤ L.

Since ε < C1−θεθ for ε < C and 0 < θ < 1, inequality (4.5) and |f(x)| ≤ ε for

0 ≤ x ≤ m imply (4.5) for all x ∈ [0, L].

For 0 < m < M1

2
, we have R ≤ M1 and, by ε ≤ 1, we see that

ε
1
3 (

M1−L
R )

1
α ≤ ε

1
3 1− L

M1

1
α

.

Thus the proof of Lemma 3 is complete.

Furthermore in the case M1 = ∞, we can have

Lemma 4. Let m ≤ L, ε ≤ 1 and C > 1. Let f = f(z) be analytic in D1 = {z ∈

C; Re z > 0, |Im z| < M2} with M2 > m
2 and f ∈ C(D1). Suppose that |f | ≤ C on

D1 and that |f(x)| ≤ ε for x ∈ [0, m]. Then, for any µ0 such that

(4.6) 0 < µ0 <
1

3
exp

(√
3π

(
1

2
− L

m

))
,

we have

(4.7) |f(x)| ≤ C1−µ0εµ0 , 0 ≤ x ≤ L.
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Proof of Lemma 4. In terms of (4.2), it is sufficient to verify that

lim
M1→∞

1

3

(
M1 − L

R(M1)

) 1
α

=
1

3
exp

(√
3π

(
1

2
− L

m

))
.

This limit can be verified directly by the de L’Hôpital theorem, for example.

Now we will complete

Proof of Theorem 2. First, since a and b are analytic, we conclude that m(a, b) >

0 or a ≡ b on [0, L]. In fact, let m(a, b) = 0. Then we can choose an infinite

number of distinct mk ∈ (0, L), k ∈ N, such that a(mk) = b(mk), k ∈ N, and

limk→∞ mk = 0. Hence, by the uniqueness of analytic functions, we have a ≡ b on

[0, M ]. In the case of a ≡ b, conclusion (2.6) is trivial.

Consequently it suffices to consider the case of m(a, b) > 0. In the case m(a, b) <

M1

2
, we can directly apply Lemma 3 to a− b in D0 and in terms of (2.5), conclusion

(2.6) is seen. Finally let m(a, b) ≥ M1

2 . Since α(m) = 2
π arctan m

2
√

3M1−
√

3m
is

monotone increasing in m, we have

(4.8) α(m(a, b)) ≥ α

(
M1

2

)
.

On the other hand, by (2.5), we have

‖a − b‖C[0,M1/2] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

1
n+2

Lρ(0,T ;L∞(∂Ω))

and Lemma 3 yields

‖a − b‖C[0,L] ≤ C

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥

1
3(n+2)

1− L
M1

1
α(M1/2)

Lρ(0,T ;L∞(∂Ω))

.

Since we may assume that

∥∥∥∥
∂ua

∂n
− ∂ub

∂n

∥∥∥∥
Lρ(0,T ;L∞(∂Ω))

≤ 1,



DETERMINATION OF SEMILINEAR TERM 19

inequality (4.8) yields conclusion (2.6). Thus the proof of Theorem 2 is complete.

Finally, setting m = m(a, b) and L = km with k ∈ N and applying Lemma 4, we

can complete the proof of Corollary 1.

§5. Proof of Theorem 3.

Let us recall that m(a, b) is defined by (2.4) and let us set m0 = m(a, b). By the

finiteness of the number of zeros of a− b on [0, L], we can choose m1 ∈ (m0, L) such

that

a(η) ≥ b(η) for η ∈ (0, m0),

a(η) ≤ b(η) for η ∈ (m0, m1), a(m1) = b(m1).(5.1)

We will prove

(5.2) ‖a − b‖C[m0,m1] ≤ Cd
1

(n+2)2 ,

where d is defined by (3.7).

There exist T0 < T1 such that T0, T1 ∈ (0, T ] and

(5.3) [0, mj] = ϕ(∂Ω × [0, Tj]), j = 1, 2.

By Lemma 1, we have

(5.4) 0 ≤ ub(y, s) ≤ m1, y ∈ Ω, 0 ≤ s ≤ T1,

and, in view of Theorem 1,

(5.5) ‖a − b‖C[0,m0] ≤ C1d
p0 where p0 =

1

n + 2
.

Henceforth Cj > 0 denote constants which are dependent on U and ϕ, but inde-

pendent of the choices a, b ∈ U .
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We set

Q1 = {(y, s) ∈ Ω × [0, T1]; m0 ≤ ub(y, s) ≤ m1},

Q2 = {(y, s) ∈ Ω × [0, T1]; 0 ≤ ub(y, s) ≤ m0}.

By (5.4) we note that Q1 ∪ Q2 = Ω× [0, T1]. Let us recall that v = ua −ub satisfies

(3.9) - (3.11), so that we have (3.16). We will rewrite (3.16) as

∫ ∫

Q2

G(T1, x, s, y){a(ub(y, s))− b(ub(y, s))}dyds

−
∫ T1

0

∫

∂Ω

G(T1, x, s, y)
∂(ua − ub)

∂n
(y, s)dσyds

=

∫ ∫

Q1

G(T1, x, s, y){b(ub(y, s))− a(ub(y, s))}dyds, x ∈ ∂Ω.

(5.6)

Let |(a − b)(η)| attain the maximum ‖a − b‖C[m0,m1] at η1 ∈ (m0, m1):

‖a − b‖C[m0,m1] = (b − a)(η1).

Note that we can assume that m0 < η1 < m1. Otherwise η1 = m0 or η1 = m1, so

that ‖a − b‖C[m0,m1] = 0. Then (5.2) is trivial.

Then we can choose y1 ∈ ∂Ω and s1 ∈ (0, T1] such that

ϕ(y1, s1) = η1.

Moreover, in terms of (5.3), similarly to (3.4), we can prove that we can choose s1

such that

(5.7) T0 < s1 < T1.

Since (a − b)(m0) = 0, by the mean value theorem, we have

‖a − b‖C[m0,m1] = (b − a)(η1)

=(b − a)(η1) − (b − a)(m0) ≤ C2(η1 − m0).(5.8)
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Similarly, by (a − b)(m1) = 0, we have

(5.9) ‖a − b‖C[m0,m1] ≤ C2(m1 − η1).

Let ν ∈ (0, 1) be chosen later and let us consider the two cases:

(5.10) dνp0 ≤ min

{
η1 − m0

2M
,
m1 − η1

2M
,
T0

2

}

and

(5.11) dνp0 ≥ min

{
η1 − m0

2M
,
m1 − η1

2M
,
T0

2

}
.

In case (5.11), by (5.8) and (5.9), we can immediately obtain

‖a − b‖C[m0,m1] ≤ C3d
νp0

or

‖a − b‖C[m0,m1] ≤ 2M0 ≤ 4M0T
−1
0 dνp0 .

Hence with (5.5), choosing ν = 1
n+2 , we can complete the proof of (5.2).

Let us consider case (5.10). We set

B1 = {y ∈ Ω : |y − y1| < dνp0} × {s ∈ (0, T1]; s1 − dνp0 < s < s1}.

Then, by (5.7) and (5.10), we have

(5.12) s1 − dνp0 > T0 − dνp0 ≥ T0 −
T0

2
=

T0

2
> 0.

Moreover, for any (y, s) ∈ B1, in terms of the mean value theorem, we obtain

|ub(y, s)− η1| = |ub(y, s)− ub(y1, s1)|

≤‖ub‖C1(Ω×[0,T ])(|y − y1| + |s − s1|) ≤ 2Mdνp0

≤min{η1 − m0, m1 − η1},
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so that

(5.13) m0 ≤ ub(y, s) ≤ m1, (y, s) ∈ B1.

Let us denote the left and the right hand sides of (5.6) by J1(x) and J2(x) respec-

tively. By (5.7), (5.13) and Lemma 2, we obtain

J2(x) ≥
∫ ∫

B1

G(T1, x, s, y){b(ub(y, s))− a(ub(y, s))}dyds

≥
∫ s1

s1−dνp0

∫

|y−y1|<dνp0

G(T1, x, s, y)dyds× min
(y,s)∈B1

{b(ub(y, s))− a(ub(y, s))}

≥C4d
νp0(n+1) min

(y,s)∈B1

{b(ub(y, s))− a(ub(y, s))}.

On the other hand, similarly to (3.21), we see that

b(ub(y, s))− a(ub(y, s))

=b(ub(y1, s1)) − a(ub(y1, s1)) + a(ub(y1, s1)) − a(ub(y, s)) + b(ub(y, s))− b(ub(y1, s1))

≥‖a − b‖C[m0,m1] − C5d
νp0 , (y, s) ∈ B1.

Hence

(5.14) J2(x) ≥ C4d
νp0(n+1)(‖a − b‖C[m0,m1] − C5d

νp0).

Next we will estimate J1(x). By (5.5) and definition of Q2, we use (2.5) which

was already proved to have

|J1(x)| ≤ C1d
p0

∫ T1

0

∫

Ω

G(T1, x, s, y)dyds

+

∫ T1

0

∫

∂Ω

G(T1, x, s, y)

∣∣∣∣
∂(ua − ub)

∂n
(y, s)

∣∣∣∣dσyds

≤C6d
p0 + C6d.(5.15)
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Here the first term is estimated by Theorem 8.3 in Chapter 2 in [7] for example,

while the second term is estimated in the same manner as (3.17). Estimates (5.14)

and (5.15) imply

(5.16) C4(‖a − b‖C[m0,m1] − C5d
νp0) ≤ C6d

p0−νp0(n+1) + C6d
1−νp0(n+1).

Since 0 < p0 < 1, the choice ν such that p0 − νp0(n + 1) = νp0, gives the optimal

rate. That is, setting ν = 1
n+2 , we have the optimal rate 1

(n+2)2 in (5.16), namely,

‖a − b‖C[m0,m1] ≤ C7d
1

n+2 + C7d
1

(n+2)2 .

Therefore we can continue this argument to complete the proof of Therem 3.
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