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by

Teruhisa Tsuda

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



Universal characters, integrable chains

and the Painlevé equations
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Abstract

The universal character is a generalization of the Schur polynomial attached to a
pair of partitions; see [8]. We prove that the universal character solves the Darboux
chain. The N -periodic closing of the chain is equivalent to the Painlevé equation of
type A

(1)
N−1. Consequently we obtain an expression of rational solutions of the Painlevé

equations in terms of the universal characters.

Introduction

The universal character S[λ,µ], defined by Koike [8], is a polynomial attached to a pair of

partitions [λ, µ] and is a generalization of the Schur polynomial. The universal character

is in fact the irreducible character of a rational representation of the general linear group

GL(n,C), while the Schur polynomial that of a polynomial representation.

The Darboux chain, given by (1.1) below, is a sequence of ordinary differential equa-

tions with quadratic nonlinearity. This is closely interconnected with the spectral theory of

Schrödinger operators; in fact, governs a sequence of Schrödinger operators connected with

the neighbours by the Darboux transformations; see [16, 17, 18, 24, 25].

The Painlevé equations can be derived from the Darboux chains with suitable boundary

conditions; as is well known that the chains, (1.1), with periods of order three and four

yield Painlevé equations PIV and PV respectively. In general, for an integer N ≥ 3, the

N -periodic closing of the chain coincides with the (higher order) Painlevé equation of type

∗Current address: Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan.
E-mail address: tudateru@ms.u-tokyo.ac.jp, tudateru@math.kobe-u.ac.jp
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A
(1)
N−1, proposed by Noumi–Yamada; see [1, 14, 15, 18, 24, 25].

The aim of the present article is to show certain relationships among the universal char-

acters, the Darboux chains, and the Painlevé equations. We prove that the Darboux chain

admits particular solutions expressed by means of the universal characters (see Theorems 1.4

and 1.5). We have a cycle of the universal characters connected with the action of vertex

operators (see Lemma 2.2). Finally, these cycles, together with the fact that N -periodic

closing of the chain is equivalent to the Painlevé equation of type A
(1)
N−1, yield a class of

rational solutions of the equation in terms of the universal characters (see Theorems 2.4 and

2.6). Section 3 is devoted to the verification of Theorem 1.5.

1 Integrable chains

1.1 Darboux chain and its bilinear form

First we recall the definition of the Darboux chain and then review its bilinearization fol-

lowing [16, 25]. Consider the sequence of nonlinear differential equations for vn = vn(x) of

the form:

v̇n + v̇n−1 = v2
n − v2

n−1 + αn (n ∈ Z), (1.1)

which is called the Darboux chain. Here v̇ stands for the derivative of v with respect to x

and αn ∈ C is a constant parameter.

Introduce the variable un = un(x) defined by

un = v2
n − v̇n − cn, (1.2)

where cn ∈ C is a constant such that

αn = cn−1 − cn. (1.3)

Equation (1.2) is considered as a Riccati equation for vn and thus linearizable via the change

of the variables

vn = − d

dx
logψn; (1.4)

then (1.2) is transformed into the Shrödinger equation(
d2

dx2
− un

)
ψn = cnψn. (1.5)

It follows from (1.1) and (1.2) that the potential un (n ∈ Z) satisfies the recursion relation:

un+1 = un − 2(logψn)xx. (1.6)
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Now let us define the function τn = τn(x), called the τ -function, by

un = −2
d2

dx2
log τn − ε2

4
x2 + nε. (1.7)

Then we obtain from (1.5) the Hirota bilinear equation:(
D2

x + εxDx + εkn

)
τn · τn+1 = 0, (1.8)

with

kn = −cn
ε
− n− 1

2
. (1.9)

Here the symbolDx denotes the Hirota differential with respect to the variable x; for instance,

Dxf · g = ḟ g − f ġ, D2
xf · g = f̈ g − 2ḟ ġ + f g̈.

Remark 1.1. Conversely a solution {vn = vn(x);n ∈ Z} of the chain (1.1) is expressible in

terms of the τ -functions. Combining (1.4), (1.6) and (1.7), we obtain in fact

vn =
ε

2
x− d

dx
log

τn+1

τn
. (1.10)

1.2 Universal characters and Schur polynomials

For a pair of sequences of integers λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µl′), the universal

character S[λ,µ](x,y) is a polynomial in (x,y) = (x1, x2, . . . , y1, y2, . . .) defined as follows (see

[8]):

S[λ,µ](x,y) = det

[
qµl′−i+1+i−j(y), 1 ≤ i ≤ l′

pλi−l′−i+j(x), l′ + 1 ≤ i ≤ l + l′

]
1≤i,j≤l+l′

. (1.11)

Here pn(x) and qn(y) are the elementary Schur polynomials defined by

∞∑
n=0

pn(x)zn = eξ(x,z), ξ(x, z) =

∞∑
n=1

xnz
n, (1.12)

and p−n(x) = 0 for n > 0; or

pn(x) =
∑

k1+2k2+···+nkn=n

xk1
1 x

k2
2 · · ·xkn

n

k1!k2! · · ·kn!
. (1.13)

Polynomial qn(y) is just the same as pn(x) except replacing xi by yi. The Schur polynomial

Sλ(x) (see e.g. [9]) is regarded as a special case of the universal character:

Sλ(x) = det (pλi−i+j(x)) = S[λ,∅](x,y). (1.14)

If we count the degree of each variable xn and yn (n = 1, 2, . . .) as

deg xn = n, deg yn = −n,
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then S[λ,µ](x,y) is a (weighted) homogeneous polynomial of degree |λ| − |µ|, where we let

|λ| = λ1 + · · ·+ λl.

Introduce the operators Vk = Vk(z; x,y) (k ∈ Z) as follows:

Vk(z; x,y) = ekξ(x−∂̃y ,z)e−kξ(∂̃x ,z−1), (1.15)

where ∂̃x stands for
(

∂
∂x1
, 1

2
∂

∂x2
, 1

3
∂

∂x3
, . . .

)
. For n ∈ Z, we define the vertex operators Xn =

Xn(x, ∂x, ∂y) and Yn = Yn(y, ∂x, ∂y) by

V1(z; x,y) =
∑
n∈Z

Xnz
n, V1(w

−1; y,x) =
∑
n∈Z

Ynw
−n. (1.16)

Note that [Xn, Ym] = 0.

Proposition 1.2 (see [19]). The operators Xn and Yn (n ∈ Z) are raising operators for the

universal characters in the sense that

S[λ,µ](x,y) = Xλ1 · · ·Xλl
Yµ1 · · ·Yµl′ · 1.

Example 1.3. We give a few examples of the universal characters below.

S[∅,∅](x,y) = 1,

S[(1),∅](x,y) = S(1)(x) = x1,

S[(1),(1)](x,y) = x1y1 − 1,

S[(2,1),∅](x,y) = S(2,1)(x) =
x3

1

3
− x3,

S[(2,1),(1)](x,y) =

(
x3

1

3
− x3

)
y1 − x2

2,

S[(2,1),(2,1)](x,y) =

(
x3

1

3
− x3

)(
y3

1

3
− y3

)
− (x1y1 − 1)2.

We also note that (see [19])

S[λ,µ](x,y) = Sλ(x − ∂̃y)Sµ(y − ∂̃x) · 1. (1.17)

1.3 Similarity reduction of modified KP hierarchy

The Darboux chain (1.1) is closely related to the theory of infinite dimensional integrable

systems. As seeing below, the chain (1.1), or (1.8), is regarded as a similarity reduction of

the modified KP hierarchy.

Recall that the modified KP hierarchy is the following system of Hirota bilinear equations

(see [3]):
∞∑

k=0

pk(−2u)pk+2(D̃x) exp

(∑
j≥1

ujDxj

)
σn(x) · σn+1(x) = 0, (1.18)
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where u = (u1, u2, . . .) are parameters and D̃x =
(
Dx1,

1
2
Dx2 ,

1
3
Dx3 , . . .

)
. We obtain in

particular, from the constant term with respect to u, the bilinear equation:(
D2

x1
+Dx2

)
σn · σn+1 = 0. (1.19)

Let the pair (σn, σn+1) = (σn(x1, x2), σn+1(x1, x2)) be a solution of (1.19) such that(
x1

∂

∂x1

+ 2x2
∂

∂x2

)
σj(x1, x2) = djσj(x1, x2), dj ∈ C. (1.20)

Noticing σj(cx1, c
2x2) = cdjσj(x1, x2) for any c ∈ C×, we set

τj(x) = σj

(
x,− 1

2ε

)
. (1.21)

It follows from (1.19) and (1.20) that the pair τn(x) and τn+1(x) satisfies the bilinear equation

(see [14]): (
D2

x + εxDx + ε(dn+1 − dn)
)
τn · τn+1 = 0, (1.22)

which is exactly the bilinear form of the Darboux chain (1.8).

1.4 Schur polynomial solves the chain

The Schur polynomial Sλ = S[λ,∅] gives a particular solution of the Darboux chain (1.1), or

(1.8), in the sense of the following theorem.

Theorem 1.4. For any integer k and sequence of integers λ, let f = f(x) and g = g(x) be

the functions defined by

f = Sλ(x), g = S(k,λ)(x), (1.23)

with

x1 = x, x2 = − 1

2ε
, xn = 0 (n ≥ 3). (1.24)

Then we have (
D2

x + εxDx + εk
)
f · g = 0. (1.25)

Proof. A key is the following

Claim (see e.g. [4, 14]). For any integer k and sequence of integers λ, the pair σn(x) = Sλ(x)

and σn+1(x) = S(k,λ)(x) solves the first modified KP hierarchy (1.18); in particular satisfies

(1.19).

As shown in the previous section, equation (1.25) is deduced from (1.19) via the similarity

reduction; see (1.20) and (1.21). Since Sλ(x) is homogeneous of degree |λ|, the theorem

follows immediately from the above claim. �
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1.5 Universal character solves the chain

Consider the change of the variables:

t = − ε

2
x2, (1.26)

and

τ̃n = t−
1
4(a− 1

2)(a+ 1
2)τn, τ̃n+1 = t−

1
4(a+ 1

2)(a+ 3
2)τn+1, (1.27)

the bilinear form of the Darboux chain (1.8) is converted to(
tD2

t − (t+ a)Dt − 1

2

(
kn − a− 1

2

))
τ̃n · τ̃n+1 + τ̃n

dτ̃n+1

dt
= 0. (1.28)

The universal character S[λ,µ] also solves the Darboux chain:

Theorem 1.5. For any integer k and pair of sequences of integers [λ, µ], let f = f(t) and

g = g(t) be the functions defined as follows:

f = S[λ,µ](x,y), g = S[(k,λ),µ](x
′,y′), (1.29)

with

xn = t+
a

n
, yn = −t+

a

n
, x′n = t+

a+ 1

n
, y′n = −t+

a+ 1

n
, (1.30)

where a ∈ C being an arbitrary constant. Then we have(
tD2

t − (t+ a)Dt − k
)
f · g + f

dg

dt
= 0. (1.31)

The proof of the theorem is given in Section 3 below.

Remark 1.6. Let λT denote the transpose of the partition λ; see [9]. Viewing the properties:

S[λ,µ](x,y) = ±S[λT ,µT ](−x,−y) and S[λ,µ](x,y) = S[µ,λ](y,x),

we have from Theorem 1.5 that the pair

f̃ = S[λ,µT ](x
′,y′), g̃ = S[λ,(k,µ)T ](x,y), (1.32)

satisfies (
tD2

t − (t− a− 1)Dt − k
)
f̃ · g̃ + f̃

dg̃

dt
= 0. (1.33)

Remark 1.7. An extension of the KP hierarchy, called the UC hierarchy, is proposed in

[19, 23]. Since the UC hierarchy admits all the universal characters to be its polynomial

solutions, it is an interesting problem to construct a certain reduction procedure from the

hierarchy to the Darboux chain.
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2 Painlevé equations and universal characters

2.1 N-Periodic chain and Painlevé equation of type A
(1)
N−1

From now on, we consider the N -periodic chain, namely, equations (1.1) with the N -periodic

condition:

vn+N = vn, αn+N = αn. (2.1)

We normalize
N∑

n=1

αn = 1, (2.2)

without loss of generality. As shown in [18] (and see also [1, 24]), through the change of

variables:

fn = vn + vn−1, (2.3)

the N -periodic chain is converted to the Painlevé equation of type A
(1)
N−1 due to Noumi–

Yamada [15], denoted by P (AN−1); the system of differential equations for fn is given as

follows:

(i) if N = 2g + 1 (g = 1, 2, . . .),

P (A2g) :
dfn

dx
= fn

(
g∑

j=1

fn+2j−1 −
g∑

j=1

fn+2j

)
+ αn;

(ii) if N = 2g + 2 (g = 1, 2, . . .),

P (A2g+1) :
x

2

dfn

dx
= fn

( ∑
1≤j≤k≤g

fn+2j−1fn+2k −
∑

1≤j≤k≤g

fn+2jfn+2k+1

)

+

(
1

2
−

g∑
k=1

αn+2k

)
fn + αn

g∑
j=1

fn+2j .

Note that P (A2) and P (A3) are equivalent to the Painlevé equations PIV and PV respectively.

Remark 2.1. The Painlevé equation P (Al) (l ≥ 2) has symmetry under the (extended) affine

Weyl group of type A
(1)
l ; that is, P (Al) is invariant under the action of the transformations

si (i = 0, 1, . . . , l) and π given as follows (see [15]):

si(αi) = −αi, si(αj) = αj + αi (j = i± 1), si(αj) = αj (j �= i, i± 1),

si(fi) = fi, si(fj) = fj ± αi

fi
(j = i± 1), si(fj) = fj (j �= i, i± 1),

(2.4)

and π(αi) = αi+1, π(fi) = fi+1; these define a representation of the extended affine Weyl

group W̃ = 〈s0, . . . , sl, π〉 of type A
(1)
l .
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Now we shall consider the bilinear form of P (AN−1). The periodic condition (2.1) requires

that cn+N = cn − 1; see (1.3) and (2.2). Hence we have that, if

ε =
1

N
, (2.5)

then we can set

kn+N = kn, τn+N = τn,

in the bilinear form of the chain (1.8). Thus we obtain the system of bilinear equations:(
D2

x +
x

N
Dx +

kn

N

)
τn · τn+1 = 0, (2.6)

with τn+N = τn and kn+N = kn, which is equivalent to Painlevé equation P (AN−1) via

fn =
x

N
− d

dx
log

τn+1

τn−1

, αn =
kn − kn−1 + 1

N
; (2.7)

see (1.10) and (2.3).

2.2 N-reduced partitions and chain of vertex operators

We first recall the definition of N -reduced partition following [14]. A subset M ⊂ Z is said

to be a Maya diagram if

m ∈M (m	 0) and m /∈M (m
 0).

Each Maya diagramM = {. . . , m3, m2, m1} corresponds to a unique partition λ = (λ1, λ2, . . .)

such that mi −mi+1 = λi − λi+1 + 1. For each n = (n1, n2, . . . , nN) ∈ ZN , let us consider

the Maya diagram:

M(n) = (NZ<n1 + 1) ∪ (NZ<n2 + 2) ∪ · · · ∪ (NZ<nN
+N);

then denote by λ(n) the corresponding partition. Notice that

λ(n) = λ(n + 1),

where 1 = (1, 1, . . . , 1). A partition of the form λ(n) is said to be an N-reduced partition.

We remark that a partition λ is N -reduced if and only if λ has no hook with length of a

multiple of N .

We have a cycle, connected with the action of the vertex operators (1.16), among the

universal characters attached to N -reduced partitions:

8



Lemma 2.2. The following formulae hold.

XNn1−|n|S[λ(n),µ](x,y) = ±S[λ(n+e1),µ](x,y),

XNn2−|n|S[λ(n+e1),µ](x,y) = ±S[λ(n+e1+e2),µ](x,y),
...

XNnN−1−|n|S[λ(n+e1+···+eN−2),µ](x,y) = ±S[λ(n+e1+···+eN−2+eN−1),µ](x,y),

XNnN−|n|S[λ(n+e1+···+eN−2+eN−1),µ](x,y) = ±S[λ(n),µ](x,y).

(2.8)

Here n = (n1, n2, . . . , nN ) ∈ ZN , |n| = n1 + · · ·+ nN , ei =

i
�

(0, . . . , 0, 1, 0, . . . , 0), and µ being

an arbitrary sequence of integers.

We can easily verify the above lemma by Proposition 1.2 together with the commutation

relations among the vertex operators (see [19]):

XkXl = −Xl−1Xk+1 and [Xk, Yl] = 0.

Note that similar formulae as (2.8) hold also for the operators Yn.

Example 2.3. (1) Consider the case N = 2; we have a chain of universal characters S[λ,µ](x,y)

in which λ being a two-reduced partition, connected with vertex operators Xn (n ∈ Z).

�
λ = ∅

��
X1

X−1

� ��
X2

X−2

� ��
X3

X−3

� �� . . .

(2) Consider the case N = 3; we have a cycle of a triple of universal characters correspond-

ing to three-reduced partitions. We give below an example for (n1, n2, n3) = (2, 1, 0) in

Lemma 2.2.

�λ = �

X3

��
�

�� X0
�

�
��

X−3

�

2.3 Rational solutions of P (AN−1) in terms of Schur polynomials

Viewing Lemma 2.2 with µ = ∅, we obtain from Theorem 1.4 a class of solutions of Painlevé

equation P (AN−1) expressed in terms of N -reduced Schur polynomials:
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Theorem 2.4. For any n ∈ Z
N , let

τi = Sλ(n+e1+e2+···+ei)(x), (2.9)

where

x1 = x, x2 = −N
2
, xl = 0 (l ≥ 3).

(1) The N-tuple of polynomials {τi = τi(x); i ∈ Z/NZ} solves (2.6), the bilinear form of

P (AN−1), when

ki = Nni+1 − |n|.
(2) Consequently

fi =
x

N
− d

dx
log

τi+1

τi−1
,

gives a rational solution of P (AN−1) with the parameters:

αi = ni+1 − ni +
1

N
. (2.10)

Remark 2.5. The rational solutions given in Theorem 2.4 have been considered in the case

when N = 3, that is, for the fourth Painlevé equation PIV; cf. [7, 14].

2.4 Rational solutions of P (A2g+1) in terms of universal characters

In what follows we consider only the case when N is even. Let N = 2g + 2, the N -periodic

chain is equivalent to Painlevé equation P (A2g+1). Equation P (A2g+1) has another type of

rational solutions than that given in the previous section, which is expressed by means of

the (g + 1)-reduced universal characters.

Through the change of the variables:

t = − x2

4g + 4
, (2.11)

and

τ̃2j = t−
1
4(a− 1

2)(a+ 1
2)τ2j , τ̃2j+1 = t−

1
4(a+ 1

2)(a+ 3
2)τ2j+1, (2.12)

the bilinear form of P (A2g+1), (2.6) with N = 2g + 2, is converted to the system:(
tD2

t − (t+ a)Dt − 1

2

(
k2j − a− 1

2

))
τ̃2j · τ̃2j+1 + τ̃2j

dτ̃2j+1

dt
= 0, (2.13a)(

tD2
t − (t− a− 1)Dt − 1

2

(
k2j−1 + a +

1

2

))
τ̃2j−1 · τ̃2j + τ̃2j−1

dτ̃2j

dt
= 0. (2.13b)

Combine Lemma 2.2 with Theorem 1.5 (see also Remark 1.6), we thus have the following.
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Theorem 2.6. For any m,n ∈ Z
g+1, let

τ̃2j = S[λ(m+e1+···+ej),λT (n+e1+···+ej)](x,y),

τ̃2j+1 = S[λ(m+e1+···+ej+ej+1),λT (n+e1+···+ej)](x
′,y′),

(2.14)

with

xn = t+
a

n
, yn = −t+

a

n
, x′n = t+

a+ 1

n
, y′n = −t+

a+ 1

n
,

where

t = − x2

4(g + 1)
,

and a ∈ C being an arbitrary constant.

(1) The (2g + 2)-tuple of polynomials {τ̃i = τ̃i(t); i ∈ Z/(2g + 2)Z} solves (2.13) when

k2j = 2(g + 1)mj+1 − 2|m| + a+
1

2
,

k2j+1 = 2(g + 1)nj+1 − 2|n| − a− 1

2
.

(2) Consequently

fi =
x

2(g + 1)
− d

dx
log

τ̃i+1

τ̃i−1
,

gives a rational solution of P (A2g+1) with the parameters:

α2j = mj+1 − nj +
|n| − |m| + a+ 1

g + 1
,

α2j+1 = nj+1 −mj+1 +
|m| − |n| − a

g + 1
.

(2.15)

Example 2.7. Consider the case when g = 1, namely, N = 4. Let m1 − m2 = m and

n1 − n2 = n. We have, from Lemma 2.2, a cycle of a quartet of universal characters

S[λ,µ](x,y) connected with the alternate action of vertex operators Xi and Yi (i ∈ Z):

�
[λ, µ] = [(m− 1)!, (n− 1)!]

�

Xm

�
[m!, (n− 1)!]

�
Yn

� [m!, n!]�
X−m

�[(m− 1)!, n!]

�

Y−n

Here we write the two-reduced partition as m! = (m,m− 1, . . . , 1); and notice that (m!)T =

m!. Then the quartet

(τ̃0, τ̃1, τ̃2, τ̃3) =(
S[(m−1)!,(n−1)!](x,y), S[m!,(n−1)!](x

′,y′), S[m!,n!](x,y), S[(m−1)!,n!](x
′,y′)

)
,
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solves (2.13) with

(k0, k1, k2, k3) =

(
2m+ a+

1

2
, 2n− a− 1

2
,−2m+ a+

1

2
,−2n− a− 1

2

)
.

Remark 2.8. The expression of rational solutions for g = 1, 2 in Theorem 2.6 has been

established in a different manner by Masuda et al. [11, 12]. We refer also to the results

[5, 6, 10, 13, 20, 21, 22, 23, 26] where a class of rational (or algebraic) solutions is expressed

in terms of Schur polynomials, or universal characters, for each of other Painlevé equations

and Garnier’s generalizations.

3 Proof of Theorem 1.5

Consider the change of variables:

xn = t+
a

n
, yn = −t+

a

n
, (3.1)

then let S
(a)
[λ,µ](t) be a function of t equipped with a constant parameter a ∈ C defined by

S
(a)
[λ,µ](t) = S[λ,µ](x,y). (3.2)

Similarly let

p(a)
n (t) = pn(x) and q(a)

n (t) = p(a)
n (−t) = qn(y).

We remark that p
(a)
n is essentially equivalent to the Laguerre polynomial. In fact we have

the generating function:
etk/(1−k)

(1 − k)a
=
∑
n∈Z

p(a)
n (t)kn, (3.3)

and p
(a)
n satisfies the linear differential equation of the form:

Lap
(a)
n (t) = np(a)

n (t), La = t
d2

dt2
+ (t+ a)

d

dt
. (3.4)

Lemma 3.1. For any λ and µ, the function S
(a)
[λ,µ](t) has the following expression of ‘Wron-

skian’ type:

S
(a)
[λ,µ](t) = det


(

d

dt
− 1

)l+l′−j

(−1)l+l′−1q
(ã)
µl′−i+1+i−1(t), 1 ≤ i ≤ l′(

d

dt

)l+l′−j

p
(ã)
λi−l′−i+l+l′(t), l′ + 1 ≤ i ≤ l + l′


1≤i,j≤l+l′

,

(3.5)

where

ã = a− l − l′ + 1.
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Proof. Polynomials p
(a)
n (t) and q

(a)
n (t) satisfy the formulae:

p(a−1)
n = p(a)

n − p
(a)
n−1, (3.6a)

d

dt
p(a)

n = p
(a+1)
n−1 , (3.6b)

q(a−1)
n = q(a)

n − q
(a)
n−1, (3.6c)(

d

dt
− 1

)
q(a)
n = −q(a+1)

n , (3.6d)

which are essentially the contiguity relations for the Laguerre polynomial; cf. [2].

Consider the matrices

Rk = I +
∑

k≤i≤l+l′−1

Ei,i+1 (1 ≤ k ≤ l + l′ − 1),

where I denotes an identity; and Ei,i+1 a matrix element, that is, a matrix in which the (i, i+

1)-th element is unity and all the others are zero. Applying the matrices R1, R2, . . . , Rl+l′−1

successively from the right hand to the row vector:(
p(a)

n , p
(a)
n+1, . . . , p

(a)
n+l+l′−1

)
,

then we obtain ((
d

dt

)l+l′−1

p
(ã)
n+l+l′−1,

(
d

dt

)l+l′−2

p
(ã)
n+l+l′−1, . . . , p

(ã)
n+l+l′−1

)
,

by virtue of (3.6a) and (3.6b). By the same procedure as above, the vector:(
q(a)
n , q

(a)
n−1, . . . , q

(a)
n−l−l′+1

)
,

is transformed into((
d

dt
− 1

)l+l′−1

(−1)l+l′−1q(ã)
n ,

(
d

dt
− 1

)l+l′−2

(−1)l+l′−1q(ã)
n , . . . , (−1)l+l′−1q(ã)

n

)
,

via (3.6c) and (3.6d). Since detRk = 1, the proof is now complete. �

One can easily verify the

Lemma 3.2. For an (l + l′) × (l + l′)-matrix M = (Mi,j(t))1≤i,j≤l+l′, we have the following

formula of Leibniz type:

(
d

dt
− l′
)

detM =
∑

1≤j≤l+l′
det

j



M1,1 · · · (
d
dt
− 1
)
M1,j · · · M1,l+l′

...
...

...

Ml′,1 · · · (
d
dt
− 1
)
Ml′,j · · · Ml′,l+l′

Ml′+1,1 · · · d
dt
Ml′+1,j · · · Ml′+1,l+l′

...
...

...

Ml+l′,1 · · · d
dt
Ml+l′,j · · · Ml+l′,l+l′



 l′

 l

.
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Proof of Theorem 1.5. For the sake of simplicity, we prepare some notations; let

La = t
d2

dt2
+ (t+ a)

d

dt
, L̃a = t

d2

dt2
− (t− a)

d

dt
and δ =

d

dt
− l′.

Then the left hand side of equation (1.31) is rewritten as follows:(
tD2

t − (t+ a)Dt − k
)
f · g + f

dg

dt
= f(La+1g) − (Laf)g − kfg

+2t
{
(δ2f)g + l′(δf)g − l′f(δg) − (δf)(δg)

}
. (3.7)

Now we shall substitute (1.29) with (1.30) into the right hand side of the above formula. Let

f = det(fi,j(t))1≤i,j≤l+l′ and g = det(gi,j(t))1≤i,j≤l+l′+1; namely, let

fi,j(t) =

{
q
(a)
µl′−i+1+i−j(t) (1 ≤ i ≤ l′),

p
(a)
λi−l′−i+j(t) (l′ + 1 ≤ i ≤ l + l′),

and so on. We have

Laf =
∑

j

det

j



f1,1 · · · L̃af1,j · · · f1,l+l′
...

...
...

fl′,1 · · · L̃afl′,j · · · fl′,l+l′

fl′+1,1 · · · Lafl′+1,j · · · fl′+1,l+l′
...

...
...

fl+l′,1 · · · Lafl+l′,j · · · fl+l′,l+l′



 l′

 l

+2t
∑

j

det

j



f1,1 · · · d
dt
f1,j · · · f1,l+l′

...
...

...

fl′,1 · · · d
dt
fl′,j · · · fl′,l+l′

fl′+1,1 · · · 0 · · · fl′+1,l+l′
...

...
...

fl+l′,1 · · · 0 · · · fl+l′,l+l′



 l′

 l

+2t
∑
j<k

det

j



k



d
dt
f1,j

d
dt
f1,k

...
...

d
dt
fl+l′,j

d
dt
fl+l′,k

 . (3.8)

Noticing the relations:

Lap
(a)
n (t) = np(a)

n (t) and L̃aq
(a)
n (t) = −nq(a)

n (t),
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we see that the first term of right hand side of (3.8) is equal to (|λ| − |µ|)f . The sum of the

other terms coincides with

2t
∑
j<k

det

j



k



(
d
dt
− 1
)
f1,j

(
d
dt
− 1
)
f1,k

...
...(

d
dt
− 1
)
fl′,j

(
d
dt
− 1
)
fl′,k

d
dt
fl′+1,j

d
dt
fl′+1,k

...
...

d
dt
fl+l′,j

d
dt
fl+l′,k



 l′

 l

+ 2t

(
l′(δf) +

l′(l′ + 1)

2
f

)
.

We can compute also La+1g in the same way; then we obtain

1

2t
{RHS of (3.7)} = (δ2f)g − (δf)(δg)

+f ×
∑
j<k

det

j



k



(
d
dt
− 1
)
g1,j

(
d
dt
− 1
)
g1,k

...
...(

d
dt
− 1
)
gl′,j

(
d
dt
− 1
)
gl′,k

d
dt
gl′+1,j

d
dt
gl′+1,k

...
...

d
dt
gl+l′+1,j

d
dt
gl+l′+1,k



 l′

 l + 1

−g ×
∑
j<k

det

j



k



(
d
dt
− 1
)
f1,j

(
d
dt
− 1
)
f1,k

...
...(

d
dt
− 1
)
fl′,j

(
d
dt
− 1
)
fl′,k

d
dt
fl′+1,j

d
dt
fl′+1,k

...
...

d
dt
fl+l′,j

d
dt
fl+l′,k



 l′

 l

. (3.9)

From Lemma 3.1 we have the expression of f = f(t) and g = g(t) of ‘Wronskian’ type:

f = det
[
ξ(m−1), ξ(m−2), . . . , ξ(0)

]
,

g = det
[
η(m),η(m−1), . . . ,η(0)

]
,

with m = l+ l′. Here we let ξ(j) and η(j) (j ≥ 0) be the column vectors of size m and m+ 1

respectively defined as follows:

ξ(j) = D(l′, l)j × T
(
(−1)m−1q(ã)

µl′
, . . . , (−1)m−1q(ã)

µ1
, p

(ã)
λ1+l−1, . . . , p

(ã)
λl

)
,

η(j) = D(l′, l + 1)
j × T

(
(−1)m−1q(ã)

µl′
, . . . , (−1)m−1q(ã)

µ1
, p

(ã)
k+l, p

(ã)
λ1+l−1, . . . , p

(ã)
λl

)
,
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with

D(l′, l) =



d
dt
− 1

. . .
d
dt
− 1

d
dt

. . .
d
dt



 l′

 l

.

Using the formula in Lemma 3.2, we have from (3.9) that

1

2t
{RHS of (3.7)} =∣∣ξ(m+1), ξ(m−2), . . . , ξ(0)

∣∣× ∣∣η(m),η(m−1), . . . ,η(0)
∣∣

−∣∣ξ(m), ξ(m−2), . . . , ξ(0)
∣∣× ∣∣η(m+1),η(m−1), . . . ,η(0)

∣∣
+
∣∣ξ(m−1), ξ(m−2), . . . , ξ(0)

∣∣× ∣∣η(m+1),η(m),η(m−2), . . . ,η(0)
∣∣, (3.10)

which immediately turns out to be zero by the Plücker relation (a determinant identity). �
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A, Nagoya Math. J. 156 (1999), 123–34.

18



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2004–4 SAKAI Hidetaka: A q-analog of the Garnier system.

2004–5 Takuya Sakasai: The Magnus representation for the group of homology cylin-
ders.

2004–6 Johannes Elschner and Masahiro Yamamoto: Uniqueness in determining polyg-
onal sound-hard obstacles.

2004–7 Masaaki Suzuki: Twisted Alexander polynomial for the Lawrence-Krammer rep-
resentation.

2004–8 Masaaki Suzuki: On the Kernel of the Magnus representation of the Torelli
group.

2004–9 Hiroshi Kawabi: Functional inequalities and an application for parabolic sto-
chastic partial differential equations containing rotation.

2004–10 Takashi Taniguchi: On the zeta functions of prehomogeneous vector spaces for
pair of simple algebras.

2004–11 Harutaka Koseki and Takayuki Oda : Matrix coefficients of representations of
SU(2, 2): — the case of PJ -principal series —.

2004–12 Takeo Satoh: Twisted first homology groups of the automorphism group of a
free group.

2004–13 M. K. Klibanov and M. Yamamoto: Lipschitz stability of an inverse problem
for an acoustic equation.

2004–14 Teruhisa Tsuda: Universal characters, integrable chains and the Painlevé equa-
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