
UTMS 2004–11 April 12, 2004

Matrix coefficients

of representations of SU(2, 2):

— the case of PJ-principal series —

by

Harutaka Koseki and Takayuki Oda

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



Matrix coefficients of representations of SU(2, 2):
— the case of PJ -principal series —

Harutaka KOSEKI (Mie Univ.) and Takayuki ODA (the Univ. of Tokyo)

Introduction

Our concern in this paper is to have an explicit integral expression of the radial part of the ma-
trix coefficients with particular K-type of certain generalized principal series representations,
i.e. PJ -principal series, of the real unitary group SU(2, 2) of signature (2+, 2−).

The non-compact Lie group G = SU(2, 2) of dimension 15 has two types of the standard
maximal parabolic subgroups. One, which corresponds to the long root in the restricted root
system (C2-type), that has non-abelian unipotent radical, is denoted by PJ = MJAJNJ .

Given a discrete series representation σ of MJ and a complex linear form ν on the Lie
algebra aJ = Lie(AJ ), the parabolic induction π = IndG

PJ
(σ ⊗ eν+ρJ ⊗ 1NJ

) is a PJ -principal
series representation of G. Here ρJ denotes the half-sum of roots in the unipotent part NJ ,
eν+ρJ : AJ → C∗ the quasi-character with derivation ν + ρJ : aJ → C, and σ ⊗ eν+ρJ is the
exterior tensor representation of the Levi part MJAJ of PJ .

Consider the subset consisting of the highest weights of the K-types occurring in π|K in
the weight lattice of the maximal compact subgroup K of G. Then we can find that it is a
”translation” of the similar set of the highest weights of the K-types of a large discrete series
representation of G, here ”large” is in the sense of Kostant-Vogan. Therefore corresponding
to the minimal K-type of a large discrete series, we can consider the ”corner” K-type of our
π, which is legitimately defined by Hayata [5], [6] in this case.

Let τ be the irreducible finite-dimensional representation of K such that its dual τ∗ is the
corner K-type (cf. Definition (2.1)). Fix a basis {vi}0≤i≤d of the representation space Wτ of
τ , and let {v∗j } be its dual basis in Wτ∗ . Then we can form (d + 1) × (d + 1)-matrix

Φ(g) :=
(
(π(g)v∗i , v∗j )0≤i,j≤d

)
= ((ci,j(g))0≤i,j≤d) .

Here (∗, ∗) is the given inner product on the representation space Hπ of a Hilbert space
representation π. The value of Φ is determined by its restriction Φ|A to the radical part
A ∼= R2

>0, because of the Cartan decomposition G = KAK.
Our main result is to show that the radial part of each entry of the matrix Φ satifies a

holonomic system which is equivalent to Appell’s hypergeometric system of type F2, and to
have an integral expression of it in terms of Gaussian hypergeometric series (Theorem (5.4)).

Let us explain the outline of the method of proof. Set M = ZA(K) the centralizer of A in
K. Then Φ(mam−1) = Φ(a) for any a ∈ A and m ∈ M . This M−compatibility implies that
many entries of the matrix Φ(a) vanishes. Let C be the Casimir operator in Z(g). Then,
since π is quasi-simple, the A−radial part ρA(C) of C acts on Φ|A as a scalar multiple of
χπ(C), the value of the infinitesimal character χπ of π at C:

ρA(C)(Φ|A) = χπ(C)(Φ|A).

Moreover we consider a gradient-type operator called Schmid operator ∇, which were also
utlized in other papers [13], [8], [5], [6], [12]. The A-radial part of this gives the Euler-Darboux
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operator which plays a crucial role in the classical theory of hypergeometric functions of two
variables. Note that our result is quite similar to that of Iida [8], for both Sp(2,R) and
SU(2, 2) has the same restricted root system.

Let us review the outline of the contents of this paper. In §1 we prepare fundamental
facts on the structure of the group SU(2, 2) and its subgroups, and their associated Lie
algebras. Moreover some facts on the represenations of the maximal compact subgroup
K = S(U(2)×U(2)) are recalled. In §2, we define the PJ -principal series represenations and
its corner K-types. Some more facts about the representations of K are prepared.

In §3 we define two type of the annihilators of the corner K-types. One is the composition
of the gradient operator and the projectors in the Clebsh-Gordan decomposition of the tensor
products of irreducible K-modules. This kind of operators are used to characterize the
minimal K-type of the discrete series representation by Schmid [14]. We call these operators
Schimid operators. Another annihilator comes from the Casmir operator. We compute the
A-radial parts of these operators.

In §4, we compute these eqautions of §3 in terms of the coefficients of the spherical
functions. The result is a system of differential-difference equations apparently rather com-
plicated.

In §5 we reduce the equations in §4 firstly to simple equations for each single coefficients.
After a simple change of unknown functions (dependent variables) and a simple change of
(indepent) variables, we find that the finial equation is no other than a modified system of
Appell’s F2. To have an integral expression is a simple problem (cf. Theorem (5.4)).

Our formula thus obtained has rather limited domain of convergence, different from the
famous fomula by Harish-Chandra on the spherical functions representing the matrix coeffi-
cients of the principal series. However, we have a connection with F2 in one part. And also
our formula has very natural affinity with the result of Akhiezer and Gindikin [1], because
the limitation of convergence is caused by the ’hidden’ singularities on a complexification of
G/K.

Now let us comment on the relation between this paper and other papers in the literature.
Firstly this work is motivated by the desire to know the ’complexity’ of the matrix coeffi-
cients of representations which should reflect the largeness of the Gelfand-Kirillov dimension
of representations, as mensioned in the introduction of the previous paper [7]. However,
chronologically speaking the result of this paper is obtained much earlier than that of [7].

Secondly from the view point of spherical functions on Lie groups, we have to mention that
in the case of the compact dual Gc = SU(4) of G = SU(2, 2), the spherical functions on the
compact symmetric space Gc/K = SU(4)/S(U(2) × U(2)), i.e., the orthogonal polynomials
in two variables of the BC2 type, are investigated by Koornwinder [10], and Deviard-Gaveaux
[2], [3]. Note that this kind of results are later generalized further by Heckemann-Opdam to
arbitrary symmetric spaces.

Thirdly we have to note that the ”confluent versions” of our spherical functions are alreday
found in Hayata [6] (Whittaker functions, after utilizing the holonomic systems similar to
those of Yamashita [17]) and in Gon [4] for the Siegel-Whittaker functions.

The group Sp(2,R) has the same restricted root system as SU(2, 2), therefore their
spherical functions resemble to those of SU(2, 2). As we already remarked, the case of
matrix coefficients, which shoulde be the counter part to our paper for Sp(2,R), is Iida [8].
The Whittaker functions and the Siegel-Whittaker functions of the PJ -principal series are
discussed in Miyazaki-Oda [12] and in Miyazaki [11], respectively.

Finally we have to mention the important relation with Appell’s F2. The reader can find
there the same equations (2.1) of N. Takayama [15] as the formulae of Proposition (5.3) in
this paper, which is called the modified F2.
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1 Preliminaries.

1.1 Basic terminology for SU(2, 2)

We fix some notations in this section.

1.1.1 The structure of the Lie group SU(2, 2) and its Lie algebra

Our Lie group is the special unitary group of signature (2+, 2−) with real dimension 15

G = SU(2, 2) = {g ∈ SL4(C)|tḡI2,2g = I2,2}; I2,2 = diag(1, 1,−1,−1),

and its associated Lie algebra is

g = Lie(G) = {
(

X Z
tZ̄ Y

)
∈ sl4(C)|X,Y,Z ∈ M2(C),t X̄ + X =t Ȳ + Y = 0}.

We fix a maximal compact subgroup K of G and its Lie algebra by

K = {
(

A 0
0 B

)
∈ G|A,B ∈ U(2),det Adet B = 1}

∼= S(U(2) × U(2)),

k = {
(

A 0
0 B

)
∈ sl4(C)|tĀ + A =t B̄ + B = 0}.

These are 7-dimensional. We fix a compact Cartan subgroup T of G in K and its associated
Lie algebra :

T = {diagonal matrices ∈ K},
t = {diagonal matrices ∈ k}.

The complexifications of g, k, t are denoted by gC, kC, tC.
We denote by Xij the matrix unit with 1 at (i, j)-component. The complement space p

of the Cartan decomposition g = k ⊕ p is given by

p = {
(

0 Z
tZ̄ 0

)
|Z ∈ M2(C)}.

An maximal abelian subspace in p is given by

a = RH1 ⊕ RH2 with H1 = X13 + X31, H2 = X24 + X42.

Moreover we set
A = exp(a), M = ZK(A), m = zK(a).

Then

M = {exp(θ
√−1I0)γj |θ ∈ R, j = 1, 2}, m = R

√−1I0

with matrices
γ = I0 = diag(1,−1, 1,−1).

Define matrices hi, ei,± (i = 1, 2) by

h1 = diag(1,−1, 0, 0), h2 = diag(0, 0, 1,−1), e1,+ = X12, e1,− = X21, e2,+ = X34, e2,− = X43.
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Let z(kC) = CI2,2 be the center of kC. Then {hi, ei,± (i = 1, 2)} is a basis of the commutator
algebra [k, k], and k = z(kC) ⊕ [k, k]. The set {h1, h2, I2,2} is a basis of the Cartan subalgebra
tC.

It is convenient to set Zij = Xii − Xjj for (i, j) = (1, 2) or (3, 4). Then

Z13 =
1
2
(I2,2 + h1 − h2), Z24 =

1
2
(I2,2 − h1 + h2).

Obviously Z13, Z24 	∈ [k, k].

1.1.2 Restricted root system

Define two linear forms λi ∈ a∗ (i = 1, 2) on a defined by λi(Hj) = δij . Then the restricted
root system of g with respect to a, which is of type C2, is given by

∆ = ∆(g, a) = {±λ1 ± λ2,±2λ1,±2λ2}.

For a fixed positive system ∆+ = {λ1±λ2, 2λ1, 2λ2}, the associated root space decomposition
is given as

g = a + m +
∑
λ∈∆

gλ

with

g2λ1 = RE1, g2λ2 = RE2, gλ1+λ2 = RE3 + RE4, gλ1−λ2 = RE5 + RE6,

and

g−µ =t ḡµ = {tX̄|X ∈ gµ}.

Here

E1 =
√−1

2




1 −1
0 0

1 −1
0 0


 , E2 =

√−1
2




0 0
1 −1

0 0
1 −1


 ,

E3 =
1
2




1 −1
−1 1

1 −1
−1 1


 , E4 =

√−1
2




1 −1
1 −1

1 −1
1 −1


 ,

E5 =
1
2




1 1
−1 1

1 1
1 −1


 , E6 =

√−1
2




1 1
1 −1

1 1
−1 1


 .
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1.1.3 Hyperbolic trigonometric functions

We identify a ∈ R×
+ and t ∈ R by a = et = exp(t). Hence we set

sh(a) = sh(t) =
1
2
(a − a−1), ch(a) = ch(t) =

1
2
(a + a−1),

th(a) = sh(a)/ch(a), ct(a) = ch(a)/sh(a),

and define a function in two variables

D = D(a1, a2) = ch(a1)2 − ch(a2)2 = sh(a1)2 − sh(a2)2 =
1
4
(a1/a2 − a2/a1)(a1a2 − a−1

1 a−1
2 ).

Added to the basic relations

ch(a)2 − sh(a)2 = 1, sh(a2) = 2sh(a)ch(a), ch(a2) = ch(a)2 + sh(a)2 = 1 + 2sh(a)2,

in this paper we particularly use

sh(a1/a2)2 + sh(a1a2)2 = ch(a2
1)ch(a2

2) − 1 = 2{sh(a1)2 + sh(a2)2 + 2sh(a1)2sh(a2)2},
and

ch(a1a2)sh(a1/a2)2 + ch(a1/a2)sh(a1a2)2 = 2ch(a1)ch(a2){sh(a1)2 + sh(a2)2}.
Moreover for Euler operators ∂ = a ∂

∂a , ∂i = ai
∂
∂ai

(i = 1, 2), we have

∂(sh(a)) = ch(a), ∂(ch(a)) = sh(a),

and
ch(a1)

D
· ∂1 · D

ch(a1)
=

sh(a2
1)

D
− ct(a2

1) + sh(a2
1)

−1,

ch(a2)
D

· ∂2 · D

ch(a2)
= −sh(a2

2)
D

− ct(a2
2) + sh(a2

2)
−1.

1.2 K-module, projectors, and (τ1, τ2)-spherical functions

1.2.1 Parametrization and realization of irreducible representations of K

The unitary dual K̂ of the connected compact group K = S(U(2)×U(2)) or its complexified
Lie algebra kC = s(gl2(C) ⊗ gl(C)) is parametrized as follows.

Definition (1.1) The element τ[r,s;u] in the set

K̂ = k̂C = {τ[r,s;u] : r, s ∈ Z≥0, u ∈ Z, r + s + u ∈ 2Z}
with parameter [r, s;u] is given by

τ[r,s;u](
(

zg1

z−1g2

)
) = Symr(g1) ⊗ Syms(g2) ⊗ zu (gj ∈ SU(2), z ∈ U(1)),

τ[r,s;u](
(

Y1

Y2

)
) = Symr(Y1) ⊗ Id + Id ⊗ Syms(Y2) (Yj ∈ sl2(C)),

τ[r,,s;u](I2,2) = u · Id.

Here Symd means the symmetric tensor representation of degree d of SU(2, 2) or its Lie
algebra. More explicitly, we specify the standard basis in the representation space Vτ = Vr,s

in the same way as in [5], §§3.5 or §§1.3 of [7]:

fkl = fk ⊗ fl; fk ↔ xkyr−k, fl ↔ xlys−l (0 ≤ k ≤ r, 0 ≤ l ≤ s).
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Then we have the following.

Lemma (1.1) Write τ = τ[r,s,;u]. Then

τ(h1)fkl = (2k − r)fkl, τ(h2)fkl = (2l − s)fkl,
τ(e1

+)fkl = (r − k)fk+1,l, τ(e2
+)fkl = (s − l)fk,l+1,

τ(e1−)fkl = kfk−1,l, τ(e2−)fkl = lfk,l−1,
τ(I2,2)fkl = ufkl.

Moreover we have

τ(Z13)fkl = 1
2(−r + s + u + 2k − 2l)fkl, τ(Z24)fkl = 1

2(r − s + u − 2k + 2l)fkl.

See Lemma (3.8) of [5].
The contragradient represenation τ∗ of τ = τ[r,s,;u] has the parameter τ∗ = τ[r,s;−u].

1.2.2 Projectors from Vτ ⊗ p± to irreducible factors

Given an irreducible representation τ = τ[r,s;u], we want to decompose the tensor product Vτ⊗
p± into irreducible components. The adoint representations Ad± of K on p± are irreducible
and thier parameters are given by

Ad+ = τ[1,1;2], Ad− = τ[1,1;−2].

Therefore

τ ⊗ Ad± = τ[r+1,s+1;u±2] ⊗ τ[r+1,s−1;u±2] ⊗ τ[r−1,s+1;u±2] ⊗ τ[r−1,s−1;u±2].

Here the factor including the parameter r − 1 (resp. s− 1) is dropped if r = 0 (resp. s = 0).
We can define the projectors corresponding to this decomposition:

P (e,f) : Vr,s ⊗ p+ → Vr+e,s+f , P̄ (e,f) : Vr,s ⊗ p− → Vr+e,s+f , (e, f = ±).

Lemma (1.2) For each projector given above, up to scalar multiple the basis of Vτ ⊗ p±

are mapped as follows :

P (−,−)(fkl ⊗ X13) = −P̄ (−,−)(fkl ⊗ X42) = (k − r)lfk,l−1

P (−,−)(fkl ⊗ X24) = −P̄ (−,−)(fkl ⊗ X31) = k(s − l)fk−1,l

P (−,−)(fkl ⊗ X23) = P̄ (−,−)(fkl ⊗ X41) = klfk−1,l−1

P (−,−)(fkl ⊗ X14) = P̄ (−,−)(fkl ⊗ X32) = (k − r)(s − l)fk,l

P (+,−)(fkl ⊗ X13) = −P̄ (+,−)(fkl ⊗ X42) = (−l)fk+1,l−1

P (+,−)(fkl ⊗ X24) = −P̄ (+,−)(fkl ⊗ X31) = (l − s)fk,l

P (+,−)(fkl ⊗ X23) = P̄ (+,−)(fkl ⊗ X41) = (−l)fk,l−1

P (+,−)(fkl ⊗ X14) = P̄ (+,−)(fkl ⊗ X32) = (l − s)fk,l

P (−,+)(fkl ⊗ X13) = −P̄ (−,+)(fkl ⊗ X42) = (r − k)fk,l

P (−,+)(fkl ⊗ X24) = −P̄ (−,+)(fkl ⊗ X31) = kfk−1,l+1

P (−,+)(fkl ⊗ X23) = P̄ (−,+)(fkl ⊗ X41) = (−k)fk−1,l

P (−,+)(fkl ⊗ X14) = P̄ (−,+)(fkl ⊗ X32) = (k − r)fk,l+1

See Lemma (3.12) of [5]. Because we do not use P (+,+), P̄ (+,+), they are omitted.

6



1.2.3 (τ1, τ2)-spherical functions

Let (τ1, Vτ1) and (τ2, Vτ2) be two irreducible representations of K with parameters d1 =
[r1, s1;u1] and d2 = [r2, s2;u2]. Similarly as in the previous paper [7], we consider the space

C∞
d1,d2

(K\G/K)

:= {c : G → Vd1 ⊗ Vd2 |c(k1gk2) = τ1(k1) ⊗ τ2(k−1
2 ) · c(g), k1, k2 ∈ K}.

Let
c(g) =

∑
M=(k1,l1;k2,l2)

cM (g)fk1,l1 ⊗ fk2,l2

be the expression of c in terms of standard basis. Then the redundancy of the double coset
decomposition G = KAK implies the following.

Lemma (1.3) (M -compatibility) The restriction of any coefficient ck1,l1,k2,l2 to A vanishes,
unless

k1 + l1 + k2 + l2 =
1
2
(r1 + s1 + r2 + s2)

and

k1 − l1 + k2 − l2 ≡ 1
2
(r1 − s1 + u1 + r2 − s2 + u2) mod 2.

Remark We note here that under the first condition, the second condition is equivalent to
2s1 + 2s2 ≡ u1 + u2 mod 4 (or to 2r1 + 2r2 ≡ u1 + u2 mod 4).

Proof of Lemma. The first condition is already proved in [7], Lemma (3.1) in a more special
situation. The same proof is applicale to our case. We have to show the second condition.

Take an element m of M of the form

m =
(

zg1 0
0 z−1g2

)
, g1 = diag(uz−1, ūz), g2 = diag(uz, ūz−1)

with u ∈ C
×, |u| = 1, and z =

√−1. Then g1, g2 ∈ SU(2) and for a ∈ A we get

c(a) = c(mam−1) = τ1(m) ⊗ τ2(m) · c(a)

=
∑

k1,l1,k2,l2

(uz−1)k1+k2(ūz)r1−k1+r2−k2(uz)l1+l2(ūz−1)s1−l1+s2−l2

·zu1+u2ck1,l1,k2,l2(a)fk1,l1 ⊗ fk2,l2.

Comparing the exponents in u and z of the coefficients, we have our lemma.
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2 The PJ-principal series representarions and their corner

K-types

2.1 The PJ-principal series of SU(2, 2)

Recall the generalized principal series representation obtained by parabolic induction with
respect to the parabolic subgroup PJ . This group is the unique maximal cuspidal parabolic
subgroup in G. For a Langlands decomposition PJ = MJAJNJ , its split component AJ =
exp(aJ ) is given by

aJ = a2λ2 = RH1,

its unipotent radical NJ = exp(nJ) by

nJ = g2λ1 + gλ1+λ2 + gλ1−λ2 ,

and the component MJ = exp(mJ) with

mJ = RH2 ⊕ RE2 ⊕ R
√−1I0 ⊕ R

√−1Z24,

where Z24 = 1
2(I2,2 − H ′

1 + H ′
2). Put

T = {exp(
√−1θI0)|θ ∈ R} ∼= C(1),

and

G0 =







1
α β

1
β̄ ᾱ


 |θ ∈ R, α, β ∈ C, |α|2 − |β|2 = 1




∼= SU(1, 1).

Then MJ = T · G0. Note that here a maximal compact subgroup K0 of G0 is given by

K0 = {diag(1, α, 1, ᾱ)|α ∈ C(1)} ∼= C(1).

The essentially discrete series representations of MJ is given as the composition σ =
(χm,D±

k ) of the characters

χm(e
√−1θ) = em

√−1θ (e
√−1θ ∈ C(1), i.e., θ ∈ R;m ∈ Z)

of C(1) and the discrete series representations D±
k of G0 = SU(1, 1) with Blatter parameter

±k (cf. [5] §§3.1).
For a complex-valued linear form ν ∈ aJ,C = HomR(aJ ,C) on aJ , we denote by eν the

character of AJ defined by eν(a1) = eν(log a1) (a1 ∈ AJ).
Now we define the generalized principal series associated with PJ by

πJ,σ,ν = πJ(m;±k; ν) = IndG
PJ

(σ ⊗ eν+ρJ ⊗ 1NJ
).

Here ρJ = 2λ1 and the group G acts by right translation.

2.2 The corner K-types of PJ principal series

We construct some elements in U(g) which annihilate the vectors in a PJ -principal series
represenation with the corner K-type.

We refer Hayata [5] in this subsection. The K-type of the representation πJ,σ,ν is described
in Proposition (3.3) of [5]. The necessary data for our purpose is to specifty the corner K-type.
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Definition (2.1) The corner K-type τd in π = πJ,σ,ν is characterized by the properties:
1) its dimension is minimal among the K-types in π;
2) the restriction τd|K0 has the minimal K0-type of D±

k ;
3) When m 	= 0, τd+δ does not occur in π for some non-compact root δ with respect to (g, h).
See §§4.3 of [5].

Notation (2.1) In order to describe the corner K-type, it is convenient to introduce the
notation

sgn(σ) = (sgn(m); ε) for σ = (χm,Dε
k).

Here sgn(m) = +1, 0,−1 according as m > 0,m = 0,m < 0, respectively, and ε = +1 for D+
k

and ε = −1 for D−
k .

Here is the list of the corner K-types.

Proposition (2.1) The parameter [r, s;u] for the contragredient representation of the corner
K-type is

[0, |m|;−ε2k + m] if εsgn(m) ≥ 0,

[|m|, 0;−ε2k − m] if εsgn(m) ≤ 0.

We refer the table before Remark 4.3 in [6] for this proposition.
Throughout the rest of this paper, τ2 = τ[r,s,;u2] stands for the contragredient of the corner

K-type of π = πJ,σ,ν .

Proposition (2.2) Let [r, s;u2] be as above. Then the constituents in π|K with parameter
of the form [r, s;u1] occurs if and only if

ε(u1 + u2) ≥ 0, u1 + u2 ≡ mod 4.

Moreover, if it is the case, the K-type with parameter [r, s;u1] has multiplicity one in π|K.

This is deduced immediately from Propostion (3.3) in [6]. From now on, τ1 = τ[r,s;u1] stands
for these K-types satisfying the above conditions of multiplicity one.

2.3 The behavior of the standard basis of the corner K-type Vτ1 ⊗ Vτ2

The standard basis of Vτ1 ⊗ Vτ2 is the collection of

fM = fL
k1,�1 ⊗ fR

k2,�2, with M = (k1, �1, k2, �2),

where {fL
k1,�1

} (resp. {fR
k2,�2

}) is the tandard basis of Vτ1 (resp. Vτ2) given in Sect.1.2. By
the compatibility condition (Lemma (1.3)) M runs through under the following condition:

k1 = k2 = 0, 0 ≤ li ≤ r = |m|, l1 + l2 = |m| if εm ≥ 0,
l1 = l2 = 0, 0 ≤ ki ≤ s = |m|, k1 + k2 = |m| if εm < 0.

In order to give a unified description to the behavior of the standird basis we use some linear
functions of M = (k1, �1, k2, �2). Firstly we define ti = ti(M) by the following table:

m ≥ 0, ε > 0 m < 0, ε < 0 m < 0, ε > 0 m ≥ 0, ε < 0
(t1, t2) = (l2, l1), (l1, l2), (k1, k2), (k2, k1)

We also define Ai = Ai(M), i = 1, 2, and B = B(M) by

A1 = ε
1
4
(u2 − u1) +

1
2
(t2 − t1), A2 = ε

1
4
(u2 − u1) − 1

2
(t2 − t1),

9



B = ε
1
4
(u1 + u2).

The action of kC on the standard basis is written in the following way.

Lemma (2.2) With Ai = Ai(M), B = B(M), one has

τ2(I0)fM = sgn(m)(t1 − t2)fM ,

τ1(Z13)fM = ε(−A1 + B)fM , τ2(Z13)fM = ε(A1 + B)fM ,

τ1(Z24)fM = ε(−A2 + B)fM , τ2(Z24)fM = ε(A2 + B)fM .

Lemma (2.3) The compact root vectors act on fM , M = (k1, �1, k2, �2), as follows:

If εm ≥ 0 then τj(e1±)fM = 0, and if εm < 0 then

τ1(e1
+)fM = (r − k1)fL

k1+1,l1 ⊗ fR
k2,l2 , τ2(e1

+)fM = (r − k2)fL
k1,l1 ⊗ fR

k2+1,l2,

τ1(e1
−)fM = k1f

L
k1−1,�1 ⊗ fR

k2,l2, τ2(e1
−)fM = k2f

L
k1,l1 ⊗ fR

k2−1,l2.

If εm < 0 then τj(e2±)fM = 0, and if εm ≥ 0 then

τ1(e2
+)fM = (s − �1)fL

k1,l1+1 ⊗ fR
k2,l2, τ2(e2

+)fM = (s − l2)fL
k1,l1 ⊗ fR

k2,l2+1,

τ1(e2
−)fM = l1f

L
k1,l1−1 ⊗ fR

k2,l2, τ2(e2
−)fM = l2f

L
k1,l1 ⊗ fR

k2,l2−1.

2.4 Differential equations for the corner K-type

Let τ1, τ2 be those irreducible representations of K specified in (2.2). Let {fL∗
k1,l1

} and {fR∗
k2,l2

}
be the dual basis of {fL

k1,l1
} in τ1 and {fR

k2,l2
} in τ2, respectively. Let ιi : τi → π (i = 1, 2)

be the injective homomorphisms of K-modules, unique up to scalar multiple, since τi occurs
with multiplicity one in π and by Schur’s Lemma. Now we put

ϕ(g) =
∑

(k1,l1)

∑
(k2,l2)

(π(g)ι2(fR∗
k2,l2), ι1(f

L∗
k1,l1))f

L
k1,l1 ⊗ fR

k2,l2.

This function belongs to the space C∞
τ1,τ2(K\G/K), defined in (1.2.3).

2.4.1 Gradient operators

We want to recall the gradient operators for the space C∞
d1,d2

(K\G/K). Up to scalar constant,
the Killing form determines the bilinear form

tr(
(

0 Z
tZ̄

)(
0 W

tW̄

)
) = trC/R(

4∑
i=1

ziw̄i) for Z =
(

z1 z2

z3 z4

)
, W =

(
w1 w2

w3 w4

)
.

Hence up to scalar multiple, an orthogonal basis with respect to this is given by

X13 + X31,
√−1(X13 − X31),X14 + X41,

√−1(X14 − X41),

X23 + X32,
√−1(X23 − X32),X24 + X42,

√−1(X24 − X42).

Let RX , LX be the right derivation and the left derivation with respect to X ∈ g. Then we
can define the right gradient operator by

∇R
d1,d2

φ(g) : =
∑
i=3,4

{RX1i+Xi1φ(g) ⊗ (X1i + Xi1) + R√−1(X1i−Xi1
φ(g) ⊗√−1(X1i − Xi1)}

= 2
∑
i=3,4

{RX1iφ(g) ⊗ Xi1 + RXi1φ(g) ⊗ X1i}.

The left gradient operator ∇L
d1,d2

is obtained similarly by replacing the right derivations RX ’s
by the left derivations LR’s.
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2.4.2 Schmid operators

Proposition (2.4) For the function ϕ defined above, we have

P (+,−) · ∇R
+ϕ = 0, if ε = +1 and m > 0;

P̄ (−,+) · ∇R−ϕ = 0, if ε = −1 and m > 0;
P (−,+) · ∇R

+ϕ = 0, if ε = +1 and m < 0;
P̄ (+,−) · ∇R−ϕ = 0, if ε = −1 and m < 0;

P (−,−) · ∇R
+ · P (+,+) · ∇R

+ϕ = 0, if ε = +1 and m = 0;
P̄ (−,−) · ∇R− · P̄ (+,+) · ∇R−ϕ = 0, if ε = −1 and m = 0.

Remark (2.1) The compostions P (∗,∗) · ∇R± are called Schmid operator. These are used to
characterize the minimal K-types of the discrete series representations [14].

Proof of Proposition. This is derived from the nature of the corner K-type. The proof of
Proposition (4.4) of [6] is applicable in our case.

2.4.3 The Casimir operator

Proposition (2.5) The spherical fucntion ϕ belonging to πJ(m;±k; ν) with the corner K-
type from the right hand side satisfyies the Casimir equation:

χπJ,σ,ν
(Ω)ϕ = {ν2 + (k − 1)2 +

1
2
m2 − 10}ϕ.

with respect to the Casimir operator given by

Ω = H2
1 + H2

2 +
1
2
I2
0 + 2

2∑
j=1

(Et
jĒj +t ĒjEj) +

6∑
j=3

(Et
jĒj +t ĒjEj).

See $§3.4 of [6] and §§5.1 [5].
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3 The A-radial part of the annihilators

3.1 Cartan decompotion of basis of p±

There are two kinds of Cartan decompositions:

g = Ad(a−1)k + a + k; a ∈ A+ (the right decompostion),

g = k + a + Ad(a)k; a ∈ A+ (the left decomposition),

where the adjoint representation Ad is defined by

Ad(g)(X) = gXg−1 (g ∈ G,X ∈ gC).

Here note that the sums are not direct sums, for the subspace m in k is Ad(A)-invariant.
Let a = exp(t1H1 + t2H2), then the entries of the matrix a = (aij)1≤i,j≤4 is given as

follows:

a11 = a33 = ch(a1), a22 = a44 = ch(a2), a13 = a31 = sh(a1), a24 = a42 = sh(a2)

with ai = exp(ti) (i = 1, 2).
The Cartan decompositions of the standard generators (basisにする？) of p± is calculated

as follows.

Lemma (3.1) (The right Cartan decomposition)

X14 =
1
D
{−ch(a1)sh(a2)Ad(a−1)(e1

+) − sh(a1)ch(a2)Ad(a−1)(e2
+)

+sh(a2)ch(a2)e1
+ + sh(a1)ch(a1)e2

+},
X41 =

1
D
{ch(a1)sh(a2)Ad(a−1)(e1

−) + sh(a1)ch(a2)Ad(a−1)(e2
−)

−sh(a2)ch(a2)e1
− − sh(a1)ch(a1)e2

−},
X23 =

1
D
{sh(a1)ch(a2)Ad(a−1)(e1

−) + ch(a1)sh(a2)Ad(a−1)(e2
−)

−sh(a1)ch(a1)e1
− − sh(a2)ch(a2)e2

−},
X32 =

1
D
{−sh(a1)ch(a2)Ad(a−1)(e1

+) − ch(a1)sh(a2)Ad(a−1)(e2
+)

+sh(a1)ch(a1)e1
+ + sh(a2)ch(a2)e2

+},
X13 =

1
2
{sh(a2

1)
−1Ad(a−1)(Z13) + H1 − ct(a2

1)(Z13)},

X31 =
1
2
{−sh(a2

1)
−1Ad(a−1)(Z13) + H1 + ct(a2

1)(Z13)},

X24 =
1
2
{sh(a2

2)
−1Ad(a−1)(Z24) + H2 − ct(a2

2)(Z24)},

X42 =
1
2
{−sh(a2

2)
−1Ad(a−1)(Z24) + H2 + ct(a2

2)(Z24)},

3.2 A-radial part of the annihilators

3.2.1 A-radial part of the gradient operators

Given two finite dimensional irreducible representations (τ1, V1), (τ2, V2) of K, we already
defined the gradient operators ∇∗± (∗ = R,L):

∇R
± : C∞

τ1,τ2(K\G/K) → C∞
τ1,τ2⊗Ad±(K\G/K)
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∇L
± : C∞

τ1,τ2(K\G/K) → C∞
τ1⊗±,τ2(K\G/K).

Here we compute their A-radial parts of these operators:

ρA(∇R
±) : C∞

τ1,τ2(A,V1 ⊗ V2) → C∞
τ1,τ2⊗Ad±(A,V1 ⊗ V2)

ρA(∇L
±) : C∞

τ1,τ2(A,V1 ⊗ V2) → C∞
τ1⊗±,τ2(A,V1 ⊗ V2).

Let us denote the Euler operator with respect to ai by ∂i = ai · ∂
∂ai

. Then, for example,
in the case of ρA(∇R

+), by Cartan decomposition we have

ρA(∇R
+) = RX31ϕ ⊗ X13 + RX41ϕ ⊗ X14 + RX32ϕ ⊗ X23 + RX42ϕ ⊗ X24

= {1
2
∂1 − 1

2
sh(a2

1)
−1τ1(Z13) − 1

2
ct(a2

1)τ2(Z13)}ϕ ⊗ X13

+
1
D
{ch(a1)sh(a2)τ1(e1

−) + sh(a2)ch(a2)τ1(e2
−)

+sh(a2)ch(a2)τ2(e1
−) + sh(a1)ch(a2)τ2(e2

−)}ϕ ⊗ X14

− 1
D
{sh(a1)ch(a2)τ1(e1

+) + ch(a1)ch(a2)τ1(e2
+)

+sh(a1)ch(a1)τ2(e1
+) + sh(a2)ch(a2)τ2(e2

+)}ϕ ⊗ X23

+{1
2
∂2 − 1

2
sh(a2

2)
−1τ1(Z24) − 1

2
ct(a2

2)τ2(Z24)}ϕ ⊗ X24

for ϕ ∈ C∞(A,V1 ⊗ V2).
Here we rewrite τ2(Z13)ϕ ⊗ X13 etc. by

(τ2 ⊗ Ad+)(Z13)(ϕ ⊗ X13) − ϕ ⊗ [Z13,X13] = (τ2 ⊗ Ad+)(Z13)(ϕ ⊗ X13) − 2ϕ ⊗ X13.

If we rewrite other operators ρA(∇R−) similarly, we obtain the following.

Lemma (3.2) (the A-radial part of the gradient operators)

ρA(∇R
+)ϕ =

1
2
{∂1 − sh(a2

1)
−1τ1(Z13) − ct(a2

1)(τ2 ⊗ Ad+)(Z13)

+2ct(a2
1) +

2
D

sh(a2
1)}(ϕ ⊗ X13)

+
1
2
{∂2 − sh(a2

2)
−1τ1(Z24) − ct(a2

2)(τ2 ⊗ Ad+)(Z24)

+2ct(a2
2) −

2
D

sh(a2
2)}(ϕ ⊗ X24)

+
1
D
{ch(a1)sh(a2)τ1(e1

−) + sh(a1)ch(a2)τ1(e2
−)

+sh(a2)ch(a2)(τ2 ⊗ Ad+)(e1
−) + sh(a1)ch(a1)(τ2 ⊗ Ad+)(e2

−)}(ϕ ⊗ X14)

− 1
D
{sh(a1)ch(a2)τ1(e1

+) + ch(a1)sh(a2)τ1(e2
+)

+sh(a1)ch(a1)(τ2 ⊗ Ad+)(e1
+) + sh(a2)ch(a2)(τ2 ⊗ Ad+)(e2

+)}(ϕ ⊗ X23)

ρA(∇R
−)ϕ =

1
2
{∂1 + sh(a2

1)
−1τ1(Z13) + ct(a2

1)(τ2 ⊗ Ad−)(Z13)

+2ct(a2
1) +

2
D

sh(a2
1)}(ϕ ⊗ X31)

+
1
2
{∂2 + sh(a2

2)
−1τ1(Z24) + ct(a2

2)(τ2 ⊗ Ad−)(Z24)
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+2ct(a2
2) −

2
D

sh(a2
2)}(ϕ ⊗ X42)

− 1
D
{ch(a1)sh(a2)τ1(e1

+) + sh(a1)ch(a2)τ1(e2
+)

+sh(a2)ch(a2)(τ2 ⊗ Ad+)(e1
+) + sh(a1)ch(a1)(τ2 ⊗ Ad+)(e2

+)}(ϕ ⊗ X41)

+
1
D
{sh(a1)ch(a2)τ1(e1

−) + ch(a1)sh(a2)τ1(e2
−)

+sh(a1)ch(a1)(τ2 ⊗ Ad−)(e1
−) + sh(a2)ch(a2)(τ2 ⊗ Ad−)(e2

−)}(ϕ ⊗ X32)

3.3 The A-radial part of the Casimir equation

In this subsection, we compute the A−radial part ρA(Ω) of Casimir operator Ω for ϕ ∈
C∞

τ1,τ2(K\G/K).
We have to rewrite the Casimir element Ω of Z(gC):

Ω = H2
1 + H2

2 +
1
2
I2
0 + 2

2∑
j=1

(Ej
tEj +t EjEj) +

6∑
j=3

(Ej
tEj +t EjEj)

(cf. Proposition (2.5)), utilizing the right Cartan decomposition g = Ad(a−1)k + a + k.

For each µ ∈ ∆ = ∆(g, a) we denote by Eµ a root vector corresponding to µ and put
Fµ = Eµ − E−µ, where we may assume E−µ =t Eµ. Then we have Fµ = −F−µ ∈ kC and for
each a ∈ A+ we can write

Ad(a−1)Fµ = a−µEµ − aµE−µ = a−µFµ − (aµ − a−µ)E−µ.

Hence each root vector has a right Cartan decomposition

E±µ = − 1
aµ − a−µ

Ad(a−1)Fµ +
a±µ

aµ − a−µ
Fµ.

Moreover noting the commutation relation

[Fµ, Ad(a−1)Fµ] = −(aµ − a−µ)Hµ,

where Hµ ∈ a is defined by Hµ = [Eµ, E−µ], we get

EµE−µ =
aµ

aµ − a−µ
Hµ +

1
(aµ − a−µ)2

{(Ad(a−1)Fµ)2 + Fµ} − aµ + a−µ

(aµ − a−µ)2
(Ad(a−1)Fµ)Fµ,

E−µEµ =
a−µ

aµ − a−µ
Hµ +

1
(aµ − a−µ)2

{(Ad(a−1)Fµ)2 + Fµ} − aµ + a−µ

(aµ − a−µ)2
(Ad(a−1)Fµ)Fµ.

In view of Section 1.1.2, for the positive roots {2λ1, 2λ2, λ1 ± λ2} in ∆, we here use the
substitutions:

E2λ1 = E1, E2λ2 = E2, Eλ1+λ2 = E3 or E4, Eλ1−λ2 = E5 or E6,

to have

H2λ1 = H1, H2λ2 = H2, Hλ1+λ2 = H1 + H2, Hλ1−λ2 = H1 − H2,
F2λ1 =

√−1Z13, F2λ2 =
√−1Z24,

Fλ1+λ2 = (e1
+ − e1−) − (e2

+ − e2−) ifEλ1+λ2 = E3,
Fλ1+λ2 =

√−1(e1
+ + e1−) −√−1(e2

+ + e2−) if Eλ1+λ2 = E4,
Fλ1−λ2 = (e1

+ − e1−) + (e2
+ − e2−) if Eλ1−λ2 = E5,

Fλ1−λ2 =
√−1(e1

+ + e1−) +
√−1(e2

+ + e2−) if Eλ1−λ2 = E6.
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From the above results we see that the radial part ρA(Ω) with respect to the right Cartan
decomposition g = Ad(a−1)k + a + k has the form, for each a ∈ A+,

ρA(Ω) = H2
1 + H2

2 + f1(a)H1 + f2(a)H2 + F (a)

with fi(a) ∈ R and F (a) ∈ Ad(a−1)k + k. Here each fi(a) is given by

fi(a) = 2
a2

1 + a−2
1

a2
1 − a−2

1

+ 2
a1a2 + a−1

1 a−1
2

a1a2 − a−1
1 a−1

2

+ (−1)i−12
a1a

−1
2 + a−1

1 a2

a1a
−1
2 − a−1

1 a2

.

To get the explicit form of F (a) we note that the equalities

(Fµϕ)(a) = {−τ2(Fµ)ϕ}(a), {Ad(a−1)Fµϕ}(a) = {τ1(Fµ)ϕ}(a)

hold for any ϕ ∈ C∞
τ1,τ2(K\G/K). Then the partial sum in F (a) corresponding to the positive

roots 2λ1, 2λ2 is

− 4
(a2

1 − a−2
1 )2

{τ1(Z13)2 + τ2(Z13)2} − 4(a2
1 + a−2

1 )
(a2

1 − a−2
1 )2

τ1(Z13)τ2(Z13)

− 4
(a2

2 − a−2
2 )2

{τ1(Z24)2 + τ2(Z24)2} − 4(a2
2 + a−2

2 )
(a2

2 − a−2
2 )2

τ1(Z24)τ2(Z24).

The partial sum in F (a) corresponding to the positive roots λ1 ± λ2 is

2
(a1a2 − a−1

1 a−1
2 )2

{τ1(e1
+ − e1

− − e2
+ + e2

−)2 + τ2(e1
+ − e1

− − e2
+ + e2

−)2

−τ1(e1
+ + e1

− − e2
+ − e2

−)2 − τ2(e1
+ + e1

− − e2
+ − e2

−)2}

+
2(a1a2 + a−1

1 a−1
2 )

(a1a2 − a−1
1 a−1

2 )2
{τ1(e1

+ − e1
− − e2

+ + e2
−)) · τ2(e1

+ − e1
− − e2

+ + e2
−)

−τ1(e1
+ + e1

− − e2
+ − e2

−) · τ2(e1
+ + e1

− − e2
+ − e2

−)}
+

2
(a1a

−1
2 − a−1

1 a2)2
{τ1(e1

+ − e1
− + e2

+ − e2
−)2 + τ2(e1

+ − e1
− + e2

+ − e2
−)2

−τ1(e1
+ + e1

− + e2
+ + e2

−)2 − τ2(e1
+ + e1

− + e2
+ + e2

−)2}

+
2(a1a

−1
2 + a−1

1 a2)
(a1a

−1
2 − a−1

1 a2)2
{τ1(e1

+ − e1
− + e2

+ − e2
−) · τ2(e1

+ − e1
− + e2

+ − e2
−)

−τ1(e1
+ + e1

− + e2
+ + e2

−)) · τ2(e1
+ + e1

− + e2
+ + e2

−))}

=
4

(a1a2 − a−1
1 a−1

2 )2

2∑
i=1

τi(e1
+e2

− + e2
−e1

+ + e1
−e2

+ + e2
+e1

− − e1
+ − e1− − e1

−e1
+ − e2

+e2
− − e2

−e2
+)

+
4(a1a2 + a−1

1 a−1
2 )

(a1a2 − a−1
1 a−1

2 )2
{τ1(e1

+)τ2(e2
−) + τ1(e2

−)τ2(e1
+) + τ1(e1

−)τ2(e2
+) + τ1(e2

+)τ2(e1
−)

−τ1(e1
+)τ2(e1

−) − τ1(e1
−)τ2(e1

+) − τ1(e2
+)τ2(e2

−) − τ1(e2
−)τ2(e2

+)}

− 4
(a1a

−1
2 − a−1

1 a2)2

2∑
i=1

τi(e1
+e2

− + e2
−e1

+ + e1
−e2

+ + e2
+e1

− + e1
+e1

− + e1
−e1

+ + e2
+e2

− + e2
−e2

+)

−4(a1a
−1
2 + a−1

1 a2)
(a1a

−1
2 − a−1

1 a2)2
{τ1(e1

+)τ2(e2
−) + τ1(e2

−)τ2(e1
+) + τ1(e1

−)τ2(e2
+) + τ1(e2

+)τ2(e1
−)

+τ1(e1
+)τ2(e1

−) + τ1(e1
−)τ2(e1

+) + τ1(e2
+)τ2(e2

−) + τ1(e2
−)τ2(e2

+)}.
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Now using the equalities

a1a2 + a−1
1 a−1

2

a1a2 − a−1
1 a−1

2

+
a1a

−1
2 + a−1

1 a2

a1a
−1
2 − a−1

1 a2

=
1
D

sh(a2
1),

a1a2 + a−1
1 a−1

2

a1a2 − a−1
1 a−1

2

− a1a
−1
2 + a−1

1 a2

a1a
−1
2 − a−1

1 a2

= − 1
D

sh(a2
2),

4
(a1a2 − a−1

1 a−1
2 )2

+
4

(a1a
−1
2 − a−1

1 a2)2
=

1
D2

{ch(a2
1)ch(a2

2) − 1},
4

(a1a2 − a−1
1 a−1

2 )2
− 4

(a1a
−1
2 − a−1

1 a2)2
= − 1

D2
sh(a2

1)sh(a2
2),

4(a1a2 + a−1
1 a−1

2 )
(a1a2 − a−1

1 a−1
2 )2

+
4(a1a

−1
2 + a−1

1 a2)
(a1a

−1
2 − a−1

1 a2)2
=

4
D2

ch(a1)ch(a2){sh(a1)2 + sh(a2)2},

4(a1a2 + a−1
1 a−1

2 )
(a1a2 − a−1

1 a−1
2 )2

− 4(a1a
−1
2 + a−1

1 a2)
(a1a

−1
2 − a−1

1 a2)2
= − 4

D2
sh(a1)sh(a2){ch(a1)2 + ch(a2)2}

we get the following formula for ρA(Ω).

Lemma (3.3) For the Casimir operator Ω acting on C∞
τ1,τ2(K\G/K), its radial part ρA(Ω)

is given follows:

ρA(Ω) = ∂2
1 + ∂2

2 + 2{cth(a2
1) +

1
D

sh(a2
1)}∂1 + 2{cth(a2

2) −
1
D

sh(a2
2)}∂2

+
1
2
τ2(I0)2 + T1 + T2 + T3 + T4 + T5 + T6.

Here

T1 = −sh(a2
1)

−2{τ1(Z13)2 + τ2(Z13)2} − sh(a2
2)

−2{τ1(Z24)2 + τ2(Z24)2},
T2 = −2ch(a2

1)sh(a2
1)

−2τ1(Z13)τ2(Z13) − 2ch(a2
2)sh(a2

2)
−2τ2(Z24)τ2(Z24),

T3 = − 1
D2

{ch(a2
1)ch(a2

2) − 1}
2∑

i=1

τi(e1
+e1

− + e1
−e1

+ + e2
+e2

− + e2
−e2

+),

T4 = − 1
D2

sh(a2
1)sh(a2

2)
2∑

i=1

τi(e1
+e2

− + e2
−e1

+ + e1
−e2

+ + e2
+e1

−),

T5 = − 4
D2

ch(a1)ch(a2){sh(a1)2 + sh(a2)2}
{τ1(e1

+)τ2(e1
−) + τ1(e1

−)τ2(e1
+) + τ1(e2

+)τ2(e2
−) + τ1(e2

−)τ2(e2
+)},

T6 = − 4
D2

sh(a1)sh(a2){ch(a1)2 + ch(a2)2}
{τ1(e1

+)τ2(e2
−) + τ1(e2

−)τ2(e1
+) + τ1(e1

−)τ2(e2
+) + τ1(e2

+)τ2(e1
−)}.
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4 Explict differential equations for each coefficient

The A-radial part ρA(Ω) of Casimir operator is a second order differential operator for the
corner K-type, namely it is a second order operator whose values are matrices of size (|m|+
1)2. And we have yet another second order differential operator comming from the Schmid
operator.

In this section, we have the explicit fomulae of these operators, in terms of coefficients of
the spherical functions.

4.1 Differential equation obtained by Schmid operators

From the equation for the spherical function ϕ =
∑

cMfM obtained by Schmid operators,
we deduce a second order differential equation for each coefficien cM .

Let us firstly suppose m 	= 0. Then we have

[P (+,−) ◦ ρA(∇R
+)]ϕ = 0, [P (+,−) ◦ ρA(∇R−)]ϕ = 0,

[P (−,+) ◦ ρA(∇R
+)]ϕ = 0, [P (−,+) ◦ ρA(∇R−)]ϕ = 0

in the cases (sgn(m), ε) = (+1,+1), (−1,−1), (−1,+1), (+1,−1), respectively. By Lemma(3.2)
and the projection formula (1.2) we see that the left hand sides of the above equations are
written uniformly as −sgn(m)

∑
MΓM where

ΓM = t1
2 {∂1 + (A1 − B)sh(a2

1)
−1 − (A1 + B)cth(a2

1) + 2
Dsh(a2

1)}cMfM+δ1

+ t2
2 {∂2 + (A2 − B)sh(a2

2)
−1 − (A2 + B)cth(a2

2) − 2
Dsh(a2

2)}cMfM+δ2

+t2cM
1
D{t2sh(a1)ch(a2)fM+δ3 + t1sh(a1)ch(a1)fM+δ4 + sh(a2)ch(a2)fM+δ5}

−t1cM
1
D{t1ch(a1)sh(a2)fM+δ6 + t2sh(a2)ch(a2)fM+δ7 + sh(a1)ch(a1)fM+δ8}.

Here Ai = Ai(M), B = B(M) and the shift parameters {δi} are given as follows:

m > 0, ε > 0 m < 0, ε > 0 m < 0, ε > 0 m > 0, ε < 0
δ1 (0, 0, 1,−1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0,−1, 1)
δ2 (0, 0, 0, 0) (0, 0, 1,−1) (0, 0,−1, 1) (0, 0, 0, 0)
δ3 (0,−1, 1, 0) (0, 1, 0,−1) (1, 0,−1, 0) (−1, 0, 0, 1)
δ4 (0, 0, 1,−1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0,−1, 1)
δ5 (0, 0, 0, 0) (0, 0, 1,−1) (0, 0,−1, 1) (0, 0, 0, 0)
δ6 (0, 1, 0,−1) (0,−1, 1, 0) (−1, 0, 0, 1) (1, 0,−1, 0)
δ7 (0, 0, 0, 0) (0, 0, 1,−1) (0, 0,−1, 1) (0, 0, 0, 0)
δ8 (0, 0, 1,−1) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0,−1, 1)

Throughout the following δ denotes the element of Z4 defined by

m ≥ 0, ε > 0 m < 0, ε > 0 m < 0, ε > 0 m ≥ 0, ε < 0
δ = (0, 1, 0,−1), (0,−1, 0, 1), (−1, 0, 1, 0), (1, 0,−1, 0).

From the above we see that four functions

• the coefficient of fM+(0,0,1,−1) in
∑

MΓM in the case m > 0, ε > 0,

• the coefficient of fM in
∑

MΓM in the case m < 0, ε < 0,

• the coefficient of fM in
∑

MΓM in the case m < 0, ε > 0,

• the coefficient of fM+(0,0,1,−1) in
∑

MΓM in the case m < 0, ε < 0
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have the same form

t1
2 {∂1 + (A1 − B)sh(a2

1)
−1 − (A1 + B)cth(a2

1) + 2
Dsh(a2

1)}cM

+(t2 + 1)2 1
Dsh(a1)ch(a2)cM+δ + t1t2

1
Dsh(a1)ch(a1)cM − t1

1
Dsh(a1)ch(a1)cM .

Likewise, four functions

• the coefficient of fM in
∑

MΓM in the case m > 0, ε > 0,

• the coefficient of fM+(0,0,1,−1) in
∑

MΓM in the case m < 0, ε < 0,

• the coefficient of fM+(0,0,−1,1) in
∑

MΓM in the case m < 0, ε > 0,

• the coefficient of fM in
∑

MΓM in the case m < 0, ε < 0

are uniformly written as

t1
2 {∂2 + (A2 − B)sh(a2

2)
−1 − (A2 + B)cth(a2

2) − 2
Dsh(a2

2)}cM

+t2
1
Dsh(a2)ch(a2)cM − (t1 + 1)2 1

D ch(a1)sh(a2)cM−δ − t1t2
1
Dsh(a2)ch(a2)cM .

Hence we get the following

Lemma (4.1) If m 	= 0 one has

(t2 + 1)2 1
Dsh(a1)ch(a2)cM+δ

= − t1
2 {∂1 + (A1 − B)sh(a2

1)
−1 − (A1 + B)cth(a2

1) + (t2 + 1) 1
D sh(a2

1)}cM ,
(t1 + 1)2 1

D ch(a1)sh(a2)cM−δ

= t2
2 {∂2 + (A2 − B)sh(a2

2)
−1 − (A2 + B)cth(a2

2) − (t1 + 1) 1
Dsh(a2

2)}cM

with ti = ti(M), Ai = Ai(M), B = B(M).

From the above lemma we get a defferential equation satisfied by each coefficient:

{∂1 + (A1 − B)sh(a2
1)

−1 − (A1 + B)cth(a2
1) + (t2 + 1) 1

Dsh(a2
1)}

{∂2 + (A2 − B)sh(a2
2)

−1 − (A2 + B)cth(a2
2) − (t1 + 1) 1

Dsh(a2
2)}cM

+(t1 + 1)t2 1
D2 sh(a2

1)sh(a2
2)cM = 0.

We now treat the case m = 0. Thus the space Vτ1 ⊗ Vτ2 is one-dimensional with the base
fO, O = (0, 0, 0, 0). Suppose ε > 0 and consider the equation

[P (−,−) ◦ ρA(∇R
+) ◦ P (+,+) ◦ ρA(∇R

+)]ϕ = 0, ϕ = cOfO.

Since τ2 ⊗ Ad+ is irreducible with parameter [1, 1;u2 + 2], our equation reduces to

[P (−,−) ◦ ρA(∇R
+) ◦ ρA(∇R

+)]ϕ = 0.

In p+ we have
X13 = f10, X24 = −f01, X14 = −f11, X23 = f00

up to a common scalar. Then using Lemma(3.2) and the projection formula (1.2), we get

ρA(∇R
+)ϕ =

1
2
{∂1 − 1

2
u1sh(a2

1)
−1 − 1

2
u2cth(a2

1)}cOf(0,0,1,0)

−1
2
{∂2 − 1

2
u1sh(a2

2)
−1 − 1

2
u2cth(a2

2)}cOf(0,0,0,1).
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Write the right hand side as q1f(0,0,1,0)+q2f(0,0,1,0). Then noting that P (−,−)◦(τ2⊗Ad+⊗Ad+)
has parameter [0, 0;u2 + 4] we get

[P (−,−) ◦ ρA(∇R
+) ◦ ρA(∇R

+)]ϕ
= −1

2{∂1 − 1
2u1sh(a2

1)
−1 − 1

2u2cth(a2
1) + 2

Dsh(a2
1)}q2fO

+1
2{∂2 − 1

2u1sh(a2
2)

−1 − 1
2u2cth(a2

2) − 2
Dsh(a2

2)}q1fO

= 1
4 [{∂1 − 1

2u1sh(a2
1)

−1 − 1
2u2cth(a2

1) + 2
Dsh(a2

1)}{∂2 − 1
2u1sh(a2

2)
−1 − 1

2u2cth(a2
2)}

+{∂2 − 1
2u1sh(a2

2)
−1 − 1

2u2cth(a2
2) − 2

Dsh(a2
2)}{∂2 − 1

2u1sh(a2
2)

−1 − 1
2u2cth(a2

2)}]
·cOfO.

Now it is easy to show that the coefficient of fO in the last expression is equal to 1
4 times left

hand side of (1), if we put t1 = t2 = 0 in (1). We get the same result in the case m = 0, ε < 0
by a similar calculation. Summing up, we get

Proposition (4.2) For any (m, ε) each coefficient cM is annihilated by the differential op-
erator

E = {∂1 + (A1 − B)sh(a2
1)

−1 − (A1 + B)cth(a2
1) + (t2 + 1) 1

D sh(a2
1)}

{∂2 + (A2 − B)sh(a2
2)

−1 − (A2 + B)cth(a2
2) − (t1 + 1) 1

D sh(a2
2)}

+(t1 + 1)t2 1
D2 sh(a2

1)sh(a2
2)

with ti = ti(M), Ai = Ai(M), B = B(M).

4.2 Explicit differential equation obtained by the Casimir operator

We start from Lemma (3.3). Let us consider ϕ(a1, a2) = cM (a1, a2)fM ∈ C∞
τ1,τ2(K\G/K).

Recall that we have k1 = k2 = 0 or �1 = �2 = 0 according as εm ≥ 0 or εm < 0. We need
to compute the action on ϕ of 1

2τ2(I0)2 and T1, · · · , T6 in Lemma (3.3). By Lemmas (2.2),
(2.3), we have

1
2τ2(I0)2ϕ = 1

2(t1 − t2)2ϕ,
T1ϕ = −2{(A2

1 + B2)sh(a2
1)

−2 + (A2
2 + B2)sh(a2

2)
−2}ϕ,

T2ϕ = 2{(A2
1 − B2)ch(a2

1)sh(a2
1)

−2 + (A2
2 − B2)ch(a2

2)sh(a2
2)

−2}ϕ,
T3ϕ = −2(2t1t2 + |m|) 1

D2 {ch(a2
1)ch(a2

2) − 1}ϕ,
T4ϕ = T6ϕ = 0.

As for the action of T5 we set

T5 = − 4
D2 ch(a1)ch(a2){sh(a1)2 + sh(a2)2}Λ, with

Λ := τ1(e1
+)τ2(e1−) + τ1(e1−)τ2(e1

+) + τ1(e2
+)τ2(e2−) + τ1(e2

+)τ2(e2−).

By Lemma (2.3) we have, in the case εm > 0

Λϕ =
∑

l1+l2=s{(l1 + 1)2c0,l1+1,0,l2−1 + (l2 + 1)2c0,l1−1,0,l2+1}fL
0,l1

⊗ fR
0,l2

=
∑

M{(t2 + 1)2cM+δ + (t1 + 1)2cM−δ}fM

and in the case εm < 0

Λϕ =
∑

k1+k2=r{(k1 + 1)2ck1+1,0,k2−1,0 + (k2 + 1)2ck1−1,0,k2+1,0}fL
k1,0 ⊗ fR

k2,0

=
∑

M{(t1 + 1)2cM−δ + (t2 + 1)2cM+δ}fM ,

where ti = ti(M). But Lemma(4.1) implies in both cases

(t2 + 1)2cM+δ + (t1 + 1)2cM−δ

= − t1
2 Dsh(a1)−1ch(a2)−1

{∂1 + (A1 − B)sh(a2
1)

−1 − (A1 + B)cth(a2
1) + (t2 + 1) 1

Dsh(a2
1)}cM

+ t2
2 Dch(a1)−1sh(a2)−1

{∂2 + (A2 − B)sh(a2
2)

−1 − (A2 + B)cth(a2
2) − (t1 + 1) 1

Dsh(a2
2)}cM .
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This computation covers the case m = 0 if we put t1 = t2 = 0.

From these results we see that each coefficient cM is annihilated by the second order
differential operator

P = ∂2
1 + ∂2

2

+2{cth(a2
1) + 1

Dsh(a2
1) + t1

D (sh(a1)2 + sh(a2)2)cth(a1)}∂1

+2{cth(a2
2) − 1

Dsh(a2
2) − t2

D (sh(a1)2 + sh(a2)2)cth(a2)}∂2

+1
2(t1 − t2)2

−2{(A2
1 + B2)sh(a2

1)
−2 + (A2

2 + B2)sh(a2
2)

−2}
+2{(A2

1 − B2)ch(a2
1)sh(a2

1)
−2 + (A2

2 − B2)ch(a2
2)sh(a2

2)
−2}

−2(2t1t2 + |m|) 1
D2 (ch(a2

1)ch(a2
2) − 1)

+2t1
D (sh(a1)2 + sh(a2)2)cth(a1)
{(A1 − B)sh(a2

1)
−1 − (A1 + B)cth(a2

1) + (t2 + 1) 1
D sh(a2

1)}
−2t2

D (sh(a1)2 + sh(a2)2)cth(a2)
{(A2 − B)sh(a2

2)
−1 − (A2 + B)cth(a2

2) − (t1 + 1) 1
D sh(a2

2)}.

In this expression of P , the sum of the terms with denominator D2 has the numerator

−2(2t1t2 + |m|)(ch(a2
1)ch(a2

2) − 1) + 4t1(t2 + 1)(sh(a1)2 + sh(a2)2)ch(a1)2

+4t2(t1 + 1)(sh(a1)2 + sh(a2)2)ch(a2)2

= −4(2t1t2 + |m|)(2sh(a1)2sh(a2)2 + sh(a1)2 + sh(a2)2)
+4(sh(a1)2 + sh(a2)2){t1(t2 + 1)(1 + sh(a1)2) + t2(t1 + 1)(1 + sh(a2)2)}

= 4D{t1(t2 + 1)sh(a1)2 − t2(t1 + 1)sh(a2)2}.

Moreover we have 1
2(t1 − t2)2 = 1

2m2 − 2t1t2 in the constant term. Summung up, we get the
following

Proposition (4.3) Each coefficient cM is annihilated by the differential operator

P = ∂2
1 + ∂2

2

+2{cth(a2
1) + 1

Dsh(a2
1) + t1

D (sh(a1)2 + sh(a2)2)cth(a1)}∂1

+2{cth(a2
2) − 1

Dsh(a2
2) − t2

D (sh(a1)2 + sh(a2)2)cth(a2)}∂2

−2{(A2
1 + B2)sh(a2

1)
−2 + (A2

2 + B2)sh(a2
2)

−2}
+2{(A2

1 − B2)ch(a2
1)sh(a2

1)
−2 + (A2

2 − B2)ch(a2
2)sh(a2

2)
−2}

+ 4
D{t1(t2 + 1)sh(a1)2 − t2(t1 + 1)sh(a2)2}

+2t1
D (sh(a1)2 + sh(a2)2)cth(a1){(A1 − B)sh(a2

1)
−1 − (A1 + B)cth(a2

1)}
−2t2

D (sh(a1)2 + sh(a2)2)cth(a2){(A2 − B)sh(a2
2)

−1 − (A2 + B)cth(a2
2)}

−{ν2 + (k − 1)2 − 10 + 2t1t2}

with ti = ti(M), Ai = Ai(M), B = B(M).

5 The holonomic system and its solutions

5.1 Change of functions

For each coefficient function cM (a1, a2) we introduce a new function hM (a1, a2) by

cM (a1, a2) = f(a1, a2)hM (a1, a2)

with multiplier

f(a1, a2) = ch(a1)A1sh(a1)Bch(a2)A2sh(a2)B ; Ai = Ai(M), B = B(M).
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We rewrite the differential equations in Propositions (4.2) and (4.3) to differential equations
for hM .

We start with the following formulas:

f−1∂if = ∂i − (Ai − B)sh(a2
i )

−1 + (Ai + B)cth(a2
i )

= ∂i + 2Aicth(a2
i ) − (Ai − B)cth(a2

i ),
f−1∂2

i f = ∂2
i + 2(2Aicth(a2

i ) − (Ai − B)cth(a2
i ))∂i + ((Ai − B)2 − 2(Ai + B))sh(a2

i )
−2

−2(Ai + B − 1)(Ai − B)ch(a2
i )sh(a2

i )
−2 + (Ai + B)2cth(a2

i )
2.

Firstly the operator E given in Proposition(4.2) is transformed to E := f−1Ef . By the
formulas above, we have

E = f−1{∂1 + (A1 − B)sh(a2
1)

−1 − (A1 + B)cth(a2
1) +

t2 + 1
D

sh(a2
1)}f

·f−1{∂2 + (A2 − B)sh(a2
2)

−1 − (A2 + B)cth(a2
2) −

t1 + 1
D

sh(a2
2)}f

+(t1 + 1)t2
1

D2
sh(a2

1)sh(a2
2)

= {∂1 +
t2 + 1

D
sh(a2

1)}{∂2 − t1 + 1
D

sh(a2
2)} + (t1 + 1)t2

1
D2

sh(a2
1)sh(a2

2),

from which we immediately get the following

Proposition (5.1) The function hM is annihilated by the differential operator

E = ∂1∂2 − t1 + 1
D

sh(a2
2)∂1 +

t2 + 1
D

sh(a2
1)∂2

with ti = ti(M).

We now consider the operator P given in Proposition (4.3). The function hM is annihilated
by P := f−1Pf :

P = ∂2
1 + ∂2

2

+2[(2A1 + 1)cth(a2
1) +

1
D

sh(a2
1) + { t1

D
(sh(a1)2 + sh(a2)2) − A1 + B}cth(a1)]∂1

+2[(2A2 + 1)cth(a2
2) −

1
D

sh(a2
2) + {− t2

D
(sh(a1)2 + sh(a2)2) − A2 + B}cth(a2)]∂2

+U − (ν2 + (k − 1)2 − 10 + 2t1t2),

where the term U is given by

U =
2∑

i=1

{((Ai − B)2 − 2(Ai + B))sh(a2
i )

−2 + Gi + (Ai + B)2cth(a2
i )

2}}

+2{cth(a2
1) +

1
D

sh(a2
1) + H1}{I1 + (A1 + B)cth(a2

1)}

+2{cth(a2
2) −

1
D

sh(a2
2) − H2}{I2 + (A2 + B)cth(a2

2)}
−2{(A2

1 + B2)sh(a2
1)

−2 + (A2
2 + B2)sh(a2

2)
−2}

+2{(A2
1 − B2)ch(a2

1)sh(a2
1)

−2 + (A2
2 − B2)ch(a2

2)sh(a2
2)

−2}
+

4
D
{t1(t2 + 1)sh(a1)2 − t2(t1 + 1)sh(a2)2}

+J1 − J2
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with

Gi = −2(Ai + B − 1)(Ai − B)ch(a2
i )sh(a2

i )
−2,

Hi =
ti
D

(sh(a1)2 + sh(a2)2)cth(ai),

Ii = −(Ai − B)sh(a2
i )

−1,

Ji =
2ti
D

(sh(a1)2 + sh(a2)2)cth(ai){(Ai − B)sh(a2
i )

−1 − (Ai + B)cth(a2
i )}.

In this expression for P, the coefficients of ∂1 and ∂2 are simplified as

2{(2A1 + 1)cth(a2
1) +

t1 + 1
D

sh(a2
1) − (A1 − B + t1)cth(a1)},

2{(2A2 + 1)cth(a2
2) −

t2 + 1
D

sh(a2
2) − (A2 − B + t2)cth(a2)},

respectively. We need to simplfy the expression for U. Noting the cancellations

Gi + 2cth(a2
i )Ii + 2(A2

i − B2)ch(a2
i )sh(a2

i )
−2 = 0,

2Hi{Ii + (Ai + B)cth(a2
i )} + Ji = 0,

we have

U =
2∑

i=1

{((Ai − B)2 − 2(Ai + B))sh(a2
i )

−2 + (Ai + B)2cth(a2
i )

2 + 2(Ai + B)cth(a2
i )

2

−2(A2
i + B2)sh(a2

i )
−2}

+
2
D

[sh(a2
1){I1 + (A1 + B)cth(a2

1)} − sh(a2
2){I2 + (A2 + B)cth(a2

2)}
+2t1sh(a1)2 − 2t2sh(a2)2] + 4t1t2

=
2∑

i=1

((Ai + B)2 + 2(Ai + B))(cth(a2
i )

2 − sh(a2
i )

−2)

+
4
D

[(A1 + B + t1)sh(a1)2 − (A2 + B + t2)sh(a2)2] + 4t1t2.

Then using cth(a)2 − sh(a)−2 = 1 and 2(A1 + B + t1) = 2(A2 + B + t2) = |m| + εu2 we get

U =
2∑

i=1

((Ai + B)2 + 2(Ai + B)) + 2(|m| + εu2) + 4t1t2

=
1
2
m2 + 2|m| + 1

2
u2(u2 + 8ε) + 2t1t2.

Hence we have established the following

Proposition (5.2) The function hM is annihilated by the differential operator

P = ∂2
1 + ∂2

2

+2{(2A1 + 1)cth(a2
1) +

t1 + 1
D

sh(a2
1) − (A1 − B + t1)cth(a1)}∂1

+2{(2A2 + 1)cth(a2
2) −

t2 + 1
D

sh(a2
2) − (A2 − B + t2)cth(a2)}∂2

+
1
2
m2 + 2|m| − (k − 1)2 − ν2 + 10 +

1
2
u2(u2 + 8ε)

with ti = ti(M), Ai = Ai(M), B = B(M).
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5.2 Change of variables

Now we introduce new variables y1 and y2 by

yi = −sh(ai)2 (i = 1, 2).

Then we have

ch(ai)2 = 1 − yi, ch(a2
i ) = 1 − 2yi, sh(a2

i )
2 = 4yi(yi − 1), D = y2 − y1,

∂i = −sh(a2
i )

∂

∂yi
.

Putting hM (a1, a2) = h∗
M (y1, y2) we transform the differential equations for hM given in

Propositions (5.1) and (5.2) into the equation for h∗
M . Now the equation PhM = 0 reads

2∑
i=1

4yi(yi − 1)
∂2

∂y2
i

h∗
M

+
2∑

i=1

{4(Ai + B − ti + 2)yi + 4(−B + ti − 1) + (−1)i−18(ti + 1)
yi(yi − 1)
y1 − y2

} ∂

∂yi
h∗

M

+{1
2
m2 + 2|m| − (k − 1)2 − ν2 + 10 +

1
2
u2(u2 + 8ε)}h∗

M = 0,

and the other equation is easier to handle. Recalling the definition of Ai and B we get

Proposition (5.3) The function h∗
M satisfies the system

[
∂2

∂y1∂y2
− t1 + 1

y1 − y2
· ∂

∂y1
+

t2 + 1
y1 − y2

· ∂

∂y2
]h∗

M = 0,

2∑
i=1

yi(yi − 1)
∂2

∂y2
i

h∗
M

+
2∑

i=1

[{1
2
(|m| + εu2) − 2ti + 2}yi − ε

1
4
(u1 + u2) + ti − 1 + (−1)i−12(ti + 1)

yi(yi − 1)
y1 − y2

]
∂

∂yi
h∗

M

+
1
4
[
1
2
m2 + 2|m| − (k − 1)2 − ν2 + 10 +

1
2
u2(u2 + 8ε)]h∗

M = 0

with ti = ti(M).

The first equation in the above system is often called Euler-Darboux equation from historical
reason. The second, we call Poisson equation in this paper.

This system is the same as those in [2], Theorem 4,Theorem 7, [8] §8. Also it is the
modified F2 of [15] §2 Formula (2.1), p.211. We discuss the solutions in the next subsection.

5.3 Integral expression of the solutions

Our system is

[
∂2

∂y1∂y2
− b2

y1 − y2
· ∂

∂y1
+

b1

y1 − y2
· ∂

∂y2
]f = 0, (1)

[
2∑

i=1

yi(yi − 1)
∂2

∂y2
i

+ {(a + b1 − b2 + 1)y1 + b2 − c + 2b2
y1(y1 − 1)
y1 − y2

} ∂

∂y1
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+ {(a − b1 + b2 + 1)y2 + b1 − c − 2b1
y1(y2 − 1)
y1 − y2

} ∂

∂y2
− λ]f = 0 (2)

where Re(bi) > 0. To recover the system given in Proposition (5.3), the parameters should
be specified by

b1 = t2 + 1, b2 = t1 + 1, a = −k + 1, c =
ε

4
(u1 + u2) + 2 =

1
4
(|m| − 2k + εu1 + 8),

λ = −1
4
{1
2
m2 + 2|m| − (k − 1)2 − ν2 + 10

1
2
u2(u2 + 8ε)} = −1

2
{(|m| − k + 3)3 − ν2}.

In order to investigate the behaviour of the solutions of the Euler-Darboux equation, we
want to determine the characteristic indices along the divisor of singularity D = {(y1, y2)|y1 =
y2} of the equation. Let

f(y1, y2) =
∞∑

n=0

ϕn(y2)tρ+n (t = y1 − y2)

be a formal power series solution at a generic point (y2, y2) of D. Since the Euler-Darboux
equation in the new sytem of variables (t, y2) reads

[(−∂

∂t
+

∂

∂y2
)t

∂

∂t
− (b1 + b2)

∂

∂t
+ b1

∂

∂y2
]f = 0,

the characteristic equation is ρ2+(b1+b2)ρ = 0. But the value ρ = −(b1+b2) = −(t2+t1+2) <
0 should be discarded, because our solution is regular at the generic point of D. Hence we
have

ρ = 0, and ϕ0(y2) = f(y1, y2)|t=0 = f(y2, y2).

The reccurence relation among {ϕn}n=0,1,··· , implies an integral expression

f(y1, y2) = B(b1, b2)−1

∫ 1

0
ϕ0(y2 + (y1 − y2)s)sb1−1(1 − s)b2−1ds. (3)

valid around D.
Now recall that the solution (3) of the Euler-Darboux equation satisfies the Poisson equa-

tion (2) if and only if ϕ0(z) satisfies Gaussian hypergeometric equation:

[z(1 − z)
d2

dz2
+ {γ − (α + β + 1)z} d

dz
− αβ]ϕ0(z) = 0,

(cf. [8], Lemma (8.6) ) with

α + β = a + b1 + b2, α · β = −λ, γ = c.

By Proposition (2.2), γ ≥ 2 is a positive integer. Therefore the other solution of the
Gaussian hypergeotric equation has the characteristic index 1 − γ = −w wih w = ε

4(u1 +
u2) + 1 = B + 1 ≥ 1, i.e., it has pole of order at least −B − 1. Meanwhile the regularity of
the coefficient

cM (a, a) = ch(a)A1+A2{sh2(a)}Bϕ0(−sh2(a))

at a = 1 implies that the pole of ϕ0(z) at z = 0 should be at most of order B. Hence ϕ0(z)
is a constant multiple of the Gaussian hypergeometric series.
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Summing up these facts, we have the following

Theorem (5.4) The function h∗
M (y1, y2), normalized by h∗

M (0, 0) = 1, is expressed as

h∗
M (y1, y2) = B(t2 + 1, t1 + 1)−1

∫ 1

0
2F1(α, β, γ; sy1 + (1 − s)y2)st2(1 − s)t1ds.

with ti = ti(M) and α, β, γ as above.
In particular the coefficient

cM (a1, a2) = ch(a1)A1ch(a2)A2sh(a1)Bsh(a2)Bh∗
M (−sh2(a1),−sh2(a2))

has zeros of order B = ε
4 (u1 + u2) at ai = 1 in each variable ai (i = 1, 2).

Remark The integral expression of the above theorem converges only for (y1, y2) such that
|yi| = |sh(ai)|2 < 1 (i = 1, 2). This seems to be strange, because the matrix coefficients
are defined everywhere on A. The point is our holonomic system has singularities over the
complexification AC at y1 = 1 or at y2 = 1, but not on A. These hidden singlarities show up
in the complexification of G/K as seen in the paper of Akhiezer and Gindikin [1], as remarked
in the Introduction.
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