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Abstract. We consider a two dimensional stationary Lamé system with vari-
able coefficients. We prove the uniqueness in the inverse source problem of
determining polygonal supports of distributing force by observations of surface
displacement and stress. Our method is based on the regularity property of
solutions to the Poisson equation in a polygonal domain.

1. Introduction

Let Ω be a bounded domain with C2-boundary ∂Ω. We assume that Ω is

occupied by a nonhomogeneous isotropic elastic medium and consider a two di-

mensional stationary isotropic Lamé system with variable coefficients

(Lu)(x) ≡ µ(x)∆u(x) + (λ(x) + µ(x))∇(∇ · u(x))
+(∇ · u(x))∇λ(x) + (∇u(x) + (∇u(x))T )∇µ(x)
= F(x), x ∈ Ω

(1.1)

with the boundary condition

u(x) = f(x), x ∈ ∂Ω. (1.2)

Here and henceforth,

x = (x1, x2) ∈ R
2

u(x) = (u1(x), u2(x))
T

·T : the transpose of a vector or a matrix under consideration

∇ · u(x) = ∂u1

∂x1

(x) +
∂u2

∂x2

(x)

1
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∇u(x) =

(
∂uk

∂xl

)
1≤k,l≤2

: 2× 2− matrix

λ, µ ∈ C2(Ω) : the Lamé coefficients depending on x.

We assume that

µ(x) > 0, λ(x) + 2µ(x) > 0, x ∈ Ω. (1.3)

System (1.1) with boundary input (1.2) describes the elastic displacement by an

exterior force F(x) = (F1(x), F2(x))
T . In practise, we often need determine the

acting distributing force by the resulting surface stress σ(u)ν on a subboundary

Γ ⊂ Ω. Here and henceforth, the surface stress σ(u)ν is defined as follows: let

ν = ν(x) be the unit outward normal vector to ∂Ω at x, and we define a 2 × 2

matrix σ(u) by

σ(u) = λ(x)(∇ · u)
(
1 0
0 1

)
+ µ(x)(∇u(x) + (∇u(x))T ) (1.4)

for u(x) = (u1(x), u2(x))
T .

In particular, we consider a force F in the form

F(x) = q(x)(χD(x), χE(x))
T , (1.5)

where q is a given and χD denotes the characteristic function of a set D ⊂ Ω.

Force (1.5) describes that the x1- and x2-components of the force distribute only

in D and E respectively with the strength q(x). In this paper, we will discuss

Inverse source problem. Let Γ be an arbitrary relatively open subset of

∂Ω , f in (1.2) be fixed and q ∈ C2(Ω) be given such that q > 0 on Ω. Then

determine D and E in (1.1) with (1.5) by σ(u)ν on Γ.

Our main concern is the uniqueness: is the correspondence

σ(u)ν|Γ ←→ (D,E)

one to one?

A similar problem for the Laplacian is called an inverse gravimetry problem:

In −∆u(x) = q(x)χD(x) in R
3 and lim|x|→∞ u(x) = 0, determine D by ∇u|∂Ω

with a bounded domain Ω.
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As for the inverse gravimetry, there are many papers and we can consult Anger

[2], Isakov [5], [6]. However there seems no papers treating the determination of

supports of right hand sides in elliptic systems with variable coefficients. Kim

and Yamamoto [8] proposed a proof for the uniqueness within polygonal D’s and

we apply the argument in [7], [8] to prove the uniqueness in determining (D,E)

in (1.1) and (1.5) by f on ∂Ω and σ(u)ν on Γ. Our argument is applicable to the

higher dimensional cases and to other systems such as the stationary Maxwell’s

equations, but for conciseness, we restrict ourselves to the two dimensional sta-

tionary isotropic Lamé system.

The paper is organized as follows:

Section 2: Main results

Section 3: Preliminaries

Section 4: Proof of the main results.

2. Main results

Let Ω ⊂ R
2 be a bounded domain with C2 boundary ∂Ω and let Dj , Ej, j = 1

or 2, be sums of a finite number of polygons such that Dj , Ej ⊂ Ω :

Dj = ∪Mj

n=1Dn,j and Ej = ∪Nj

n=1En,j ,

where Dn,j, En,j �= ∅ are open polygons and the Dn,j, En,j ⊂ Ω, Dn,j ∩ Dm,j =

En,j ∩ Em,j = ∅ if n �= m.

Let uj = (uj,1, uj,2) ∈ H1(Ω)×H1(Ω), j = 1 or 2, be the weak solution to the

Lamé system

(Luj)(x) = q(x)(χDj
(x), χEj

(x))T , x ∈ Ω (2.1)

with the Dirichlet boundary data

uj(x) = f(x), x ∈ Γ ⊂ ∂Ω. (2.2)

Here f ∈ H 3
2 (Ω)×H 3

2 (Ω), q ∈ C2(Ω) and q > 0 on Ω.

Then it is well-known that

uj ∈ H2(Ω)×H2(Ω). (2.3)
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Henceforth, for D ⊂ R
2, we denote the convex hull (i,e., the smallest convex set

containing D) by co(D). Now we are ready to state our main results. First we

consider the case where D1 = E1 and D2 = E2. That is, let uj, j = 1 or 2, satisfy

the Lamé system

(Luj)(x) = q(x)(χDj
(x), χDj

(x))T , x ∈ Ω. (2.4)

Theorem 2.1. We assume that D1 = E1 and D2 = E2. Then

σ(u1(x))ν(x) = σ(u2(x))ν(x), x ∈ Γ (2.5)

implies that co(D1 ∪ E1) = co(D2 ∪ E2), where ν = ν(x) = (ν1(x), ν2(x))
T is the

outward unit normal vector to ∂Ω.

Corollary 2.2. Under the conditions in Theorem 2.1, we further assume that

D1, D2 are convex. Then (2.5) implies D1 ∪ E1 = D2 ∪ E2.

In the case where D1 �= E1 or D2 �= E2, we do not know whether co(D1∪E1) =

co(D2 ∪ E2), in general. However, if D1 ∩ E1 = D2 ∩ E2 = ∅, we can obtain

some global uniqueness result through the same argument as one of the proof of

Theorem 2.1.

Theorem 2.3. We assume that D1 ∩ E1 = D2 ∩ E2 = ∅. Then

σ(u1(x))ν(x) = σ(u2(x))ν(x), x ∈ Γ (2.6)

implies that co(D1 ∪ E1) = co(D2 ∪ E2), where ν = ν(x) = (ν1(x), ν2(x))
T is the

outward unit normal vector to ∂Ω.

In a succeeding paper, we will consider a more general case.

3. Preliminaries

In this section, we will give preliminary results for the proof of our main theo-

rems. Henceforth let AB denote the line segment including A and B. The first

lemma shows the regularity of an H1-solution to an elliptic equation, which plays

an important role in proving our main theorem. The proof is essentially based

on [4]. For completeness, we will give the proof.
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Lemma 3.1. Let �P1P2P3 be the interior of a triangle which has three vertices

Pj ∈ R
2, j = 1, 2, 3. Assume that f ∈ Lµ(�P1P2P3) for some µ > 2. If

v ∈ H1(�P1P2P3) is the solution to a Dirichlet problem for the Laplace equation{
∆v = f in �P1P2P3

v = 0 on P1P2 ∪ P2P3 ∪ P3P1,
(3.1)

then there exists a number p > 2 such that

v ∈W 2,p(�P1P2P3). (3.2)

Proof. Let θ1, θ2 and θ3 be the angles �P3P1P2, �P1P2P3 and �P2P3P1, respec-

tively. Since 0 < θj < π for any j = 1, 2, 3, we can take a real number q0 ∈ (1, 2)

so that

2

q0
< min

{
π

θ1
,
π

θ2
,
π

θ3

}
. (3.3)

Let p := min
{

q0

q0−1
, µ

}
. Clearly the number p is greater than 2. We claim that

v ∈W 2,p(�P1P2P3). (3.4)

Let q := p
p−1

. Then by (3.3) we have

2

q
=

2(p− 1)

p
≤ 2

q0
< min

{
π

θ1
,
π

θ2
,
π

θ3

}
,

which implies that the number
2θj

qπ
is not an integer for any j = 1, 2, 3. Since

p ≤ µ and f ∈ Lµ(�P1P2P3), we see that f ∈ Lp(�P1P2P3). Therefore it follows

from Theorem 4.4.4.13 in [4] that there exist real numbers cj,m and a function w

such that

w −
∑

1 ≤ j ≤ 3
−2

q
< λj,m < 0

λj,m �= −1

cj,mSj,m ∈W 2,p(�P1P2P3)

and {
∆w = f in �P1P2P3

w = 0 on P1P2 ∪ P2P3 ∪ P3P1,

where m is a negative integer, λj,m = mπ
θj
, and the functions Sj,m are defined

in equation (4, 4, 3, 7) in [4]. We note that Sj,m does not necessarily belong to
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W 2,p(�P1P2P3). The uniqueness of the Dirichlet problem yields

w = v.

Furthermore our choice of constants p, q implies that there are not negative

integers m such that

−2

q
< λj,m =

mπ

θj
< 0.

Hence we can conclude that

v ∈W 2,p(�P1P2P3).

Applying the above lemma and the Sobolev imbedding theorem (e.g., [1]), we

can prove that an H1-solution to a Cauchy problem of the Laplace equation is of

C2-class in a neighbourhood of a corner of a triangular domain. This proposition

plays an essential role in proving our theorems.

Lemma 3.2. Let �P1P2P3 be the interior of a triangle which has three vertices

Pj ∈ R
2, j = 1, 2, 3. Let G ∈ W 1,µ(�P1P2P3) for some µ > 2 and let y ∈

H1(�P1P2P3) be the solution to the Laplace equation{
∆y = G in �P1P2P3

y = |∇y| = 0 on P1P2 ∪ P1P3.
(3.5)

Then there exists a neighbourhood U of P1 such that the solution y belongs to

C2(U ∩�P1P2P3).

The proof is done similarly to Proposition 2.2 in [7] and the details are omitted

here.

4. Proof of Theorem 2.1

Assume contrarily that co(D1) �= co(D2). Then, since co(D1) and co(D2) are

convex polygons, there exists a vertex O of co(D1) such that O ∈ Ω \ co(D2) or

a vertex O of co(D2) such that O ∈ Ω \ co(D1). Without loss of generality, we

may assume the former case. Then there exists a polygon Dn,1 for some integer
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1 ≤ n ≤ M1 such that O is a vertex of Dn,1. Since O ∈ Dn,1 \ co(D2), we can

take a small triangle �OAB such that

OA ∪OB ⊂ ∂Dn,1 and �OAB ⊂ Dn,1 \ co(D2). (4.1)

Here and henceforth �OAB means the interior of the triangle with the vertices

O, A and B.

Let us define v = (v1, v2) := u1−u2 in Ω. Then it follows from (2.2) and (2.4)

that the function v satisfies

(Lv) = µ∆v + (λ+ µ)∇(∇ · v) + (∇ · v)∇λ+ (∇v + (∇v)T )∇µ
= q(x)((χD1 − χD2), (χD1 − χD2))

T in Ω
(4.2)

and

v = σ(v)ν = 0 on Γ. (4.3)

Let us denote by D the connected component of Ω \ (D1 ∪D2) with ∂Ω as its

boundary portion. Therefore, the unique continuation (e.g., [3]) implies that

v ≡ 0 on D. (4.4)

Since OA ∪ OB ⊂ D, we have

v = |∇v| = 0 on OA ∪OB. (4.5)

For simplicity, we define for j = 1, 2

Hj = (Hj,1, Hj,2) := (∇ · uj)∇λ+ (∇uj + (∇uj)
T )∇µ

and

Gj := −
2∑

i=1

{(∂xi
µ)(∆uj,i) + [∂xi

(λ+ µ)][∂xi
(∇ · uj)] + ∂xi

Hj,i}.

Then by (2.3), (4.1), (4.2) and (4.5), we obtain that the function ∇ · v is an

H1-solution to the following elliptic equation{
∆(∇ · v) = 1

λ+2µ
[(G1 −G2) + ∂x1q + ∂x2q] in �OAB

∇ · v = 0 on OA ∪ OB. (4.6)

Since µ, λ, q1, q2 ∈ C2(Ω) and λ + 2µ > 0 on Ω, the definition of Hj and Gj

yields

1

λ+ 2µ
[(G1 −G2) + ∂x1q + ∂x2q] ∈ L2(�OAB). (4.7)
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By using an appropriate cut-off function, we can easily deduce from (4.6) and

(4.7) that

∇ · v ∈ H2(
1

2
�OAB). (4.8)

Here and henceforth, for any s > 0, 1
s
�OAB means the interior of the triangle

with the vertices O, 1
s
(A− O) +O and 1

s
(B − O) +O.

On the other hand, we have from (4.1) and (4.2) that for i = 1, 2

µ∆vi = −(λ+ µ)[∂xi
(∇ · v)]− (H1,i −H2,i) + q in �OAB. (4.9)

Since µ ∈ C2(Ω) and µ > 0 on Ω, (4.8) yields

−λ+ µ
µ

[∂xi
(∇ · v)]− 1

µ
(H1,i −H2,i) +

1

µ
q ∈ H1(

1

2
�OAB). (4.10)

Then (4.5), (4.8) and the Sobolev imbedding theorem implies that{
∆vi ∈ L�(1

2
�OAB) for any + ≥ 2

vi = 0 on OA ∪OB. (4.11)

By using an appropriate cut-off function and Lemma 3.1, we obtain that there

exists a number η > 2 such that

vi ∈W 2,η(
1

4
�OAB). (4.12)

Then (4.12) and the definition of Hj and Gj imply that

G1 −G2 ∈ Lη(
1

4
�OAB), (4.13)

and hence

1

λ+ 2µ
[(G1 −G2) + ∂x1q + ∂x2q] ∈ Lη(

1

4
�OAB). (4.14)

Applying again Lemma 3.1 to (4.6) and using an appropriate cut-off function, we

obtain that there exists a number ρ > 2 such that

∇ · v ∈W 2,ρ(
1

8
�OAB). (4.15)

Let p = min{η, ρ}. It is clear that p > 2. Hence, it follows from (4.5), (4.9) and

(4.15) that the function vi is an H
2-function satisfying{

∆vi = −λ+µ
µ

[∂xi
(∇ · v)]− 1

µ
(H1,i −H2,i) +

1
µ
q ∈W 1,p(1

8
�OAB)

vi = |∇vi| = 0 on OA ∪ OB. (4.16)
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Then Lemma 3.2 yield that there exists a large number S > 0 such that

vi ∈ C2(
1

S
�OAB), (4.17)

and hence by (4.5), for i = 1, 2, we have ∆vi(O) = 0 and

−λ(O) + µ(O)
µ(O)

[∂xi
(∇ · v(O))]− 1

µ(O)
(H1,i(O)−H2,i(O)) = 0.

Since q > 0 on Ω, this contradicts (4.16). Therefore the proof of Theorem 2.1 is

complete.
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