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Abstract

Based on Feynman and Hibbs’s idea, we give a mathematically rigorous defi-
nition of functional derivatives in Feynman path integral. In this definition, the
functionals which belong to Fujiwara’s class, can be differentiated as many times as
we want. Furthermore, the Taylor expansion formula and the integration by parts
hold with respect to the functional derivatives.

1 Introduction

In this paper, using the theory of the time slicing approxiamtion [4], we give a
mathematically rigorous definition of functional derivatives in Feynman path inte-
gral [1]. Feynman and Hibbs [2] explained functional derivatives in Feynman path
integral, using broken line paths. Based on Feynman and Hibbs’s idea, we “restrict
the directions of functional derivatives” to broken line paths. By this restriction,
the functionals which belong to Fujiwara’s class, can be differentiated as many times
as we want. Furthermore, we prove the invariance of Feynman path integral with
respect to translations, the Taylor expansion formula with respect to the functional
derivatives, and the integration by parts with respect to the functional derivatives.

In order to state the results of this paper, we recall the notation in [4].
For a path γ : [0, T ] → Rd which starts from x0 ∈ Rd at time 0 and reaches

x ∈ Rd at time T , i.e., γ(0) = x0 and γ(T ) = x, we define the action S[γ] by

S[γ] =
∫ T

0

1
2

∣∣∣dγ
dt

∣∣∣2 − V (t, γ)dt . (1.1)

Let F [γ] be a functional on the path space C([0, T ]→ Rd) whose domain contains
all of broken line paths at least. Let 0 < h̄ < 1 be a parameter.

Let ∆T,0 be an arbitrary division of the interval [0, T ] into subintervals, i.e.,

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (1.2)
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Set xJ+1 = x. Let xJ , xJ−1, · · ·, x1 be arbitrary points of Rd. Let γ∆T,0
be the

broken line path which connects (Tj , xj) and (Tj−1, xj−1) by a line segment for any
j = 1, 2, . . . , J, J + 1, i.e., γ∆T,0

(Tj) = xj . Set tj = Tj − Tj−1. Let |∆T,0| be the size
of the division defined by |∆T,0| = max

1≤j≤J+1
tj . Using the oscillatory integrals, we

define the Feynman path integral by∫
e
i
h̄
S[γ]F [γ]D[γ]

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]
F [γ∆T,0

]
J∏
j=1

dxj . (1.3)

Our assumption for the potential V (t, x) through this paper is the following.

Assumption 1 V (t, x) is a real-valued function of (t, x) ∈ R × Rd, and for any
multi-index α, ∂αxV (t, x) is continuous in R ×Rd. For any |α| ≥ 2, there exists a
positive constant Aα such that

|∂αxV (t, x)| ≤ Aα . (1.4)

We defined Fujiwara’s class F of functionals, using Assumption 5 in [4]. The
assumption of this type was first found by Fujiwara [3]. Furthermore, we proved the
following results. See Theorems 1,2 in [4]. For simplicity, when a functional F [γ]
belongs to Fujiwara’s class F , we write F [γ] ∈ F .

Proposition 1 If F [γ] ∈ F and G[γ] ∈ F , then the sum F [γ] +G[γ] ∈ F and the
product F [γ]G[γ] ∈ F .

Proposition 2 Assume that T is sufficiently small. Then, for any F [γ] ∈ F ,
the right-hand side of (1.3) really converges uniformly on any compact set of the
configuration space (x, x0) ∈ R2d.

2 Results

Now we are ready to state the results of this paper. First we explain our definition
of the functional derivatives whose directions are restricted to broken line paths.

Let γ : [0, T ] → Rd be any broken line path with γ(0) = x0 and γ(T ) = x, and
let η : [0, T ]→ Rd be any broken line path with η(0) = η(T ) = 0 ∈ Rd.
Then there exists a division

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 , (2.1)

such that ∆T,0 contains all of end points of the broken line paths γ and η. Further-
more, we have

γ = γ∆T,0
, (2.2)

where γ∆T,0
connects (Tj , xj) and (Tj−1, xj−1) with a line segment for any j =

1,2,. . ., J ,J + 1, i.e., γ∆T,0
(Tj) = xj . Set η(Tj) = yj for j = 0, 1, . . . , J, J + 1 and

F [γ∆T,0
] = F∆T,0

(xJ+1, xJ , · · · , x1, x0) . (2.3)

2



Theorem 1 For any F [γ] ∈ F , we define the functional derivatives of F [γ] whose
directions are restricted to broken line paths η by

(δF )[γ][η] = (δF )[γ∆T,0
][η] =

J∑
j=1

(∂xjF∆T,0
)(xJ+1, xJ , · · · , x1, x0) · yj . (2.4)

Then, (δF )[γ][η] is well-defined, i.e., (2.4) is independent of the choice of ∆T,0.
Furthermore, we have

(δF )[γ][η] ∈ F . (2.5)

Theorem 2 F [γ] ∈ F can be differentiated as many times as we want.
Furthermore, if ∆T,0 contains all of end points of the broken line paths γ and ηk

with ηk(0) = ηk(T ) = 0, k = 1, 2, . . . ,K, then we have

(δKF )[γ][η1][η2] · · · [ηK ]

=
J∑

j1,j2,···,jK=1

(
(
K∏
k=1

ykj · ∂xjk )F∆T,0

)
(xJ+1, xJ , · · · , x1, x0) ∈ F , (2.6)

with ηk(Tj) = ykj , j = 1, 2, . . . , J , k = 1, 2, . . . ,K.

Our result about the invariance of Feynman path integral with respect to trans-
lations is the following.

Theorem 3 Let η : [0, T ]→ Rd be any broken line path with η(0) = η(T ) = 0. Let
F [γ] ∈ F . Then we have

F [γ + η] ∈ F . (2.7)

Furthermore, assume that T is sufficiently small. Then we have∫
e
i
h̄
S[γ+η]F [γ + η]D[γ] =

∫
e
i
h̄
S[γ]F [γ]D[γ] . (2.8)

Here we can choose T independent of F [γ], of η and of 0 < h̄ < 1.

Our result about the Taylor expansion formula with respect to the functional
derivatives in Feynman path integral is the following.

Theorem 4 Assume that T is sufficiently small. Then we have

∫
e
i
h̄
S[γ]F [γ + η]D[γ]−

K∑
k=0

1
k!

∫
e
i
h̄
S[γ](δkF )[γ][η][η] · · · [η]D[γ]

=
∫
e
i
h̄
S[γ]

(∫ 1

0

(1− θ)K

K!
(δK+1F )[γ + θη][η][η] · · · [η]dθ

)
D[γ] , (2.9)

for any F [γ] ∈ F , any broken line path η with η(0) = η(T ) = 0,
and any 0 < h̄ < 1.

Our result about the characterization of the functional derivatives in Feynman
path integral is the following.

3



Theorem 5 Assume that T is sufficiently small. Then we have

d

ds

∫
e
i
h̄
S[γ]F [γ + sη]D[γ]

∣∣∣∣∣
s=0

=
∫
e
i
h̄
S[γ](δF )[γ][η]D[γ] , (2.10)

for any F [γ] ∈ F , any broken line path η with η(0) = η(T ) = 0,
and any 0 < h̄ < 1.

Our result about the integration by parts with respect to the functional deriva-
tives in Feynman path integral is the following.

Theorem 6 If we define (δS)[γ][η] by (2.4), then we have

(δS)[γ][η] ∈ F . (2.11)

Furthermore, assume that T is sufficiently small. Then we have∫
e
i
h̄
S[γ](δF )[γ][η]D[γ] = − i

h̄

∫
e
i
h̄
S[γ](δS)[γ][η]F [γ]D[γ] , (2.12)

for any F [γ] ∈ F , any broken line path η with η(0) = η(T ) = 0,
and any 0 < h̄ < 1.

Corollary 1 Assume that T is sufficiently small. Then we have∫
e
i
h̄
S[γ]

∫ T

0

(
dγ

dt
· dη
dt
− (∂xV )(t, γ(t))η(t)

)
dtD[γ] = 0 , (2.13)

for any broken line path η with η(0) = η(T ) = 0 and any 0 < h̄ < 1.

3 Examples

First we give the functional derivatives of the examples of Theorem 3 in [4].

Assumption 2 Let m be non-negative integer. B(t, x) is a function of (t, x) ∈
R×Rd. For any multi-index α, ∂αxB(t, x) is continuous on [0, T ]×Rd, and there
exists a positive constant Cα such that

|∂αxB(t, x)| ≤ Cα(1 + |x|)m . (3.1)

Theorem 7 Under Assumption 2, let 0 ≤ T ′ ≤ T ′′ ≤ T . Let ρ(τ) be a function of
bounded variation on [T ′, T ′′]. Then we have the following.

(1) If F [γ] =
∫ T ′′
T ′ B(τ, γ(τ))dρ(τ), then

(δF )[γ][η] =
∫ T ′′

T ′
(∂xB)(τ, γ(τ)) · η(τ)dρ(τ) . (3.2)

(2) If F [γ] = B(τ, γ(τ)) with 0 ≤ τ ≤ T , then

(δF )[γ][η] = (∂xB)(τ, γ(τ)) · η(τ) . (3.3)

Next we give the functional derivative of the example of Theorem 1 in [5].
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Assumption 3 Let m be non-negative integer. Z(t, x) is a vector-valued function
of (t, x) ∈ R ×Rd into Rd. For any multi-index α, ∂αxZ(t, x) and ∂αx ∂tZ(t, x) are
continuous on [0, T ]×Rd, and there exists a positive constant Cα such that

|∂αxZ(t, x)|+ |∂αx ∂tZ(t, x)| ≤ Cα(1 + |x|)m . (3.4)

Furthermore, ∂xZ(t, x) is a symmetric matrix, i.e., t(∂xZ) = ∂xZ.

Theorem 8 Under Assumption 3, let 0 ≤ T ′ ≤ T ′′ ≤ T .
If F [γ] =

∫ T ′′
T ′ Z(τ, γ(τ)) · dγ(τ), then

(δF )[γ][η] = Z(T ′′, γ(T ′′)) · η(T ′′)− Z(T ′, γ(T ′)) · η(T ′)

−
∫ T ′′

T ′
(∂tZ)(τ, γ(τ)) · η(τ)dτ . (3.5)

4 Proofs

We use the following notation in [4].

xj ∈ Rd , j = 0, 1, . . . , J, J + 1 , (4.1)
tj > 0 , j = 1, 2, . . . , J, J + 1 , (4.2)
Tj = tj + tj−1 + · · ·+ t1 . (4.3)

For simplicity, for any 0 ≤ l ≤ L ≤ J + 1, we set

xL,l = (xL, xL−1, · · · , xl) . (4.4)

Only when the character is TL,l for any 1 ≤ l ≤ L ≤ J + 1, we set

TL,l = tL + tL−1 + · · ·+ tl . (4.5)

Proof of Theorem 1.
(1) For any 1 ≤ n ≤ N ≤ J , we define x/N,n = x/N,n(xN+1, xn−1) by

x/j =
Tj,n

TN+1,n
xN+1 +

TN+1,n − Tj,n
TN+1,n

xn−1 , j = n, n+ 1, . . . , N . (4.6)

Let (∆T,TN+1
,∆Tn−1,0) be the division defined by

T = TJ+1 > TJ > · · · > TN+1 > Tn−1 > · · · > T1 > T0 = 0 . (4.7)

First, for simplicity, we consider the case when (∆T,TN+1
,∆Tn−1,0) contains all of

end points of the broken line paths γ and η, and

γ = γ(∆T,TN+1
,∆Tn−1,0

) = γ∆T,0
. (4.8)

By Lemma 3.1 in [4], we have

F∆T,0
(xJ+1,N+1, x

/
N,n, xn−1,0)

= F [γ∆T,0
] = F [γ(∆T,TN+1

,∆Tn−1,0
)]

= F(∆T,TN+1
,∆Tn−1,0

)(xJ+1,N+1, xn−1,0) . (4.9)

5



By (2.4), we have

(δF )[γ(∆T,TN+1
,∆Tn−1,0

)][η]

=
n−1∑
j=1

(
∂xjF(∆T,TN+1

,∆Tn−1,0
)

)
(xJ+1,N+1, xn−1,0) · yj

+
J∑

j=N+1

(
∂xjF(∆T,TN+1

,∆Tn−1,0
)

)
(xJ+1,N+1, xn−1,0) · yj . (4.10)

By (4.9), we have

=
n−1∑
j=1

(
∂xjF∆T,0

)
(xJ+1,N+1, x

/
N,n, xn−1,0) · yj

+
N∑
j=n

(
∂xjF∆T,0

)
(xJ+1,N+1, x

/
N,n, xn−1,0) · y/j

+
J∑

j=N+1

(
∂xjF∆T,0

)
(xJ+1,N+1, x

/
N,n, xn−1,0) · yj . (4.11)

Since the broken line path η is a straight line path on [Tn−1, TN+1], we have
η(Tj) = yj = y/j for j = n, n+ 1, . . . , N . Therefore we have

=
J∑
j=1

(
∂xjF∆T,0

)
(xJ+1,N+1, x

/
N,n, xn−1,0) · yj

= (δF )[γ∆T,0
][η] . (4.12)

Next we consider the case when ∆T,0 contains all of end points of the broken line
paths γ and η, ∆′T,0 is any refinement of ∆T,0, and

γ = γ∆T,0
= γ∆′T,0

. (4.13)

By a similar calculation, we get

(δF )[γ∆T,0
][η] = (δF )[γ∆′T,0

][η] . (4.14)

Therefore (2.4) is well-defined.
(2) Since F [γ] ∈ F , F∆T,0

(xJ+1, xJ,1, x0) satisfies Assumption 5 in [4]. We fix the
broken line path η. Then, there exists a positive constant C such that

|yj | = |η(Tj)| ≤ C , (4.15)

for j = 1, 2, . . . , J . Furthermore, the number of end points of the broken line path
η is also fixed. Hence, for j = 1, 2, . . . , J ,

(∂xjF∆T,0
)(xJ+1, xJ,1, x0) · yj , (4.16)

also satisfies Assumption 5 in [4]. Therefore, (δF )[γ∆T,0
][η] satisfies Assumption 5

in [4]. Hence (δF )[γ][η] ∈ F . 2
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Proof of Theorem 2. By Theorem 1, if (δKF )[γ][η1][η2] · · · [ηK ] ∈ F , then
(δK+1F )[γ][η1][η2] · · · [ηK ][ηK+1] ∈ F . 2

Proof of Theorem 3. We fix the broken line path η. Let

T = τK+1 > τK > · · · > τ1 > τ0 = 0 , (4.17)

be all of end points of the broken line path η.
(1) Set G[γ] = F [γ + η]. Let γ∆T,0

be any broken line path with the division

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (4.18)

Let ∆′T,0 be the division which consists of all points of ∆T,0 and all of end points
of the broken line path η. Then the path γ∆T,0

+ η is also a broken line path with
the division ∆′T,0. Since F [γ] ∈ F , F [γ∆′T,0

] satisfies Assumption 5 in [4]. Since η is
fixed, there exists a positive constant C such that

|η(τ)| ≤ C , (4.19)

for any 0 ≤ τ ≤ T . Furthermore, for any j = 1, 2, · · · , J + 1, the number of end
points of the broken line path η between Tj and Tj−1, is less than K + 3. Hence,
G[γ∆T,0

] = F [γ∆T,0
+ η] satisfies Assumption 5 in [4].

Therefore we have
F [γ + η] = G[γ] ∈ F . (4.20)

(2) We fix 0 < h̄ < 1 and consider e
i
h̄

(S[γ+η]−S[γ]). We note that

S[γ + η]− S[γ] =
∫ T

0

1
2

∣∣∣∣dηdt
∣∣∣∣2 dt+

∫ T

0

dη

dt
· dγ
dt
dt

−
∫ T

0

∫ 1

0
(∂xV )(τ, γ + θη(τ))dθ · η(τ)dτ . (4.21)

(2− 1) It is clear that

e
i
h̄

∫ T
0

1
2 | dηdt |

2
dt ∈ F . (4.22)

(2− 2) In a similar way to the proof of Theorem 5 in [4], we have

e−
i
h̄

∫ T
0

∫ 1

0
(∂xV )(τ,γ+θη(τ))dθ·η(τ)dτ ∈ F . (4.23)

(2− 3) Since η is fixed, there exists a positive constant C ′ such that∣∣∣∣dηdt
∣∣∣∣+

∣∣∣∣∣d2η

dt2

∣∣∣∣∣ =
∣∣∣∣yk − yk−1

τk − τk−1

∣∣∣∣+ 0 ≤ C ′ , (4.24)

on (τk−1, τk) for any k = 1, 2, . . . ,K. In a similar way to the proofs of Theorem 5
in [4] and Theorem 1 in [5]

e
i
h̄

∫ τk
τk−1

dη
dt
· dγ
dt
dt
∈ F . (4.25)

By Proposition 1, we have

e
i
h̄

∫ T
0

dη
dt
· dγ
dt
dt =

K+1∏
k=1

e
i
h̄

∫ τk
τk−1

dη
dt
· dγ
dt
dt
∈ F . (4.26)
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(3) Therefore, by (1), (2) and Proposition 1, we have

e
i
h̄

(S[γ+η]−S[γ])F [γ + η] ∈ F . (4.27)

By Proposition 2, if T is sufficiently small,∫
e
i
h̄
S[γ+η]F [γ + η]D[γ]

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]

×e
i
h̄

(S[γ∆T,0
+η]−S[γ∆T,0

])
F [γ∆T,0

+ η]
J∏
j=1

dxj , (4.28)

converges uniquely. Here we can choose T independent of F [γ], of η and of
0 < h̄ < 1.
(4) Now we can assume that ∆T,0 contains all of end points of the broken line
path η. Set γ∆T,0

(Tj) = xj , η(Tj) = yj for j = 0, 1, . . . , J, J + 1, and

S[γ∆T,0
] = S∆T,0

(xJ+1, xJ,1, x0) . (4.29)

The path γ∆T,0
+ η is the broken line path which connects (Tj , xj + yj) and

(Tj−1, xj−1 + yj−1) with a line segment for j = 1, 2, . . . , J, J + 1. Hence we have∫
e
i
h̄
S[γ+η]F [γ + η]D[γ]

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S∆T,0

(xJ+1,xJ,1+yJ,1,x0)

×F∆T,0
(xJ+1, xJ,1 + yJ,1, x0)

J∏
j=1

dxj . (4.30)

By the change of variables: xj + yj → xj , j = 1, 2, . . . , J , we have

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S∆T,0

(xJ+1,xJ,1,x0)

×F∆T,0
(xJ+1, xJ,1, x0)

J∏
j=1

dxj

=
∫
e
i
h̄
S[γ]F [γ]D[γ] . 2 (4.31)

Proof of Theorem 4. We fix the broken line path η. Let γ is any broken line path.
We assume that ∆T,0 contains all of end points of the broken line paths γ and η.
Set γ(Tj) = xj and η(Tj) = yj for j = 0, 1, . . . , J, J + 1.
For any 0 ≤ θ ≤ 1, the path γ + θη is also a broken line path and

F [γ + θη] = F∆T,0
(xJ+1.xJ,1 + θyJ,1, x0) . (4.32)
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By the usual Taylor expansion formula and Theorem 2, we have

F [γ + η]−
K∑
k=0

1
k!

(δkF )[γ][η][η] · · · [η]

=
∫ 1

0

(1− θ)K

K!
(δK+1F )[γ + θη][η][η] · · · [η]dθ . (4.33)

By Theorems 2, 3 and Proposition 1, we have∫ 1

0

(1− θ)K

K!
(δK+1F )[γ + θη][η][η] · · · [η]dθ ∈ F . (4.34)

Since (4.33) holds for any broken line path γ, we have (2.9). 2

Proof of Theorem 5.

d

ds

∫
e
i
h̄
S[γ]F [γ + sη]D[γ]

∣∣∣∣∣
s=0

= lim
s→0

1
s

(∫
e
i
h̄
S[γ]F [γ + sη]D[γ]−

∫
e
i
h̄
S[γ]F [γ]D[γ]

)
. (4.35)

We assume that |s| ≤ 1. By Theorem 4 with K = 1, we have

= lim
s→0

∫
e
i
h̄
S[γ](δF )[γ][η]D[γ]

+ lim
s→0

s×
∫
e
i
h̄
S[γ]

∫ 1

0
(1− θ)(δ2F )[γ + θsη][η][η]dθD[γ] . (4.36)

By the results of Chapter 3 in [4], there exists a positive constant C such that∣∣∣∣∫ e
i
h̄
S[γ]

∫ 1

0
(1− θ)(δ2F )[γ + θsη][η][η]dθD[γ]

∣∣∣∣ ≤ C , (4.37)

for any |s| ≤ 1. Therefore we get (2.10). 2

Proof of Theorem 6.
(1) Set G[γ] =

∫ T
0

1
2 |
dγ
dt |

2dt. We define (δG)[γ][η] by (2.4). We fix the broken line
path η. Let ∆T,0 be any division which contains all of end points of the broken
line paths γ and η. Set γ(Tj) = xj and η(Tj) = yj for any j = 0, 1, . . . , J, J + 1.
Then we have

(δG)[γ][η] =
J∑
j=1

(
xj − xj+1

tj+1
+
xj − xj−1

tj

)
· yj

=
J+1∑
j=1

yj − yj−1

tj
· (xj − xj−1) =

∫ T

0

dη

dt
· dγ . (4.38)

Now, let {jk}K+1
k=0 be the subsequence of j = 0, 1, . . . , J, J + 1 such that

T = TjK+1 > TjK > · · · > Tj1 > Tj0 = 0 . (4.39)
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are all of end points of the broken line path η. Since η is fixed, K is also fixed.
Furthermore, there exists a positive constant C ′ such that∣∣∣∣dηdt

∣∣∣∣+
∣∣∣∣∣d2η

dt2

∣∣∣∣∣ =

∣∣∣∣∣yj − yj−1

tj

∣∣∣∣∣+ 0 ≤ C ′ , (4.40)

on (Tjk−1
, Tjk) for any k = 1, 2, . . . ,K,K + 1. By Theorem 1 in [5] and Proposition

1, we have ∫ T

0

dη

dt
· dγ =

K+1∑
k=1

∫ Tjk

Tjk−1

dη

dt
· dγ ∈ F . (4.41)

By Proposition 1, we have (δS)[γ][η] ∈ F .
(2) By Theorem 3, we have

0 =
∫
e
i
h̄
S[γ+η]F [γ + η]D[γ]−

∫
e
i
h̄
S[γ]F [γ]D[γ] . (4.42)

We assume that ∆T,0 contain all of end points of the broken line path η.
Set γ∆T,0

(Tj) = xj for any j = 0, 1, . . . , J, J + 1.
Then we have

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2

×
∫

RdJ

(
e
i
h̄
S[γ∆T,0

+η]
F [γ∆T,0

+ η]− e
i
h̄
S[γ∆T,0

]
F [γ∆T,0

]
) J∏
j=1

dxj

= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

∫ 1

0
e
i
h̄
S[γ∆T,0

+θη]

×
( i
h̄

(δS)[γ∆T,0
+ θη][η]F [γ∆T,0

+ θη] + (δF )[γ∆T,0
+ θη][η]

)
×dθ

J∏
j=1

dxj

= lim
|∆T,0|→0

∫ 1

0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

+θη]

×
( i
h̄

(δS)[γ∆T,0
+ θη][η]F [γ∆T,0

+ θη] + (δF )[γ∆T,0
+ θη][η]

)
×

J∏
j=1

dxjdθ. (4.43)

The path γ∆T,0
+ θη is the broken line path which connects (Tj , xj + θη(Tj)) and

(Tj−1, xj−1 + θη(Tj−1)) with a line segment for any j = 1, 2, . . . , J, J + 1.
By the change of variables: xj + θη(Tj)→ xj , j = 1, 2, . . . , J , we have

= lim
|∆T,0|→0

∫ 1

0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]

×
( i
h̄

(δS)[γ∆T,0
][η]F [γ∆T,0

] + (δF )[γ∆T,0
][η]
) J∏
j=1

dxjdθ
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= lim
|∆T,0|→0

J+1∏
j=1

(
1

2πih̄tj

)d/2 ∫
RdJ

e
i
h̄
S[γ∆T,0

]

×
( i
h̄

(δS)[γ∆T,0
][η]F [γ∆T,0

] + (δF )[γ∆T,0
][η]
) J∏
j=1

dxj

=
i

h̄

∫
e
i
h̄
S[γ](δS)[γ][η]F [γ]D[γ] +

∫
e
i
h̄
S[γ](δF )[γ][η]D[γ] . 2 (4.44)

Proof of Theorem 7. We only prove (2). The proof of (1) is similar.
Let ∆T,0 be any division which contains all of end points of the broken line paths
γ and η. There exists a number k such that Tk−1 < τ ≤ Tk. Then we have

F [γ∆T,0
] = B

(
τ,
τ − Tk−1

Tk − Tk−1
xk +

Tk − τ
Tk − Tk−1

xk−1

)
. (4.45)

By (2.4), we have

(δF )[γ∆T,0
][η]

= (∂xB)
(
τ,
τ − Tk−1

Tk − Tk−1
xk +

Tk − τ
Tk − Tk−1

xk−1

)
· τ − Tk−1

Tk − Tk−1
yk

+(∂xB)
(
τ,
τ − Tk−1

Tk − Tk−1
xk +

Tk − τ
Tk − Tk−1

xk−1

)
· Tk − τ
Tk − Tk−1

yk−1

= (∂xB)(τ, γ(τ)) · η(τ) . 2 (4.46)

Proof of Theorem 8. In a similar way to the proof of Theorem 1 in [5], we can get
(3.5). 2
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