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Abstract

An extension method of various existing Kirchhoff plate bending elements
to Reissner-Mindlin ones is developed and tested. The essential idea is to
use independent transverse shear strains and a special mixed formulation.
The Nedelec edge element is convenient for assuming the shear strains. Fur-
thermore, the displacements are carefully constructed so that the strain-
displacement relations are strictly satisfied for the transverse shear strains.
We present our approach for displacement-based three-node triangular ele-
ments including both conforming and non-conforming ones as the base Kirch-
hoff elements. It is also possible to reduce the shear variables from the element
degrees of freedom by means of a special technique called the beam element
approximation. Numerical results are obtained for some fundamental test
problems, and it is observed that the results are reasonable over wide range
of plate thickness and the tested sample element is actually free from the
transverse shear locking.
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1 Introduction

There have been developed a large number of finite elements for plate bending due
to the importance in wide fields of structural engineering [1, 2]. Besides the fully 3-D
elements, they can be essentially classified into two categories: Kirchhoff elements
and Reissner-Mindlin ones. In earlier development stage of finite elements, the
former ones were mainly devised with full refinement, though they are applicable to
thin plates only. Then the latter have been almost exclusively considered since they
can deal with moderately thick plates as well as thin ones.

Actually, usual Reissner-Mindlin elements have often suffered from poor accuracy
in the thin plate range where Kirchhoff elements work well [1, 2]. Such a defect has
been attributed to excessive transverse shear stiffness referred to the shear locking
on one hand, and to numerical instability caused by the spurious zero-energy modes
on the other hand. The latter phenomenon typically occurs when some tricks such
as the reduced integration are introduced to reduce the excessive stiffness of such
elements. Even when such difficulties are overcome, the accuracy of the Reissner-
Mindlin elements is frequently inferior to that of the Kirchhoff elements with the
same degrees of freedom especially in the thin plate range. This is probably because
the Reissner-Mindlin elements usually use lower order polynomials in the lateral de-
flection and rotations than the Kirchhoff ones, since the Reissner-Mindlin deflection
is not originally coupled with the rotations unlike the Kirchhoff one.

Thus a natural idea arises: to extend appropriate Kirchhoff elements to Reissner-
Mindlin ones by using the highly refined deflection patterns of the base Kirchhoff-
elements. In other words, we can then unify the Kirchhoff and Reissner-Mindlin
elements. Such an idea appears to be quite attractive since we can rehabilitate
classical plate elements, which behave nicely in the thin plate range but are no
longer used widely as they are not valid for thick plates. The idea is in fact easy to
implement to the beam element. More specifically, what we should do is to develop
a nice Timoshenko beam element, whose thin-limit is the well-established Bernoulli-
Euler one based on the cubic Hermite interpolation. Quite fortunately, we obtained
a satisfactory Timoshenko element at fairly early stage in the history of FEM by
considering the equilibrium equation of the Timoshenko beam [3, 4]. However, it has
been quite difficult and remained a dream to realize it in the case of plate elements:
the key is to find reasonable Reissner-Mindlin displacement patterns generalizing
the Kirchhoff ones. Fairly recently, the idea was realized for the discrete Kirchhoff

elements such as the DKT (3-node triangle) one[5, 6, 7]. So such generalization is



desirable to be achieved for various other Kirchhoff elements.

In this paper, we will present an approach to extend various existing 3-node tri-
angular Kirchhoff elements to the corresponding Reissner-Mindlin ones. At present,
we can apply it to various conforming and non-conforming Kirchhoff ones besides
the discrete Kirchhoff ones. The essence is to use a special mixed formulation and
assume the transverse shear strains (or the shear forces) elementwise, whose tan-
gential components are continuous on the interelement edges. Such shear fields are
conveniently represented by the Nedelec edge element [8]. They are originally in-
dependent of the displacements but are finally coupled with them to satisfy the
shear-displacement relations exactly. The derived displacement pattern appears to
be desirable since it reduces to the base Kirchhoff pattern in the thin plate limit.
It is also possible to determine the shears explicitly from the nodal displacements
by using the technique employed in the extension of the DKT element [5, 7]. Such
a reduction method appears to be closely related to the stabilization methods [9].

Our approach is also tested for some fundamental problems, and it is observed
that the results converge to the Kirchhoff ones in the thin plate limit and reasonably
represent the transverse shear effects in the moderately thick range. Finally, it is to
be noticed that exact mathematical error analysis is possible for some typical finite

elements, although the details will be published elsewhere.

2 Explanation of Idea by Timoshenko Beam

We will briefly explain our idea for the Timoshenko beam, i.e., a one-dimensional
analog of the 2-D Reissner-Mindlin plate, since the plate cases may be slightly
complicated. The resulting beam element itself is not new, and may be found in
classical textbooks of matrix structural analysis [3, 4].

Just as in the two-node Bernoulli-Euler beam element, the lateral deflection w

is assumed to be cubic in each element:

W=y + T + a3z’ + auz’. (1)

As is well known, w can be expressed as the Hermite interpolation polynomial in
terms of the nodal displacements {w;, wy;}iz12 with w, = dw/dx. On the other

hand, the element transverse shear strain 7, is assumed to be constant:

%E:ﬂ- (2)



Then the element rotation #, in anticlockwise orientation is given by using the

strain-displacement relation v, = w, — 0, as

9;1;:?11:1;—%:11195—5- (3)
Consequently, the nodal values of w, are expressed by ( and nodal values of 6, as

which are available to express w in (1) in terms of § and {w;,0,;}i—12. Thus the
final element DOF (= Degrees Of Freedom) are the nodal deflection {w;};— 2, the
nodal rotations {€,;},=12 and the constant element shear strain v, = f.

In summary, both w and 6, of each element are determined from the above-
mentioned DOF'. It is to be noted that w and 6, are forced to be continuous at
nodes but w, is not so unlike in the Bernoulli-Euler case. Then we can calculate
the potential energy of each element to derive element stiffness matrices and load
vectors as usual. Furthermore, the element parameter § may be eliminated by the
static condensation or, equivalently in this case, the kinetic relation between the
shear force and the moment. Thus /3 is subjected to the other DOF as

B By )
where GG is the shear modulus of the beam, ET the bending rigidity, A the cross-

sectional area, ¢ the element length, and x the shear correction factor depending on
the cross-sectional geometry. The identical result may be obtained by various other
methods such as the mixed finite element method. As was already mentioned, the
resulting element matrices and vectors are identical to the classical ones obtained
early in the matrix structural analysis.

Although our idea appears to be promising for 2-D plates, it has been actu-
ally difficult to implement. The main difficulty is in finding appropriate element
transverse shear strain (or shear force) distribution, and it is also not clear how to
eliminate or condense element shear parameters. However, in the case of the dis-
crete Kirchhoff elements, breakthrough was achieved fairly recently as was noted in
Introduction. We will now combine various ideas to develop nice Reissner-Mindlin

elements by reusing existing Kirchhoff elements.

3 Plate Theory

Let us summarize the Reissner-Mindlin bending theory of isotropic homogeneous

plates of uniform thickness, which is applicable to moderately thick plates as well
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as thin ones, and reduces to the Kirchhoff plate bending theory in the thin plate
limit [10]. We introduce Cartesian coordinates (x,y, z) to the 3-D space where the
plate is located, and choose the zy-plane the middle plane of the plate.

The displacements u, v and w of the plate in the z-, y- and z-directions are

respectively assumed as
u=—20,(z,y), v=—20,(x,y), w=w(xvy), (6)

where 6, and 0, are the rotations, and w is the lateral deflection. Then the gener-

alized strain-displacement relations for the plate are given by

ky = —0,0,, k‘y = —aygy, kxy = —aygx — 8x9y,
Vo = Wy — Oy, ’Vy:wy_gya (7)

where k,, k, and k;, are the curvature or twist changes, v, = 7. and 7, = 7.
the transverse shear strains, 0, = 0/0x and 0, = 0/0y partial differentiations, and
wy = O,w and w, = Jyw. In the Kirchhoff case, the transverse shear strains vanish
so that the curvature changes reduce to second order derivatives of w [10].

The generalized stress-strain relations are expressed as

]_ _
M, = Dy(ky + vky), M, = Dy(k, + vky), My, = TVDbkxy,

Qx = Dsf)’xa Qy = Dsfyya (8)

where M,, M, and M,, are the moments, (), and @), the transverse shear forces, v is
Poisson’s ratio, Dy, = Et*/{12(1—v?)} the bending rigidity, and Dy = Gtx the shear
rigidity. Moreover, E is Young’s modulus, ¢ the plate thickness, G = E/{2(1 + v)}
the shear modulus, and x the shear correction factor which is taken here as 5/6 after
Reissner [10].

Now the potential energy of the plate can be evaluated as

D 1-— Dy
M, 0,,6,) = [ {024+ 20k + 2202+ 22 (02493~ pubdzdy., ()

where the integration should be performed over the middle plane of the plate, the
strains are calculated from the displacements, the displacements must a priori satisfy
appropriate kinematic boundary conditions, and only the distributed lateral force p
is considered as external forces for simplicity. As usual, the present energy functional
can be used to derive various finite element models for Reissner-Mindlin plates. Of

course the transverse shear energy is neglected in the Kirchhoff plates.
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Originally, the displacements w, 6, and 6, are primary unknown functions. Ac-
tually, some couplings may be introduced to them to reduce the excessive stiffness as
commonly observed in the Reissner-Mindlin formulation, but still they are basically
independent of each other[2, 11, 12, 13]. We will employ here a slightly different
approach based on the use of assumed shear strains and a mixed formulation.

Another variational formulation is based on the Hellinger-Reissner functional [10],

which is given in a little simplified form as
% Db 1—v
I [w, 0, 0, Qs Q) = //{7(/@ R 2wk + — T2 ) + Quly — 02)

+Qy (wy — 0y) — Qazc + QZ) —pwidz dy, (10)

1
2—Ds(
where the curvatures are calculated from the rotations, and the shear forces are now
independent of the displacements. This functional is used as the basis of mixed
finite element methods for the Reissner-Mindlin plates. For the Kirchhoff plates,
the quadratic terms QLDS(Q’Z” + QZ) are omitted in the above functional.

We can also use the shear strains as the argument functions instead of the shear

forces:
* o Db 2 2 1—-v 2
H2[’U], 9$7 9y7 Ve 'Yy] - {T(km + ky + 2kaky + Tkmy) + D57$(w$ - HI)

D
+Dyy(wy = 0y) = o=(72 +7,) — pw}drdy. (11)
This functional is, however, difficult to use in the Kirchhoff case since v, =, = 0.

Our approach to be proposed may be considered a kind of mixed method in

which independent shear strains or shear forces play important roles.

4 Basic Procedure for Triangular Elements

To fix the idea, we only consider 3-node triangular elements. As nodal displacements
of usual Reissner-Mindlin triangular elements, we employ the lateral deflection w and
two rotations 6, and 6, at each vertex node: {wj, 84, 0yi}ti=123 (¢ = node number).
However, we also use some unknown parameters for the transverse shear strains in

our approach.

4.1 Base Kirchhoff element

Our approach starts from an appropriate Kirchhoff element. As a base 3-node

triangular Kirchhoff element, we take either a conforming one such as the HCT
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element or a nonconforming one in implementation, although a conforming one may
be convenient from purely theoretical standpoint [1, 14].

In the derivation of such a base Kirchhoff element, we only need the deflec-
tion pattern for w, which is usually expressed in terms of nodal displacements
{wi, wai, wy, }iz123 (i = node number). On the other hand, {w;, 0, 0y:}i=123 are
employed as the nodal displacements of a Reissner-Mindlin element. Thus we will
later eliminate {wy;, wy; }i=1 2,3 by introducing a special technique based on the shear-

displacement relations in (7).

4.2 Assumed shear strains

Before assuming the rotations, we consider the shear strains v = {v;,vy,} and the
shear forces in each element. We employ for « the simplest Nedelec element [8].

More specifically, v, and v, are incomplete linear polynomials in each element:

Yo = B+ By, v =B — B3, (12)

where (3;’s are coefficients. Such a shear vector function has a constant tangential
value on each edge, and f3;’s are uniquely determinable from these three edge val-
ues. Thus it is easy to make the tangential component of 4 continuous across the
interelement edges, so that the present choice is mathematically natural [15].

The shear forces Q@ = {Q,,Q,} take the same form as that of «, and is deter-
mined from 4 by (8) in the Reissner-Mindlin element. For the Kirchhoff element, ~

must be specified as zero, while Q can be assumed independently.

4.3 Specification of displacements

As was already noted, we need nodal values {wy;, wy;}i=123 besides {w;}i=123 to
specify w of the base Kirchhoff element. This may be done by utilizing the following

relations based on (7) at nodes:

where v,;’s and 7,,’s are the nodal values of v which are determinable from the three
edge values.
The next step is to assume two rotations 6 = {6,,6,}. This may be essentially

done by using relations (7) in each element, that is,
gx:wx_f)/xa gy:wy_fyya (14)
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which are consistent with (13) at nodes.

Now we can completely determine all the displacements in each element from
their nodal values and the edge values of . The boundary conditions for displace-
ments and « are easy to specify at least in typical cases such as the clamped and

simply supported ones.

4.4 Continuity of displacements

To check the continuity of w and 6 on element edges, let us consider an edge i
facing to the vertex ¢ and connecting vertices 7 and k. For simplicity, we restrict
to the cases where vertices 4, 7 and k are placed anticlockwise. Then the tangential

component v, of v is given by
Vs = —NyYz + Ny7Y, = constant, (15)

where n = {n,, n,} is the unit outward normal vector of the considered edge. We
denote the above value by 7, for edge 7 (1 <i < 3).

In usual 3-node elements, w is a cubic polynomial on each element edge. Then
the tangential component 6, of @ is a quadratic one there as may be seen from
(14). They, together with wy, = dsw (05 = 0/0s; s = the line coordinate on the
considered edge), are equal to their nodal values at both ends j and k of edge i, and
the strain-displacement relation wy — s = 7, on the edge holds. Consequently w
and f; on edge ¢ are uniquely determinable from their end values and the constant
value of vy, so that they are continuous there.

On the other hand, the normal derivative 0, w of w for usual conforming elements
is linear on each edge, so that the normal component 6, of § is linear due to (12)
and (14). The continuity of §,, follows from its linearity and continuity at both ends
of each edge. However, the continuity of 0,w does not necessarily hold except in
the thin plate limit. Of course, the present arguments for #,, hold only in the case

where the base Kirchhoff element is conforming.

4.5 Mixed method

We can now decide the curvature changes as well as the shear strains in each element,
which are necessary for calculating the stiffness matrices. Substituting these into the
functional IT} in (11) and making it stationary, we can obtain a mixed finite element
scheme. Notice here that this is a special mixed method since the displacements and

the shear strains are strongly coupled to satisfy (7) or (14) identically. Thus our
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approach may be also considered a kind of displacement-based method, so that we
may call the arising element matrices “stiffness” ones unlike in the standard mixed
methods. That is, we can directly use II in (9) by regarding the shear strains as
the enriching terms for the displacements. However, in the Kirchhoff plate case, we
should use a purely mixed method based on II}, where the shear forces are assumed
independently in the same form as the general shear strains, but the shear strains

themselves are set to zero to match the Kirchhoff conditions.

4.6 Reduction of shear strains

It is also possible to determine + from the nodal displacements so that we can

eliminate 7, from element DOF. That is, using a kinetic relation for a Timoshenko

beam (5) or rather analogous one to a strip plate, we can specify 7, on edge 7 in

terms of nodal displacements of the two endpoints j and k [5, 7]:

_ o
14+ ¢;

where ¢; is the length of edge 7, and 6,; and 0y, are values of 6, = —n,0, + n,0, at

—w; Oy + 0
(ot Ba ey —wpyieny, o

Vs

node j and &, respectively. Using these values, we can uniquely decide -, and -, of
(12) in each element. It is to be noted that ¢;/{1 + ¢;} — 0 (t/¢; — 0) and — 1
(t/¢; — o0). That is, s vanishes in the thin plate limit, while it reduces to a kind
of finite difference approximation of v, = dsw — 6, in the thick plate limit. However,
it appears to be difficult for the present approach to determine the shear forces in
the Kirchhoff case. On the other hand, they can be calculated as the Lagrange
multipliers of the original mixed (i.e., non-reduced) formulation even in such a case.

The present technique may be also related to a kind of stabilization method [9].
Some arbitrariness, however, remains in the amplitudes of the stabilization param-

eters corresponding to ¢; above.

4.7 Extension of present approach

The present approach is available in various conforming and non-conforming 3-node
elements. Moreover, it may be extended to some other elements such as discrete
Kirchhoff and hybrid ones. In the discrete Kirchhoff elements, the first-order deriva-
tives of w are not directly used as above: instead, special approximations Jy,w and
Onyw are used for the first-order derivatives w, = 0,w and w, = J,w of w. In
the case of DKT, they are exactly the Kirchhoff rotations determined from w by

the discrete Kirchhoff assumptions, and extension to the Reissner-Mindlin element



is now well-established [5, 7]. Our approach also appears to be promising in some
hybrid Kirchhoff elements by determining the curvature changes or the moments

appropriately. We will formulate and test such cases in due course.

4.8 Comments on error analysis

Based on the abstract error analysis of mixed FEM [15], we can evaluate errors of
the present mixed (non-reduced) finite element solutions in the case of the purely
conforming base Kirchhoff displacement fields. In particular, the inf-sup condition is
essential, and can be established after carefully checking the approximate displace-
ments with special coupling (14). Interpolation error analysis is also complicated
due to the special form of displacements. Under some assumptions on the plate
domain shape, we have derived error estimates in terms of the mesh size, which are
uniform in the plate thickness after appropriate normalization on the exact plate
solutions. In particular, error estimates for the shear forces in some weak topologies
are also obtainable in the case of the mixed (i.e., non-reduced) formulation. We will
publish the details of such analysis separately since they are rather lengthy and may
be outside the interests from purely computational viewpoints.

For the reduced-shear element, the analysis is slightly more complicated but is
expected to be accomplished by means of the techniques of the stabilization meth-
ods [9], and the coupled interpolation [11, 12, 13]. Analysis of more general cases

including non-conforming base K-elements and DK'T one needs further preparations.

5 Implementation

Here we give some comments on implementation that are specific to our approach. In
other respects, our method can be implemented as the standard displacement-based

finite element method.

5.1 General case

We have presented essentially two finite element formulations in the preceding sec-
tion, both of which can be implemented according to the standard finite element
procedures. That is, all the quantities are determinable from the DOF for the dis-
placements and v (or Q = {Q,,Q,} in the Kirchhoff case), where those for v can
be eliminated by (16) in the second approach. In particular, we require the curva-

ture changes as well as the shear strains in each element. As usual, the necessary
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quantities can be finally arranged in the form of the element stiffness matrices and
the element load vectors[1].

In general, the element stiffness matrix [K] may be expressed in the form of sum:
(K] = [Ky] + [K], (17)

where [K,] and [Kj] are respectively the bending and shearing parts. More specif-
ically, the former is the part due to the bending energy, while the latter is to the
transverse shear energy. In the calculations of [Kj], it is to be noted that, for the

present assumed shear strains (12), the curvature changes simply become
ky = —0,0, = —02w, k, = —0,0, = —ajw, kyy = —0,0, — 0,0, = —20,0,w, (18)

which are formally the same as those for Kirchhoff plates. Actually, [K,] does not
necessarily coincide with that of the base Kirchhoff element, since the nodal values
of w, = d,w and w, = J,w are different from those of the Kirchhoff one as may be
seen from (13). However, it can be easily obtained from [K}] of the original Kirchhoff
one by applying the linear transformation (13). More specifically, first calculating
a transformation matrix [T] expressing (13) and then multiplying it to the original
Kirchhoff bending matrix [K,SK)], we can obtain [K}] as

(K, = [T)KSNT)  (#: transpose of matrix). (19)

On the other hand, [K}] is calculated directly from the assumed .

As was already noted, [K}] does not coincide with the corresponding Kirchhoff
matrix for finite plate thickness, but we can see that the components of [K}| converge
to the corresponding Kirchhoff values in the thin plate limit. The shear part [Kj]
of the element stiffness matrix for the reduced shear formulation based on (16),
obtained by evaluating the transverse shear energy in (9) or (11), is seen to vanish
in the thin plate limit.

Since the consistent element load vectors are slightly complicated to compute
due to the coupling of w with 8 and ~, we here use the lumped one. That is, in the
case of uniform p, we have as the load vector | pS/3 pS/3 pS/300 ------ 00|,
where S is the area of the triangular element, and the nodal variables are arranged
in the order wy, wa, ws, Oy, , 043, Vs1, V52, Vs3. Here the last three terms are for
the transverse shear and their signs must be adjusted with those of the neighboring
triangles occupying common edges. Of course, the last three terms are absent in the

final stage of the reduced formulation.
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5.2 Felippa-Bergan element

As a concrete base triangular Kirchhoff element, let us employ here the Felippa-
Bergan nonconforming one based on the energy-orthogonal concept [16, 17], since
it is easier to implement than various existing conforming ones and still has nice
numerical performance.

The base deflection pattern w in each triangular element is of the form

3
w = Z{OQLZ + Oéi+3Lij + Oéi+6(Lj — Lk)g} s (20)
i=1
where L; (i = 1,2,3) are the area coordinates, a,, (1 < m < 9) are coefficients, and
{i,j, k} is each cyclic permutation of {1,2,3}. The cubic terms are so chosen that
they are energy-orthogonal to the lower terms. We can express the above coefficients
uniquely in terms of the nodal displacements {w;, Wy, Wy }i=1,2,3-

Then we modify w as

3
w* =Y {ofLi+ o} 5Lk + cis(L; — Li)’} (21)
i=1

where the modified quadratic part °_ {afL; + af,,L;L;} is nothing but the
quadratic interpolation of w by using the vertices and midpoints of edges as 6 nodes.
Such a modification is made so that the element passes the constant curvature patch
test as the well-known convergence criterion [1]. Note that w* is no longer a usual
interpolation function in general, but still reduces to w when w is an arbitrary

quadratic polynomial.
Using the above w*, we can obtain the stiffness matrix in the standard fashion.
As was shown both numerically and theoretically, the present Kirchhoff element gives
generally reasonable accuracy [16, 17]. Moreover, generalization of this element has
been also made to optimize the numerical performance [16, 18]. It is straightforward
to implement our approach if we use w* in (21) as w in the preceding general

formulation.

6 Numerical Results

We numerically tested our approach by a few sample problems. The base Kirchhoff
element tested here is only the afore-mentioned Felippa-Bergan element since we

focus on the point that our approach actually gives an expected Reissner-Mindlin
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extension. Due to the same reason, we here tested plates of square shape only. But
we are planning to test various other elements and plates of various shape in due
course. It is to be noted here that the DK'T base element gives the Reissner-Mindlin
extension identical to that of Katili[5], and Soh et al.[7] so long as the reduced shear

variable formulation is employed.

Figure 1: Examples of meshes (left to right: 4 x 4 A; 4 x 4 B, irregular A, irregular B)

Here we show some results for a simply supported or clamped square plate sub-
jected to uniform lateral loading. Due to the double symmetry of the problems,
only a quarter portion of the plate is divided into uniform N x N (N = 2,4,8)
square meshes, each small square of which is composed of two triangles generated
by a diagonal of a common direction, see Fig. 1. By A we denote meshes with
diagonals running toward the plate center, and by B those with diagonals running
perpendicular to those of A. Moreover, irregular meshes A and B included in Fig. 1
are also tested. In every case, the plate center is located at the upper-right corner of
the mesh. Poisson’s ratio is taken as 0 to compare with the results of Felippa-Bergan
for Kirchhoff plates [16].

Table 1 summarizes the results of approximate central deflections w normalized
by the exact Kirchhoff solutions. We take various values of ¢t/L (L =side length
of the plate). The case t/L = 0 is the Kirchhoff one, and the associated results are
obtained by setting ¢; in (16) to 0. Although a plate with ¢/L = 1 is physically
meaningless, such a case is considered here to see whether the transverse shear
effects are reasonably represented. Here the simply-supported edge conditions are
the so-called “hard” simply supported ones, that is, w = 6, = 0 on the edges. In
the simple-support case, we also include the exact Reissner-Mindlin results based
on the double Fourier series solutions.

We can see that the results are generally reasonable and the shear effects are also
well represented as far as the central deflections are concerned. In particular, we

checked that the results completely coincide with those based on the Felippa-Bergan
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Table 1: Calculated central deflections normalized by the exact Kirchhoff solutions

nr : non-reduced shear variable formulation
r : reduced shear variable formulation (omitted when
the difference is negligible in the displayed digits)

mesh t/L
nr/r
division | type (0) 10001 ] 001 | 01 | 10
hard simply supported plate
2% 2 A nr | 1.0338 | 1.0338 | 1.0342 | 1.0726 | 4.8800
r 1.0686 | 4.8616
4x4 A nr | 1.0078 | 1.0078 | 1.0082 | 1.0448 | 4.7162
r 1.0081 | 1.0424 | 4.7115
8% 8 A nr | 1.0019 | 1.0019 | 1.0022 | 1.0383 | 4.6562
r 1.0374 | 4.6550
irregular | A nr | 0.9521 | 0.9521 | 0.9526 | 0.9934 | 4.8118
r 0.9523 | 0.9787 | 4.6737
2% 2 B nr | 0.9080 | 0.9080 | 0.9083 | 0.9374 | 3.9801
r 0.9082 | 0.9359 | 3.9741
4x4 B nr | 0.9780 | 0.9780 | 0.9784 | 1.0122 | 4.4350
r 1.0110 | 4.4330
8% 8 B nr | 0.9946 | 0.9946 | 0.9949 | 1.0302 | 4.5719
r 1.0298 | 4.5713
irregular | B nr | 0.9489 | 0.9489 | 0.9494 | 0.9880 | 4.5591
r 0.9492 | 0.9802 | 4.5591
exact 1.0000 | 1.0000 | 1.0004 | 1.0363 | 4.6270
clamped plate

2% 2 A nr | 1.2803 | 1.2803 | 1.2822 | 1.4518 | 13.8460
r 1.2820 | 1.4380 | 13.7877
4x4 A nr | 1.0731 | 1.0732 | 1.0751 | 1.2291 | 13.0938
r 1.0748 | 1.2216 | 13.0790
8x8 A nr | 1.0185 | 1.0186 | 1.0205 | 1.1595 | 12.8367
r 1.0185 | 1.0202 | 1.1568 | 12.8331
irregular | A nr | 09971 | 0.9972 | 0.9993 | 1.1583 | 13.4739
r 0.9985 | 1.1144 | 13.0310
2% 2 B nr | 1.0128 | 1.0128 | 1.0137 | 1.1083 | 10.8786
r 1.1033 | 10.8592
4x4 B nr | 1.0121 | 1.0121 | 1.0134 | 1.1336 | 12.1594
r 1.0133 | 1.1289 | 12.1526
8x8 B nr | 1.0040 | 1.0040 | 1.0054 | 1.1340 | 12.5575
r 1.0053 | 1.1318 | 12.5556
irregular B nr | 0.9803 | 0.9803 | 0.9818 | 1.1178 | 12.6192
r 0.9814 | 1.0903 | 12.4664
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element when the plate is sufficiently thin, so that the present element is completely
free from the shear locking. The results obtained by the reduced shear formulation
are also included, but the difference from the non-reduced one is fairly small even
when the plate is thick. The results for A type meshes and various plate thickness
by the non-reduced shear formulation are also illustrated in Fig. 2 in the case of
the simply supported plate. We can thus observe both the convergence behavior
for mesh refinement and the robustness on the plate thickness. The evaluation of
the shear strains and forces is also important, and related numerical results will be

reported in due course.

1.08

1.06
: /
E A
S 1.04 7 ——2X2A
& ¢ - / 4 X4A
= 1.02 —“4*—8X8A
= o - %
1 A =
0.98 : : :
4 -3 -2 -1
log(t/L)

Figure 2: w/wg at center vs t/L (wx = exact w by Kirchhoff theory)

7 Concluding Remarks

We have presented a special mixed finite element method for Reissner-Mindlin plates
by reusing classical Kirchhoff elements. We carefully choose the displacements and
the transverse shear strains so that they can exactly satisfy the Kirchhoff condition in
the thin plate limit as well as the shear-displacement relations in the finite thickness
case. In particular, the derived element reduces to the base Kirchhoff element in

the thin plate limit. Thus the element is free from the shear locking and also from
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the spurious zero-energy mode instability. Such desirable performance is in fact
observed in the numerical tests. Theoretical error analysis is also available at least
for a few conforming elements since the approximate displacements pass the inf-sup
condition, a common criterion in the mixed finite element method. It is also possible
to eliminate the transverse shear variables from DOF by using the beam element
approximation, and the associated numerical results are shown to be reasonable.

Extension to 4-node quadrilateral elements is straightforward in some special
cases such as the DKQ element [6], and may be available in some other cases. How-
ever, in the case of general convex quadrilateral shape, it is not necessarily easy to
find a nice base Kirchhoff element and a reliable shear strain field. We will continue
our study to cover more general cases including some non-conforming base Kirchhoff
elements, DKT and DKQ ones, and hybrid ones. Anyway, our approach appears to
be effective to develop efficient Reissner-Mindlin elements by rehabilitating classical
Kirchhoff elements.
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