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Introduction

Before discussing the contents of this paper let us explain its motivation. We
have been working on explicit formulas on generalized spherical functions
on real semisimple Lie groups of low rank in these several years. Our in-
terest is to have effectively computable results in real harmonic analysis for
much deeper study of automorphic forms of many variables. To investigate
geometric automorphic forms, one sometimes needs results on irreducible
representations of a real semisimple group with non-trivial minimal K-types.
In this direction we already have some results for real semisimple groups of
split rank 2 ([6], [7], [5]).

To handle non-trivial K-types, it is necessary to describe the representa-
tion of the maximal compact subgroup K of a real semisimple Lie group G.
When the complexified Lie algebra kC = k ⊗R C with k = Lie(K) is a direct
sum of copies of sl2(C) and C, this is quite easy. And it was one of the main
reasons to have explicit results mentioned above successively.

But if kC has larger simple factors, the problem becomes quite difficult.
When K has only simple factors of type A and BD, and abelian factor, some
authors could go through the hard computation using the Gelfand-Tsetlin
basis (cf. Taniguchi [12], Tsuzuki [13]). In these computations the essential
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point is to describe explicitly the decomposition V ⊗ Adp into irreducible
components for a given finite dimensional representation V of K and the
adjoint representation Adp of K on p, where p is the complement of k in the
Cartan decomposition: Lie(G) = k ⊕ p. Even if the representation Adp is
relatively small, this becomes a formidable problem for general K. However
when kC has only simple factors C, sl2(C), sl3(C), we seem to have more
tractable situation. To show this is the purpose of this paper.

Around mid 80’s, Gelfand and Zelevinsky [4] defined the canonical basis
in the representation spaces of gl3 in their sense, and found an explicit rela-
tion between the Gelfand-Tsetlin basis and their basis. We call it Gelfand-
Zelevinsky basis in this paper. According to the introduction of the paper
[1] by Fomin and Zelevinsky, this basis is dual to the limit q → 1 of the
canonical basis in quantum groups, investigated by Kashiwara [8], [9] and
Lusztig [10], [11].

We utilize this result to formulate Theorem 1 in §2, which gives the
explicit formulas for the projectors from the tensor product V ⊗V(1,0,0) of an
irreducible representation V of gl3 and the standard representation V(1,0,0), to
its irreducible components. Though we suppressed it, to formulate Theorem
1 we used the relation between Gelfand-Tsetlin basis and Gelfand-Zelevinsky
basis. Once one can find the ’right formulas’, the proof is given by direct
computation.

In §3, we also give the explicit projectors from V⊗V(2,0,0) to its (generically
6) irreducible components (Theorem 2 in §3), by applying Theorem 1 twice.

Our result in this paper is just simple computation, but it might have
application for investigation of spherical functions with non-trivial K-types,
and also it might contain some suggestion for general investigation of ’canon-
ical’ Clebsch-Gordan coefficients.
Acknowledgments. The authors thank to M. Kashiwara for introduction
to the literature on Clebsch-Gordan coefficients and related subjects, and to
A. Matsuo and Y. Saito for introduction to the literature of canonical basis
and crystal basis.

Notations. For a Gelfand-Tsetlin pattern (which simply we may call G-
pattern)

M =


 m3

m2

m1


 =


 m13 m23 m33

m12 m22

m11




of degree 3, we define

M


 i13 i23 i33

i12 i22
i11


 =


 m13 + i13 m23 + i23 m33 + i33

m12 + i12 m22 + i22
m11 + i11


 .
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If the vector (i13 i23 i33) is zero, we omit the top row in the left hand side of
the above defining equality. So the left hand side is written as

M

(
i12 i22
i11

)
.

A convenient symbol is M [k], which is defined by

M

(
k − k

0

)
.

This means that it causes a ’twist’ of weight k at the second row m2 in M .
Recall first that the Gelfand-Zelevinsky basis {f(M)} (i.e. the canonical

basis in this paper) is parameterized by the same label set {M} as the Gelfand-
Tsetlin basis. If any of the above shifts M ′ of M violates the conditions of
Gelfand-Tsetlin pattern, i.e. if either

m′
13 ≥ m′

12 ≥ m′
23 ≥ m′

22 ≥ m′
33

or
m′

12 ≥ m′
11 ≥ m′

22

is not satisfied, then the corresponding vectors f(M ′) in the canonical basis
should be zero.

Functions in M . We set

δ(M) = m12 +m22 −m11 −m23.

Let χ+(M) and χ−(M) be the characteristic functions of the sets {M |δ(M) >
0} and {M |δ(M) < 0}, respectively. More generally we introduce functions

χ
(i)
± (M) by

χ
(i)
+ (M) =

{
1, δ(M) > i
0, δ(M) ≤ i , χ

(i)
− (M) =

{
1, δ(M) < −i
0, δ(M) ≥ −i .

Then we have χ+(M) = χ
(0)
+ (M) and χ−(M) = χ

(0)
− (M).

We introduce ’piecewise-linear’ functions C1(M), C̄1(M) and C2(M) by

C1(M) =

{
m11 −m22, if δ(M) ≥ 0
m12 −m23, if δ(M) ≤ 0

, C̄1(M) =

{
m23 −m22, if δ(M) ≥ 0
m12 −m11, if δ(M) ≤ 0

,

and
C2(M) = C1(M)C̄1(M).

Another expression of C1(M) and C̄1(M) is

C1(M) = Min{m11−m22, m12−m23}, C̄1(M) = Min{m23−m22, m12−m11}.
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1 The result of Gelfand-Zelevinsky

Firstly we recall the definition of the canonical basis in the sense of Gelfand
and Zelevinsky. In the beginning let us consider the case of the Lie algebra
gln.
Definition. A weight is an integral vector γ = (γ1, · · · , γn) ∈ Zn of length
n. A weight γ is dominant if γ1 ≥ γ2 ≥ · · · ≥ γn.

Let Eij (1 ≤ i, j ≤ n) be the matrix unit of size n with 1 at the (i, j)-entry
and 0 at other entries. As is well-known, any irreducible representation V of
finite dimension of gln splits into weight subspaces:

V = ⊕γV (γ).

Here
V (γ) = {v ∈ V |Eiiv = γiv for all i} = {0}.

And there is the (unique) dominant weight λ s.t. λ ≥ γ in the lexicographical
order. Therefore the representation V is labelled by such dominant weight
λ, i.e. V = Vλ.

Now for another dominant weight ν = (ν1, · · · , νn), we set

Vλ(γ, ν) = {v ∈ Vλ(γ)|Eνi−νi+1+1
i,i+1 v = 0, for 1 ≤ i ≤ n− 1}.

Definition. A basis B in Vλ is called proper if each of subspaces Vλ(γ, ν)
(for all possible γ, ν) is spanned by its subset, i.e.

Vλ(γ, ν) =< B ∩ Vλ(γ, ν) > .

Theorem. (Gelfand-Zelevinsky)

1. Each irreducible finite dimensional representation of gln has a proper
basis.

2. In each irreducible finite dimensional representation of gl3, there is
only one proper basis up to scalar multiple. And this basis is called
canonical.

Up to this point, the notion of the canonical basis has the ambiguity of
scalar multiple. Gelfand and Zelevinsky normalized this scalar factor some-
how to get the following formulas.

If i = j, the matrix Eij is a generator of the root space of some root in
gl3 with respect to the Cartan subalgebra consisting of diagonal matrices. If
|i− j| = 1, Eij is a root vector of a simple root. There are 4 such simple root
vectors E12, E21, E23 and E32.
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Proposition. (Gelfand-Zelevinsky) The action of simple root vectors on the
canonical basis {f(M)} of Vm3 is given as follows.

E12f(M) = (m12 −m11)f
(
M

(
0 0
1

))

+(m23 −m22)χ+(M)f
(
M

(
0 0
1

)
[−1]

)
,

E21f(M) = (m11 −m22)f
(
M

(
0 0
−1

))

+(m12 −m23)χ−(M)f
(
M

(
0 0
−1

)
[−1]

)
,

E23f(M) = (m13 −m12)f
(
M

(
1 0
0

))

+
{
m13 −m12 − δ(M)

}
χ−(M)f

(
M

(
1 0
0

)
[−1]

)
,

E32f(M) = (m22 −m33)f
(
M

(
0 − 1

0

))

+
{
m22 −m33 + δ(M)

}
χ+(M)f

(
M

(
0 − 1

0

)
[−1]

)
.

Remark 1. In the formulas of E12 and E21, we have

m23 −m22 = m12 −m11 − δ(M), m12 −m23 = m11 −m22 + δ(M).

2 Tensor products with the standard repre-

sentation

Generically the tensor product Vm3⊗V(1,0,0) has three irreducible components:
Vm3+(1,0,0), Vm3+(0,1,0) and Vm3+(0,0,1). If either m3 + (0, 1, 0) or m3 + (0, 0, 1)
is not dominant, the corresponding irreducible component does not occur.
Thus for the dimension of the intertwining spaces, we have

dimCHom(Vm3 ⊗ V(1,0,0), Vm3+(1,0,0)) = 1,

dimCHom(Vm3 ⊗ V(1,0,0), Vm3+(0,1,0)) ≤ 1,

and
dimCHom(Vm3 ⊗ V(1,0,0), Vm3+(0,0,1)) ≤ 1.

Let P(1,0,0) be a non-zero generator of the first space, which is unique up to
scalar multiple. And let P(0,1,0) or P(0,0,1) also be the generator of the second
or the third space respectively, if either space is non-zero. Our purpose in
this section is to give explicit expression of these projectors P(1,0,0), P(0,1,0)

and P(0,0,1) in terms of canonical basis.



Integral switching engine for special Clebsch-Gordan coefficients for gl3 6

2.1 The projectors for Vm3
⊗ V(1,0,0)

Let Vm3 be the representation of gl3 with canonical basis {f(M)}, and let
V(1,0,0) be the standard representation. To denote the canonical basis of the
standard representation V(1,0,0), we suppress the letter ’f ’ before G-patterns.

Theorem 1 Let {f ′(M)} be the canonical basis of the target representation.

Formula 1: The projector P(1,0,0) : Vm3 ⊗ V(1,0,0) → Vm3+(1,0,0).

1. P(1,0,0)

(
f(M) ⊗

(
1 0 0
1 0
1

))
= f ′

(
M

(
1 0 0
1 0
1

))
.

2. P(1,0,0)

(
f(M) ⊗

(
1 0 0
1 0
0

))
= f ′

(
M

(
1 0 0
1 0
0

))
+ χ−(M)f ′

(
M

(
1 0 0
0 1
0

))
.

3. P(1,0,0)

(
f(M) ⊗

(
1 0 0
0 0
0

))
= f ′

(
M

(
1 0 0
0 0
0

))
.

Formula 2: The projector P(0,1,0) : Vm3 ⊗ V(1,0,0) → Vm3+(0,1,0).

1. P(0,1,0)

(
f(M) ⊗

(
1 0 0
1 0
1

))
= −(m13 −m12)f

′
(
M

(
0 1 0
1 0
1

))
+ χ+(M)D(M)f ′

(
M

(
0 1 0
0 1
1

))
.

2. P(0,1,0)

(
f(M) ⊗

(
1 0 0
1 0
0

))
= −(m13 −m12)f

′
(
M

(
0 1 0
1 0
0

))
+ C1(M)f ′

(
M

(
0 1 0
0 1
0

))
.

3. P(0,1,0)

(
f(M) ⊗

(
1 0 0
0 0
0

))
= (m12 −m23)f

′
(
M

(
0 1 0
0 0
0

))
+ χ+(M)C1(M)f ′

(
M

(
0 1 0
−1 1

0

))
.

Here D(M) = −m13 +m12 − δ(M).

Formula 3: The projector P(0,0,1) : Vm3 ⊗ V(1,0,0) → Vm3+(0,0,1).

1. P(0,0,1)

(
f(M) ⊗

(
1 0 0
1 0
1

))
= −(m13 −m12)(m22 −m33)f

′
(
M

(
0 0 1
1 0
1

))
+ E(M)f ′

(
M

(
0 0 1
0 1
1

))
.

2. P(0,0,1)

(
f(M) ⊗

(
1 0 0
1 0
0

))
= −(m13 −m12)(m22 −m33)f

′
(
M

(
0 0 1
1 0
0

))
+ F (M)f ′

(
M

(
0 0 1
0 1
0

))
− χ−(M)C2(M)f ′

(
M

(
0 0 1
−1 2

0

))
.
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3. P(0,0,1)

(
f(M) ⊗

(
1 0 0
0 0
0

))
= (m12−m33 +1)(m22−m33)f ′

(
M

(
0 0 1
0 0
0

))
−C2(M)f ′

(
M

(
0 0 1
−1 1

0

))
.

Here

E(M) = C̄1(M)
{
m13 −m33 + 1 − C1(M)

}
,

F (M) = −C2(M)

−χ−(M)
{

(m13 −m12)(m22 −m33) − (m13 −m33 + 1)δ(M)
}
.

Remark 3. As we can see in the next subsection, in order to prove Theo-
rem 1, it suffices to show that any of three projector given above is a gl3-
homomorphism. But the actual method to find these formula is to use the
relation between the canonical basis with the Gelfand-Tsetlin basis found by
Gelfand-Zelevinsky [4]. To write this computation seems to take more space
than the proof below.

2.2 Proof of Theorem 1

The proof is direct computation to check that either of three projectors is a
gl3-modules. The action of the Cartan subgroup is diagonal. Therefore the
essential computation is those of simple root vectors Ei,i+1, Ei+1,i. The most
complicated case is the formula 3, and other two cases are similar and much
simpler. So we discuss only the formula 3 here. We have to confirm that
P(0,0,1) · Eij = Eij · P(0,0,1) for 4 simple root vectors Eij (i− j = ±1).

Let us check the action of E12, say.

Claim 1. Apply E12 to the inside of P(0,0,1) in the left hand side of the
formula 3-1. Then by using Proposition in §1 and the formulas 3-2 and 3-3,

we have
∑2

i=0 lif
′
(
M

(
0 0 1
1 0
2

)
[−i]

)
with

l0 = −(m12 −m11)(m13 −m12)(m22 −m33),

l1 = (m12 −m11)E
(
M

(
0 0
1

))
−(m23 −m22)χ+(M)(m13 −m12 + 1)(m22 + 1 −m33),

l2 = (m23 −m22)χ+(M)E
(
M

(
0 0
1

)
[−1]

)
.

Claim 2. Apply E12 to the right hand side of the formula 3-1. Then we
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have
∑2

i=0 rif
′
(
M

(
0 0 1
1 0
2

)
[−i]

)
with

r0 = −(m12 −m11)(m13 −m12)(m22 −m33),

r1 = −(m13 −m12)(m22 −m33)(m23 −m22)χ+

(
M

(
0 0 1
1 0
1

))
+E(M)(m12 −m11 − 1),

r2 = E(M)(m23 −m22 − 1)χ+

(
M

(
0 0 1
0 1
1

))
.

We have to confirm the equalities li = ri (i = 0, 1, 2). The only nontrivial
case is when i = 1. The main ingredient to show this equality is the difference
relation:

E
(
M

(
0 0
1

))
=

{
E(M) − C̄1(M), if δ(M) > 0,
E(M) − {

(m13 −m33 + 1) − (m12 −m23)
}
, if δ(M) ≤ 0.

The remaining formulas for the operator E12 are the following.

Claim 3. We have

P(0,0,1) · E12(inside of P(0,0,1) in LHS of (3-2)) =
2∑

i=0

l′if
′
(
M

(
0 0 1
1 0
1

)
[−i]

)
,

and

P(0,0,1) · E12(inside of P(0,0,1) in LHS of (3-3)) =
2∑

i=0

l′′i f
′
(
M

(
0 0 1
0 0
1

)
[−i]

)
,

with

l′0 = −(m12 −m11 + 1)(m13 −m12)(m22 −m33),

l′1 = −χ+(M)(m23 −m22)(m13 −m12 + 1)(m22 + 1 −m33)

+(m12 −m11)F
(
M

(
0 0
1

))
+ E(M),

l′2 = −χ−
(
M

(
0 0
1

))
(m12 −m11)C2

(
M

(
0 0
1

))

+χ+(M)(m23 −m22)F
(
M

(
0 0
1

)
[−1])

)
,

and

l′′0 = (m12 −m11)(m12 −m33 + 1)(m22 −m33),

l′′1 = χ+(M)(m23 −m22)(m12 −m33)(m22 −m33 + 1)

−(m12 −m11)C2

(
M

(
0 0
1

))
,

l′′2 = −χ+(M)(m23 −m22)C2

(
M

(
0 0
1

)
[−1]

)
.
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Claim 4. We have

E12(RHS of (3-2)) =
2∑

i=0

r′if
′
(
M

(
0 0 1
1 0
1

)
[−i]

)
,

and

E12(RHS of (3-3)) =
2∑

i=0

r′′i f
′
(
M

(
0 0 1
0 0
1

)
[−i]

)
,

with

r′0 = −(m12 −m11 + 1)(m13 −m12)(m22 −m33),

r′1 = −(m13 −m12)(m22 −m33)(m23 −m22)χ+

(
M

(
0 0 1
1 0
0

))
+F (M)(m12 −m11),

r′2 = −χ−(M)C2(M)(m12 −m11 − 1)

+χ+

(
M

(
0 0 1
0 1
0

))
(m23 −m22 − 1)F (M),

and

r′′0 = (m12 −m33 + 1)(m12 −m11)(m22 −m33),

r′′1 = χ+(M)(m12 −m33 + 1)(m22 −m33)(m23 −m22)

−(m12 −m11 − 1)C2(M),

r′′2 = −C2(M)(m23 −m22 − 1)χ+(M).

To show l′′i = r′′i for i = 1, 2, it is convenient to compute both side case by
case, either when δ(M) > 0 or when δ(M) ≤ 0. To show l′i = r′i (i = 2, 3), it
would be better to divide the computation into 3 cases: δ(M) > 0,= 0, and
< 0.

We can discuss similarly for E21, E23 and E32.
✷

2.3 The projectors for Vm3
⊗ V(0,0,−1)

Let Vm3 be the representation of gl3 with canonical basis {f(M)}, and let
V(0,0,−1) be the dual standard representation.

Theorem 1’ Let {f ′(M)} be the canonical basis of the target representation.
Formula 1: The projector P(0,0,−1) : Vm3 ⊗ V(0,0,−1) → Vm3+(0,0,−1).

1. P(0,0,−1)

(
f(M) ⊗

(
0 0 −1
0 −1
−1

))
= f ′

(
M

(
0 0 −1
0 −1
−1

))
.
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2. P(0,0,−1)

(
f(M) ⊗

(
0 0 −1
0 −1
0

))
= f ′

(
M

(
0 0 −1
0 −1
0

))
+χ+(M)f ′

(
M

(
0 0 −1
−1 0

0

))
.

3. P(0,0,−1)

(
f(M) ⊗

(
0 0 −1
0 0
0

))
= f ′

(
M

(
0 0 −1
0 0
0

))
.

Formula 2: The projector P(0,−1,0) : Vm3 ⊗ V(0,0,−1) → Vm3+(0,−1,0).

1. P(0,−1,0)

(
f(M) ⊗

(
0 0 −1
0 −1
−1

))
= −(m22 −m33)f

′
(
M

(
0 −1 0
0 −1
−1

))
+ χ−(M)D̄(M)f ′

(
M

(
0 −1 0
−1 0
−1

))
.

2. P(0,−1,0)

(
f(M) ⊗

(
0 0 −1
0 −1
0

))
= −(m22 −m33)f

′
(
M

(
0 −1 0
0 −1
0

))
+ C̄1(M)f ′

(
M

(
0 −1 0
−1 0

0

))
.

3. P(0,−1,0)

(
f(M) ⊗

(
0 0 −1

0 0
0

))
= (m23 −m22)f

′
(
M

(
0 −1 0

0 0
0

))
+ χ−(M)C̄1(M)f ′

(
M

(
0 −1 0
−1 1

0

))
.

Here D̄(M) = −m22 +m33 + δ(M).

Formula 3: The projector P(−1,0,0) : Vm3 ⊗ V(0,0,−1) → Vm3+(−1,0,0).

1. P(−1,0,0)

(
f(M) ⊗

(
0 0 −1
0 −1
−1

))
= −(m13−m12)(m22−m33)f ′

(
M

( −1 0 0
0 −1
−1

))
+Ē(M)f ′

(
M

( −1 0 0
−1 0
−1

))
.

2. P(−1,0,0)

(
f(M) ⊗

(
0 0 −1
0 −1

0

))
= −(m13−m12)(m22−m33)f

′
(
M

( −1 0 0
0 −1

0

))
+ F̄ (M)f ′

(
M

( −1 0 0
−1 0

0

))
− χ+(M)C2(M)f ′

(
M

( −1 0 0
−2 1

0

))
.

3. P(−1,0,0)

(
f(M) ⊗

(
0 0 −1

0 0
0

))
= (m13−m22+1)(m13−m12)f

′
(
M

( −1 0 0
0 0
0

))
−C2(M)f ′

(
M

( −1 0 0
−1 1

0

))
.

Here

Ē(M) = C1(M)
{
m13 −m33 + 1 − C̄1(M)

}
,

F̄ (M) = −C2(M)

−χ+(M)
{

(m13 −m12)(m22 −m33) + (m13 −m33 + 1)δ(M)
}
.
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Remark 4. We may write the 3-rd coefficient χ−(M)C̄1(M) of the formula
2-3 as χ−(M)(m12 −m11). Similarly the 3-rd coefficient −χ+(M)C2(M) of
3-2 as −χ+(M)(m11 −m22)(m23 −m22).

2.4 Proof of Theorem 1’

We can deduce it from Theorem 1 by symmetry. For given G-pattern M , we
define its dual pattern M̂ by

M̂ =


 −m33 −m23 −m13

−m22 −m12

−m11


 .

Obviously we have

δ(M̂) = −δ(M), χ+(M̂) = χ−(M), χ−(M̂) = χ+(M),

C1(M̂) = C̄1(M), C̄1(M̂) = C1(M), C2(M̂) = C2(M),

and M̂ [−k] = M̂ [−k].
We can check that Proposition 1 is self-dual with respect to this involutive

mapping M �→ M̂ . Apply the same mapping to the whole process to deduce
Theorem 1 from Proposition 1. Then we have Theorem 1’. ✷

Remark 5. We have an isomorphism of representations V(1,1,0)
∼= V(0,0,−1) ⊗

V(1,1,1) with one-dimensional representation corresponding to the trace map

tr : gl3 → C. Fix a non-zero element
(

1 1 1
1 1
1

)
of V(1,1,1), then we have the

natural identification between canonical basis of V(0,0,−1) and V(1,1,0) by

f(M) ⊗
(

1 1 1
1 1
1

)
�→ f

(
M

(
1 1 1
1 1
1

))

Because all the coefficients of the formulas in Theorem 1’ are written in terms
of differences mij −mkl of M , we have a similar formulas of the projectors
on Vm3 ⊗ V(1,1,0) with completely the same coefficients as those in Theorem
1’.

2.5 The symmetric tensor product V(2,0,0) of the stan-

dard representation V(1,0,0)

If we apply Theorem 1 for the special case Vm3 = V(1,0,0), we have only two
irreducible constituents V(2,0,0) and V(1,1,0) which occur with multiplicities one:

V(1,0,0) ⊗ V(1,0,0)
∼= V(2,0,0) ⊕ V(1,1,0).
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The first factor V(2,0,0) is the symmetric tensor product of V(1,0,0), and the
second the anti-symmetric tensor product. Here we write the correspondence
between canonical basis of V(1,0,0) and V(2,0,0) explicitly.

Lemma 1 Via identification V(2,0,0) with Sym2(V(1,0,0)) which is unique up to
a scalar multiple, we have identifications :

(
2 0 0
0 0
0

)
=

(
1 0 0
0 0
0

)
⊗

(
1 0 0
0 0
0

)
,(

2 0 0
1 0
0

)
= 1

2

{(
1 0 0
0 0
0

)
⊗

(
1 0 0
1 0
0

)
+

(
1 0 0
1 0
0

)
⊗

(
1 0 0
0 0
0

)}
,(

2 0 0
1 0
1

)
= 1

2

{(
1 0 0
0 0
0

)
⊗

(
1 0 0
1 0
1

)
+

(
1 0 0
1 0
1

)
⊗

(
1 0 0
0 0
0

)}
,(

2 0 0
2 0
0

)
=

(
1 0 0
1 0
0

)
⊗

(
1 0 0
1 0
0

)
,(

2 0 0
2 0
1

)
= 1

2

{(
1 0 0
1 0
0

)
⊗

(
1 0 0
1 0
1

)
+

(
1 0 0
1 0
1

)
⊗

(
1 0 0
1 0
0

)}
,(

2 0 0
2 0
2

)
=

(
1 0 0
1 0
1

)
⊗

(
1 0 0
1 0
1

)
,

Remark 6. Similarly to the case of the standard representation, to denote the
canonical basis of V(2,0,0) we do not write the letter ’f ’ before its G-pattern.

3 Tensor product with V(2,0,0)

In this section, we want to have the irreducible decomposition of the ten-
sor product Vm3 ⊗ V(2,0,0) and an explicit formula of the projectors to its
irreducible components. Generically this tensor product has six irreducible
components Vm3+ei+ej

(1 ≤ i, j ≤ 3). Here ei is the unit vector with unity
at the i-th entry and zero at the remaining entries. Each component occurs
with multiplicity one, if the weight vector m3 + ei + ej is dominant.

To have the projector from the total space Vm3⊗V(2,0,0) to each irreducible
component, which is unique up to scalar multiple, we firstly embed V(2,0,0)

into the tensor product V(1,0,0)⊗V(1,0,0) of the two copies of the standard rep-
resentation, discussed in §2.5. Roughly speaking, using the projectors of ir-
reducible decomposition of a general simple gl3-modules V with the standard
representation twice, we have the projectors to the irreducible component of
the tensor product V ⊗ V(2,0,0).

More precisely we consider as follows. Put

W1 = Vm3 ⊗ V(1,0,0), and W2 = W1 ⊗ V(1,0,0) = Vm3 ⊗ V(1,0,0) ⊗ V(1,0,0)
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In the total space W2, the irreducible component Vm3+ei+ej
occurs with mul-

tiplicity one if i = j. If i = j, it occurs with multiplicity two, or zero.
If i ≥ j, we define a projector Q1 : W2 → Vm3+ei+ej

by extending

Q1(v ⊗ u1 ⊗ u2) = Pej
(Pei

(v ⊗ u1) ⊗ u2)

linearly. Similarly Q2 : W2 → Vm3+ei+ej
by extending

Q2(v ⊗ u1 ⊗ u2) = Pei

(
Pej

(v ⊗ u1) ⊗ u2

)
linearly.

When i = j, these two intertwining operators coincide on W2 itself. If
i = j, they gives linearly independent generators of the intertwining space

dimCHom(W2, Vm3+ei+ej
)

of dimension 2. The restrictions of Q1 and Q2 to the subspace Vm3 ⊗ V(2,0,0)

in the total space W2 are scalar multiple of each other, because of the mul-
tiplicity one.

3.1 The projectors for Vm3
⊗ V(2,0,0).

In this subsection, we give an explicit formula for the projectors from the
tensor product Vm3 ⊗ V(2,0,0) to its six irreducible components in terms of
canonical basis. The proof of this is given in the next subsection. Let {f(M)}
be the canonical basis of the representation Vm3 . Similarly for the standard
representation, we suppress the letter ’f ’ before G-patterns to denote the
canonical basis of V(2,0,0).

Theorem 2. Let {f ′(M)} be the canonical basis of the target representation.

Formula 1: The projector P(2,0,0) : Vm3 ⊗ V(2,0,0) → Vm3+(2,0,0).

1. P(2,0,0)

(
f(M) ⊗

(
2 0 0
0 0
0

))
= f ′

(
M

(
2 0 0
0 0
0

))
.

2. P(2,0,0)

(
f(M) ⊗

(
2 0 0
1 0
0

))
= f ′

(
M

(
2 0 0
1 0
0

))
+ χ−(M)f ′

(
M

(
2 0 0
0 1
0

))
.

3. P(2,0,0)

(
f(M) ⊗

(
2 0 0
1 0
1

))
= f ′

(
M

(
2 0 0
1 0
1

))
.

4. P(2,0,0)

(
f(M) ⊗

(
2 0 0
2 0
0

))
= f ′

(
M

(
2 0 0
2 0
0

))
+

{
χ−(M) + χ

(1)
− (M)

}
f ′

(
M

(
2 0 0
1 1
0

))
+ χ

(1)
− (M)f ′

(
M

(
2 0 0
0 2
0

))
.

5. P(2,0,0)

(
f(M) ⊗

(
2 0 0
2 0
1

))
= f ′

(
M

(
2 0 0
2 0
1

))
+ χ−(M)f ′

(
M

(
2 0 0
1 1
1

))
.
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6. P(2,0,0)

(
f(M) ⊗

(
2 0 0
2 0
2

))
= f ′

(
M

(
2 0 0
2 0
2

))
.

Formula 2: The projector P(1,1,0) : Vm3 ⊗ V(2,0,0) → Vm3+(1,1,0).

1. P(1,1,0)

(
f(M) ⊗

(
2 0 0
0 0
0

))
= (m12 −m23)f ′

(
M

(
1 1 0
0 0
0

))
+χ+(M)C1(M)f ′

(
M

(
1 1 0
−1 1

0

))
.

2. P(1,1,0)

(
f(M) ⊗

(
2 0 0
1 0
0

))
= 1

2
(2m12 −m13 −m23)f

′
(
M

(
1 1 0
1 0
0

))
+C1(M)f ′

(
M

(
1 1 0
0 1
0

))
.

3. P(1,1,0)

(
f(M) ⊗

(
2 0 0
1 0
1

))
= 1

2
(2m12 −m13 −m23)f

′
(
M

(
1 1 0
1 0
1

))
+1

2
χ+(M)

{
C1(M) +D(M)

}
f ′

(
M

(
1 1 0
0 1
1

))
.

4. P(1,1,0)

(
f(M) ⊗

(
2 0 0
2 0
0

))
= −(m13 −m12)f

′
(
M

(
1 1 0
2 0
0

))
+

{
C1(M) − χ−(M)(m13 −m12)

}
f ′

(
M

(
1 1 0
1 1
0

))
+χ−(M)C1(M)f ′

(
M

(
1 1 0
0 2
0

))
.

5. P(1,1,0)

(
f(M) ⊗

(
2 0 0
2 0
1

))
= −(m13 −m12)f

′
(
M

(
1 1 0
2 0
1

))
+1

2

{
C1(M) − (m13 −m12) − χ+(M)δ(M)

}
f ′

(
M

(
1 1 0
1 1
1

))
.

6. P(1,1,0)

(
f(M) ⊗

(
2 0 0
2 0
2

))
= −(m13 −m12)f

′
(
M

(
1 1 0
2 0
2

))
+χ+(M)D(M)f ′

(
M

(
1 1 0
1 1
2

))
.

Formula 3: The projector P(1,0,1) : Vm3 ⊗ V(2,0,0) → Vm3+(1,0,1).

1. P(1,0,1)

(
f(M) ⊗

(
2 0 0
0 0
0

))
= (m12−m33 +1)(m22−m33)f ′

(
M

(
1 0 1
0 0
0

))
−C2(M)f ′

(
M

(
1 0 1
−1 1

0

))
.

2. P(1,0,1)

(
f(M) ⊗

(
2 0 0
1 0
0

))
=

∑2
i=0 cif

′
(
M

(
1 0 1
1 0
0

)
[−i]

)
with

c0 = 1
2
(m22 −m33)(2m12 −m13 −m33 + 1),

c1 = 1
2

{
F (M) − C2(M) + χ−(M)(m22 −m33)(m12 −m33 + 1)

}
,

c2 = −χ−(M)C2(M).
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3. P(1,0,1)

(
f(M) ⊗

(
2 0 0
1 0
1

))
= 1

2
(m22 −m33)(2m12 −m13 −m33 + 1)f ′

(
M

(
1 0 1
1 0
1

))
+1

2

{
E(M) − C2(M)

}
f ′

(
M

(
1 0 1
0 1
1

))
.

4. P(1,0,1)

(
f(M) ⊗

(
2 0 0
2 0
0

))
=

∑3
i=0 cif

′
(
M

(
1 0 1
2 0
0

)
[−i]

)
with

c0 = −(m13 −m12)(m22 −m33),

c1 =
{
F (M) − χ(1)

− (M)(m13 −m12)(m22 −m33)
}
,

c2 =
{−χ−(M)C2(M) + χ

(1)
− (M)F (M)

}
,

c3 = −χ(1)
− (M)C2(M).

5. P(1,0,1)

(
f(M) ⊗

(
2 0 0
2 0
1

))
=

∑2
i=0 cif

′
(
M

(
1 0 1
2 0
1

)
[−i]

)
with

c0 = −(m13 −m12)(m22 −m33),

c1 = 1
2

{
E(M) + F (M) − χ−(M)(m13 −m12)(m22 −m33)

}
,

c2 = 1
2
χ−(M)

{
E(M) − C2(M)

}
.

6. P(1,0,1)

(
f(M) ⊗

(
2 0 0
2 0
2

))
= −(m13 −m12)(m22 −m33)f

′
(
M

(
1 0 1
2 0
2

))
+E(M)f ′

(
M

(
1 0 1
1 1
2

))
.

Formula 4: The projector P(0,2,0) : Vm3 ⊗ V(2,0,0) → Vm3+(0,2,0).

1. P(0,2,0)

(
f(M) ⊗

(
2 0 0
0 0
0

))
=

∑2
i=0 cif

′
(
M

(
0 2 0
0 0
0

)
[−i]

)
with

c0 = (m12 −m23)(m12 −m23 − 1),

c1 = C1(M)
{
χ

(1)
+ (M)(m12 −m23) + χ+(M)(m12 −m23 − 2)

}
,

c2 = χ
(1)
+ (M)C1(M)

{
C1(M) − 1

}
.

2. P(0,2,0)

(
f(M) ⊗

(
2 0 0
1 0
0

))
=

∑2
i=0 cif

′
(
M

(
0 2 0
1 0
0

)
[−i]

)
with

c0 = −(m12 −m23)(m13 −m12),

c1 = C1(M)
{

(m12 −m23 − 1) − χ+(M)(m13 −m12)
}
,

c2 = χ+(M)C1(M)
{
C1(M) − 1

}
.
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3. P(0,2,0)

(
f(M) ⊗

(
2 0 0
1 0
1

))
=

∑2
i=0 cif

′
(
M

(
0 2 0
1 0
1

)
[−i]

)
with

c0 = −(m12 −m23)(m13 −m12),

c1 = χ+(M)(m12 −m23 − 1)D(M) − χ(1)
+ (M)(m13 −m12)

{
C1(M) + 1

}
,

c2 = χ
(1)
+ (M)C1(M)D(M).

4. P(0,2,0)

(
f(M) ⊗

(
2 0 0
2 0
0

))
=

∑2
i=0 f

′
(
M

(
0 2 0
2 0
0

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1),

c1 = −2(m13 −m12)C1(M),

c2 = C1(M)
{
C1(M) − 1

}
.

5. P(0,2,0)

(
f(M) ⊗

(
2 0 0
2 0
1

))
=

∑2
i=0 cif

′
(
M

(
0 2 0
2 0
1

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1),

c1 = −(m13 −m12)
[
χI(M)

{
D(M) + 1

}
+ C1(M)

]
,

c2 = χ+(M)C1(M)D(M).

6. P(0,2,0)

(
f(M) ⊗

(
2 0 0
2 0
2

))
=

∑2
i=0 cif

′
(
M

(
0 2 0
2 0
2

)
[−i]

)

with

c0 = (m13 −m12)(m13 −m12 − 1),

c1 = −(m13 −m12)
[
χ+(M)D(M) + χ

(1)
+ (M)

{
D(M) + 2

}]
,

c2 = χ
(1)
+ (M)D(M)

{
D(M) + 1

}
.

Formula 5: The projector P(0,1,1) : Vm3 ⊗ V(2,0,0) → Vm3+(0,1,1).

1. P(0,1,1)

(
f(M) ⊗

(
2 0 0
0 0
0

))
=

∑2
i=0 cif

′′
(
M

(
0 1 1
0 0
0

)
[−i]

)
with

c0 = (m12 −m23)(m12 −m33 + 1)(m22 −m33),

c1 = χ+(M)(m12 −m33 + 1)(m22 −m33)C1(M)

−(m12 −m23 − 1)C2(M),

c2 = −χ+(M)C2(M)
{
C1(M) − 1

}
.
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2. P(0,1,1)

(
f(M) ⊗

(
2 0 0
1 0
0

))
=

∑2
i=0 cif

′′
(
M

(
0 1 1
1 0
0

)
[−i]

)
with

c0 = −1
2
(2m12 −m23 −m33 + 2)(m13 −m12)(m22 −m33),

c1 = 1
2
(m12 −m23)F (M)

−1
2

{
1 − χ−(M)

}
(m13 −m12)(m22 −m33)C1(M)

+1
2
(m13 −m12 + 1)C2(M)

+1
2
(m12 −m33 + 1)(m22 −m33)C1(M),

c2 = −C2(M)
{
C1(M) − 1

}
.

3. P(0,1,1)

(
f(M) ⊗

(
2 0 0
1 0
1

))
=

∑2
i=0 cif

′
(
M

(
0 1 1
1 0
1

)
[−i]

)
with

c0 = −1
2
(2m12 −m23 −m33 + 2)(m13 −m12)(m22 −m33),

c1 = 1
2
(m12 −m23)E(M) + 1

2
(m13 −m12 + 1)C2(M)

+1
2
χ+(M)(m22 −m33)

·
[
−(m13 −m12)

{
C1(M) + 1

}
+ (m12 −m33 + 1)D(M)

]
,

c2 = 1
2
χ+(M)C2(M)

{
m13 −m33 + 2 − C1(M) −D(M)

}
.

4. P(0,1,1)

(
f(M) ⊗

(
2 0 0
2 0
0

))
=

∑3
i=0 cif

′′
(
M

(
0 1 1
2 0
0

[
− i])

)
with

c0 = (m13 −m12)(m13 −m12 − 1)(m22 −m33),

c1 = −(m13 −m12)
[
F (M) + (m22 −m33)

{
C1(M) + χ−(M)

}]
,

c2 =
{
C1(M) − 1 + χ−(M)

}
F (M) + χ−(M)(m13 −m12 + 1)C2(M),

c3 = −χ−(M)C2(M)
{
C1(M) − 1

}
.

5. P(0,1,1)

(
f(M) ⊗

(
2 0 0
2 0
1

))
=

∑2
i=0 cif

′′
(
M

(
0 1 1
2 0
1

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1)(m22 −m33),

c1 = −1
2
(m13 −m12)

[
F (M) + E(M) + (m22 −m33)

{
C1(M) + 1

}]
−1

2

{
1 − χ−(M)

}
(m13 −m12)(m22 −m33)D(M),

c2 = 1
2
C1(M)E(M) + 1

2
C2(M)

{
1 −D(M) − χ−(M)δ(M)

}
.
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6. P(0,1,1)

(
f(M) ⊗

(
2 0 0
2 0
2

))
=

∑2
i=0 cif

′
(
M

(
0 1 1
2 0
2

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1)(m22 −m33),

c1 = −(m13 −m12)
[
E(M) + χ+(M)(m22 −m33)

{
D(M) + 1

}]
,

c2 = χ+(M)D(M)E(M).

Formula 6: The projector P(0,0,2) : Vm3 ⊗ V(2,0,0) → Vm3+(0,0,2).

1. P(0,0,2)

(
f(M) ⊗

(
2 0 0
0 0
0

))
=

∑2
i=0 cif

′
(
M

(
0 0 2
0 0
0

)
[−i]

)
with

c0 = (m12 −m33 + 1)(m12 −m33)(m22 −m33)(m22 −m33 − 1),

c1 = −2(m12 −m33)(m22 −m33)C2(M),

c2 = C2(M)
{
C1(M) − 1

}{
C̄1(M) − 1

}
.

2. P(0,0,2)

(
f(M) ⊗

(
2 0 0
1 0
0

))
=

∑3
i=0 cif

′′
(
M

(
0 0 2
1 0
0

)
[−i]

)
with

c0 = −(m13 −m12)(m12 −m33 + 1)(m22 −m33)(m22 −m33 − 1),

c1 = (m22 −m33)
{

(m12 −m33)F (M) + (m13 −m12)C2

(
M

(
0 0 1
1 0
0

))}
,

c2 = −F (M)C2

(
M

(
0 0 1
0 1
0

))
−χ−(M)(m12 −m33 − 1)(m22 −m33 + 1)C2(M),

c3 = χ−(M)C2(M)
{
C1(M) − 1

}{
C̄1(M) − 1

}
.

3. P(0,0,2)

(
f(M) ⊗

(
2 0 0
1 0
1

))
=

∑2
i=0 cif

′
(
M

(
0 0 2
1 0
1

)
[−i]

)
with

c0 = −(m12 −m33 + 1)(m13 −m12)(m22 −m33)(m22 −m33 − 1),

c1 = (m22 −m33)

·
[
(m12 −m33)E(M) + (m13 −m12)

{
C1(M) + 1

}
C̄1(M)

]
,

c2 = −E(M)C1(M)
{
C̄1(M) − 1

}
.
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4. P(0,0,2)

(
f(M) ⊗

(
2 0 0
2 0
0

))
=

∑4
i=0 cif

′′
(
M

(
0 0 2
2 0
0

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1)(m22 −m33)(m22 −m33 − 1),

c1 = −(m13 −m12)(m22 −m33)
{
F (M) + F

(
M

(
0 0 1
1 0
0

))}
,

c2 = χ−(M)(m13 −m12 + 1)(m22 −m33 + 1)C2(M)

+χ
(1)
− (M)(m13 −m12)(m22 −m33)

{
C1(M) + 1

}{
C̄1(M) + 1

}
+F (M)F

(
M

(
0 0 1
0 1
0

))
,

c3 = −C2(M)
{
χ

(1)
− (M)F (M) + χ−(M)F

(
M

(
0 0 1
−1 2

0

))}
,

c4 = χ
(1)
− (M)C2(M)

{
C1(M) − 1

}{
C̄1(M) − 1

}
.

5. P(0,0,2)

(
f(M) ⊗

(
2 0 0
2 0
1

))
=

∑3
i=0 cif

′′
(
M

(
0 0 2
2 0
1

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1)(m22 −m33)(m22 −m33 − 1),

c1 = −(m13 −m12)(m22 −m33)
{
F

(
M

(
0 0 1
1 0
1

))
+ E(M)

}
,

c2 = E(M)F
(
M

(
0 0 1
0 1
1

))
+χ−(M)(m13 −m12)(m22 −m33)

{
C1(M) + 1

}
C̄1(M),

c3 = −χ−(M)E(M)C1(M)
{
C̄1(M) − 1

}
.

6. P(0,0,2)

(
f(M) ⊗

(
2 0 0
2 0
2

))
=

∑2
i=0 cif

′
(
M

(
0 0 2
2 0
2

)
[−i]

)
with

c0 = (m13 −m12)(m13 −m12 − 1)(m22 −m33)(m22 −m33 − 1),

c1 = −2(m13 −m12)(m22 −m33)
{
E(M) − C̄1(M)

}
,

c2 = E(M)
{
C̄1(M) − 1

}{
m13 −m33 − C1(M)

}
.

3.2 Proof of Formulas

In this subsection, we give a proof of the formulas 3 and 4 in the previous
subsection. The rest can be proved by the similar computation.

First, we prove the formula 3. To do this, we may compute only the
projector Q2 defined in the top of this section. Let us denote by {f ′′(M)}
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the canonical basis of the representation Vm3+(0,0,1). Using the formula for
the projectors P(0,0,1) in Theorem 1, we have

Q2

(
f(M) ⊗

(
2 0 0
0 0
0

))
= P(1,0,0)

(
P(0,0,1)

(
f(M) ⊗

(
1 0 0
0 0
0

))
⊗

(
1 0 0
0 0
0

))

= (m12 −m33 + 1)(m22 −m33)P(1,0,0)

(
f ′′

(
M

(
0 0 1
0 0
0

))
⊗

(
1 0 0
0 0
0

))

−C2(M)P(1,0,0)

(
f ′′

(
M

(
0 0 1
−1 1

0

))
⊗

(
1 0 0
0 0
0

))
.

Then the first formula is deduced from this equation with the formula for
P(1,0,0) in Theorem 1. Similarly, using the formulas in Theorem 1 twice, we
have the equations

Q2

(
f(M) ⊗

(
2 0 0
2 0
0

))

= −(m13 −m12)(m22 −m33)f
′
(
M

(
1 0 1
2 0
0

))

+
{
F (M) − χ−

(
M

(
0 0 1
1 0
0

))
(m13 −m12)(m22 −m33)

}
f ′

(
M

(
1 0 1
1 1
0

))

+
{
χ−

(
M

(
0 0 1
0 1
0

))
F (M) − χ−(M)C2(M)

}
f ′

(
M

(
1 0 1
0 2
0

))

−χ−(M)χ−
(
M

(
0 0 1
−1 2

0

))
C2(M)f ′

(
M

(
1 0 1
0 2
0

))
,

and

Q2

(
f(M) ⊗

(
2 0 0
2 0
2

))

= −(m13 −m12)(m22 −m33)f
′
(
M

(
1 0 1
2 0
2

))
+ E(M)f ′

(
M

(
1 0 1
1 1
2

))
.

Thus we have the formulas 3-4 and 3-6, because

χ−
(
M

(
0 0 1
1 0
0

))
= χ−

(
M

(
0 0 1
0 1
0

))
= χ−(M)χ−

(
M

(
0 0 1
−1 2

0

))
= χ

(1)
− (M).

Two images of Q2 in the right hand side of the equation

Q2

(
f(M) ⊗

(
2 0 0
1 0
0

))

=
1

2

{
Q2

(
f(M) ⊗

(
1 0 0
0 0
0

)
⊗

(
1 0 0
1 0
0

))
+Q2

(
f(M) ⊗

(
1 0 0
1 0
0

)
⊗

(
1 0 0
0 0
0

))}
,
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have the following expressions which are derived from Theorem 1:

Q2

(
f(M) ⊗

(
1 0 0
0 0
0

)
⊗

(
1 0 0
1 0
0

))

= (m12 −m33 + 1)(m22 −m33)f
′
(
M

(
1 0 1
1 0
0

))

+
{
χ−

(
M

(
0 0 1
0 0
0

))
(m12 −m33 + 1)(m22 −m33) − C2(M)

}

·f ′
(
M

(
1 0 1
0 1
0

))
− χ−

(
M

(
0 0 1
−1 1

0

))
C2(M)f ′

(
M

(
1 0 1
−1 2

0

))
,

and

Q2

(
f(M) ⊗

(
1 0 0
1 0
0

)
⊗

(
1 0 0
0 0
0

))

= −(m13 −m12)(m22 −m33)f
′
(
M

(
1 0 1
1 0
0

))

+F (M)f ′
(
M

(
1 0 1
0 1
0

))
− χ−(M)C2(M)f ′

(
M

(
1 0 1
−1 2

0

))
.

Because χ−(M) depends only on δ(M), the formula 3-2 holds. Similarly,
the following four formulas with the identification in Lemma 1 lead to the
formulas 3-3 and 3-5:

Q2

(
f(M) ⊗

(
1 0 0
0 0
0

)
⊗

(
1 0 0
1 0
1

))

= (m12 −m33 + 1)(m22 −m33)f
′
(
M

(
1 0 1
1 0
1

))
− C2(M)f ′

(
M

(
1 0 1
0 1
1

))
,

Q2

(
f(M) ⊗

(
1 0 0
1 0
1

)
⊗

(
1 0 0
0 0
0

))

= −(m13 −m12)(m22 −m33)f
′
(
M

(
1 0 1
1 0
1

))
+ E(M)f ′

(
M

(
1 0 1
0 1
1

))
,

Q2

(
f(M) ⊗

(
1 0 0
1 0
0

)
⊗

(
1 0 0
1 0
1

))

= −(m13 −m12)(m22 −m33)f
′
(
M

(
1 0 1
2 0
1

))
+ F (M)f ′

(
M

(
1 0 1
1 1
1

))

−χ−(M)C2(M)f ′
(
M

(
1 0 1
0 2
1

))
,

Q2

(
f(M) ⊗

(
1 0 0
1 0
1

)
⊗

(
1 0 0
1 0
0

))

= −(m13 −m12)(m22 −m33)f
′
(
M

(
1 0 1
2 0
1

))

+ {−χ− (M) (m13 −m12)(m22 −m33) + E(M)} f ′
(
M

(
1 0 1
1 1
1

))

+χ− (M)E(M)f ′
(
M

(
1 0 1
0 2
1

))
,
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Next we prove the formula 4. We use again the projectors in Theorem 1
twice. Similarly to the proof of the formula 3, we have the equation

P(0,2,0)

(
f(M) ⊗

(
2 0 0
0 0
0

))
= P(0,1,0)

(
P(0,1,0)

(
f(M) ⊗

(
1 0 0
0 0
0

))
⊗

(
1 0 0
0 0
0

))

= (m12 −m23)P(0,1,0)

(
f ′′

(
M

(
0 1 0
0 0
0

))
⊗

(
1 0 0
0 0
0

))

+χ+(M)C1(M)P(0,1,0)

(
f ′′

(
M

(
0 1 0
−1 1

0

))
⊗

(
1 0 0
0 0
0

))

= (m12 −m23)(m12 −m23 − 1)f ′
(
M

(
0 2 0
0 0
0

))

+
{
χ+

(
M

(
0 1 0
0 0
0

))
(m12 −m23)C1

(
M

(
0 1 0
0 0
0

))

+χ+(M)(m12 −m23 − 2)C1(M)
}
f ′

(
M

(
0 2 0
−1 1

0

))

+χ+(M)χ+

(
M

(
0 1 0
−1 1

0

))
C1(M)C1

(
M

(
0 1 0
−1 1

0

))
f ′

(
M

(
0 2 0
−2 2

0

))
.

Here {f ′′(M)} means the canonical basis of the representation Vm3+(0,1,0).
This equation means the formula 4-1, because of the relations

χ+

(
M

(
0 1 0
0 0
0

))
C1

(
M

(
0 1 0
0 0
0

))
= χ

(1)
+ (M)C1(M),

χ+(M)χ+

(
M

(
0 1 0
−1 1

0

))
C1

(
M

(
0 1 0
−1 1

0

))
= χ

(1)
+ (M)(C1(M) − 1).

Similarly, we can get the formulas 4-4 and 4-6 from the equations

P(0,2,0)

(
f(M) ⊗

(
2 0 0
2 0
0

))

= (m13 −m12)(m13 −m12 − 1)f ′
(
M

(
0 2 0
2 0
0

))

+
{
−(m13 −m12)C1

(
M

(
0 1 0
1 0
0

))
− (m13 −m12)C1(M)

}
f ′

(
M

(
0 2 0
1 1
0

))

+C1(M)C1

(
M

(
0 1 0
0 1
0

))
f ′

(
M

(
0 2 0
0 2
0

))
,

P(0,2,0)

(
f(M) ⊗

(
2 0 0
2 0
2

))

= (m13 −m12)(m13 −m12 − 1)f ′
(
M

(
0 2 0
2 0
2

))

+
{
−χ+

(
M

(
0 1 0
1 0
1

))
(m13 −m12)D

(
M

(
0 1 0
1 0
1

))

−χ+(M)(m13 −m12)D(M)
}
f ′

(
M

(
0 2 0
1 1
2

))

+χ+(M)χ+

(
M

(
0 1 0
0 1
1

))
D(M)D

(
M

(
0 1 0
0 1
1

))
f ′

(
M

(
0 2 0
0 2
2

))
,
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which are derived from Theorem 1 and the relations

C1

(
M

(
0 1 0
1 0
0

))
= C1(M), C1

(
M

(
0 1 0
0 1
0

))
= C1(M) − 1,

D
(
M

(
0 1 0
1 0
1

))
= D(M) + 2, D

(
M

(
0 1 0
0 1
1

))
= D(M) + 1,

χ+

(
M

(
0 1 0
1 0
1

))
= χ+(M)χ+

(
M

(
0 1 0
0 1
1

))
= χ

(1)
+ (M).

Before giving a proof of the remainder formulas 4-2, 4-3 and 4-5, we use
the following lemma.

Lemma 2. For any vectors u1, u2 ∈ V(1,0,0) and 1 ≤ i ≤ 3, we have

P2ei

(
f(M) ⊗ 1

2
{u1 ⊗ u2 + u2 ⊗ u1}

)
= P2ei

(f(M) ⊗ u1 ⊗ u2)

= P2ei
(f(M) ⊗ u2 ⊗ u1).

Proof of Lemma. Let A(V(1,0,0)) be the anti-symmetric tensor product of
V(1,0,0) and put W = Vm3 ⊗A(V(1,0,0)). Then we have the irreducible decom-
position

W ∼= Vm3+e1+e2 ⊕ Vm3+e1+e3 ⊕ Vm3+e2+e3 .

In particular, the restriction of the projector P2ei
to the subspace W in

W2 = Vm3 ⊗ V(1,0,0) ⊗ V(1,0,0) is zero for each 1 ≤ i ≤ 3, that is

P2ei
(f(M) ⊗ {u1 ⊗ u2 − u2 ⊗ u1}) = 0

for any u1, u2 ∈ V(1,0,0). ✷

According to the above lemma and the identification in Lemma 1, we
have

P(0,2,0)

(
f(M) ⊗

(
2 0 0
1 0
0

))
= P(0,2,0)

(
f(M) ⊗

(
1 0 0
1 0
0

)
⊗

(
1 0 0
0 0
0

))
.

Theorem 1 shows that the right hand side of the above is equal to

−(m13 −m12)(m12 −m23)f
′
(
M

(
0 2 0
1 0
0

))

+
{
−χ+ (M) (m13 −m12)C1

(
M

(
0 1 0
1 0
0

))

+(m12 −m23 − 1)C1(M)
}
f ′

(
M

(
0 2 0
0 1
0

))

+χ+ (M)C1(M)C1

(
M

(
0 1 0
0 1
0

))
f ′

(
M

(
0 2 0
−1 2

0

))
.

Together with the relations

C1

(
M

(
0 1 0
1 0
0

))
= C1(M), C1

(
M

(
0 1 0
0 1
0

))
= C1(M) − 1,
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we get the formula 4-2. Similarly the equations

P(0,2,0)

(
f(M) ⊗

(
2 0 0
1 0
1

))
= P(0,2,0)

(
f(M) ⊗

(
1 0 0
1 0
1

)
⊗

(
1 0 0
0 0
0

))

= −(m13 −m12)(m12 −m23)f
′
(
M

(
0 2 0
1 0
1

))

+
{
−χ+

(
M

(
0 1 0
1 0
1

))
(m13 −m12)C1

(
M

(
0 1 0
1 0
1

))

+χ+(M)(m12 −m23 − 1)D(M)
}
f ′

(
M

(
0 2 0
0 1
1

))

+χ+(M)χ+

(
M

(
0 1 0
0 1
1

))
D(M)C1

(
M

(
0 1 0
0 1
1

))
f ′

(
M

(
0 2 0
−1 2

1

))
,

P(0,2,0)

(
f(M) ⊗

(
2 0 0
2 0
1

))
= P(0,2,0)

(
f(M) ⊗

(
1 0 0
1 0
1

)
⊗

(
1 0 0
1 0
0

))

= (m13 −m12)(m13 −m12 − 1)f ′
(
M

(
0 2 0
2 0
1

))

−
{

(m13 −m12)C1

(
M

(
0 1 0
1 0
1

))
+ χ+(M)(m13 −m12)D(M)

}

·f ′
(
M

(
0 2 0
1 1
1

))
+ χ+(M)D(M)C1

(
M

(
0 1 0
0 1
1

))
f ′

(
M

(
0 2 0
0 2
1

))
,

lead to the formulas 4-3 and 4-5 with the relations

χ+

(
M

(
0 1 0
1 0
1

))
C1

(
M

(
0 1 0
1 0
1

))
= χ

(1)
+ (M)(C1(M) + 1),

χ+(M)χ+

(
M

(
0 1 0
0 1
1

))
C1

(
M

(
0 1 0
0 1
1

))
= χ

(1)
+ (M)C1(M),

C1

(
M

(
0 1 0
1 0
1

))
= C1(M) + χ+(M), χ+(M)C1

(
M

(
0 1 0
0 1
1

))
= χ+(M)C1(M).

✷
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