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Abstract

In this paper, we prove the sharp estimates for the degree of symmetry and the

semi-simple degree of symmetry of the �ber bundles with certain 4-dimensional

�bers by virtue of the rigidity theorem with respect to the harmonic map due

to Schoen and Yau. As a corollary of this estimate, we compute the degree

of symmetry and the semi-simple degree of symmetry of CP 2
� V , where V is

compact and real analytic Riemannian manifold of nonpositive curvature. In

addition, by the Albanese map, we obtain the sharp estimate of the degree of

symmetry of a compact smooth manifold satisfying some restrictions from its

�rst cohomology.

1 Introduction

Since this paper is a complemental continuation of [17], we begin with recalling

the necessary part of the backgroud in [17]. Let Mn be a compact connected smooth

n-manifold and N(Mn) the degree of symmetry of Mn, that is, the maximum of the

dimensions of the isometry groups of all possible Riemannian metrics on Mn. Of

course, N(M) is the maximum of the dimensions of the compact Lie groups which

can act e�ectively and smoothly on M . The semi-simple degree of symmetry Ns(M)

is de�ned similarly, where we consider only actions of semi-simple compact Lie groups

on M . The following is well known:

N(Mn) � n(n+ 1)=2: (1)
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In addition, if the equality holds, then Mn is di�eomorphic to the standard sphere Sn

or the real projective space RP n. In [10] H. T. Ku, L. N. Mann, J. L. Sicks and J. C.

Su obtained similar results on a product manifold Mn = Mn1
1 �Mn2

2 (n � 19) where

Mi is a compact connected smooth manifold of dimension ni: they showed that

N(M) � n1(n1 + 1)=2 + n2(n2 + 1)=2; (2)

and that if the equality holds, thenMn is a product of two spheres, two real projective

spaces or a sphere and a real projective space. A preliminary lemma for the proof of

Ku-Mann-Sicks-Su's results claims that ifMn (n � 19) is a compact connected smooth

n-manifold which is not di�eomorphic to the complex projective space CPm (n = 2m),

then

N(Mn) � k(k + 1)=2 + (n� k)(n� k + 1)=2 (3)

holds for each k 2 N such that the k-th Betti number bk of M is nonzero.

Let V be a connected compact manifold which can admit a real analytic Riemannian

metric of nonpositive curvature. It was noted in Remark 1.2 of [17] that by the results

in [3] and [11] the following holds:

Fact N N(V ) equals rank of the center of �1(V ) and the only connected compact Lie

groups which can act e�ectively and smoothly on V are tori.

Let E be a compact smooth �ber bundle over V with connected �ber F . In Theorem

1.1 of [17] the author generalized partially Ku-Mann-Sicks-Su's result (2) by showing

the corresponding sharp estimates of N(E) and Ns(E) by assuming that the �ber F

satis�es various topological properties. In particular, part of the statements of Theorem

1.1 and Corollary 1.1 in [17] says:

Fact F Suppose that E is oriented and that F is an 4m-manifold (m � 5) of nonzero

signature. Then the followings hold:

N(E) � N(V ) + 4m(m+ 1); Ns(E) � 4m(m+ 1) : (4)

In particular, if V is oriented, then

N(CP 2m � V ) = N(V ) + 4m(m+ 1); Ns(CP
2m � V ) = 4m(m+ 1) : (5)

The case of 1 � m � 4 could not be covered in [17] because the author used Ku-Mann-

Sick-Su's result (3), in which the dimension of the manifold is assumed to be � 19. In

this paper we shall show that Fact F also holds for m = 1. That is,
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Theorem 1.1. Let V be a connected compact manifold which can admit a real analytic

Riemannian metric of nonpositive curvature and E be a compact smooth �ber bundle

over V such that the �ber F of E is connected. Suppose that the �ber bundle E is

oriented and that the �ber F has dimension 4 and has nonzero signature. Then the

followings hold:

N(E) � N(V ) + 8; Ns(E) � 8 : (6)

In particular, if V is oriented, then

N(CP 2 � V ) = N(CP 2) +N(V ) = N(V ) + 8; Ns(CP
2 � V ) = Ns(CP

2) = 8 : (7)

In fact, the assumption before (7) that V is oriented can be removed by the following

Theorem 1.2. Let V be a connected compact manifold which can admit a real analytic

Riemannian metric of nonpositive curvature and E be a compact smooth �ber bundle

over V such that the �ber F of E is connected. Suppose that the �ber F has dimension

4 and is not cobordant mod 2 to either 0 or RP 4. Then both (6) and (7) hold.

Remark 1.1. The assumption that F is oriented and has nonzero signature in Theo-

rem 1.1 is independent of that F is not cobordant mod 2 to either 0 or RP 4 in Theorem

1.2. For two examples: the oriented 4-manifold CP 2]CP 2 has signature 2 and is cobor-

dant mod 2 to 0, RP 2 �RP 2 is an oriented 4-manifold having zero signature and is

not cobordant to either 0 or RP 4.

By Remark 1.4 in [17] the connectedness of F is necessary for the validity of The-

orems 1.1, 1.2.

D. Burghelea and R. Schultz [1] showed that Ns(M) = 0 if there exist �1; � � � ; �n
in H1(M ;R) with �1 [ � � ��n 6= 0. In Theorem 1.2 of [17] Burghelea-Schultz's result

was generalized to the following

Fact C LetM be an n-dimensional compact connected smooth manifold. If there exist

�1; � � � ; �k in H1(M ;R) with �1 [ � � � [ �k 6= 0, then the followings hold:

N(M) � (n� k + 1)(n� k)=2 + k ;

Ns(M)

�
� (n� k + 1)(n � k)=2 if n� k > 1

= 0 otherwise :

Further assuming b1(M) > k, we obtain the following
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Theorem 1.3. Let Let M be an n-dimensional compact connected smooth manifold

and k � 3 be a positive integer. If the �rst Betti number b1(M) of M is greater than k

and there exist �1; � � � ; �k in H1(M ;R) with �1 [ � � � [ �k 6= 0 in Hk(M ;R), then

N(M) �

�
(n� k + 1)(n � k)=2 + k � 2 if n � k + 3

n if n = k + 2 :
(8)

Remark 1.2. Let T n be the n-dimensional torus. Since N(T n) = n, in case that the

dimension n ofM equals k or k+1, we can not improve the estimate of Fact C by adding

the assumption b1(M) > k. Because only under the conditions b1(M) � 1; 2; 3 (ii),

(iii) of Theorem 1.2 in [17] give the similar sharp estimates of N(M) as (8) respectively,

we assume k � 3 here.

Remark 1.3. By the de�nition of degree of symmetry, it is easy to see that for a

product manifold M1 �M2, where Mi is a compact connected smooth manifold, the

following holds:

N(M1 �M2) � N(M1) +N(M2) : (9)

Let �g be the oriented closed surface of genus g and Mn = Sn�k � T k�2 � �g (n �

k + 3; g � 2). Then Mn satis�es the assumption of Theorem 1.3. Since by Fact N

N(T k�2 � �g) = k � 2, by (9) and Theorem 1.3 we obtain the equality

N(Sn�k � T k�2 � �g) = (n� k + 1)(n� k)=2 + k � 2 ;

combining which with the equality N(T k+2) = k + 2, we show that the estimate (8) is

best possible.

This paper is organized as follows. In Section 2, we prepare for the following

sections. In particular, we cite some results in [17] and prove a key lemma (cf Lemma

2.2) for the proofs of Theorems 1.1, 1.2. In Section 3, we prove Theorem 1.1 (1.2) with

the help of this key lemma and the oriented (unoriented) cobordism theory. In Section

4, we prove Theorem 1.3 by virtue of the unique continuation property of harmonic

maps.

2 Preliminaries

For a compact Riemannian manifoldM let I0(M) be the identity component of the

isometry group of M . The following proposition will provide the frame for the proof

of Theorems 1.1, 1.2.
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Proposition 2.1. (cf [16] Theorem 4 ) Suppose that M; N are compact real analytic

Riemannian manifolds and N has nonpositive curvatures. Suppose that h :M ! N is

a surjective harmonic map and its induced map h� : �1(M)! �1(N) is also surjective.

Then the space of surjective harmonic maps homotopic to h is represented by f�Æhj� 2

I0(N)g, where I0(N) is a torus group of dimension = rank of the center of �1(N) =

the degree of symmetry of V .

We cite a topological result from [17].

Proposition 2.2. (cf [17] Proposition 3.1) Let p0 : E ! B be a �ber bundle over a

compact connected smooth manifold B such that the �ber of E is also connected. Then

any continuous map homotopic to p0 : E ! B is surjective.

We cite a lemma in [17], which is also necessary for Theorems 1.1, 1.2.

Lemma 2.1. (cf [17] Lemma 2.1) Let Mm be a connected Riemannian manifold and

f a smooth map from it to a smooth manifold Nn. Suppose y 2 N is a regular point

of f and F is a connected component of the submanifold f�1(y). If an isometry � of

M satis�es that h Æ � = h and that

�(x) = x for any x 2 F;

then � is the identity map of M .

Lemma 2.2. (Key lemma of Theorems 1.1, 1.2) Let Y be a compact connected smooth

4-manifold not di�eomorphic to either S4 or RP 4. Then N(Y ) � 8. The equality

N(Y ) = 8 holds if and only if Y is di�eomorphic to CP 2. Moreover, Ns(CP 2) = 8.

Proof. By (1) N(Y ) � 9. Then N(Y ) � 8 follows from Theorem A0 in Ishihara

[8] which claims that there exists no 4-dimensional Riemannian manifold having a 9-

dimensional isometry group. If Y is a Riemannian manifold whose isometry group has

dimension 8, then by Theorem 5 in Ishihara [8] Y is a K�ahlerian space with positive

constant holomorphic sectional curvatures. Since the holomorphic section curvature

of a K�ahler manifold determines completely its Riemannian curvature tensor (cf [18]

Lemma 7.19.), Y has positive sectional curvature and then by the theorem of Synge (cf

[2] Theorem 5.9.) Y is simply connected. By the theorem of Cartan-Ambrose-Hicks (cf

[2] Theorem 1.36.), Y is isometric to the K�ahler manifold CP 2 with the Fubini-Study

metric. Since the compact Lie group SU(3) acting isometrically on CP 2 is semi-simple,

Ns(CP 2) = N(CP 2) = 8. q.e.d.

We do some preparations for the proof of Theorem 1.3 in the following.

For a compact oriented Riemannian manifold M with nonzero �rst Betti number

b1(M), let H be the real vector space of all harmonic 1-forms on M and � the natural
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projecion from the universal covering ~M of M . For x0 2 ~M , set p0 = �(x0). We de�ne

a smooth map ~a : ~M ! H� from ~M to the dual space H� of H by a line integral

~a(x)(!) =

Z x

x0

��!:

For � 2 �1(M)

~a(�x) = ~a(x) +  (�)

holds, where  (�)(!) =
R �x0

x0
��!, so that  is a homomorphism from �1(M) into H�

as an additive group. It is a fact that � =  (�1(M)) is a lattice in the vector space

H�, and clearly this vector space has a natural Euclidean metric from the global inner

prduct of forms on M . With the quotient metric, we call the torus A(M) = H�=� the

Albanese torus of Riemannian manifold M . By the above relation between ~a and  ,

we obtain a map a : M ! A(M) satisfying ~a(x) 2 a Æ �(x) for any x 2 ~M . We call

the map a the Albanese map. From the very construction of a, we see that the map it

induces on fundamental groups

a� : �1(M)! �1(A(M))

is surjective and that a� maps the space of harmonic 1-forms on A(M) isomorphically

onto H. By Corollary 1 in [14], the Albanese map is harmonic. Set

ra := maxfrank da(p)jp 2Mg :

Lemma 2.3. (cf [17] Lemma 4.3) Let M be an n-dimensional oriented compact Rie-

mannian manifold with nonzero �rst Betti number b1. Let a : M ! A(M) be the

Albanese map. Suppose there exist �1; � � �; �k in H1(M ;R) with �1 [ � � � [ �k 6= 0 in

Hk(M ;R). Then ra � k holds.

Lemma 2.4. (cf [17] Lemmas 4.1, 4.2) Let M be a non-orientable compact manifold

and � :M 0 !M be its orientable double covering. Then the followings hold :

(i) N(M) � N(M 0)

(ii) b1(M) � b1(M 0)

(iii) If M has the property that there exist k one dimensional real cohomology classes

�1; � � � ; �k of M such that �1 [ � � � [ �k is nonzero in Hk(M ;R), then so does M 0.

3 Proof of Theorems 1.1, 1.2

Proof of Theorem 1.1 For the proof of (6), by Corollary A.1 we have only to

show that for any real analytic Riemannian metric on E and any compact semi-simple
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subgroup G of I0(E), the inequalities hold:

dim I0(E) � N(V ) + 8; dimG � 8 : (10)

Since the �ber F is connected, the �ber bundle projection p : E ! V induces a

surjective map p� : �1(E) ! �1(V ). Using a well known result by Eells-Sampson [5],

we see that there exist harmonic maps homotopic to p : E ! V . By Proposition

2.2, each of them is surjective and then satis�es the assumptions of Proposition 2.1.

Taking a harmonic map h : E ! V homotopic to p : E ! V , by Proposition 2.1, for

any � 2 I0(E) we can �nd a unique �(�) 2 I0(V ) with h Æ � = �(�) Æ h. We see that

� : I0(E) ! I0(V ) is a Lie group homomorphism. Since G is contained in Ker �, the

proof of (10) is completed if we can show that Ker �, which acts isometrically on E,

has dimension � 8.

Since the critical value set of h is compact and has Lebesgue measure zero in V ,

there exists an open set U of V such that any point in U is a regular value of h.

Choosing a smooth homotopy P : E � [0; 1] ! V between p and h, and taking a

regular value y of P from U , we have the following

Claim 1 P�1(y) is a oriented submanifold in E� [0; 1] with boundary p�1(y)+h�1(y).

That is, there exists an oriented cobordism in E for the submanifolds F and h�1(y).

Proof of Claim 1 Since y is the regular value of P and P�1(y) is non-empty, it is easy

to see that P�1(y) is a submanifold of E � [0; 1] with boundary

@P�1(y) \ E � 0 + @P�1(y) \ E � 1 = p�1(y) + h�1(y) �= F + h�1(y):

Let ~F = h�1(y) and � : ~F ! E be the embedding of ~F in E. Since E is oriented and

TEj ~F = T ~F � h�(TyV ) = T ~F � a trivial vector bundle ;

we have the following relation of �rst Stiefel-Whitney classes:

w1(T ~F ) = w1(TEj ~F ) = ��w1(TE) = 0 :

That is, the �ber ~F can be induced a natural orientation in E by h. Similarly, we

can show that both F and P�1(y) have their natural orientations in E and E � [0; 1]

respectively.

By Hirzebruch's signature theorem (cf [7] Theorem 8.2.2) and Claim 1, up to the

di�erence of "� " the signature of ~F equals that of F so that there exists a connected

component F � of ~F having nonzero signature. Hence F � is not di�eomorphic to either

S4 or RP 4. Since by Lemma 2.1 Ker � acts e�ectively on F �, Lemma 2.2 tells us that
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Ker � has dimension � 8. We complete the proof of (6). Since CP 2 has signature 1,

(7) follows from (6) and (9). q.e.d.

Proof of Theorem 1.2 Repeating the part of the proof of Theorem 1.1 before

Claim 1, we can see that P�1(y) is a submanifold of E� [0; 1] with boundary p�1(y)+

h�1(y). That is, h�1(y) is cobordant mod 2 to F . Since F is not cobordant mod 2 to

either 0 or RP 4, there exists a connected component F � of h�1(y) such that F � is not

di�eomorphic to either S4 or RP 4. Since Ker � acts e�ectively on F �, by Lemma 2.2

Ker � has dimension � 8. Therefore the inequalities in (6) hold. To show (7), we only

need to show CP 2 is not cobordant mod 2 to zero or RP 4, which follows from that

w2
2[RP

4] = 0 and w2
2[CP

2] 6= 0. q.e.d.

4 Proof of Theorem 1.3

Proof of Theorem 1.3 By Lemma 2.4, we may assume M is an oriented Rieman-

nian manifold. Let a : M ! a(M) be the Albanese map and b1 the �rst Betti numer

of M . By Corollary A.1 we have only to consider the analytic Riemannian metric on

M . For any  2 I0(M), a Æ  is also a harmonic map from M to the Albanese torus

A(M) and homotopic to a. By Lemma 3 in [14] there is a unique translation �() of

the torus A(M) such that

a Æ  = �() Æ a :

Then we have a Lie group homomorphism � : I0(M)! T b1, where the torus group T b1

is the translation group of the Albanese torus A(M). By the proof of Lemma 2.3 in

[17], we have

dim Ker � �
1

2
(n � ra + 1)(n � ra); dim Im � � ra: (11)

We see from Lemma 2.3 that ra � k. If ra � k + 1, then from (11)

dim I(M) = dim Ker � + dim Im � �
1

2
(n� k � 1)(n� k) + k + 1:

Suppose ra = k in what follows. We claim that dim Im � will be less than k � 1 so

that by (11)

dim I0(M) �
1

2
(n� k + 1)(n � k) + k � 2:

Otherwise, suppose dim Im � � k � 1. By the de�nition of �, the Lie group Im �

acting on A(M) in fact acts on the image a(M) of a. Hence we can assume that there
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exists a subgroup T k�1 of the translation group T b1 which acts freely and isometrically

on a(M).

Since both M and A(M) are real analytic, a theorem of Morrey [13] shows that the

harmonic mapping a is in fact real analytic. By well-known theorems in real analytic

geometry [12] we know that both M and A(M) can be triangulated so that a(M) is a

k-dimensional compact connected simplicial subcomplex of A(M). We write the orbit

space of the free and isometric T k�1 actions on A(M) and a(M) by A(M)=T k�1 and

a(M)=T k�1 respectively, in which the former is in fact also a at torus of dimension

b1 � k + 1. Since the natural projection map � : A(M) ! A(M)=T k�1 is totally

geodesic, we see that by a result in [4] the composition map � Æ a :M ! A(M)=T k�1

is a harmonic map, whose image is a(M)=T k�1, the orbit space of the free T k�1 action

on the k-dimensional simplicial subcomplex a(M) of A(M). Hence a(M)=T k�1, the

image of � Æ a in A(M)=T k�1 has dimensional 1 so that the di�erential of harmonic

map � Æ a has rank � 1 at any point of M . By the unique continuation property of

harmonic maps (cf [15] Theorem 3 ), we see that � Æ a maps M onto a closed geodesic

of A(M)=T k�1, which means that a(M) is a principal T k�1-bundle over S1. Since S1 is

connected, there exists a section on this bundle so that a(M) is a trivial T k�1-bundle,

i.e. a k-dimensional torus. This contradicts the surjectivity of the homomorphism

a� : �1(M) ! �1(A(M)) �= Zb1 (b1 > k). Hence we obtain dim I0(M) is not greater

than the maximum of (n� k � 1)(n � k)=2 + k + 1 and (n� k)(n� k + 1)=2 + k � 2.

q.e.d.

Appendix

A Real Analytic Group Action

In this appendix, we will prove the following theorem.

Theorem A.1. Let G be a compact Lie group acting smoothly and e�ectively on a

compact smooth manifold M . Then there exists a real analytic manifold M 0 on which

G acts real analytically such that there exists a G-isomorphism between (M;G) and

(M 0; G). That is, there is a di�eomorphism f :M !M 0 which satis�es for any x 2M

and g 2 G

f(gx) = gf(x) :

We put the proof of Theorem A.1 afterward. Firstly, from it we have the following

Corollary A.1. The degree of symmetry of M equals the maximum of the dimensions

of the isometry groups of all the real analytic Riemannian metrics on M .
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Proof. Let G be a compact Lie group acting smoothly and e�ectively on a compact

smooth manifoldM . By Theorem A.1 there exists another real analytical G action on

the unique real analytic structure of M compatible to the existed smooth structure o

M . Moreover, the new G action is equivariant to the old one on the smooth structure

of M . Thus the new one is also e�ective. Taking a real analytic Riemannian metric

on M , by the invariant integration on G we can construct a new real analytic one on

which G acts isometrically. q.e.d.

Corollary A.2. Any element g of a compact subgroup G in the di�eomorphism group

Di� (M) of a compact smooth manifold M is real analytic with respect to the unique

real analytic structure of M compatible to the existed smooth structure on M .

Proof. Since G is a compact subgroup of Di� (M), G has a Lie group structure. That

is, G is a compact Lie group acting smoothly and e�ectively on M . The statement

follows from the proof of Corollary A.1.

Let f : M ! N be a smooth map between smooth manifolds M and N . It is

transverse to a submanifold A � N if and only if whenever f(x) = y 2 A, then the

tangent space to N at y is spanned by the tangent space to A at y and the image of

the tangent space to M at x. That is,

TyA+ df(TxM) = TyN:

Lemma A.1. (cf Theorem 1.3.3. in [6]) Let f :M ! N be a smooth map and A � N

a submanifold of codimension l. If f is transverse to A, then f�1(A) is a submanifold

of M of codimension l.

Lemma A.2. (cf Theorem 4.12. in [9]) Let G be a compact Lie group andM a compact

manifold on which G acts smoothly. Then there exists a representation space (V; �) of

G and a smooth G-embedding � :M ! V . That is, for any x 2M and g 2 G,

�(gx) = �(g)�(x) :

Moreover, if the G-action on M is e�ective, then the representation (V; �) of G is

faithful.

Let G be a compact group acting smoothly on two manifoldsM and N . A smooth

map f : M ! N is a G-map if and only if for any x 2 M and g 2 G the following

holds:

gf(x)) = f(gx) :
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Lemma A.3. (An equivariant version of Theorem 2.5.2. in [6]) Let G be a compact

Lie group acting isometrically on Euclidean spaces Rq and Rs. Let M � Rq be a

G-invariant compact submanifold of codimension > 0 and E a G-invariant tubular

neighborhood of M in Rq. Let f : E !W be a smooth G-map into a G-invariant open

set W of Rs. Let v : Rq ! R be a smooth G-invariant function with support in E,

equal to 1 on a G-invariant compact neighborhood K of M . Set h(x) = v(x)f(x) =

v(x)(f1(x); � � � ; fs(x)). Let Æ : Rq ! R; Æ(x) = exp (�jxj2). Let C = 1=
R
Rq Æ. Let

� > 0. Then for k > 0 suÆciently large,

 (x) = ( 1(x); � � � ;  s(x)) := (h1(x); � � � ; hs(x)) � (Ck
qÆ(kx))

is an analytic G-map and satis�es jj � f jjC1;K < �.

Proof. The proof of the analytic property of  and the estimate jj � f jjC1;K < � for

k > 0 large enough is straightforward. We have only to show that h � Æ is G-invariant.

Since v(gx) = v(x), h = vf : E ! Rs is G-map. For any g 2 G, since g acts on Rq

isometrically and Æ is a radial function on Rq,

(h � Æ)(gx) =

Z
Rq

h(y)Æ(gx� y) dy =

Z
Rq

h(gz)Æ(g(x� z)) dz

=

Z
Rq

h(gz)Æ(x� z) dz = g

�Z
Rq

h(z)Æ(x� z) dz

�

= g
�
h � Æ(x)

�
:

q.e.d.

Proof of Theorem A.1 By Lemma A.2, there exists a faithful representation

space V of G and a G-embedding � :M ! Rq. By the invariant integration on G, we

can induce a G-invariant inner product ( ; ) on V , equipped with which V becomes a

Euclidean space Rq and G becomes a subgroup of O (q). Let k be the codimension of

M in Rq. Since M is a G-invariant submanifold, by Theorem 4.8 in [9] there exists a

G-invariant normal tubular neighborhood E of M , which can be identi�ed with a G-

invariant neighborhood of the zero section of the normal bundle of M . Let p : E !M

be the restriction of the bundle projection, which is a G-map.

Let Gq;k be the Grassmann manifold of k-dimensional linear subspaces of Rq and

Eq;k ! Gq;k be the Grassmann bundle, the �ber of Eq;k over the k-plane P � Rq is

the set of pairs (P; x) where x 2 P . Then the G-action on Rq induces the natural

real analytic actions on Gq;k and Eq;k respectively such that the bundle projection

Eq;k ! Gq;k is a G-map. Let h :M ! Gq;k be the map sending x 2 M to the k-plane

normal to M at x and f : E ! Eq;k be the natural map covering h; thus

f(y) = (h Æ p(y); y) 2 Eq;k � Gq;k �Rq :
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Since G acts isometrically on M , as a linear map on Rq dg = g maps the k-plane

normal to M at x to the one normal to M at gx. Therefore both h and f are G-maps.

Moreover, f is transverse to the zero section Gq;k � Eq;k and

f�1(Gq;k) =M :

Now we embed Eq;k analytically in Rs with s = q2 + q. For this it suÆces to

embed Gq;k in Rq2. This is done by mapping a k-plane P 2 Gq;k to the linear map

Rq ! Rq given by the orthogonal projection on P . There exists a natural isometric

G-action on Rs such that the embedding Eq;k � Rs is a G-map. Then we can �nd a

G-invariant normal tubular neighborhood W of Eq;k. Let � : W ! Eq;k be the real

analytic G-invariant projection.

Let f 0 : E ! W be the extension of the map f : E ! Eq;k to W . It follows from

Lemma A.3 that f 0 can be approximated near M by an analytic G-map  : E ! W .

Then � = � Æ  is an analytic G-invariant approximation of f : E ! Eq;k. Put

M 0 = ��1(Gq;k). If � is suÆciently C1 close to f , then � is also transverse to Gq;k and

the restriction of G-map p : E !M to M 0 is a G-isomorphism from M to M 0. q.e.d.

References

[1] D. Burghelea and R. Schultz, On the semisimple degree of symmetry, Bull.

Soc. Math. France 103 (1975), 433-440.

[2] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry,

North-Holland, Amsterdam, 1975.

[3] P. Conner and F. Raymond, Actions of Compact Lie Groups on Aspherical

Manifolds, Topology of Manifold, Markham, (1970), 227-264.

[4] J. Eells and L. Lemaire, Two Reports on Harmonic Maps, World Scienti�c

Publishing, (1995), 29-30.

[5] J. Eells Jr and J. H. Sampson,Harmonic Mappings of RiemannianManifolds,

Amer. J. Math., 86 (1964), 109-160.

[6] M. Hirsch, Di�erential Topology, Springer-Verlag, 1976.

[7] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Springer-

Verlag, 1966.

[8] S. Ishihara, Homogeneous Riemannian Spaces of Four Dimensions, J. Math.

Soc. Japan, 7 (1955), 345-370.

12



[9] K. Kawakubo, The Theory of Transformation Groups, Oxford University Press,

1991.

[10] H. T. Ku and L. N. Mann and J. L. Sicks and J. C. Su, Degree of

Symmetry of a Product Manifold, Trans. Amer. Math. Soc., 146 (1969), 133-149.

[11] H. B. Lawson and S-T. Yau, Compact Manifolds with Nonpositive Curvature,

J. Di�erential Geo., 7 (1972), 211-228.

[12] S. Lojasiewicz, Triangulaitons of Semianalytic Sets, Ann. Scuola Norm. Sup.

di Pisa., 18 (1964), 449-474.

[13] C. B. Morrey. On the Analyticity of the Solutions of Analytic Non-linear Ellip-

tic Systems of Partial Di�erential Equations, Amer. J. Math., 80 (1958), 198-234.

[14] T. Nagano and B. Smyth, Minimal Varieties and Harmonic Maps in Tori,

Comment. Math. Helv., 50 (1975), 249-265.

[15] J. H. Sampson, Some Properties and Applications of Harmonic Mappings, Ann.

Sci. �Ecole Norm. Sup. (4), 11 (1978), no. 2, 211-228.

[16] R. Schoen and S-T. Yau, Compact Group Actions and the Topology of Man-

ifolds with Nonpositive Curvature, Topology., 18 (1979), 361-380.

[17] B. Xu, The Degree of Symmetry of Certain Compact Smooth Manifolds, J. Math.

Soc. Japan, 55, vol 3, 2003.

[18] F. Zheng, Complex Di�erential Geometry, Studies in Advanced Mathematics,

18, American Mathematical Society, International Press, 2000.

XU Bin

Graduate School of Mathematical Sciences

The University of Tokyo

3-8-1 Komaba, Menguro-ku

Tokyo 153-8914

Japan

E-mail: xubin@ms.u-tokyo.ac.jp

13



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2003–19 Oleg Yu. Imanuvilov and Masahiro Yamamoto: Carleman estimate for a sta-
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