UTMS 200326 May 27, 2003

The a-number stratification
on the moduli space

of supersingular abelian varieties
by

Shushi HARASHITA

it

UNIVERSITY OF TOKYO
GRADUATE SCHOOL OF MATHEMATICAL SCIENCES
KOMABA, TOKYO, JAPAN




The a-number Stratification on the Moduli Space
of Supersingular Abelian Varieties

Shushi Harashita
Graduate School of Mathematical Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, JAPAN.

harasita@ms.u-tokyo.ac. jp

Abstract

We study the moduli space S, (a) of principally polarized supersingular abelian varieties
of dimension g with a-number a. We determine the dimension of each irreducible component
of S4(a) and the number of irreducible components.
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1 Introduction

Let Sy be the moduli space of principally polarized supersingular abelian varieties over fields
of characteristic p > 0. Recall the structure of S, was investigated by K.-Z. Li and F. Oort
in [2] rather comprehensively, improving the former results. Among others, the dimension and
the number of irreducible components of S, over the algebraically closed field Fp of prime field
[F, were calculated. Also we note that by a completely different method F. Oort had more
enhanced results in [6] on the loci defined by Newton Polygon. The moduli space S, has various
stratifications: for example, the Ekedahl-Oort stratification Sy, N S, (see [5]) with elementary
series ¢, the stratification Sy(a) by a-number defined below and the stratification S, by index
introduced by K.-Z. Li ([1, p.337], also see Definition 4.4). As a matter of fact, the a-number
stratification is essentially a special case of the Ekedahl-Oort stratification, i.e., the Zariski
closure of Sy(a) is the Zariski closure of S; N S, with ¢ = (1,2,---,g—a,---,9—a).

The main subject in this paper is to investigate the a-number stratification on S,. In the
calculation of the number of irreducible components of S;(a), we also use the stratification by
index. There we shall show that different irreducible components of Sy(a) have generic elements
with different indices.

Given an abelian variety X over a perfect field K, we define an absolute invariant a(X) of
X, called a-number by

a(X) = dimg Hom(ay,, X),

where «, is the kernel of the Frobenius map F' : G, — G,. The a-number stratum Sy(a) is
defined as a locally closed subscheme of S; which has closed points

Sg(a)(K) = {(X,n) € Sy(K) | a(X) = a}



for any perfect field K.
The main results proved in this paper are:

0. For the Zariski closure Sg(a) of Sy(a), we have Si(a) = U Sy(a’) and Sg(a) is connected

a’>a

unless a = g;

1. The dimension of any irreducible component of S,(a) is equal to

g>—a?+1
4

2. The number of irreducible components of S, (a) is equal to

((g(f ; E){)Q/Q) Hy(1,p) for g even and a odd,
((9 —1)/2
(9 —a)/2

g/2—1> ( g/2—1 )
H,(p, 1)+ H,(1,p for g, a even,
(7 ) Hotr 0+ (2 1)t
—1)/2—-1 —-1)/2—-1
(902 Y (9]
(\g—a-1)/2 (g—a—1)/2-1
where Hy(p,1) and Hy(1,p) are the class numbers of quaternion unitary groups (see [2,
4.6] and also Theorem 4.15). Here we remark that if you consider the moduli space
Sg(a) as a stack or the moduli space with level n structure (n > 3), the number of
irreducible components is also computed by the similar formula obtained by replacing
the class numbers by masses of the same quaternion unitary groups, which are explicitly
calculated by mass formula.

)Hg(p, 1) for g, a odd,

)Hg(p, 1) for g odd and a even,

This is a generalization of results in [2] that Sg(2) is a divisor of S (see [2, Cor. 10.3]),
S¢(g — 1) has dimension [g/2], the number of irreducible components of Sg(g — 1) is given by
the class number Hy(1,p) ([2, Prop. 9.11]), and the number of irreducible components of S§(2)
equals Hy(p, 1) + Hy4(1,p) ([2, 9.9]).

Let us explain the outline of this paper. We start with some preliminaries on supersingular
abelian varieties and Dieudonné modules in Section 2. The following Section 3 is crucial to
describe each irreducible component of Sy(a). After reviewing the theory of K.-Z. Li and F.
Oort ([2, Section 7]), we introduce a new ingredient, i.e., “good basis” for each principally
quasi-polarized supersingular Dieudonné module. Then we obtain a beautiful symmetry among
coefficients which determine the actions of Frobenius and Verschiebung on such bases. These
coefficients make up a parameter space which is called “period space” in this paper. Then the
dimension of Sy(a) is immediately calculated. Moreover we can look into the configulation of
a-number stratification.

The calculation of the number of irreducible components of Sy(a) is a more difficult problem.
Section 4 is devoted to this. Although each subscheme of the moduli space of rigid PFTQs
definded in Section 3 gives an irreducible component of the moduli space of principally quasi-
polarized supersingular Dieudonné modules, it is necessary to show that different subschemes
give different irreducible components. For this, we will make use of another invariant - Li’s
index, which can be calculated for generic elements of each virtual irreducible component.



2 Preliminaries

2.1 Dieudonné modules of supersingular abelian varieties

We fix a rational prime p and for all throughout this paper. Let K be a perfect field of charac-
teristic p. We set

Ag = W(K)[F,V]/(FV =p,VF —p,Fa—a®F,Va—a® V,Ya € W(K)).
Here o is the Frobenius map on K. We denote by A the p-adic completion of Ag.

Definition 2.1. A Dieudonné module is a left A-module M finitely generated as W (K )-module.
If M is free as W (K )-module, we call M free. Two free Dieudonné module M and N are said
to be isogenous if there is an A-homomorphism from M to N with torsion cokernel. We define
a-number of M as

a(M) = dimg M/(F, VM.

A free Dieudonné module M is called supersingular (resp. superspecial) if M is isogenous (resp.
isomorphic) to A?fl} for some g. Here Ay := A/(F — V) and g is called the genus of M.

Definition 2.2. (1) Assume g > 2. A superspecial abelian variety over K is an abelian variety
Y over K such that there is an isomorphism between Y and EY over algebraically closed
field K with supersingular elliptic curve E. This definition does not depend on choices of
E by Deligne, Ogus and Shioda (see [2, 1.6] for a stronger result).

(2) An abelian variety X over K is said to be supersingular if and only if there exists an
isogeny from FY9 to X over algebraically closed field K.

By Dieudonné functor D, we have a supersingular Dieudonné module M := D(X) of genus
g associated with X. Then a(X) = a(M) holds ([2, 5.2]).

A. Ogus proved the following important theorem, which he called supersingular Torelli’s
theorem ([3, Theorem 6.2]).

Theorem 2.3. Let Sy(K) be the category of supersingular abelian varieties over K. Assume
g > 2. The functor (D, tr) gives a bijection between the set of isomorphism classes of Sq(K) and

29 ~
the set of supersingular Dieudonné modules M of genus g with trace map tr : AM — W(K).
Besides, for two objects X,Y of S4(K'), we have an isomorphism

Hom(X,Y) ®z Z, ~ Homa(D(Y), D(X)).
The next lemma will be frequently used.

Lemma 2.4 (Lemma 3.1 in [1]). For a supersingular Dieudonné module M, there are the
smallest superspecial Dieudonné module S°(M) in M @ fracW (K) containing M, and dually
the biggest superspecial Dieudonné module So(M) contained in M.

If X has a polarization 1 : X — X! we get the non-degenerate W (K)-bilinear alternative
form

(,): M ewr)y M — fracW(K),

which satisfies (Fz,y) = (z, Vy)?. We call such an alternating form a quasi-polarization of M.
If n is principal, then ( , ) is a perfect pairing.



2.2 Polarized flag type quotient (PFTQ) and covering of moduli spaces

Recall the definition of rigid PFTQs in [2, 3.6, 6.2].

Definition 2.5. A rigid PFTQ of Dieudonné modules is a filtration {Mo C My C --- C Mg_1}
of quasi-polarized Dieudonné modules satisfying

(i) My—1 is a quasi-polarized superspecial Dieudonné module such that A ;_1 ~ Fg_lMg_l;
(ii) (F,V)M; C M;_; and the rank of K-vector space M;_1/M; isi for all 0 < i < g —1;

(iii) (F,V)'M; C M* = M} for 0 <i < g — 1;
(iv) M;= Mo+ FI~'"7"M,_; for 0<i<g—1.
The last condition is called the rigidity.
For convenience, we choose a supersingular elliptic curve E over F), (see [2, 1.2] for existence
of such an E). Let n be a polarization of E9 ®p, K such that ker(n) = E9[F9~'| @, K. Let S

be an Fj-scheme.

Definition 2.6. A rigid PFTQ of dimension g over S with respect to 7 is a series of polarized
abelian varieties (Y;,7;) and isogenies

Pg—1 Pg—2
yg_lg_>yg_29_>...ﬁ>y1£>y0

such that
(i) Yyo1 = B9 x S and ng—1 =1 x S;
(ii) ker(p;) is an a-group of a-rank i for all i =1,2,--- g — 1;
(iii) ker(m;) C ker(F" 7 oVJ) for all j =1,2,---,[i/2];
(iv) ker(Yy—1 — Y;) = ker(Yy—1 — Yp) N Y,—1[F9717] for all i.

Let N be the moduli space of rigid PFTQs of Dieudonné modules, and Py, be the moduli
of the rigid PFTQs of dimension g with respect to 7. We know that N, and Pém are isomorphic
up to inseparable morphism.

Theorem 2.7 (Section 4 of [2]). Let A be the set of isomorphism classes of polarizations n
on E9 satisfying ker(n) = EI[F971]. There is a canonical morphism
v HP&M — S5g X Fp,
neA

which is a quasi-finite surjective morphism. Moreover Pém 18 nonsingular and geometically
integral of dimension [92/4] and the generic fiber over each irreducible component of Sy has
a-number 1.

Let NVy(a) be the subscheme of N, which parametrizes rigid PFTQs {M, C --- C My}
with a(Mop) = a, also P, , (a) be the associated subscheme of Py . Then we have a quasi-finite
surjective morphism

U, : [[P)(a) — Sy(a) x Fp.
neA

Therefore as far as the dimension of S, (a) is concerned, it suffices to investigate the space Ny(a).
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3 The dimension of S,(a) and good local coordinates

3.1 Open covering of N,(a)

The first part of the argument in this section is almost the same as the contents of Section 7 in
the book [2]. However for our purpose, basis of different type in M,_; are crucial in this paper.
Therefore we need to rewrite the setting of construction of moduli space of rigid PFTQs.
Given a reduced k-scheme S, let Wg := W (Og) be the sheaf of Witt rings [7].
Let N be a superspecial Dieudonné module with quasi-polarization of genus g satisfying
Nt = F97IN. Note that such a quasi-polarized superspecial Dieudonné module is uniquely
determined up to isomorphism ([2, Prop. 6.1]).

Definition 3.1. A rigid PFTQ over S is a filtration {Mo C M; C --- C My_1} of Dieudonné
modules over S such that

(i) Mg—l =N® Ws;

(ii) FMi(p) C M;_q, VMi(p_l) C M;_1 and M;/M;_1 is a locally free Og-module of rank i for
0<i<g—1;

(iii) PV IMP) c M= Mifor0<i<g—1and0<j<[i/2;
(iv) M; = Mo+ FI717 M, 1 for 0 <i < g—1;.
Let ® be the set of H-basis © = {xg, -+, 2,1} of the skelton
N={zeN|(F-V)z=0}
such that for all 7 and j,
(@i, FI24_1_j) = 0i;¢
and
(i, F97 ;) = 0.

Here ¢ is a Teichmiiller lifting in W(IF,2) satisfying ¢ = —¢” and §;; is the Kronecker’s delta.
We note that the way to choose bases of M,_; here is different from that in [2, Section 7].
We denote by ® the set of representatives of ® modulo p. Then we see §® < co.

Definition 3.2. For given © = {zg, 1, -,24-1}, We denote by U® the open subscheme of
Ny consisting of rigid PFTQs {My C --- C M,_1} with basis © of M,_; such that My has a
basis of following type:

w; = E OéijFZ.Z‘j
J=i

with o;; € A and oy; = 1.



Then we get an open covering [[ U® — N.
Ocd

Let US be the category of {M} C --- C Mg _3; My, C -+ C My_1} with several properties
see [2, 7.6] for the precise definition). Here M| is supposed to have a basis
0

g—2
w; = Za;szxj (a; € A, = 1) (1)
j=i
fori=1,---,g— 2 as in Definition 3.2. Let t,, be the truncation morphism from U2—1 to Ug.

We calculate the local chart of N inductively by
NgDUQZU()@HUf)—w--HUg@_I C Ny—o.
Here U | is the open subscheme U®" of N,_o for basis @ = {Fx1,---, Fr, o}.
K.-Z. Li and F. Oort proved ([2, 7.11]):
Lemma 3.3. Fiz v, be an element of M, with xg-coefficient 1. Let us write

g—1
U = X + E GiT;

=1

and

(F'—=V)vy mod Azg_q — Z Ajw) = Z i F9 "

Jj<g—-m jzg—m

Then the set of the K-valued points of the fiber of t,, of {M} C --- C Mé_3;Mm C - C
M,_1} € US(K) is bijective to the set of

g—1
V= Uy + Z ﬁng_m_lxj € M,
Jj=g—m

modulo F97™My_1 (i.e. it is determined by BJ) satisfying

2 —
B =B =y ;T T
form>2and j < g—1 and a equation in 3,_, coming from the condition
g—1
(0, pm=22Fy)y c W(K)  for even m
(0, pm=32F2y) ¢ W(K)  for odd m > 3.

Moreover, every equation gives Artin-Schreier extension.

From now, we start some new materials in this paper.

Lemma 3.4. Let My C --- C My be a rigid PFTQ over a perfect field K. We have equalities
as sets:

MZﬂA<.Z‘Z',.TZ'+1,"',.I‘g_1 >:W(K)[F] < Wiy =+ vy Wg—1 >
:A<’LUZ',"',’LU9_1>.



Proof. The first equality implies the second one, because the first term is an A-module. Since
M= MyNF ng_l, the first term contains the middle term obviously. We shall prove the first
term is contained in the middle term by induction. For ¢ = g — 1, this is obvious. Assume that it
holds for i+1. Put M (i) = A < &, i1, -+, Tg—1 >. Since M'NM (i)/MTNM (i) = K < w; >,
we get

M N M(i) = W(K) < w; > +MT 0 M(i).

Take an element v of M*NM (7). Then v = aw;+m with a € W(K) and m € M***NM(i). There
is b € W(K)F such that m = bw;+m’ with m’ € M NM (i+1). By the hypothesis of induction,
we have m’ € W (K)[F] < wit1,- -, wg—1 >, which implies v € W (K)[F] < w;, - -+ ,wg—1 >. O

Let us write
g—1j—1
k
wi= Yy B Frey 2)
j=i k=i
and define 7;; € A by

(F' = V)w; = Tijip1Wig1 + -+ + Tig—1Wg—1.

By Lemma 3.4, we may assume 7;; € W (K)[F].
Recall that a principally quasi-polarized supersingular Dieudonné module M does not
uniquely determine {w;} nor therefore {ﬁfjk)} In fact, Lemma 3.3 says only that the class

Bf)’? are inductively determined. We have to note that the equations and their solutions at each
step depend on choices of liftings of already known data Bﬁf) (¢ > 1). The next aim is to find
good liftings of Bff) and therefore good basis {w;} of M.

Lemma 3.5. For given a principally quasi-polarized supersingular Dieudonné module M, we
can take a basis wo, - - ,wg—1 as (2) such that we have

<wi, F’LUg_l_j> = (Sz'jE, <wi, ’LUj> =0.
for all i and j.

Proof. We prove this by induction on g. Assume w; (i = 1,-- -, g—2) satisfy (w}, Fuw! ) = 0

g—1—j
(w, Fw’g_l_j> = d;je. Then as w;, we can take an element of the form:

g—2
k
wi=wi+ Y ﬁig)_lF g
k=i
fori=1,2,---,g9— 2. By the hypothesis of induction, it follows that
(wi, Fwg—1-5) = dije,  (wi,wg—1-5) =0
for 1 <i,j < g—2. Since wy_1 = F97 1z, 1, we get

<wi, F’LUg_1> = 040€¢, <wi, ’LUg_1> =0.



Now we have to find appropriate ﬁ(()lfj) and 657};)_1. Assume we have already determined ﬁ(()lg)
for all k' < k. Since B(()kj) is nothing but 3; for m = g —k —1 in Lemma 3.3, we take a Teichmiiler
lifting ﬁ(()lfj) of solution Bj for £ < g — 2. Next for k < g — 2, we choose liftings ﬁi(f;)_l of BEZ)_I
which are automatically determined by the already known coefficient ﬁg?). Finally we determine
ﬁég__f_)jg_l so that

(wo, Fwg—1—j) = 0pje (wo, wg—1—5) =0 (3)

for all 7. Since the equation in ng__f_)

j.g—1> Which is equivalent to the equation:

(wo, wg—1-5) =0
in p~'W/W, has a solution for each 1 < j < g — 1, there exists a lifting ﬁég__12_)j,g_1 satisfying
the equations (3). O

From now on, we assume that a basis {wp, -, wg—1} of M satisfies Lemma 3.5. By the
lemma above, it follows that 7;; € W(K), since ((F — V)w;, wy—1—;) = 0 for all 7 and j. Here
we note that (w;, Vwg_1_j) = ;€.

Lemma 3.6. The following symmetry holds:
Tij = Tg—1—j,g—1-i-
Proof. Tt follows from the straightforward calculation:
ETij = <(F — V)wi, ng_l_j>
= —<V’LUZ‘, ng_l_j>
= (Fwg_1-j, Vw)
= ((F = V)wg—1-j, Vw;)
= ((F = V)wg-1-j, Fw;)
= ETg—1—j,g—1—i
forall 1 <4¢,5<g-—1. O
Put T = (?ij)ogi,jgg—l with Tij = 0 (Z > j)
Lemma 3.7. We have a(My) = a if and only if tkT = g — a.
Proof. 1t follows from

W(K)[F] < wg,- - ,wg—1 >
(F,VW(K)[F] < wp,---,wg—1 >
B W(K)[F] < wg,- - ,wg—1 >
- W(K)[F] < Fwg, -+, Fwg_1, (F —V)wg, -+, (F = V)wg_1 >

Mo/ (F, V)Mo =

W(K) < wo, - ,wg_1 >
W(K) < pwg, - y PWg—1, {ZTZJwJ} >
7>t
~ cokerT.



3.2 Investigation of “period domains”

In this subsection, we investigate the variety V, which the matrix 7' = (7;;) belongs to. We
may call this “period domain”:

V,(K) = (M € n(K) | "(Mw) = Muw)

with w = (d;,9-1—5)i;- Here n(K) is the set of strict uppertriangular g x g matrices with
K-coefficients. We also define the subvariety V,, of V, by

VoK) ={M € n(K) | "(Mw) = Mw, tk M = g — a}.

By Lemma 3.6 and 3.7, the matrix 7" is in Vg 4(K). Therefore we have a natural morphism
U®(a) — V.4, which is étale by Lemma 3.3. Now we can show:

Proposition 3.8. The morphism U®(a) — V,, is étale and surjective.

Proof. 1t suffices to show the surjectivity of the morphism U® — V,. For T = (7;;) € V,, we
introduce a number by
T) := i i | Tor = 0 f k>7j}.
m(T) OSIjnSI!IJI_l{] | To.k or any k> j}
Then we prove our Proposition by double induction on g and m(7T). The initial step m(T) =0

of the inner induction is shown by the following.
Claim 1. The locus

{T/:(?;j)evg|?6,i:07 ?;79_1:0(i:0,'-',g—1)}

is contained in the image of U® — Vy.

Proof of Claim 1. Deleting the top and the bottom rows and the first and the last columns from
T', we obtain T] ; € V4_o. By the hypothesis of induction on g, for T} ; = (Ti;)1<i j<g—2, there
is a rigid PFTQ {Mj C --- C M,_5} such that M is a Dieudonné module of genus g — 2 with

basis wi, - -+, wy_, of the form (1) satisfying

(F = V)w; = Tj Wiy + -+ 7T g gwg o (i=1,-,9-2).
Here M;_3 is the superspecial Dieudonné module generated by Fx1,---, Fx,_o. By the natural
inclusion from M;_3 to Mg_—1 = A <xo,x1,- - ,Lg—2,Lg—1 >, we regard w) as an element, say

w;, of My_q1. Let us put wg = xg and wy_1 = Fg_lxg_l. Then the Deudonné module Mg
generated by wo, - -+, wg—1 is sent to 7”. This completes the proof of Claim 1.

Now we may assume that our Proposition is true for 7' such that m(T) = m — 1. It suffices
to show the next claim under this assumption:
Claim 2. Given T with m(T) = m, there exists a rigid PFTQ {My C --- C M,_1} in U® which
is sent to 7.
Proof of Claim 2. For T satisfying m(T') = m, we define an auxiliary 7" = (7;;) from T = (7;;)
by 7;; = 7;j for (i,7) # (0,m), (m,0) and 7g,,, = 7,9 = 0. Then we have m(T') = m — 1. By
the hypothesis of induction on m(7T’), there is a rigid PTFQ {My C --- C My_1} in U® which is
sent to T". Namely there is a good basis wy, - - -, wy_; of My satisfying

!/ / /
(F = V)w; = T Wit1 + -+ T g_1Wg—1



foralli=0,---,9— 1.

Applying Lemma 3.3 for w(, as vg—m,, we can construct a principally quasi-polarized super-
special Dieudonné module with basis wo, - - -, wg—1 such that (F —V)w; = Tjip1Wis1 + -+ -+
Ti,g—1Wg—1, which is mapped to the original T'. O

From now on, we investigate the structure of V.. Let M = (ai;)o<i j<g—1 be an element of
Vgﬁa(K). If we write M = (Aij)lgisjgtﬂ, it means the unique block expression

0 A Az - Apn
0 0 Az - Ayn
M=1: S : (4)
0 0 0 - App
0 O o --- 0

where

* *
Apit1 = <a' ; ) (5)
UksJk

with element a;, ;, of K*. Since above t is determined by M, we denote it by t5;. Obviously
ty <g—a.
For each M = (4;j), in {0,1,---,9—1} x{0,1,---, g — 1} we associate the subset

. * *
iy, #0in Agppr = < i, g ¥ ) }
ksJk

Proposition 3.9. Let r = g — a. FEvery irreducible component of V4 ,_, is of either of the
following types:

*

Sm = {(ik,jk)

(i) For odd g +r, the Zariski closure V ,_, (i1, i) in Vg of

Vog—rlin, i) :={M € Vggr | Snr = {(ik,jx) [ k=1,---,r}} (6)
with ji, =i, + 1. Here Vg g (i1, ,4,) is defined for each sequence 0 < iy <ig < - <
ir < g — 1 satisfying the condition ix + ir41-xk =9 — 2 forany k=1,--- 7.

(ii) For even g and even r,

(a) Vg g_r(i1, - ,ir) defined in the same way as (i), or

(b) the Zariski closure Vg (i1, ,ir—1) in Vg4 of

vg,g—r(ila T 7ir—1) = {M S Vg,g_f,« | SM = {(Zkvjk) | k= 17 e, T — 1}} (7)

with jrp =i+ 1. Here 0 < i1 <o < -+ <ip_1 < g—1 is any sequence satisfying the
condition iy + i, = g — 2 (note i,p =g/2 —1).

(iii) For odd g and odd r,
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(a) the Zariski closure Vg ;. (i1, ,ir) in Vg of the set Vg p(iv, - ,ir):
{MeVygr | Su={(kjr) | E=1,---,7}} (8)

with jp =ik + 1 for k # (r+1)/2 and jrix = irp1 +2. Here 0 <47 < ipg < -+ <
2 2
ir < g— 1 is any sequence satisfying ix + ir41-kx = g — 2 (Vk # (r + 1)/2) with
itrg1)/2 = (9 —3)/2, or
(b) the Zariski closure Vg (i1, ,ir—1) in Vg4 of
vg,g—r(ila o 7ir—1) = {M € vg,g—'r | SM = {(Zkvjk) | k= 17 e, T — 1}} (9)

with jr = ix +1. Here 0 < iy <9 < - < ip_1 < g—1 (r > 3) is any sequence
satisfying ig + i = g — 2 with i(._1y/2 = (9 — 3)/2 and i(41)2 = (g — 1)/2.

Before the proof, we give some examples of elements M of
vg,g—r(ila e 7ir) or vg,g—r(ila e 7ir—1)
to help the understanding of the reader:

Example 3.10.

(i) g=6,r=3;i1 = 0,15 = 2,i3 =4, (ii-b) g = 6,7 = 4541 = 0,49 = 2,i3 = 4,
0 ao1 ap2 ap3  aps  aps 0 ao1 ap2 ap3 aops aops
0 0 0 ais a%3/a23 ap4 0 0 0 a1z ai4 Aap4
0 0 0 a3 a3 ap3 0 0 0 ao3 aiz aes3
0 0 0 0 0 ap2 0 0 0 0 0 ap2
0 0 0 0 0 apl 0 0 0 0 0 apl
0 O 0 0 0 0 0 O 0 0 0 0
(ifi-a) g = 5,7 = 341 = 0,40 = 1,43 = 3, (ifi-b) g = 5,7 = 3;41 = 1,42 = 2,
0 aor aop2 ap3 ap4 0 0 ap2 ap3 aos
0 0 0 a3 aps 0 0 a2 a1z aos
0 0 0 0 ap2 0 O 0 aio2 ap2
0 O 0 0 ao1 0 0 O 0 0
0 O 0 0 0 0 0 O 0 0
with Q5 € K.
Proof. First we show that every variety Vi  _ (i1, - i) (1 = 7 or r — 1) defined above is

irreducible. Obviously it suffices to show the following.

Claim 1. Vg4, (i1,- -+ ,1,) is irreducible.

Proof of Claim 1. This can be shown by induction on r. For r = 0, V, , consists of one point 0.
For r = 1, we investigate Vg 4_1(i1) with i1 = [(¢ —2)/2]. Let ji be iy + 1 for even g and

i1+ 2 for odd g. Any element (a;;)o<i j<g—1 of Vg g—1(i1) is written as

aij = bibg—l—j/bil for ¢ S ’il and j Z j1

11



for some by, - - -, b;, € K with b;, # 0 and
aij =0 for other 1, j.
Hence we have
Vg.g-1(i1) ~ Gy, ¥ Alo/A-1

which is irreducible.
For r = 2, there are two cases:

(1) Vg,g—2(i1,i2) with iy +1i3 = g — 2 (the cases (i) and (ii-a) in Proposition 3.9) or
(2) Vgg—2(i1) with iy = (g —2)/2 (the case (ii-b) in Proposition 3.9).

Since the irreducibility in the case (2) will be shown simultaneously in the argument for general
r below, we restrict ourselves to the case (1). Any element (a;j)o<ij<g—1 Of Vg g—2(i1,i2) is
written as

aij = bibj—l/bil for 7 < 31 and j1 < j < j2,
aijj = bibj_1/bi; +bg—1—jbg_1—_i—1/b;; for i < iy and j > jo,
aij = bg—l—jbg—l—i—l/bil for 11 <1 <19 and j > jg

with j; = 41 + 1 and jp = i3 + 1 for some by, - - - ,by_o € K with b;; # 0 and
a;; =0 for other 4, j.
Hence we have
vg7g_2(i1, ’ig) ~ G, X Ag_2,
which is irreducible.
Let us show the irreduciblity for general r. For any element M of Vg 4_,(i1,- -, i), there
is a unique pair (N, N') such that
M =N+ N’
with
N e vg7g_2(i1, ’ir/) for ’I”/ 75 1,
and N’ has zero (i1, *), (*, 1), (i,7,*) and (*, j,») entries for x = 0,1,---, g — 1. Then N’ can
be regarded as an element of
vg—Qag—T(iQ =1,y — 1) for 7 # 1,
Vgi,g-r(i1 —1) for v’ = 1.
The fact that we have a unique decomposition M = N + N’ implies that
. . Vg_g’g_f,«(ig -1, i1 — 1) x ng_g(il, i) for ' #1,
vg,g—"“(zlv t 7ZT/) = . . /
Vg_l,g_f,«(zl — 1) X vg7g_1(21) for ' = 1.
By the hypothesis of induction, Vg_o g_r(i2 — 1, -+ ,4w_1 — 1) for v’ # 1 and Vy_1 4r(i1 — 1)
for " =1 are irreducible. Also Vg 4_9(i1,4,/) for 7" # 1 and Vg 4_1(i1) for 7/ =1 is irreducible.

Hence Vgﬁg_f,«(il, -+ i) is irreducible. Claim 1 is proved.
The next lemma completes the proof of our proposition. ]

(10)
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Lemma 3.11. For every N € V,, there exists a sequence of elements

NO (51 € K), N®_ (s1€ KX, s5€ K), --, N7 (s1,+8m1 € KX, 5 € K)

51,52 “Sm

in Vg satisfying specialization conditions

1 1 2 2 3 -1
N = N(g )’ NS(1) = NS(17)0’ NS(17)52 = NS(17)5270’ B Ns(lnv"'vs)m—l = NS(T')”,Sm—hO
and NS(T.)..’SM € Vyg—rlit, -+ ,iy) or Vggr(it, -+ ,ir—1) for all s1, -, s, € K*. In short,
Ns(ln) Sy ,Nsll) 18 a sequence of specializations to N.

Proof. Let N be an element of V, ,_, with block expression (A;;) as in (4) with
* *
Ak,k+1 = < ) (alk,mk 7&07 k:17277t]\7)
Ay, *

For N, we associate an element pn of Z>g X Z>q defined by

MNZ(tN, ka—lk—1>-

k

We define an order on Zx>q X Z>¢. For two elements p; = (t1,d;) and po = (t2, dz) in Z>g X Z>q,
we denote by w1 < p when t; < to, or t1 = to,dy > da.
We have the following equivalences

pun = (r,0) & N € Vg (i, - i)
for odd g + r,

N = (Ta 0) & Ne vg,g—fr(ila T air)a
UN = (T - 17 0) & Ne vg,g—fr(ila T air—l)

for even g, r and

un = (r, 1) & NeVgg (i, i),
pun =(r—1,0)and (A) & N e Vggr(it, - ,ir-1)
for odd g, r. Here (A) is the condition
(A): N does not have generalization Ny with py, = (r, 1) for all s € K*.

Hence it suffices to show the following.
Claim 2. For given N € V,,_,, we can construct a generalization N, such that uy, > un
(s € K*) unless

un = (r,0) for odd g + 7,
un = (r,0) or (r—1,0) for even g,r,
un = (r,1) or (r—1,0) for odd g,r.

Proof of Claim 2. We will show this by induction on r. Since N has to be 0 for r = 0, there is
nothing to prove in this case. Let us take N € V, with rank r > 0.

13



For ty # 1 and my — 1y — 1 > 1, let Ng be the matrix obtained by adding the column vector
HaomySs -+ a1ym, 8,0, -+, 0)

to (I3 + 1)-th column vector and by adding further the row vector
(07 s, 0’ all,m187 s, aoymls)

to (g9 — 1 — l1)-th row vector. Then it follows that Ny, € V,, for all s € K. Since Ny satisfies
mp —1l; —1=0 for all s € K*, we have uy, > un-.

Forty =1and m; — 13 —1 > 1 for even g or my — 1 — 1 > 2 for odd g, we construct
a generalization Ng which has l; = g/2—1,m; = g/2 foreven gor [y = (g —1)/2 —1,m; =
(g +1)/2 for odd g for s € K*. Indeed we define N, by adding s to (g/2 — 1, g/2)-th resp.
((g—1)/2—1,(9+ 1)/2)-th entry and by adding

t(b087 o 76118707 U 70)
to g/2-th resp. (g — 1)/2-th column vector and by adding
(07 70761187"' 7b08)

to (g/2 — 1)-th resp. (g — 3)/2-th row vector where b; (j =0,---,[;) are uniquely determined
by the equations b, b; = ajm, (j =0,---,l1). Then since N, (s € K*) have the desired /; and
my, it follows that uy, > uy for all s € K*.
The remaining problem is to show this Claim 2 for N with
m;—11—1=0 fority #1orforty =1 and odd g, (11)
my—11—1=1 forty =1 and even g.

In general, for given N we have a decomposition
N=N; +N' (12)
such that N7 has

Sny = {(li,m1), (g—1—m1,g—1-1h)}

and N7 is of rank 2 for ¢ty # 1 or of rank 1 for ty = 1 and N’ has zero [;-th and (g — 1 — I1)-th
row vectors and zero mi-th and (¢ — 1 — my)-th column vectors. We note that such Ny and
therefore N’ are uniquely determined. Then the rank of N’ is equal to r —2 for ty # 1 or r — 1
for tny = 1. We can regard N’ as a (¢ — 2) x (g — 2)-matrix resp. (¢ — 1) x (¢ — 1)-matrix by
deleting the I;-th and the (¢ — 1 — I;)-th row vectors and the m;-th and the (¢ — 1 — my)-th
column vectors.

When ty = 1, tyv = 1 and m; — I3 — 1 = 1 (this is a special case of the latter case of
(11)), we can construct a further generalization. Let N = Ny + N’ and N’ = N{ + N” be the
decompositions as in (12) for N and N’ respectively. By a similar method as above, for the
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matrix Ny := Nj + N{ of rank 2, we can construct a genelarization with the same rank 2 of the
form

0 tln tgn * *
0o * *
. t1o to2 \
0 tio toy -+ ton with rk( t1 ti ) =2, (13)
0 ti1 tiz -+ tin
0 O 0 0 0

where t17 is the ((¢g—1)/2—1, (¢g+1)/2)-th entry for even g. Hence we may assume Na := N+ N|
has such a form. Then we have a generalization Nj s of Ny defined by

0 sz, tin to, x* *
0 : * *
0 sxo tig tog -+ top
0 s t11 tig -+ tin
0 O S Sxy --- Sx,
0 O 0 0 0 0

where x5 is a solution of t1123 — 2t19w9 + toe = 0 and x; = (t1o — t1122) " (ta; — t1;20) for all
i=2,---,n. Let us put Ny = No s+ N”, then it follows that pn, = (2,0) > pn = (1,1) for
se K*.

Lastly we have to settle the other case of (11). This is included in the following case.

(B): the three conditions t;y = 1, ty» = 1 and my — I3 — 1 = 1 do not occur simultaneously.

We utilize the unique decomposition N = N7 + N’ obtained in (12) again. By the hypothesis of
induction, we may assume that

N/ c vg_2ag—7'(z:/17 e 7,6:;”) (T” =r—2orr-— 3) fOI' tN # 17 (14)
Vo-1,g-r(t7, -+, 10m) (r"=r—1orr—2) forty=1.
Indeed, otherwise taking a generalization N, which gives an element of V,_g 4 (¢}, -+, i) or

Vg-t1,g—r(i],--- i) for each s € K*, we define a generalization Ny of N by N, := N; + N|.
Then it follows that uy, > un (s € K*).

The conditions (11), (14) and (B) imply that N is in Vg g (i1, - ,%) (' =7 or r —1).
This completes the proof of our Claim 2, therefore Lemma 3.11, and Proposition 3.9. O

Corollary 3.12. Let us denote by Jy . the set of irreducible components of Vg 4. Then we have

—2)/2
<( (g )/ ) if g is even and a is odd,
g

—a—1)/2
g b
( l9/2] ) otherwise.
(g —a)/2]
Proof. (i) For even g and odd a, the number of J, , is the number of choices of i, ,i(_1)/
in {07"'7(9_2)/2_1}‘
For odd g and odd a, the number of J, , is the number of choices of i1, - - -, i, /2 in {0, -+, (g—

1)/2 —1}.
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(ii) For even g and even a, the number of J, , is the sum of the number of choices of i1, - - - , 7,/
in {0,---,(g—2)/2— 1} and the number of choices of i1, - ,i(_9)/2 in {0,---, (g —2)/2 —1}.
(iii) For odd g and even a, the number of J, , is the number of choices of iy, - - ,i(_1)/2 in
{0,---,(¢g—1)/2 —1}. O

Corollary 3.13. Let Vi , be the Zariski closure of Vg4 in Vg. Then we have
v;,a = a/gav%a/.

Moreover V¢

g.a s connected.

C

Proof. The connectivity of Vi , follows from the fact that any component of Vg ,

contains the locus consisting of 7' = (a;;) with a;; =0 unless i =0,j =g — 1.
For the first statement, it suffices to show that Vg 441 is in Vg ,.

obviously

For any element N of V.41, there is a generalization N, (s € K) such that N = Ny and
Ny eVga(ih, - ,il,) (" =g—a—1or g—a—2)for s #0, by the proof of Proposition 3.9.

7«.//
Hence we may assume N is in Vgqq1(é),---,i,) (" =g—a—1or g —a—2). Let us
construct a generalization of such an element N to a certain line in Vg ,.
Case 1. When " = g —a — 1: Let i be an integer such that 0 < i < g — 2 and @ # i},

(k=1,---,7"). We define a generalization of Ny (s € K) by N 4+ M, where M, = (ax;) with
agl = S0ik0g—1—i]-

Then N, is in V,, for s # 0.

Case 1. When r” = g —a — 2: Let us denote by v; the i-th row vector in N. Since the rank
of N is g — a — 1, the row vectors in N are generated by Vi, Uy, and another vector. Then
N can be written as N = N; + N> such that any row vector in ]\?1 is a linear combination of
Vig,s e vy, and Ny has zero i} -th row vectors and zero j;-th vectors for all 0 < k <" (j;. are

determined by ¢}, as in Proposition 3.9). Then Ny is a matrix of rank 1 of the form (ax;) with
ap = brbg—1-1/b; fork<iandl>g—1—1
for some by, - - -, b; € K with b; # 0 and
ag =0 for other k, 1,

for a certain integer i # 4, - ,4,. In particular Na can be regarded as an element of Vg ,_.
We define a generalization Na s = (cx) (s € K) of Ny by

Chg—2—i = bps (0 < VEk < i), Ciy10=bg—11s (9—1—-i<VI<g—1)

and cy; = ay; for other k,l. Note Ny are of rank 2 for all s # 0. Then Ny = N1 + Na, is a
desired genelarization. O

Proposition 3.14. Any irreducible component of V4, has dimension

92—a2—|—1
1 .
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Proof. As Proposition 3.9, we set r = g—a. It suffices to show that all V4 (i1, -+ ,4,) (r' =7 or
r—1) in Proposition 3.9 have the same dimension [(g? — a® + 1)/4]. We prove this by induction
onr=g-—a.

In the first part of the proof of Proposition 3.9, we have already shown that

Vg.g-1(11) ~ Gy, X Alg/21-1
with i, = [(g —2)/2] and
Vgg—2(i1,12) =~ Gy, x A2

for all i1 4+ 7o = g — 2. Hence the dimension formulas in these cases follow immediately.
In general cases, by the equation (10), we have

dimV, o 9(i1,%) +dimVy_o4(i0 —1,--- ,4v_1 —1) for 7' #1,
dimvg,a(ih"',’iw):{ 9,9 2(i1, i) g 2,0,(2 r—1 ) =+

dim vg7g_1(i1) + dim vg_l’a(il — 1) for ' =1.
The straightforward calculations:

[92—(9—2)2—1—1]+[(g—2)2—a2—|—1] _ [92—(12—1—1]

4 4 4
and
[92—(9—1)2+1] N [(9—1)2—a2+1] _ [92—a2+1]
4 4 4 ’
show this proposition. O

3.3 Conclusions of this section

Let A, be the coarse moduli space over Z of principally polarized abelian varieties. By the fact
that the set of supersingular points is closed in A, ®IF), giving the reduced structure to the locus,
we have the closed subscheme Sy in A, ® F,,. We denote by Sg(a) the locally closed subscheme
in Sy parametrizing principally polarized supersingular abelian varieties with a-number a.

Theorem 3.15.  (0) Let S{(a) be the Zariski closure of Sy(a) in Sy. Then we have

c o /
Sg(a) = a/gaSg(a ).
Moreover S¢(a) is connected unless a = g.

(1) Evey irreducible component of Sy(a) has dimension [%]
Proof. All of the statements except the connectivity have already been proved by Corollary 3.13
and Proposition 3.14.

The connectivity of Sg(a) follows from [5, Theorem 1.1] and Corollary 3.13. In fact, any
irreducible component of the locus L in [5] can be interpreted as the locus with 7' = (75;)
(1ij # 0 only for ¢ = 0,j = g — 1) in the moduli space N, of rigid PFTQs for a certain basis
(1, ,24-1) € ®. The one-dimensional locus consisting of such 7" is obviously contained in the
Zariski closure of Vg q(i1, - i) (' =7 or r—1) in V, for any a(# g). Conversely, any irre-
ducible component of S¢(a) contains an irreducible component of L by the above interpretation.
Hence the connectivity of L ([5, Theorem 1.1]) implies the connectivity of Sg(a). O
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4 The number of irreducible components of S,(a)

4.1 Reformulation of the problem

Let Dgy(a) be the moduli space of principally quasi-polarized supersingular Dieudonné modules
with a-number a. Let I, , be the set of irreducible components of Dg(a). It has already been
known that #1,1 = I, 4,1 =1 and 142 =2 ([2, 9.9]).

If we denote by Dgy(a, z) the irreducible component of D,(a) corresponding to x € I, 4, we
have the decomposition with irreducible components of Dg(a):

Dg(a) = U Dy(a,z).
z€el, g,a

Lemma 4.1. Let x be an element of 1,,. Then there exists an open subscheme U of Dgy(a,x)

such that there is a quasi-polarized superspecial Dieudonné module N such that we have an
isomorphism as quasi-polarized Dieudonné modules between N and S°(M) for any M € U,

The proof of this lemma will be given after Corollary 4.14 with explicit formula of V.

There is a natural quasi-finite surjection f : Sq(a) — Dgy(a). We shall investigate the
irreducible components in Sy(a,z) := f~1Dy(a, z) for each z. This is done by investigation of
polarizations on superspecial abelian varieties, which is a global problem.

Definition 4.2. Let x be an element of I, , and N the quasi-polarized superspecial Dieudonné
module given in the above lemma. We denote by A, the finite set consisting of polarizations 7
on EY such that kern is a p-group satisfying

D(kern) ~ N/N*.
Then we have:

Proposition 4.3. The cardinal number of irreducible components of Sg(a) is equal to

> A,

IEIg,a

Proof. Let x be an element of I,, and W be one of irreducible components of Sg(a) mapped
to = by the natural map from S,(a) to D,(a). Then there is an irreducible component W of
73;777(@) for some 7 such that there is a quasi-finite surjective morphism from W to W. Recall
we have a purely inseparable morphism from P, , (a) to Ny(a). Let W’ be the corresponding
irreducible component of Ny(a).

We will show there are A, irreducible components in Sy(a) for each « € I, 4. First we show
the next claim.
Claim. For x € I;,, let N be the quasi-polarized superspecial Dieudonné module given in
Lemma 4.1. Then we can find an embedding ¢ from N to M,_; as quasi-polarized Dieudonné
modules such that for any generic element My C --- C M,_y in W', we have S%(My) = +(N) C
M,_1. Here S°(Mjy) is the smallest superspecial Dieudonné module in My_; containing M.
Proof of Claim. Recall there are only finite number of quasi-polarized Dieudonné submodule
N’ of My_; which is isomorphic to N. Indeed since N and M,_; are superspecial, giving an
embedding from N to My is equivalent to giving an embedding from the skelton N to the
skelton Mg 1- The inclusion F9~ lMg 1C N c Mg 1 implies there are only finite possibilities.
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Note M, g—1/F 9=1)0f g—1 is a finite set. Hence by the irreduciblity of W’ and uniqueness of S°(Mp),
there exists a dense open subscheme U of W’ such that any point {My C --- C My_1} of U have
the same S°(Mj) in M,_;.

By this Claim, for given polarization 7’ in A, we have an irreducible subscheme W” in N, (a)
generically consisting of rigid PFTQs My C --- C M,_ satisfying S°(My) = «(N) C M,_; for
fixed «(NN) and also the associated subscheme W” of Py, (a) where 7 is the pull back of 7 by
the isogeny from EY to EY corresponding with the embedding from N to M,;_;. We note that
we can take the same submodule N of M,_; for all n’ € A,, since the way to embed principally
quasi-polarized supersingular Dieudonné modules to rigid PFTQs does not depend on choices
of " € A,. Recall that W” generically consists of isogenies of polarized supersingular abelian
varieties

(E9,n) — (Yy—2,n9-2) — --- — (Yo,m0)

which factors as (Yy—1,m) — (E9,1') — (Yo,m0) and the isogenies (E9,n') — (Yo,7n0) are the
minimal isogenies defined in [2, Lemma 1.8]. Then the image of W” in S,(a) gives an irre-
ducible component of S;(a). By the uniqueness of minimal isogeny ([2, Lemma 1.8]), another
polarization in A, gives a different irreducible component. U

The aim of the rest of this section is to relate I, , with a set of Li’s indices and to show that
#A, equals a certain class number of the quaternion unitary group over Q with similitude:

G ={g9€GLy(B) | g'5 = Myg)lg A(g) € Q}

with B = End(E) ® Q(~ Qxp)-

4.2 Investigation of index

We can determine the set I, , by using index introduced by K.-Z. Li ([1, p. 337]). The purpose
of this subsection is to show Theorem 4.13. First let us recall the definition of index.

Definition 4.4. (1) A sequence of integers s = (s1,- -, Sg—1) is called an index if 0 < s <
<< 8g-1 < g, and s < sgy1 unless sg1q = 0.

(2) For two indices s = (s) and ¢t = (tx), the notation s < ¢t means that s, < ¢ for all k.

(3) Let s = (s1,---,89—1) be an index. We say that a supersingular Dieudonné module M
has indez s if we have

dimg Vi(M) = sg
forall k=1,2,---,9—1 with

M + F9~1=kS0(Ar)
Ve(M) = == Fo-kSO(M)

(4) We denote by Sy s the locally closed subset consisting of principally polarized supersingular
abelian varieties X whose Dieudonné module D(X') has index s.

Remark 4.5. By Lemma 1.9 in [1], we have Sg =[], Sg.s.
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There are a few elementary results:

Lemma 4.6. Let M be a principally quasi-polarized supersingular Dieudonné module with a-
number a. Then it follows that F9=4SY(M) C M.

Proof. If M is not superspecial, we know that a(M) < a((F,V)M). Therefore (F,V)9~*M
is superspecial. Since M C F~97%(F,V)9=%M, we have S°(M) C F~9t%(F,V)9=*M by the
minimality of S°(M). Hence the inclusion F9=¢S°(M) C (F,V)9=*M C M holds. O

Corollary 4.7. We have s1 > 0 if and only if a(M) = 1. And if s1 > 0, then s1 = 1.

Proof. By definition, we have V; (M) # 0 if and only if F9=28°(M) ¢ M, which is equivalent to
a(M) =1 by the above lemma. The second statement follows from the definition of index. [

The next lemma is the first step of the proof for Therem 4.13.

Lemma 4.8. Let M be a principally quasi-polarized supersingular Dieudonné module with basis
wo, - ,wg—1 and T = (155) a lifting of the associated element of V4 as in the previous section.
By using the g X g-matriz

n

Ln—i—l(T) = Z Z (_1)n—l—p0 <n ) TO.QP()—TLTO.Qpl—n—l o 'TO'QPZ_”_Z Fn—l

1=0 {0<po<pi<-<p<n po
with coefficient in W(K)[F|, we have

(F — V)”+1w0 wo
: =Lon(T)| |- (15)
(F = V)" hwg_y Wg—1

Proof. We show this by induction of n. For n =0, we have F' — V =T by definition.
Let P,_;(T,n+ 1) be the F"~! coefficient of (F — V)"*1. By the equation

(F=V)"" = (F-V)(F -V)"

n—1
=(F=V)Y Py y(T,n)F* '
=0
n—1
=N P (T, )7 F" = Py (T, n)” PPy
=0
n—1
=Y (Puc1i(Tn)7 = Puy (T, ) VF" 4 Py (Tyn)7 FP712IT
=0

n

_ n—1 — —

=N (Posi(T,n) T + Pyy (T, 0)° — Poyr (T, n)° )EF"!
=0

with P,(T,n) =0 and P_;(7T,n) = 0, we have

-1

— n—I1
Po(T,n+1) = P y(T,n)" T + Pyy_1(T,n) — Pa_y1(T, )"
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By using this equality and the hypothesis of induction, we get

P (Tn+1) = > (1)t (np—o 1) (lH o | pan
)

0<po<p1<--<pr—1<n—1

R e e

0<po<p1<-<p;<n—1 Jj=0

l
— yn—l—i—po (N —1 20 —n—j
> (-1) ”°< o )HT

0<po<p1<--<p;<n—1 Jj=0

-y (e

0<po<p1<--<pi—1<p;=n

n—l— —1 o2Pi I
X (—1)lpo<;0_1>HT2p]]

1<po<p1i<--<pi<n

+ > (—1)”""’°< )I_IOT" o
J

0<po<p1<--<py<n—1

- ¥ (1”’1’0()HT"

0<po<p1<--<pi<n

Let

n

Ly (T,mA+1) =) > (1)t PO( )HT" N A

I=m | 0<po<p1<--<pi<n

Lemma 4.9. Let M be a principally quasi-polarized supersingular Dieudonné module. Then
V(M) is generated by the classes of the entries of

F_ng—k(Ta g— k)t(w()v o 7wg—1)7 T F_kLg—l(Ta g— k)t(w()v o 7wg—1)'

Proof. By the equality SO(M) = F~9+t1(F, V)9~ M, we see that F9~1=*S0(M) is generated over
W (K)[F] by F9=2=*="(F —V)"w; forany n =0, ---,g— 1 and for any j. Since F9~1=F="(F —
V)"w; is contained in M for n < g — 1 — k, it follows that V}, is generated by the classes of

FYEF - V)9 k- FRF - V)9,
for all 0 < j < g — 1. Lemma 4.8 implies that V}, is generated by the classes of the entries of
F Ly (T) (wo, -+ ,wg—1), -+ F_kLg—l(T)t(wov S Wgo1).
Since the contribution of the terms with 0 <[ < g—k—2in FI~% "2, 1 (T) (wo, -+ ,wy—1):

n

Z Z (—1)"t= Po( )HTU B G

=0 |\ 0<po<p1<-<pi<n

is in M, we have this lemma. U
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From now, we shall treat polynomials in ag’jn (ai;: entries of T and n € Z). Let the degree

of a;’j" be p™ even for n < 0. Such a polynomial in ag’jn (n € Z) is called a semi-polynomial in 7.
The next is a key lemma for the proof of Theorem 4.13 below.
Lemma 4.10. The g x g matrices
F'Ly w(T,g—k), -, F "L, 1(T,g—k)
contain terms which have the lowest degrees at each coefficient of F~t:
U F ),
(~US P U F2,

(VU P U PRy
respectively with
-1

—g+k+1 —g+k+2
Ugepp:=T° """ T """ ...T° T

U, rir '—T”_g+kT”_g+k+1T"_g+k+2 ' -1
g— =

LTT
Uy_y =T 7o Ppo e ety

Proof. The terms are nothing but the terms corresponding to the lowest pg, - - - , p;. The straight-
forward calculation show this lemma. ]

We need two more lemmas.

Lemma 4.11. For a lifting T of an element of Vg g_r(i1,- - i) (" =1 orr—1) in Proposition
3.9, we have

SLir(Tg—k) = S0, = (i Jirg—1-p)ll =1, .7 = (g =1 = k)}
where ji =i+ 1 unless (ii-a) | = (r +1)/2 and j; = 4 + 2 for (iii-a) | = (r+ 1) /2.
Proof. This follows obviously from definition of Vg 4_,(i1,- - - ,4%,) in Proposition 3.9. O

Lemma 4.12. (1) Let l,m,n be positive integers with l,m > n. In the affine space Al the
locus

{(a1,---,a) € Al|rkJ(a1, ceeyaizm) < nj

is a proper closed subset in Al with

(1/1 RS al
o o
ag as
J(alv"'val;m):: .
m—1 m—1
af af
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(2) We have

det J(ay, -, a;l) = (_1)l(l—1)/2 H H (a; + Nix1ai41 + -+ \ay) (16)
1<i<l >\i+17"’ ,)\lEFp

Proof. Obviously (1) follows from (2). The equation (16) is very similar to [1, Lemma 1.4]. It
is clear that each factor of the right hand side devides the left hand side. In order to determine

1—
the sign, it suffices to compare the coefficients of af " of the both sides. By induction, we can
show that the sign is equal to (—1){=1)/2, O

Theorem 4.13. Any generic element M associated with an element of
Vog—r(it, ==, ip) (=7 orr—1)
has index
s:=(0,---,0,i1+ L,ig+ 1, -+ i + 1),
i€, S = ip_(g—1—p) + L with i; = =1 (j <0).

Proof. Let sps be the index of M. By Lemma 4.9 and 4.11, we have sp; < s for any M. Let us
show that sps > s for generic M.
Since g — jg—k = i _(g—1—k) T+ 1, it suffices to show that g — j,—i elements

—1,,. . —1,,.
F ) Wi,y F ;UJg—kH—l
F Wiy g1 """ F Wjg_jt2—1
(17)
—k—1—1' —k—1—1'
F9 wj,, - FY Wy_1

give linearly independent classes of V(M) for generic M.

From now on, we show this by induction of k. For k£ = 1, by Corollary 4.7 we have
dmVi(M) = sg = 1 if a(M) = 1 and dimV3(M) = s; = 0 otherwise, since a(M) = 1 is
equivalent to r = g — 1. If a(M) = 1, then F _lwg_l generates the one dimensional K-vector
space V1(M) (note ' = g—1 and j» =g —1).

Let the first entry of F~"1L, (T, g — k)!(wo, - - ,wy—1) be

Oy Wiy T Qg 4 1Wj, 4157 5 QY g—1Wg—1.

We denote by &y, the w,,-coefficient of the above element modulo M + F' g_kSO(M ). By the
hypothesis of induction, we know that M 4 F9~*SO(A1) is generated by

F—l

: - —1,,.
Wiy g1 3 Wjg_jq2—1

—k—7r’ —k—7r’
F9 wj -, FY w1

for generic M. Hence we can regard @y, as an element of K.
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It suffices to show the matrix @ = (@) has rank g — js—j for generic M. Let ug_p_j41
be the first raw vector of Uy_j_14; modulo (jg_k+l, -++,g— 1)-th entries. Let us consider the
k x (g — jg—k) matrix

—1
ag
ug_/,2€ 02 0 0
o o
Ug_k Ug_k+1 0 st 0
’ ’ ’
o a.g—k—r a.g—k—r a.g—k—r
u= | ug_y / Ug_jorq / Ug_jio / 0 /
a.g—l—k—r a.g—l—k—r a.g—l—k—r a.g—l—k—r
ug—k ug—k—l—l ug—k+2 T U
— —k —k —k
g g g
ug—k ug—k—l—l ug—k+2 T Upr

By Lemma 4.10, each (i, j)-th entry of u is equal, up to sign, to the part with the lowest degree
of the (i, j)-th entry of the matrix @ as the semi-polynomials in 7'. Moreover any minor of u is
up to sign given by the part with the lowest degree of the associated minor of @. Hence we have
only to show that u has rank g — j,—x. Because the fact that a minor of u is not identically zero
implies that the associated minor of @ is not identically zero.

Let ' be the matrix (u;;) which is defined by wj; = wjsk—g+j, ,,j for ji —jg—r +1 < 0,5 <
Ji41=Jg—k (L =g—Fk,--- " with js1 := g) and u}; = 0 for the other i and j. Here we note that
ji1 > 1 for all I. The determinant of «’ is the minor with the lowest degree as a semi-polynomial
in T" among minors of u with size g — j,_x. Since entries of u; are algebraically independent of
each other, for eachl = g—k,---,g—1, the determinant of ' is generically non-zero by Lemma
4.12 (1). Then u and therefore @ have rank g — j,—i generically. O

Corollary 4.14. The number of 1, is
( (9-2)/2
(9—1-a)/2

([(g [g/j)] / 2}) otherwise.

Proof. Corollary 3.12 and Theorem 4.13 imply #1,, = #§Jgq- O

) if g is even and a is odd,

4.3 Main results and their proofs

First we show Lemma 4.1.

Proof of Lemma 4.1. For M € Dy(a) with good basis wy, - - - , wy—1 satisfying Theorem 4.13, let
us put

o -1 -1 —r! —r!

N =W(K)[F] <wq, -, wj—1, F " wj -, F wjy1,--- , F wj -, F wg_y >
_ -1 -1 -7’ -7’
=A<wo, -, wj—1, Fwyy, o F T wgy gy  FTwy e J FT T wg g >

Then N is a quasi-polarized superspecial Dieudonné module, since a(M) = dim N/(F, V)N =
dim N/FN = g and N = S%M) for generic M by the proof of Theorem 4.13. By using
Lemma 3.5, we can determine the quasi-polarization on N. In fact the quasi-polarization on
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N is characterized by N* = F" N unless (iii-a). In the case of (iii-a), we have an orthogonal
decomposition N = Ny & Ny such that Nf = F"' N;,Nt = F"' =Ny and Ny ~ A; ;.

Since such a quasi-polarized superspecial Dieudonné module as N is uniquely determined up
to isomorphism (see [2, Proposition 6.1]), we obtain Lemma 4.1. O

Proposition 4.15. Let x be the element of I, , associated with index (0, ---,0,i1+1,- -+, i +1)
with v = r orr — 1. The sequence (i1, - i) is of either of types listed in Proposition 3.9.
Then §A, is equal to

Hy(p,1) forr' even,
Hy(1,p) forr' odd,

where Hy(p, 1) is the class number of G with genus 1, at prime spot p (principal genus), Hy(1, p)

0 F) and B = A for even

is the class number with genus diag(A,---, A, B) at p with A = (—F 0

g and (p) for odd g (non-principal genus).

Proof. For given n € A, it follows that ker(n) = ker(F"') unless (iii-a) in Proposition 3.9 by
the proof of Lemma 4.1. First let us investigate the cases other than (iii-a). For even r/, by
applying Corollary 4.8 (i) in [2] we see that the number of A, is given by Hy(p,1). When 7’ is
odd, g has to be even by the classification of Proposition 3.9. Then we have degn = p2(ng+g/2)
with ' = 2n + 1. Hence we can apply Corollary 4.8 (ii) in [2] to this case and we obtain
#A, = Hy(1,p).

In the case of (iii-a), we have ker(F") D ker(n) and degn = p"'9~1 = p2(ngt9=[(g+1)/2]) with
r’ = 2n + 1. This follows from the proof of Lemma 4.1. Then Corollary 4.8 (iii) in [2] implies
that §A, is equal to Hy(1,p). O

By putting together Theorem 4.13, Proposition 4.3 and 4.15, we have the final result:

Theorem 4.16. The cardinal number of irreducible components of Sy(a) is equal to

(9—-2)/2
((g —a— 1)/2) Hy(1,p) for g even and a odd,

(EZ } igg) Hy(p. 1) for g, a odd,

(2o (U0t Jmn g

L (EZ : (11)121)_/§> Hy(1,p) + ((g(f ; i){)Q/;i 1) Hy(p,1) for g odd and a even.
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