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BY A SINGLE INCOMING WAVE
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Abstract. We consider a two dimensional inverse scattering problem of de-

termining an obstacle by the far �eld pattern. We establish the uniqueness in

the inverse problem in the sound-soft case within a class of polygonal domains,

by a single incoming plane wave. The key is the analyticity of the solution of

the scattering problem and re
ection of solutions.

1. Introduction

Let D � R2 be a bounded domain and k 2 R. For x 2 R2, we set r = jxj. We

consider a scattering problem with sound-soft obstacle:

(1.1) �u+ k2u = 0 in R2 n cl(D)

(1.2) u = 0 on @D

(1.3) lim
r!1

p
r

�
@

@r
uS(x)� ikuS(x)

�
= 0:

Henceforth cl(D) denotes the closure of a domain D, and we set i =
p�1, d 2

S1 � fx 2 R2 ; jxj = 1g and

uS(x) = u(x)� eikx�d;
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which is called the scattered �eld, while u is called the total �eld. We consider

d 2 S1 and k 2 R respectively as the direction of the incoming plane wave (i.e.,

eikx�d) and the wave number given by the medium in R2 n cl(D).
Condition (1.3) is the Sommerfeld radiation condition. Under suitable conditions

on D, for k 2 R and d 2 S1, there exists a unique H1-solution u(x) = u(D)(x) to

(1.1) - (1.3), and we can de�ne the far �eld pattern u1(D)
�
x
r

�
:

(1.4) uS(D)(x) =
eikrp
r

�
u1(D)

�x
r

�
+ O

�
1

r

��
as r �!1:

The scattering problem is physically important and there are vast references. Here

we refer, for example, to Cakoni, Colton and Monk [2], Colton, Coyle and Monk

[3], Colton and Kress [4], Kirsch [8], Kress and Tran [10], Potthast [15] and the

references therein. In this paper, we mainly consider

Inverse scattering problem: Determine D from the far �eld pattern u1(D)

for given k and d (possibly by changing them).

This inverse problem is also physically signi�cant and has been studied by many

authors. We refer only to Colton and Kress [4], Potthast [15] as books on this topic

and also to Isakov [6], [7].

The �rst basic topic for this inverse problem is the uniqueness: Does

(1.5) u1(D1)(x) = u1(D2)(x); jxj = 1

(for possible several d and k) imply D1 = D2?

There is a classical uniqueness result within smooth D1; D2 if (1.5) holds for an

in�nite number of d 2 S1, which is proved based on Schi�er's idea (see Lax and

Phillips [11]). For the proof, see Theorem 5.1 in Colton and Kress [4] for example.

Also see Kirsch and Kress [9].

For the uniqueness by means of a �nite number of d 2 S1, see Colton and Sleeman

[5], Theorem 5.2 in [4]. Moreover the uniqueness is known with a single d, provided

that D1; D2 are contained in a ball of radius � such that k� < �. See Corollary

5.3 in [4] and [5]. Moreover Rondi [16] proves the uniqueness in determining many

scatterers by a �nite number of incoming plane waves.

An important open problem is the uniqueness in the inverse scattering problem

with a single (d; k). This problem is interesting from the theoretical point of view,
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because the far �eld patterns with many d are overdetermining data for determina-

tion ofD and we can expect the uniqueness with a single far �eld pattern. Moreover

the formulation with a single (d; k) is helpful for justi�cation of numerical recon-

struction of D, because one can usually use far �eld patterns observed by taking a

single or a �nite number of d.

The purpose of this paper is to give a positive answer to the uniqueness within

polygonal (but not necessarily convex) obstacles. For an inverse scattering problem

with polygonal obstacles, we refer to Ari and Firth [1] for example.

This paper is composed of �ve sections:

x1. Introduction
x2. Main result

x3. Key lemmata

x4. Proof of the main result

x5. Concluding remarks.

2. Main result

Let k 2 R and d 2 S1 be arbitrarily �xed. Henceforth, for P;Q 2 R2, we
understand that PQ is an open segment (not including the end points P and Q).

Moreover for a polygonal domain D and P 2 @D, Q 62 cl(D) such that PQ 2
R2 n cl(D), by \(PQ; @D) we denote the least angle among the two angles in

R2n cl(D) formed by PQ and @D. By a polygonal domain D, we mean that @D is

composed of a �nite number of segments.

De�nition 2.1. Let D � R2 be a bounded polygonal domain. Let `-points

P1; ::::; P`, ` � 2, satisfy the following conditions (i) - (iv) (Figure 1):

(i) P1; :::; P` 2 @D.
For 1 � j � `, we set

�j =

8><
>:
the exterior angle of D at Pj; if Pj is a vertex of a polygon D,

�; otherwise:

(ii) PjPj+1 � R2 n cl(D) for 1 � j � `.

(iii) \(Pj�1Pj; @D) = \(PjPj+1; @D), 1 � j � `, if Pj�1Pj does not bisect �j at

Pj.
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(iv) For 1 � j � `, we have

�j

\(Pj�1Pj; @D)
2 Q:

Here we set P0 = P` and P`+1 = P1 and

TR(D : P1; :::; P`) =

8>>>><
>>>>:

a closed broken line P1 ! P2 ! � � � ! P` ! P1

if P1P` does not bisect �1 at P1,

a non-closed broken line P1 ! P2 ! � � � ! P`, otherwise.

We call TR(D : P1; :::; P`) a trapped ray of D with rational angles.

P
j+1

 
P

j−1
 

P
j
 

θ
j
 

∂ D D 

∂ D 

∂ D 

Figure 1

By TR(D), we denote the sum of all the trapped rays of D with rational angles.

If TR(D) 6= ;, then we call D trapping with rational angles.

In other words, if TR(D) = ;, then there are no rays in R2n cl(D) which go out

to 1 after �nite times re
ecting on @D subject to physical law (iii) with stricter

constraint (iv) for angles of incidence. It is easily seen that ifD is a convex polygon,

then TR(D) = ;.

Example 1. Let A1 = (0; 0), A2 = (1; 0), A3 = (1; 1), A4 =
�
2
3 ; 1
�
, A5 =�

2
3 ;

1
2

�
, A6 =

�
1
3 ;

1
2

�
, A7 =

�
1
3 ; 1
�
, A8 = (0; 1), and D1 be the non-convex poly-

gon with the vertices A1; ::::; A8 (Figure 2). Then, for any t 2 �12 ; 1�, the segment�
(s; t); 13 < s < 2

3

	
is a trapped ray of D with rational angle (i.e., �

2 ) and so

TR(D1) =

�
1

3
;
2

3

�
�
�
1

2
; 1

�
:
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Henceforth u 2 H1
loc(R

2 n cl(D)) means that u 2 H1((R2 n cl(D)) \ fjxj < �g)
for any � > 0.

Noting that @D is Lipschitz continuous, we can prove (e.g., McLean [12]) that

there exists a unique solution u(D) 2 H1
loc(R

2 n cl(D)) to (1.1) - (1.3).

We can state our main result:

Theorem 2.2. Let k 2 R and d 2 S1 be arbitrarily �xed and let

(2.1) @D1 \ TR(D2) = ; and @D2 \ TR(D1) = ;:

Then u1(D1)(x) = u1(D2)(x), jxj = 1, implies D1 = D2.

In particular, if TR(D1) = TR(D2) = ;, then u1(D1)(x) = u1(D2)(x), jxj = 1,

implies D1 = D2. As such one case, we can show

Corollary 2.3. Let D1 and D2 be star-shaped polygons. Then u1(D1)(x) =

u1(D2)(x), jxj = 1, implies D1 = D2.

This corollary is seen because if D is a star-shaped domain, then TR(D) = ;
(e.g., Proposition 3.1 (p.157) in [11]).

By the de�nition, the break of condition (2.1) happens rarely. However we do

not know the uniqueness if (2.1) does not hold. In fact, we have the following

trapping D1; D2 where our proof in Section 4 does not work.

Example 2. Let us form D1; D2 as follows.

(1) We take a square A1A2A3A4. For convenience, we set A1 = (0; 0), A2 =

(1; 0), A3 = (1; 1), A4 = (0; 1).
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(2) In the interior of the square A1A2A3A4, we take a regular triangle B1B2B3

(i.e., the lengths of the sides are equal). Here we choose vertices B1, B2, B3 such

that B1 ! B2 ! B3 is counterclockwise and that B1B2 k A1A2.
(3) Take the midpoints P1 and P2 of the sides B1B3 and B2B3 respectively.

(4) Take a point Q1 on the segment B3P2 arbitrarily.

(5) Take two points Q2, Q3 on the side A2A3 such that B3Q3 k A1A2 and

Q1Q2 k A1A2.
(6) By D1 we denote the interior bounded by the closed broken line A1A2Q2Q1B2B1B3Q3A3A4

(which is a non-convex polygon with those vertices). By D2 we denote the interior

bounded by the closed broken line A1A2Q2Q1P2P1B3Q3A3A4 (Figure 3).

Then D1 is trapping with rational angles. In fact, let P3 be the midpoint of the

side B1B2. For D1, we can see that P1P2P3 satis�es conditions (i) - (iv), and we

have TR(D1) \ @D2 � P1P2 6= ;, that is, condition (2.1) does not hold. In this

example, we note that TR(D1 : P1; P2; P3) is a closed broken line P1 ! P2 ! P3 !
P1. For these D1 and D2, our proof in Section 4 does not work.
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4
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On the other hand, even though condition (2.1) is not satis�ed, our argument

may sometimes work.

Example 3. Let us choose the same points Aj , 1 � j � 8 as in Example 1, and

for 0 < b < 1
2 , let us set A005 =

�
2
3 ; b
�
and A006 =

�
1
3 ; b
�
. By D2 we denote the non-

convex polygon with the vertices A1; A2; A3; A4; A005; A
00
6 ; A7; A8 (Figure 4). Then

TR(D2) \ @D1 =
��
s; 1

2

�
; 1
3
< s < 2

3

	
, that is, (2.1) is not true. However, as is

seen in the proof in Section 4 (in particular, by Lemmata 3 and 5), we see that

u1(D1) � u1(D2) yields D1 = D2.
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3. Key lemmata

For the proof, we will show key lemmata. Henceforth 4ABC denotes the interior

of the triangle ABC.

Lemma 1. Let E � R2 be a domain and let v 2 H1
loc(E) satisfy �v + k2v = 0 in

E where k 2 R. Let L0 � L � E be two segments. If v = 0 on L0, then v = 0 on

L.

Proof. Since v satis�es the Helmholtz equation, the function v is real analytic in E

(e.g., [4]). Therefore vjL is an analytic function in one variable, so that the lemma

follows. �

Lemma 2. Let A = ("; 0), O = (0; 0), B = (" cos �; " sin �), E = fx 2 R2; 0 <
argx < �; jxj < "g for " > 0 and 0 < � < 2�. We take P 2 E and set ' = \AOP .

We assume that

(3.1)
'

�
62 Q:

Let v 2 H1(E) satisfy

(3.2) �v + k2v = 0 in E

(3.3) v = 0 on OA [OB

and

(3.4) v = 0 on OP:
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Then v = 0 in E.

Remark 1. Assumption (3.1) is essential. For example, take A = (1; 0), P = (0; 1),

B = (�1; 0), k = 0. Then, setting v(x) = r2 sin 2� for x = (r cos�; r sin�), we see

that �v = 0 and v = 0 on OA [OB [OP , but v 6� 0 in E.

Proof: For the proof, we will show

Lemma 3. Let K be the symmetric transformation in R2 with respect to the straight

line OA. Let v 2 H1(4OAB) satisfy

(3.5) v = 0 on OA

and

(3.6) �v + k2v = 0 in 4OAB:

We set

V (x1; x2) =

8><
>:
v(x1; x2); (x1; x2) 2 4OAB

�v(K(x1; x2)); (x1; x2) 2 K(4OAB):
Then

(3.7) v 2 H1(4OAB [K(4OAB) [OA)

and

(3.8) �V + k2V = 0 in 4OAB [K(4OAB) [OA:

In particular, if v satis�es �v + k2v = 0 in 4OAB [K(4OAB) [OA and v = 0

on OA [OB, then v = 0 on K(OB).

Proof. Without loss of generality, we may take A = (a; 0), O = (0; 0), B = (b1; b2)

where a > 0. We set 
 =4OAB. Then K(x1; x2) = (x1;�x2), and

V (x1; x2) =

8><
>:
v(x1; x2); (x1; x2) 2 
;

�v(x1;�x2); (x1; x2) 2 K
:

In view of (3.5), we can directly verify

(3.9) (@2V )(x1; x2) =

8><
>:
@2v(x1; x2); (x1; x2) 2 
;

@2v(x1;�x2); (x1; x2) 2 K
;
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(3.10) (@1V )(x1; x2) =

8><
>:
@1v(x1; x2); (x1; x2) 2 
;

�@1v(x1;�x2); (x1; x2) 2 K


Here and henceforth we set @1 =
@
@x1

and @2 =
@
@x2

. Therefore (3.7) follows.

Next we have to prove (3.8). For this, let  2 C10 (
 [ OA [ K
). Then we

can write  (x1; x2) =  1(x1; x2) +  2(x1; x2) where  1(x1;�x2) =  1(x1; x2) and

 2(x1;�x2) = � 2(x1; x2) for (x1; x2) 2 
. That is,  1 and  2 are even and odd

in x2 respectively. Hence @1 1 is even in x2, while @1 2 is odd. Consequently, by

(3.10), we have Z

[OA[K


(@1V )(@1 )dx1dx2

=

Z

[OA[K


f(@1V )(@1 1) + (@1V )(@1 2)gdx1dx2

= 2

Z



(@1v)(@1 2)dx1dx2;(3.11)

because (@1V )(@1 1) is odd in x2 and 
 [OA [K
 is symmetric with respect to

OA. Since  2 is odd in x2, we have  2(x1; 0) = 0, so that

(3.12)  2 2 H1
0 (
):

Next, by (3.9), we have

(3.13)

Z

[OA[K


(@2V )(@2 )dx1dx2 = 2

Z



(@2v)(@2 2)dx1dx2:

By (3.11) - (3.13), noting (3.6) in the H1-sense, we obtainZ

[OA[K


rV � r dx1dx2 = 2

Z



rv � r 2dx1dx2

= 2k2
Z



v 2dx1dx2 = k2
Z

[OA[K


V  dx1dx2

for all  2 C10 (
 [OA [K
). This means (3.8).

We prove the �nal statement. Both V and v satisfy (3.8) and V = v in 4OAB.
Therefore the classical unique continuation yields V = v in 4OAB [K(4OAB)[
OA. By the de�nition of V and v = 0 on OB, we see that V = 0 on K(OB), so

that v = 0 on K(OB) follows. Thus the proof of Lemma 3 is complete.

�

Now we will complete the proof of Lemma 2. We consider the following proce-

dures.
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(i) We choose m0 2 N[ f0g and 0 � '1 < ' such that

� = m0'+ '1:

Then, by (3.1), '1 > 0.

(ii) We choose m1 2 N[ f0g and 0 � '2 < '1 such that

� = m1'1 + '2:

Similarly (3.1) implies that '2 > 0. In fact, if '2 = 0, then '

�
= m1�1

m0m1

2 Q, which
is impossible.

Continuing these procedures. we de�ne a sequence f'jgj2Nsuch that

(3.14) ' > '1 > '2 > � � � > 0:

Set

Aj = (" cos'2j; " sin'2j); j 2 N:

We will prove

(3.15) v = 0 on OAj:

In fact, by the procedure (i) and Lemma 3, we see that v(x) = 0 if arg x = � � '1

and jxj < ". Therefore with v = 0 on OB, we repeat application of Lemma 3 to

see that v(x) = 0 if x 2 E satis�es arg x = � � 2'1 or ; � � � ; = � � m1'1 � '2.

Therefore (3.15) holds for j = 1. Then, setting ' = '2 in (i), we start procedures

(i) and (ii), so that we see (3.15) for j = 2 in terms of Lemma 3. Continuing the

argument, we complete the proof of (3.15).

Moreover we can prove

(3.16) lim
j!1

'j = 0:

Assume contrarily. By (3.14), we see that

(3.17) lim
j!1

'j = '1 > 0:

By the procedures, we have

(3.18) � = mj'j + 'j+1; j � 2;2 N;
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which implies that limj!1mj'j exists. Hence (3.17) implies limj!1mj = m1 2
N. Consequently, for large N 2 N, if j � N , then mj = m1, and (3.18) yields

m1'j + 'j+1 = m1'j+1 + 'j+2

for any j � N . This is impossible because 'j > 'j+1 and 'j+1 > 'j+2. Therefore

'1 must be zero and the proof of (3.16) is complete.

Let us return to (3.15). Again application of Lemma 3 yields

(3.19) v(x) = 0 if x 2 E satis�es arg x = j'2` for j; ` 2 N.

By means of (3.16), the set

[
j;`2N

fx 2 E; arg x = j'2`g

is dense in E. By (3.19) and the continuity of v, we obtain v = 0 in E. Thus the

proof of Lemma 2 is complete.

We conclude this section with an algebraic lemma.

Lemma 4. Let the sector E, the points A, B, O be de�ned as in Lemma 2, and

let P 2 E and ' = \AOP . Let v 2 H1(E) satisfy (3.2) - (3.4). We assume that

(3.20)
'

�
2 Q:

Then there exists a points Q 2 E such that

(3.21) \AOP = \BOQ

and

(3.22) v = 0 on OQ:

Here Q = P may happen.

Proof. By (3.20), we can set

' =
n

m
�;
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where m;n 2 N, 1 � n � m � 1 and the greatest common divisor of m and n is

one. We will prove that there exist points eQ; eR 2 E such that

\AO eQ =
en
m
�; \AO eR =

en+ 1

m
� with some en 2 N;

v = 0 on O eQ [O eR:(3.23)

The proof of (3.23) will be done by the well-known Euclidean algorithm for deter-

mining the greatest common divisor of two natural numbers. For completeness, we

will give the proof.

First Step. Let

(3.24) m = nq + r0

where q; r0 2 N and 0 � r0 � n�1. Since the greatest common divisor ofm and n is

one, we have 1 � r0 � n�1. We take A1; B1 2 E such that \AOA1 =
(n�1)q

m
� and

\AOB1 =
nq
m
�. Then \BOB1 =

r0
m
�. By Lemma 3, we have v = 0 on OA1 [OB1.

Since v = 0 on OB, we again apply Lemma 3 in 4OBB1, so that v = 0 on OP1,

where P1 is in the sector OA1B1 and \B1OP1 =
r0
m
� (Figure 5).

We consider the sector OA1B1 and OP1. We note that \A1OB1 = n
m
� and

\B1OP1 =
r0
m
�. Let r0 = 1. Then, by \AOB1 =

nq

m
� and \B1OP1 =

1
m
�, we can

set eQ = P1 and eR = B1, so that the veri�cation of (3.23) is complete. Therefore

we may assume that r0 � 2.

P 

θ 

A 
φ 

r
0
θ/m 

B B
1
 P

1
 A

1
 

Figure 5

Second Step. Let

(3.25) n = r0q0 + r1
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where q0; r1 2 N and 0 � r1 � r0 � 1. Since the greatest common divisor of m and

n is one, by (3.24), we see that 1 � r1 � r0� 1. In fact, if r1 = 0, then r0 � 2, and

m, n have a common divisor r0 � 2, which is impossible.

Taking OB1 as starting line and repeating the clockwise rotations of OP1 with

angle r0
m
�, we de�ne points A2; B2 2 E such that \B1OB2 = (q0�1)r0

m
� and

\B1OA2 = q0r0
m
� (Figure 6). Then \A2OA1 = r1

m
�. By Lemma 3, we have

v = 0 on OA2 [OB2. Moreover, applying Lemma 3 in 4OA1A2, we obtain v = 0

on OP2 where P2 is in the sector OA2B2 and \A2OP2 = r1
m
�. Thus we obtain

points A2, B2, P2 in the sector OA1B1 such that P2 is in the sector OA2B2,

v = 0 on OA2 [ OB2 [ OP2 and \A2OB2 = r0
m
�, \A2OP2 =

r1
m
�. We note that

1 � r1 � r0�1. If r1 = 1, then similarly to the argument in First Step, we have al-

ready completed the proof of (3.23). Therefore we may assume that 2 � r1 � r0�1.

r
1
θ\m 

B
1
 P

1
 B

2
 A

1
 A

2
 

Figure 6

Third Step. Let

(3.26) r0 = r1q1 + r2;

where q1; r1 2 N and 0 � r2 � r1 � 1. Since the greatest common divisor of m and

n is one and r1 � 2, in terms of (3.24) { (3.26), we have 1 � r2 � r1 � 1 similarly

for (3.25).

Now we can take the same procedure in First Step by regarding OA2; OP2; OB2

respectively OA;OP;OB, so that we obtain three points B3; P3; A3 in the sector

OA2B2 such that P3 is in the sector OA3B3, and v = 0 on OA3 [ OB3 [ OP3,
\A3OB3 = r1

m
�, \B3OP3 = r2

m
�. If r2 = 1, then we can complete the proof of

(3.23). If r2 � 2, then we can continue the procedure in First Step and Second
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Step until we will �nd eQ and eR satisfying (3.23). Thus the proof of (3.23) is

complete.

Now we will �nish the proof of Lemma 4. Repeat application of Lemma 3 in

4O eQ eR both counterclockwise and clockwise as long as the resulting segments are

in the sector OAB, and we see that v = 0 on OP j, 1 � j � m � 1, where P j 2 E
and \AOP j = j

m
�. Setting Q = Pm�n, we see that Q satis�es (3.21) and (3.22).

Thus the proof of Lemma 4 is complete.

�

4. Proof of Theorem 2.2

First we show

Lemma 5. Let u(D) 2 H1
loc(R

2 n cl(D)) satisfy (1.1) - (1.3). Then

(i) There does not exist an open subset E � R2 n cl(D) where u(D) = 0 in E.

(ii) There does not exist an in�nite half straight line L � R2 n cl(D) where

u(D) = 0 on L.

Proof. If u(D) = 0 in an open subset E � R2 n cl(D), then u(D) = 0 in R2 n cl(D)
by the classical unique continuation. Therefore part (i) follows from (ii), and so it

suÆces to prove part (ii).

Assume contrarily that there exists such a line L. Without loss of generality, we

may assume that there exists a 2 R such that L = f(x1; ax1);x1 > 0g. Then (1.4)

yields

0 = u(D)(x1; ax1)

=
exp(ikx1

p
1 + a2)

(1 + a2)
1

4x
1

2

1

�
u1(D)

�
1

x1
p
1 + a2

(x1; ax1)

�
+ O

�
1

x1
p
1 + a2

��

+eikbx1

as x1 �!1. Here we set

b =

0
@1

a

1
A � d 2 R:

The �rst term at the right hand side converges to 0 as x1 �!1, so that limx1!1 eikbx1 =

0, which is a contradiction by b 2 R. Thus the proof of Lemma 5 is complete.

�
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Now we proceed to the proof of Theorem 2.2. Assume contrarily that D1 6= D2.

For simplicity, we set

uj = u(Dj); j = 1; 2:

By the Rellich theorem (e.g., Lemma 2.11 in [4]), we see from u1(D1) � u1(D2)

that

(4.1) u1 = u2 in R2 n cl(D1 [D2)

(e.g., Theorem 2.13 in [4]).

For completing the proof of the theorem, in terms of Lemmata 1 and 5, it suÆces

to �nd a (�nite) segment L such that

(a) L � R2 n cl(D1), L is extended to 1 in R2 n cl(D1) and u1 = 0 on L,

or

(b) L � R2 n cl(D2), L is extended to 1 in R2 n cl(D2) and u2 = 0 on L,

or

(c) there exists an open set ! where u1 = 0 or u2 = 0 in !.

We separately consider the two cases: @D1 \ @D2 6= ; and @D1 \ @D2 = ;.
Case A: @D1 \ @D2 6= ;
First Step: By translating and rotating and exchanging D1 and D2 if nec-

essary, without loss of generality, we may take O = (0; 0), A = ("; 0) and B =

(" cos �; " sin �) with " > 0 and � 2 (0; 2�) such that

E = fx; 0 < arg x < �; jxj < "g � R2 n cl(D1);

OA[OB � @D1 and there exists P 2 E satisfying OP � @D2. We set ' = \AOP

(Figure 7).

First we assume

(4.2)
'

�
62 Q:

In view of (4.1) and (1.2), we have u1 = 0 on OA [ OB [ OP , so that we can

apply Lemma 2 to u1, and we obtain u1 = 0 in E. This is a contradiction by

Lemma 5, and so (4.2) is impossible.
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D
1
 

∂ D
2
 

θ ∂ D
1
 

φ 

B 

A 

P 

Figure 7

Second Step: Next let us assume

(4.3)
'

�
2 Q:

By Lemma 4, we can choose P 00 2 E such that

\AOP = \BOP 00;

OP 00 � R2 n cl(D1)

and

u1 = 0 on OP 00:

First let either the in�nite half line OP or OP 00 can reach 1 in R2 n cl(D1). Then

we have been already led to a contradiction by Lemma 5.

Second let both the in�nite half lines OP and OP 00 intersect @D1. We assume

that P 6= P 00, because the proof is same in the case of P = P 00. The intersection

points of OP and OP 00 respectively with @D1 which are nearest to O, are denoted

by O1 and O001 . Near O1 and O001 , we take points A1; B1; A
00

1 ; B
00

1 2 @D1 such that

O1 is between A1 and B1, O001 is between A001 and B001 and A1B1 \ A001B001 has no

interior points (Figure 8). We set

�1 =

8><
>:
�; if O1 is not a vertex of D1;

the exterior vertex angle of D1; if O1 is a vertex;

'1 = minf\(O1A1; O1P );\(O1B1; O1P )g
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and

�001 =

8><
>:
�; if O001 is not a vertex of D1;

the exterior vertex angle of D1; if O001 is a vertex;

'001 = minf\(O001A001 ; O001P 00);\(O001B001 ; O001P 00):

Here and henceforth, for example, \(O1A1; O1P ) means the angle formed by O1A1

and O1P in R2 n cl(D1).

Without loss of generality, we may assume that

\(O1A1; O1P ) � \(O1B1; O1P ); \(O001A
00
1 ; O

00
1P

00) � \(O001B001 ; O001P 00):

Let

'1

�1
62 Q or

'001
�001

62 Q:

Then the application of Lemma 2 in the sector O1A1B1 or O001A
00

1B
00

1 in R2n cl(D1),

yields u1 = 0 in some open set of R2 n cl(D1). This is impossible by Lemma 5.

O
1
"  

O
1
 

P" P

θ
1
 

∂ D
1
 D

1
 

∂ D
1
 

D
1
 

∂ D
1
 

D
1
 

φ
1
"  

φ 
φ 

θ
1
"  

A
1
 

A
1
"  

B
1
 

B
1
"  

φ
1
 

A

B

Figure 8

Third Step: By the second step, it must hold that

'1

�1
2 Q and

'001
�001

2 Q:

Then, by Lemma 4, we can take a point P1 in the sector A1O1B1 inR2ncl(D1) with

vertex angle �1 such that O1P1 � R2 n cl(D1), \(O1P1; O1B1) = \(O1P;O1A1) =

'1 and u1 = 0 on O1P1 (Figure 9). Then we will repeat the argument in Second

Step as many times as possible. Consequently we have the following alternatives:

(i) The above procedures terminate �nite times: We have a trapped ray TR(D1 :

P1; :::; P`) with rational angles and P1P2 2 @D2.
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(ii) The above procedures continue in�nitely: There exist two in�nite sets of

points fPjgj2Nand fQjgj2Nsuch that

(4.4) Pj; Qj 2 @D1; PjQj 2 R2 n cl(D1); u1 = 0 on PjQj ; j 2 N:

By assumption (2.1) of Theorem, case (i) cannot happen.

Next we will prove that case (ii) is also excluded. Since the length j@D1j of the
curve @D1 is �nite and Pm 6= Pn, Qm 6= Qn if m 6= n, we can choose subsequences

fPjgj2Nand fQjgj2N, which are denoted by the same letters, such that

(4.5) lim
j!1

Pj = P1; lim
j!1

Qj = Q1:

Without loss of generality, by further taking a subsequence of fPjgj2N, we may

assume that

(4.6) Pj , j 2 N, are located at one side of P1.

D
1
 

θ
1
 

∂ D
1
 

φ
1
 

B
1
 

A
1
 

P 

P
1
 

O
1
 

Figure 9

We note that the corresponding Qj, j 2 N, are not necessarily located at one

side of Q1 and that PjPj+1 � @D1 for all large j.

We will prove

Lemma 6. There exist domains 
j , j 2 N, such that

(4.7) lim
j!1

j
jj = 0;

where j
jj denotes the area of 
j , and

(4.8)

8><
>:
�u1 + k2u1 = 0 in 
j;

u1 = 0 on @
j :
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Moreover 
j is a triangle, a quadrilateral or a pentagon (not necessarily convex).

Proof. We will prove the lemma separately in the following two cases:

(a) Neither P1 nor Q1 is a vertex of D1.

(b) At least one, say Q1 of P1 and Q1 is a vertex of D1.

Case (a): For all large j, we see thatQjQj+1 � @D1. We have the two subcases:

Case (a)-(i): The four points Pj; Pj+1; Qj+1; Qj form a quadrilateral with this

order (Figure 10).

Ω
j
 

Q
j
 

Q
j+1

 ∂ D
1
 

∂ D
1
 

P∞ 

P
j
 

P
j+1

 

Figure 10

Case (a)-(ii): The four points Pj ; Pj+1; Qj; Qj+1 form a quadrilateral with this

order. Let Rj be the intersection point of the two segments PjQj and Pj+1Qj+1

(Figure 11).

Q
j+1

 

Q
j
 ∂ D

1
 

∂ D
1
 

P
j
 

P
j+1

 

R
j
 

Ω
j
 

Figure 11



20 J. CHENG AND M. YAMAMOTO

Let


j =

8><
>:
the interior of the quadrilateral PjPj+1Qj+1Qj in case (a)-(i);

the interior of the triangle PjPj+1Rj in case (a)-(ii):

Then @
j � @D1 [ PjQj [ Pj+1Qj+1, so that (4.8) is seen by (1.2) and (4.4).

Moreover, setting � = maxx;y2@D1
jx � yj, we see that 
j is contained in a sum

of two triangles whose bases are PjPj+1 and QjQj+1 and heights are at most �.

Therefore

(4.9) j
jj � �

2
(jPjPj+1j+ jQjQj+1j):

Case (b): We have

Case (b) - (i): The two points Qj and Qj+1 are located at the di�erent sides of

Q1 (Figure 12). Then we see that QjQ1 � @D1 for all large j.

Case (b) - (ii): The two points Qj and Qj+1 are located at the same side of Q1.

Then we see that QjQj+1 � @D1 for all large j.

Q
j
 

Q
j+1

 

∂ D
1
 

∂ D
1
 

Q∞ 

P
j
 

P
j+1

 

Ω
j
 

Figure 12

In case (b) - (ii), in the same way as in case (a), we can construct 
j satisfying

(4.8). In case (b) - (i), let


j =

8>>>>>>>><
>>>>>>>>:

the interior of the pentagon with vertices Pj; Pj+1; Qj; Qj+1; Q1,

if PjQj and Pj+1Qj+1 do not intersect (Figure 12);

the interior of the triangle with vertices Pj; Pj+1; Rj,

if PjQj and Pj+1Qj+1 intersect at Rj (Figire 13):
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Q
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j+1

 

R
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Q∞ 

P
j
 

P
j+1

 

Ω
j
 

Figure 13

Then @
j � @D1 [ PjPj+1 [QjQj+1, so that we obtain (4.8). Moreover 
j is

divided into three triangles with bases QjQ1, Qj+1Q1 and PjPj+1 in the former

case, while 
j is a triangle with the base PjPj+1 in the latter case. Consequently

(4.10) j
jj � �

2
(jPjPj+1j+ jQjQ1j+ jQj+1Q1j):

Hence, in both cases (a) and (b), we see (4.7) and (4.8) in terms of (4.5), (4.9) and

(4.10). Thus the proof of Lemma 6 is complete.

�

Now we will complete the proof that case (ii) leads to a contradiction. Equation

(4.8) implies that k2 is an eigenvalue of �� in 
j with the homogeneous Dirichlet

boundary condition for j � 1. Let �1(D) denote the �rst eigenvalue (i.e., the

least eigenvalue) of �� in a domain D with the homogeneous Dirichlet boundary

condition. Then, by a theorem by Rayleigh-Faber-Krahn (e.g., Nehari [13], p.18 in

P�olya and Szeg�o [14]), we have

�1(
j) � ��20
j
jj ;

where �0 is the �rst positive root of the Bessel function J0(t). Therefore

k2 � ��20
j
jj

for any j � 1, which is a contradiction by (4.7) in letting j �! 1. Consequently

case (ii) cannot happen. Thus Case (A): @D1 \ @D2 6= ;, is impossible.

Case (B): @D1 \ @D2 = ;
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Then we have either cl(D1) � D2, cl(D2) � D1, cl(D1) � R2ncl(D2) or cl(D2) �
R2 n cl(D1). Without loss of generality, we may assume that cl(D1) � D2 or

cl(D1) � R2n cl(D2). In the former case, we readily see that one side of D2 can be

extended to 1 in R2 n cl(D1), and this case cannot happen in terms of Lemma 5.

In the latter case, we have the alternatives (a) and (b):

(a) there exist vertices A1; A2 of D2 such that the in�nite half line A1A2 is in

R2 n cl(D1).

(b) The extended lines of any sides of D2 intersect @D1.

In case (a), we directly derive a contradiction by Lemma 5. In case (b), we can

take points O, P and Q such that O 2 @D1, PQ 2 @D2 and O;P;Q are on the

same line.

By (4.1) and Lemma 1, we have u1 = 0 on OP . Therefore, similarly to Case A,

we can reach a contradiction. Thus the proof of Theorem 2.2 is complete.

5. Concluding Remarks

(I) As is seen from Example 3 in Section 2, our assumption (2.1) for the unique-

ness is not optimal. In fact, in Third Step of the proof in the case of @D1\@D2 6= ;,
we have chosen only one zero level line O1P1 of u1 for forming a trapped ray, al-

though we can produce more zero level lines of u1. As a consequence, in general, we

have restricted possibilities of gaining zero level lines which are in R2 n cl(D1) and

extended to 1. Therefore our choice of a single zero level line may be not able to

lead to a contradiction in some cases. However in Example 2 in Section 2, a single

choice is a unique possibility.

(II) In this paper, for simplicity of the proof, we consider a single obstacle D.

We can prove the uniqueness in the same manner in the case where D is a sum of

a �nite number of polygonal domains D1; :::; DN such that Dm \Dn, m 6= n, has

no interior points.

(III) We can similarly discuss the sound-hard obstacle (i.e., (1.1), (1.3) and

@u
@�

= 0 on @D). Moreover our argument works in the three dimensional case.

(IV) The argument works in a similar inverse obstacle scattering problem for

the Maxwell equations with real analytic permittivity and permeablity.
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(V) With certain restrictions, we can similarly discuss the case where @D is

piecewise analytic. For example, let

U =

�
D; D is a convex bounded domain, and there exist

N � 2;2 N and analytic curves 
j , 1 � j � N such that @D =
N[
j=1


j

and 
j can be extended in R2 n cl(D) analytically to 1.

�

Then we can prove the uniqueness within U .
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