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Abstract

To study the structure of the Torelli group, the Johnson homomor-
phism and the representation theory of the symplectic group are essential
tools. Using them, we give a lower bound for the dimension of the third
rational cohomology group and a new approach to the non-triviality of
characteristic classes of surface bundles on the Torelli group.

1 Introduction

Let Σg be a closed oriented surface of genus g ≥ 3 and let Mg be its mapping
class group, namely it is the group of all isotopy classes of orientation preserving
diffeomorphisms of Σg. Mg acts on the first homology group of Σg and it gives
the classical representation

Mg −→ Sp(2g,Z)

with the kernel Ig called the Torelli group, which is the main object of this
paper.

To clarify the structure of Ig, Johnson defined a surjective homomorphism
τ : Ig −→ U

in [Jo1], where U is a certain free abelian group. This homomorphism is now
called the (first) Johnson homomorphism, and many properties of Ig were found
using this.

In this paper, we use this homomorphism to investigate the cohomological
structure of Ig. In particular, we pay attention to the homomorphism

τ∗ : ΛnUQ −→ Hn(Ig,Q)
where UQ = U ⊗Z Q. n = 0 is the trivial case. The case of n = 1 was studied by
Johnson in [Jo2] where he showed that τ∗ is an isomorphism. The case of n = 2
was settled by Hain in [Ha] using the representation theory of the symplectic
group. Now we treat the case of n = 3 using the same method as Hain. To each
irreducible component of Λ3UQ except one, we determine whether it survives in
H3(Ig,Q) or not. Then we show that there exists an interesting relationship
between the non-triviality of the remained irreducible component and that of
certain characteristic classes of surface bundles whose monodromy groups are
contained in the Torelli group.

The author would like to express his gratitude to Professor Shigeyuki Morita
for his encouragement and helpful suggestions.
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2 Summary of previous results

First, we prepare some notations. Σg is a closed oriented surface of genus g ≥ 3.
Let H1(Σg) be its first homology group with coefficients in Z. By the Poincaré
duality, we can take a symplectic basis of H1(Σg) with respect to the intersection
form µ : H1(Σg) ⊗H1(Σg) → Z which is a non-degenerate bilinear form. Now
we fix a symplectic basis 〈a1, . . . , ag, b1, . . . , bg〉 as follows.

bgb2b1

aga2a1

g21

The Poincaré duality also says that we can identify H1(Σg) with its dual module
Hom(H1(Σg),Z) = H1(Σg), the first cohomology group of Σg with coefficients
in Z. In this identification, ai (resp. bi) ∈ H1(Σg) corresponds to −b∗i (resp.
a∗i ) ∈ H1(Σg) where 〈a∗1, . . . , a∗g, b∗1, . . . , b∗g〉 is the dual basis of H1(Σg). We use
the same symbol H for these identified abelian groups. We denote H ⊗Z Q by
HQ and similarly U ⊗Z Q by UQ where U is an abelian group.

As mentioned above,Mg is the mapping class group of Σg and Ig is its Torelli
group. We also use the pointed mapping class group Mg,∗. It is the group of
all isotopy classes of orientation preserving diffeomorphisms of Σg which fix the
basepoint ∗ ∈ Σg where these isotopies fix ∗ at every level. We denote the
corresponding Torelli group by Ig,∗.

Next we introduce the Johnson homomorphism. In [Jo1], Johnson defined a
homomorphism

τ : Ig −→ Λ3H/H

and he showed that τ is surjective. Here H is considered as a subgroup of Λ3H
by the injection

H ↪→ Λ3H

(
x �→ x ∧

(
g∑

i=1

ai ∧ bi
))

.

¿From now on we denote Λ3H/H by U . U is a free abelian group of rank(
2g
3

)− 2g.
In the pointed case, the Johnson homomorphism has Λ3H as its target group

and we have the following commutative diagram

Ig,∗ τ−→ Λ3H
↓ ↓
Ig τ−→ U

where the first vertical map is the homomorphism of forgetting the basepoint
∗ and the second one is the natural projection. We use the same symbol τ for
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the above two versions of Johnson homomorphisms but any confusion will not
occur.

One important property of the Johnson homomorphism is that τ is an Mg-
equivariant homomorphism, where Mg acts on Ig by the conjugation and acts
on U by the way induced from the action of Mg on H . In the pointed case
there exist similar properties.

Applying the functor H∗( · ,Q) to τ : Ig → U , we obtain

τ∗ : H∗(U,Q) ∼= Λ∗UQ −→ H∗(Ig,Q)

which is an Mg-homomorphism. We now consider the kernel of τ∗. Ker τ∗ is
a priori an Mg-subspace of Λ∗UQ. In the whole of Mg, Ig acts on U trivially
so that Ker τ∗ becomes an Sp(2g,Z)-submodule. We can say more by the next
lemma.

Lemma 2.1 Ker τ∗ is actually an Sp(2g,Q)-submodule.

For the proof of this lemma, see [AN]. This lemma enables us to use the rep-
resentation theory of the symplectic group for the determination of Ker τ∗. We
summarize notations and general facts about it in section 4.

In cases of low degrees, τ∗ have already been studied as follows. The case
of ∗ = 0 is trivial. The case of ∗ = 1 was settled by Johnson. He showed the
following theorem.

Theorem 2.2 ([Jo2]) τ∗ : UQ → H1(Ig,Q) is an isomorphism.

This theorem implies that in the setting of the rational cohomology, the Johnson
homomorphism measures the gap between Ig and its abelianization.

The case of ∗ = 2 was settled by Hain in [Ha]. First, we see the irreducible
decomposition of Λ2UQ.

Lemma 2.3 If g ≥ 3, then the irreducible decomposition of Λ2UQ is given by

Λ2UQ =



[0] + [22] + [12] + [2212] + [14] + [16] (g ≥ 6)
[0] + [22] + [12] + [2212] + [14] (g = 5)
[0] + [22] + [12] + [2212] (g = 4)
[0] + [22] (g = 3).

As mentioned in [Ha], the irreducible decomposition stabilizes for sufficiently
large g. In this case the stability range is g ≥ 6. With respect to the above
decomposition, Hain showed the following theorem.

Theorem 2.4 ([Ha]) For all g ≥ 3, Ker τ∗ = [0] + [22].

As an immediate corollary of this theorem, we see that when g = 3, τ∗ is the
0-map for all degrees greater than 1.
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3 Main results

In this paper, we treat the case of ∗ = 3. First, we need to know the irreducible
decomposition of Λ3UQ. In this case the stability range is given by g ≥ 9.

Lemma 3.1 The irreducible decomposition of Λ3UQ is given by the following
table, where numbers indicate multiplicities of the decomposition and numbers
in brackets indicate ones of Image (∪ : UQ ⊗ ([22] + [0]) → Λ3UQ) (i.e. they
are in the kernel of τ∗ as mentioned later).

g = 3 g = 4 g = 5 g = 6 g = 7 g = 8 g ≥ 9
[3213] 1 1 1 1 1
[321] 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
[323] 1 1 1 1 1 1
[3212] 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
[32] 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
[2313] 1 1 1 1
[231] 1 1 1 1 1
[2215] 1 1 1
[2213] 1 (1) 2 (1) 2 (1) 2 (1) 2 (1)
[221] 1 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)
[215] 1 1 1 1
[213] 1 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)
[21] 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
[19] 1
[17] 1 1
[15] 1 1 2 2 2
[13] 1 (1) 2 (2) 2 (2) 3 (2) 3 (2) 3 (2) 3 (2)
[1] 1 1 1 1 1

Proof. By a direct calculation using a computer. ✷

Now we mention the main results of this paper.

Theorem 3.2 For all g ≥ 9, Ker τ∗ contains the direct sum

[321] + [3212] + [32] + [2213] + [221] + [213] + [21] + 2[13]

which is equal to Image (∪ : UQ ⊗ ([22] + [0]) → Λ3UQ). Moreover, one of the
following two possibilities holds:

a) Ker τ∗ is actually equal to it.

b) Ker τ∗ is equal to the direct sum of it with one more summand [1].

The determination of Ker τ∗ is equivalent to that of Image τ∗ so that this theo-
rem gives a lower bound for the dimension of the third rational cohomology of
the Torelli group. In section 5, we also calculate the cases of lower genera but
here we omit the details. With respect to the summand [1], we can relate it with
characteristic classes of surface bundles defined in [Mo1] and [Mu] as follows.
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Theorem 3.3 For all g ≥ 5,

τ∗([1]) = {0} ⊂ H3(Ig,Q) ⇐⇒ e2 − (2− 2g)e2 = 0 ∈ H4(Ig,∗,Q)
where e is the Euler class and e2 is the second Morita-Mumford class.

The above condition is compatible with the pull-back of the universal Σg-
bundle. Therefore comparing the result of Morita in [Mo2], we obtain the next
corollary.

Corollary 3.4 For every amenable group G and every group homomorphism
f : G→ Ig,

f∗τ∗([1]) = {0} ⊂ H3(G,Q).

In the proof of Theorem 3.2, we construct some abelian cycles to find summands
which survive in H3(Ig,Q). This corollary implies that on any abelian cycle
the summand τ∗([1]) is equal to 0.

4 Use of the representation theory of the sym-

plectic group

In this section, we summarize some notations and basic facts concerning the
representation theory of Sp(2g,Q) from [FH],[Ha] and [Mo5]. Let sp(2g,C) be
the Lie algebra of Sp(2g,C). By the general theory of the representation, we
know that representations of Sp(2g,C) and that of sp(2g,C) are the same and
their common irreducible representations are parameterized by Young diagrams
whose number of rows are less than or equal to g. We use the notation in [Mo5] to
describe Young diagrams. These representations are all rational representations
defined over Q so that we can consider them as irreducible representations of
Sp(2g,Q) and sp(2g,Q). For example HQ is the fundamental representation
denoted by [1]. We fix its symplectic basis 〈a1, . . . , ag, b1, . . . , bg〉 with respect to
the intersection form µ : HQ⊗HQ → Q as before. Notice that any representation
is realized as some sp(2g,Q)-submodule of appropriate tensors of HQ. Another
important example is UQ = [13] so that we can write that Λ3HQ = [1] + [13]
(where + is the sum in the representation ring of Sp(2g,Q)).

For later use, we define the following elements Xi,j , Yi,j (i �= j) and Ui of
sp(2g,Q) characterized by

Xi,j(ak) = δjkai, Xi,j(bk) = −δikbj
Yi,j(ak) = 0, Yi,j(bk) = δikaj + δjkai
Ui(ak) = 0, Ui(bk) = δikai

where δij is the Kronecker’s delta. We can easily check that Xi,j , Yi,j , Ui are
certainly elements of sp(2g,Q).

To sp(2g,Q)-modules Λ∗HQ (where Λ0HQ = Q is the trivial representation),
we have the contraction homomorphisms Ck : ΛkHQ → Λk−2HQ (k = 2, 3, · · ·)
given by

Ck(x1 ∧ · · · ∧ xk) =
∑

1≤i<j≤k

(−1)i+j+1µ(xi, xj)x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk.
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As is well known, the kernel of Ck is the irreducible sp(2g,Q)-module corre-
sponding to the Young diagram [1k]. We especially pay attention to the case of
k = 3. Then we have an exact sequence

0 −→ UQ
i−→ Λ3HQ

C3−→ HQ −→ 0.

Here, we define a map q : Λ3HQ → Λ3HQ by

q(ξ) = ξ − 1
g − 1C3(ξ) ∧ ω (ξ ∈ Λ3HQ),

where ω =
∑g

i=1 ai ∧ bi is the symplectic class. Then we can easily see that
Image q = KerC3 so that we have an explicit description of the direct sum
decomposition

Λ3HQ = UQ ⊕HQ

given by the correspondence ξ �→ (q(ξ), 1
g−1C3(ξ) ∧ ω).

Now we define

pij = q(ai ∧ aj ∧ bj) = ai ∧ aj ∧ bj − 1
g−1
ai ∧ ω,

qij = q(bi ∧ aj ∧ bj) = bi ∧ aj ∧ bj − 1
g−1
bi ∧ ω.

It is easily checked that there are 2g relations∑
j �=i

pij = 0,
∑
j �=i

qij = 0 (i = 1, · · ·g).

Lemma 4.1 UQ is the vector space generated by the following elements

ai ∧ aj ∧ ak, bi ∧ bj ∧ bk (i < j < k)
ai ∧ aj ∧ bk, bi ∧ bj ∧ ak (i < j, k �= i, j)
pij , qij (i �= j)

and 2g relations of
∑

j �=i pij = 0,
∑

j �=i qij = 0 (i = 1, 2, · · · , g) represent a
complete system of linear relations among them.

Proof. It is easy to see that above elements are certainly in UQ. Then the result
follows from a count of dimensions. ✷

U can be considered as a lattice in UQ. Namely, U is isomorphic to the Sp(2g,Z)-
submodule of UQ generated by above generators.

We often use following three types of Sp(2g,Q)-equivariant homomorphisms.
Here V is some Sp(2g,Q)-vector space and vi are elements of V .

1) The canonical inclusion inV : Λ
nV ↪→ ⊗nV is given by

inV (v1 ∧ v2 ∧ · · · ∧ vn) =
∑
σ∈Sn

sgn(σ) vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

where Sn is the symmetric group of degree n.
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2) The multiplication multi. : ΛmV ⊗ ΛnV → Λm+nV is given by

(v1 ∧ v2 ∧ · · · ∧ vm)⊗ (vm+1 ∧ vm+2 ∧ · · · ∧ vm+n) �→ v1 ∧ v2 ∧ · · · ∧ vm+n.

We define the multiplication multi. : Λm(ΛnV )→ ΛmnV similarly.

3) Using 1) and the canonical projection ⊗2V → Λ2V given by v1 ⊗ v2 �→
v1 ∧ v2, we also define the inclusion jV : Λ3V ↪→ V ⊗ Λ2V given by

jV (v1 ∧ v2 ∧ v3) = v1 ⊗ (v2 ∧ v3) + v2 ⊗ (v3 ∧ v1) + v3 ⊗ (v1 ∧ v2).

For the sake of simplicity, we denote ai1 ∧ ai2 ∧ · · · ∧ ain by Ai1i2···in . Some
indices may be negative, then we interpret them by changing a into b. For
example, A1−2−34 stands for a1 ∧ b2 ∧ b3 ∧ a4.

5 Proof of the main results

Now we prove Theorem 3.2 and 3.3. In sections 5.1 and 5.2, all vector spaces are
Sp(2g,Q)-modules and all homomorphisms are Sp(2g,Q)-equivariant so that we
omit the symbol “Sp(2g,Q)-”.

5.1 Summands which are in the kernel

Due to Hain’s results, we can obtain some summands in Ker τ∗ by taking the
cup product with ones in degree 2. We now determine this part, namely we
calculate the image of the following homomorphism

∪ : H1(U ;Q)⊗Ker
(
H2(U ;Q) τ∗→ H2(Ig;Q)

)
−→ H3(U ;Q).

In terms of sp(2g,Q)-modules, we determine the image of

∧ : [13]⊗ ([22] + [0]) −→ Λ3[13]

where [22] + [0] is in Λ2[13] and the homomorphism ∧ is given by taking the
wedge product.

Lemma 5.1 If g ≥ 3, the irreducible decomposition of [13]⊗ ([22]+ [0]) is given
by

2[13] + [32] + [21] + [321] + [312] + [213] + [221] + [3212] + [2213] (g ≥ 5)
2[13] + [32] + [21] + [321] + [312] + [213] + [221] + [3212] (g = 4)
2[13] + [32] + [21] + [321] + [312] (g = 3).

With respect to the above decomposition, we prove the following proposition
(this fact for the stable range is mentioned in [Mo5] without proof).

Proposition 5.2 For g ≥ 3, the irreducible decomposition of
Image

(∧ : [13]⊗ ([22] + [0])→ Λ3[13]
)
is given by


2[13] + [32] + [21] + [321] + [213] + [221] + [3212] + [2213] (g ≥ 5)
2[13] + [32] + [21] + [321] + [213] + [221] + [3212] (g = 4)
[13] + [32] (g = 3).
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Proof. It is easy to see that the highest weight vector v[22 ] of [22] ⊂ Λ2UQ is

g∑
i=3

A12i ∧A12−i

and the highest weight vector v[0] of [0] ⊂ Λ2UQ is∑
1≤i<j<k≤g

Aijk ∧A−i−j−k −
∑

1≤i<j≤g
1≤k≤g,k �=i,j

Aij−k ∧A−i−jk +
∑

1≤i,j≤g
i �=j

pij ∧ qij .

Using v[22] and v[0], we construct some vectors in Image∧ and decompose them
to each irreducible component. To do so we need a lot of Sp(2g,Q)-modules and
Sp(2g,Q)-homomorphisms and we summarize them in the following diagram

Λ3[13] = Λ3UQ

Λ2HQ ⊗ Λ5HQ

HQ ⊗ Λ2HQ ⊗ Λ4HQΛ3HQ ⊗ Λ4HQ

Λ3HQ ⊗ Λ6HQ

HQ ⊗ Λ2HQ ⊗ Λ2HQ

HQ ⊗ Λ2HQ ⊗ Λ4HQ

HQ ⊗ Λ4HQ ⊗ Λ4HQ

(HQ)⊗3 ⊗ (Λ3HQ)⊗2

Λ3HQ ⊗ Λ2(Λ3HQ)(Λ3HQ)⊗3

Λ3(Λ3HQ)

Λ2HQ ⊗ Λ3HQ

Λ2HQ ⊗HQ

HQ ⊗ Λ2HQ ⊗ Λ2HQ

HQ ⊗ Λ4HQ

f1

f2

f3

f4

f5

g1

g2

g3
h1

h3

h2

h4

ι

Λ3HQ ⊗ Λ2HQ

g4

g5

g6

where ι is the inclusion and homomorphisms fi, gi and hi are as follows.


f1 = i3Λ3HQ

f2 = i3HQ
⊗ 1⊗ 1

f3(x1 ⊗ x2 ⊗ x3 ⊗Aijk ⊗ Almn) = x1 ⊗ (x2 ∧Aijk) ⊗ (x3 ∧Almn)
f4 = 1⊗ C4 ⊗ 1
f5 = 1⊗ 1⊗C2



g1 = jΛ3HQ

g2 = 1⊗multi.
g3 = 1⊗C6

g4 = 1⊗C4

g5 = jHQ
⊗ 1

g6 = 1⊗multi.

h1 = jHQ

⊗ 1
h2(x ⊗Aij ⊗Aklmn) = Aij ⊗ (x ∧Aklmn)
h3 = 1⊗C5

h4 = 1⊗C3
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[321]: Taking the wedge product of v[22 ] and A123, we obtain

g∑
i=3

A12i ∧A12−i ∧A123 ∈ Λ3UQ.

When g ≥ 4, this is the non-zero highest weight vector of [321]. Hence we see
that Image∧ contains the summand [321].

[3212]: Take the wedge product of v[22] and A134. Then

v[22 ] ∧A134 =
g∑

i=3

A12i ∧A12−i ∧A134

f1◦ι�−→
g∑

i=3

A12i ⊗A12−i ⊗ A134 −
g∑

i=3

A12i ⊗A134 ⊗ A12−i

+
g∑

i=3

A12−i ⊗A134 ⊗ A12i −
g∑

i=3

A12−i ⊗A12i ⊗ A134

+
g∑

i=3

A134 ⊗ A12i ⊗ A12−i −
g∑

i=3

A134 ⊗ A12−i ⊗ A12i

f3◦f2�−→ −
g∑

i=3

(a1 ⊗ Ai12−i ⊗A2134)−
g∑

i=3

(a1 ⊗A2134 ⊗Ai12−i)

+
g∑

i=3

(a1 ⊗ A2134 ⊗A−i12i) +
g∑

i=3

(a1 ⊗A−i12i ⊗ A2134)

+
g∑

i=3

(a1 ⊗ A312i ⊗A412−i − a1 ⊗ A412i ⊗A312−i)

−
g∑

i=3

(a1 ⊗ A312−i ⊗A412i − a1 ⊗ A412−i ⊗A312i)

f4�−→ 2(g − 1)a1 ⊗ A12 ⊗ A1234.

Hence we obtain

f4 ◦ f3 ◦ f2 ◦ f1 ◦ ι(v[22] ∧A134) = 2(g − 1)a1 ⊗A12 ⊗ A1234.

This is the highest weight vector of [3212] so that Image∧ contains the summand
[3212] for g ≥ 4.

[32]: Take the wedge product of v[22] and p13 − p12 = A13−3 − A12−2. Then

v[22 ] ∧ (p13 − p12) =
g∑

i=3

A12i ∧A12−i ∧ (p13 − p12)
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f1◦ι�−→
g∑

i=3

A12i ⊗A12−i ⊗ (p13 − p12)−
g∑

i=3

A12i ⊗ (p13 − p12) ⊗A12−i

+
g∑

i=3

A12−i ⊗ (p13 − p12)⊗ A12i −
g∑

i=3

A12−i ⊗A12i ⊗ (p13 − p12)

+
g∑

i=3

(p13 − p12) ⊗A12i ⊗A12−i −
g∑

i=3

(p13 − p12)⊗ A12−i ⊗A12i

f3◦f2�−→ −
g∑

i=3

a1 ⊗Ai12−i⊗ (a2 ∧ (p13 − p12))−
g∑

i=3

a1 ⊗ (a2 ∧ (p13 − p12))⊗Ai12−i

+
g∑

i=3

a1 ⊗ (a2 ∧ (p13 − p12)) ⊗A−i12i +
g∑

i=3

a1 ⊗A−i12i ⊗ (a2 ∧ (p13 − p12))

+
g∑

i=3

a1 ⊗ A312i ⊗ A−312−i −
g∑

i=3

a1 ⊗A−312i ⊗ A312−i

−
g∑

i=3

a1 ⊗ A312−i ⊗ A−312i +
g∑

i=3

a1 ⊗A−312−i ⊗ A312i

f5◦f4�−→ −a1 ⊗ (g − 2)A12 ⊗ (−A12)− a1 ⊗ (−A12)⊗ (g − 2)A12

+a1 ⊗ (−A12)⊗ (2 − g)A12 + a1 ⊗ (2− g)A12 ⊗ (−A12)
−a1 ⊗ (−A12)⊗A12 − a1 ⊗ A12 ⊗ (−A12)
= (4g − 6)a1 ⊗A12 ⊗A12.

Hence we obtain

f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 ◦ ι(v[22] ∧ (p13 − p12)) = (4g − 6)a1 ⊗A12 ⊗A12.

This is the highest weight vector of [32] so that Image∧ contains the summand
[32] for g ≥ 3.

[2213]: Take the wedge product of v[22 ] and A345. By the similar calculation, we
obtain

h2 ◦ h1 ◦ g3 ◦ g2 ◦ g1 ◦ ι(v[22] ∧A345) = −3A12 ⊗A12345.

This is the highest weight vector of [2213] so that Image∧ contains the summand
[2213] for g ≥ 5.

[221]: Take the wedge product of v[22] and p34 − p32 = A34−4 −A32−2. Then we
obtain

h3 ◦ h2 ◦ h1 ◦ g3 ◦ g2 ◦ g1 ◦ ι(v[22] ∧ (p34 − p32)) = (2g − 9)A12 ⊗A123.

This is the highest weight vector of [221] so that Image∧ contains the summand
[221] for g ≥ 4.
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[21]: Take the wedge product of v[22] and q21 − q23 = A−21−1 − A−23−3. Then
we obtain

h4 ◦ h3 ◦ h2 ◦ h1 ◦ g3 ◦ g2 ◦ g1 ◦ ι(v[22] ∧ (q21 − q23)) = −8(g − 3)A12 ⊗ a1.

This is the highest weight vector of [21] so that Image∧ contains the summand
[21] for g ≥ 4.

[213]: Take the wedge product of v[22 ] and A−234. Then we obtain

g6 ◦ g5 ◦ g4 ◦ g3 ◦ g2 ◦ g1 ◦ ι(v[22] ∧A−234) = 4a1 ⊗ A1234.

This is the highest weight vector of [213] so that Image∧ contains the summand
[213] for g ≥ 4.

[13]: We now claim that Image∧ has the summand [13] whose multiplicity is 2
for g ≥ 4 and 1 for g = 3. To show it, consider following two homomorphisms

Λ3UQ
g4◦...◦g1◦ι−−−−−−−→ Λ3HQ ⊗ Λ2HQ

1⊗C2−−−→ Λ3HQ,

Λ3UQ
g4◦...◦g1◦ι−−−−−−−→ Λ3HQ ⊗ Λ2HQ

multi.−−−−→ Λ5HQ
C5−→ Λ3HQ.

We denote the former map by F and the latter one by G. By the similar
calculation, we obtain

F (v[22] ∧A−1−23) = 6A123,
G(v[22] ∧A−1−23) = −4(g − 3)A123.

On the other hand, we prepare another vector v[0] ∧A123. Then

v[0] ∧A123

g1◦ι�−→
∑

1≤i<j<k≤g

Aijk ⊗ A−i−j−k ∧A123 +
∑

1≤i<j<k≤g

A−i−j−k ⊗A123 ∧Aijk

+
∑

1≤i<j<k≤g

A123 ⊗ Aijk ∧A−i−j−k

+
∑

1≤i<j≤g
1≤k≤g, k �=i,j

Aij−k ⊗ A−i−jk ∧A123 +
∑

1≤i<j≤g
1≤k≤g, k �=i,j

A−i−jk ⊗ A123 ∧Aij−k

+
∑

1≤i<j≤g
1≤k≤g, k �=i,j

A123 ⊗Aij−k ∧A−i−jk

+
∑

1≤i,j≤g
i �=j

(pij ⊗ qij ∧A123 + qij ⊗ A123 ∧ pij + A123 ⊗ pij ∧ qij)

g2�−→
∑

1≤i<j<k≤g

(Aijk ⊗A−i−j−k123 +A−i−j−k ⊗A123ijk +A123 ⊗ Aijk−i−j−k)
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+
∑

1≤i<j≤g
1≤k≤g, k �=i,j

(Aij−k ⊗A−i−jk123 +A−i−jk ⊗A123ij−k + A123 ⊗Aij−k−i−jk)

+
∑

1≤i,j≤g
i �=j

(pij ⊗ qij ∧A123 + qij ⊗ A123 ∧ pij + A123 ⊗ pij ∧ qij)

g4◦g3�−→ A123 ⊗ 2(A1−1 + A2−2 + A3−3)

+
g∑

k=4

{A13k ⊗ (−2A2−k) + A12k ⊗ 2A3−k + A23k ⊗ 2A1−k}

+
∑

1≤i<j<k≤g

A123 ⊗ {−2(Ai−i +Aj−j + Ak−k)}

−
g∑

k=4

{A12−k ⊗ 2A3k +A13−k ⊗ (−2A2k) + A23−k ⊗ 2A1k}

−
∑

1≤i<j≤g
1≤k≤g, k �=i,j

A123 ⊗ 2(Ai−i +Aj−j +Ak−k)

+2(p12 + p13)⊗ A23 − 2(p21 + p23)⊗ A13 + 2(p31 + p32) ⊗A12

−A123 ⊗ 6(g − 2)ω.

Hence, we obtain

F (v[0] ∧A123) = −2(2g3 − 3g2 − 2g − 3)A123,

G(v[0] ∧A123) = −2(g−3)(2g3−5g2+7g+2)
g−1 A123.

It is easily checked that v[22 ] ∧ A−1−23 and v[0] ∧ A123 have Sp(2g,Q)-linearly
independent images in [13] when g ≥ 4. Therefore our claim follows.

¿From above computations, the proposition follows. ✷

5.2 Summands which are not in the kernel

Considering the dual homomorphism

τ∗ : H3(Ig,Q) −→ H3(U,Q) ∼= Λ3UQ.

of τ∗ : Λ3UQ → H3(Ig,Q), we can obtain summands which are not in Ker τ∗
by decomposing the image of τ∗ into each irreducible component. To find ele-
ments in H3(Ig,Q), we construct abelian cycles, which are fundamental cycles
of abelian subgroups of Ig.

To treat third homology groups of abelian groups, we need the following
lemma where we denote the basis elements (1, 0, 0), (0, 1, 0), (0, 0, 1) of Z3 by
x1, x2, x3, respectively.

Lemma 5.3 Let A be an abelian group and f : Z3 → A be a group homomor-
phism. Then the image of 1 ∈ Z ∼= H3(Z3) in H3(A) ∼= Λ3A is given by

f(x1) ∧ f(x2) ∧ f(x3).

12



Proof. The cycle which represents the image of 1 ∈ H3(Z3) in the third cycle
group of A is given by∑

σ∈S3

sgn(σ) [f(xσ(1))|f(xσ(2))|f(xσ(3))]

where this cycle is written in the form using the standard complex. Then the
result follows from the definition of the Pontryagin product. ✷

We can find some abelian cycles by choosing simple closed curves along which
Dehn-twists are done. Recall that we embedded U into UQ in the following
lemma.

Lemma 5.4 There exist some abelian cycles whose homology classes mapped
into Λ3U by τ∗ are given by

w1 = A123 ∧A124 ∧A345 (g ≥ 5),

w2 = p21 ∧
(

2∑
i=1

p3i

)
∧
(

3∑
i=1

p4i

)
(g ≥ 5),

w3 = p12 ∧ p34 ∧ p56 (g ≥ 6).

Namely, they are in Image (τ∗ : H3(Ig) ∼= Λ3U → H3(U)).

Proof. Construct homomorphisms fi : Z3 → Ig as follows, where Tc is the
isotopy class of the Dehn-twist along the simple closed curve c.

f1: f1(x1) = [Tγ1 , Tγ2 ], f1(x2) = [Tγ3 , Tγ4 ], f1(x3) = [Tγ5 , Tγ6 ]

1 2 3 4 5

γ1 γ5

γ3

γ2 γ6

γ4

where [Tγi , Tγj ] = TγiTγjT
−1
γi
T−1
γj
.

f2: f2(x1) = Tδ1T
−1
δ2
, f2(x2) = Tδ3T

−1
δ4
, f2(x3) = Tδ5T

−1
δ6

1 2 3 4 5

δ1 δ3 δ5

δ6δ4δ2
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f3: f3(x1) = Tε1T−1
ε2 , f3(x2) = Tε3T−1

ε4 , f3(x3) = Tε5T−1
ε6

1 2 3 4 5

ε2 ε4

6

ε6

ε1 ε3 ε5

Since curves are disjoint from each other, fi are well-defined homomorphisms.
By Lemma 5.3, we see that τ∗ ◦ fi define the homology classes w̃i given by

w̃1 = B123 ∧B124 ∧B345,

w̃2 = q21 ∧
(

2∑
i=1

q3i

)
∧
(

3∑
i=1

q4i

)
,

w̃3 = q12 ∧ q34 ∧ q56.
Since τ is Mg-equivariant, the lemma follows. ✷

Under the above preparation, we prove Theorem 3.2. We now assume g ≥ 5.
As in the previous subsection, we summarize Sp(2g,Q)-modules and Sp(2g,Q)-
homomorphisms in the following diagran

Λ3[13] = Λ3UQ

(HQ ⊗ Λ2HQ)⊗2 ⊗ Λ3HQ

(Λ3HQ)⊗3Λ3HQ ⊗ Λ2(Λ3HQ)

Λ3(Λ3HQ)

Λ5HQ

Λ4HQ ⊗HQ

g1

g3

g4

f1

f6

g8

ι

f3◦f2

f7

HQ ⊗ Λ4HQ ⊗ Λ4HQ

Λ2HQ ⊗ Λ2HQ ⊗ Λ5HQ
g2

Λ3HQ ⊗ Λ6HQ

Λ3HQ ⊗ Λ4HQ

Λ3HQ ⊗ Λ2HQ

g7

g13

Λ3HQ ⊗HQ ⊗HQ

HQ ⊗ Λ2HQ ⊗ Λ6HQ

g9

g12

g14

HQ ⊗ Λ2HQ ⊗ Λ4HQ

HQ ⊗ Λ6HQ

Λ2HQ ⊗ Λ7HQ

g10

g11

Λ2HQ ⊗ Λ5HQ

where new homomorphisms are given by{
f6 = jHQ

⊗ jHQ
⊗ 1

f7(x1 ⊗Akl ⊗ x2 ⊗Amn ⊗Apqr) = Akl ⊗ Amn ⊗ (x1 ∧ x2 ∧Apqr)
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g7 = jHQ
⊗ 1

g8(x⊗ Akl ⊗ Amnopqr) = Akl ⊗ (x ∧Amnopqr)
g9 = jHQ

⊗ 1
g10(x⊗ Akl ⊗Apqrs) = Akl ⊗ (x ∧Apqrs)
g11 = 1⊗multi.
g12 = multi.
g13 = 1⊗ i2HQ

g14 = multi.⊗ 1.

[323]: From the direct calculation, we have

X1,5w1 = A123 ∧A124 ∧A134

f1◦ι�−→ A123 ⊗ A124 ⊗ A134 −A123 ⊗ A134 ⊗A124 + A124 ⊗ A134 ⊗A123

−A124 ⊗ A123 ⊗A134 + A134 ⊗A123 ⊗ A124 − A134 ⊗A124 ⊗ A123

f3◦f2�−→ 6a1 ⊗A1234 ⊗ A1234.

Hence we obtain

f3 ◦ f2 ◦ f1 ◦ ι(X1,5w1) = 6A12 ⊗ A1234 ⊗ A1234.

This is the highest weight vector of [323] so that [323] is not in Ker τ∗ for g ≥ 5.

[3213]: By the similar calculation, we have

f7 ◦ f6 ◦ f1 ◦ ι(X2,4X1,3w1) = 6A12 ⊗ A12 ⊗ A12345.

This is the highest weight vector of [3213] so that [3213] is not in Ker τ∗ for
g ≥ 5.

As for [19], [17], [13] and [15], we calculate images of w3 by following maps

Λ3UQ
ι−→ Λ3(Λ3HQ)

multi.−−−−→ Λ9HQ
C9−→ Λ7HQ

C7−→ Λ5HQ
C5−→ Λ3HQ.

beforehand. Then we obtain

w3
multi.◦ι�−→ p12 ∧ p34 ∧ p56

C9�−→ 6(g − 1)−1A135 ∧ (A2−24−4 + A2−26−6 + A4−46−6)
−10(g − 1)−2A135 ∧ (A2−2 + A4−4 + A6−6) ∧ ω
+12(g − 1)−3A135 ∧ ω2

C7�−→ 2(g + 19)(g − 1)−2A135 ∧ (A2−2 + A4−4 + A6−6)
−6(g + 11)(g − 1)−3A135 ∧ ω
C5�−→ 12(5g + 7)(g − 1)−3A135.
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[19]: From the above calculation, we have

multi. ◦ ι(Y6,9Y4,8Y2,7w3) = A123456789.

This is the highest weight vector of [19] so that [19] is not in Ker τ∗ for g ≥ 9.

[17]: Similarly we have

C9 ◦multi. ◦ ι(X6,8Y4,7Y2,8w3) = 6(g − 1)−1A1234567.

This is the highest weight vector of [17] so that [17] is not in Ker τ∗ for g ≥ 8.

[13]: We have

C5 ◦ C7 ◦ C9 ◦multi. ◦ ι(X2,5w3) = −(60g + 84)(g − 1)−3A123.

This is the highest weight vector of [13] so that [13] is not in Ker τ∗ for g ≥ 3.

Similar calculations can be applied to the other components except [1]. But we
now omit the details.

[2313]: We have

g2 ◦ g1 ◦ ι(X1,6Y1,6Y2,6Y3,5w2) = −A123 ⊗A123456.

This is the highest weight vector of [2313] so that [2313] is not in Ker τ∗ for
g ≥ 6.

[231]: We have

g3 ◦ g2 ◦ g1 ◦ ι(X2,4X1,5X4,5Y1,5Y3,5w2) = −3(g − 1)−1(g − 3)A123 ⊗A1234.

This is the highest weight vector of [231] so that [231] is not in Ker τ∗ for g ≥ 5.

[221]: We have

g4 ◦ g3 ◦ g2 ◦ g1 ◦ ι(X2,4X1,5X1,3Y3,5w2) = 2(g − 1)−1(g − 3)(g + 1)A123 ⊗A12.

This is the highest weight vector of [221] so that [221] is not in Ker τ∗ for g ≥ 5.

[2215]: We have

g8 ◦ g7 ◦ g2 ◦ g1 ◦ ι(X1,3Y1,7Y2,6Y3,5w2) = −A12 ⊗A1234567.

This is the highest weight vector of [2215] so that [2215] is not in Ker τ∗ for
g ≥ 7.
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[2213]: We have

g10 ◦ g9 ◦ g3 ◦ g2 ◦ g1 ◦ ι(X1,3X1,6Y2,6Y3,5w2) = 3(g − 1)−1A12 ⊗A12345.

This is the highest weight vector of [2213] so that [2213] is not in Ker τ∗ for
g ≥ 6.

[215]: We have

g11 ◦ g9 ◦ g3 ◦ g2 ◦ g1 ◦ ι(X1,3Y1,6Y3,5w2) = 3(g − 1)−1(g − 3)a1 ⊗ A123456.

This is the highest weight vector of [215] so that [215] is not in Ker τ∗ for g ≥ 6.

[213]: We have

g14 ◦ g13 ◦ g4 ◦ g3 ◦ g2 ◦ g1 ◦ ι(X1,5X1,3Y3,5w2) = 2(g − 1)−2(g − 3)(g + 1)A1234 ⊗ a1.
This is the highest weight vector of [213] so that [213] is not in Ker τ∗ for g ≥ 5.

[15]: We now claim that Image τ∗ ⊗ Q has [15] whose multiplicity is actually 2
when g ≥ 7 and 1 when g = 5, 6. It is easy to see that

C7 ◦ C9 ◦multi. ◦ ι(Y1,5w2) = −22(g − 1)−2(g − 5)(g − 6)A12345,
g12 ◦ g4 ◦ g3 ◦ g2 ◦ g1 ◦ ι(Y1,5w2) = 2(g − 1)−2(g + 1)(4g − 15)A12345.

On the other hand, we prepare another vector X4,7Y2,7w3 which is defined when
g ≥ 7. Then

C7 ◦ C9 ◦multi. ◦ ι(X4,7Y2,7w3) = −2(g − 1)−2(g + 19)A12345,
g12 ◦ g4 ◦ g3 ◦ g2 ◦ g1 ◦ ι(X4,7Y2,7w3) = −2(g − 1)−2(g + 1)A12345.

It is easily checked that Y1,5w2 and X4,7Y2,7w3 have Sp(2g,Q)-linearly indepen-
dent images in [15] when g ≥ 7. Therefore our claim follows.

¿From above computations, we have determined the image of τ∗ except the
summand [1]. ✷

5.3 The summand of [1] and characteristic classes of sur-
face bundles on the pointed Torelli group

In this subsection, we treat the remaining summand of [1]. As the result, we see
that this summand embodies one of characteristic classes of surface bundles.

Let v[1] be the highest weight vector of [1] in Λ3UQ. By the universal coef-
ficient theorem, v[1] can be considered as an element of Hom(H3(U),Q). Then
this homomorphism factors through HQ as follows.

H3U ∼= Λ3U Λ3UQ Q

HQ

✲ ✲

❄ �
��✒p
b∗1
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where the vertical map p is an Sp(2g,Q)-equivariant projection Λ3UQ → [1] =
HQ. Then

τ∗(v[1]) = 0 ∈ H3(Ig,Q) ⇐⇒ τ∗(p) = p ◦ τ∗ = 0 ∈ Hom (H3(Ig), HQ).

Since Ig acts onHQ trivially, we see that τ∗(p) ∈ Hom(H3(Ig), HQ) ∼= H3(Ig, HQ).
The following result admits us to consider τ∗(p) to be an element of H4(Ig,∗,Q).

Proposition 5.5 ([Mo1],[KM]) The cohomology group H∗(Ig,∗,Q) has a canon-
ical decomposition of

H∗(Ig,∗,Q) ∼= H∗(Ig,Q)⊕H∗−1(Ig, HQ)⊕H∗−2(Ig,Q).

Explicitly, the inclusion H∗−1(Ig, HQ) ↪→ H∗(Ig,∗,Q) is given by the composi-
tion map

H∗−1(Ig, HQ)→ H∗−1(Ig,∗, HQ)
∪χ−→ H∗(Ig,∗, HQ ⊗HQ)

µ∗→ H∗(Ig,∗,Q)

where χ ∈ H1(Ig,∗, HQ) ∼= Hom (H1(Ig,∗), HQ) is the Mg,∗-equivariant homo-
morphism which is the composition of the Johnson homomorphism τ : H1(Ig,∗)→
Λ3HQ and the contraction C3 : Λ3HQ → HQ and the last map is applying the
intersection form µ to coefficients in HQ ⊗HQ.

¿From this result, we have the following commutative diagram

Hom(Λ3UQ, HQ)
τ∗−→ Hom(H3Ig, HQ)

‖ ‖
Λ3UQ ⊗HQ H3(Ig, HQ)

↓ ↓
Λ4(Λ3HQ)

τ∗−→ H4(Ig,∗,Q)
where the left vertical map is the canonical inclusion with respect to the decom-
position

Λ4(Λ3HQ)
= (Λ4UQ)⊕ (Λ3UQ ⊗HQ)⊕ (Λ2UQ ⊗ Λ2HQ)⊕ (UQ ⊗ Λ3HQ) ⊕ (Λ4HQ).

Here p is an Sp(2g,Q)-equivariant homomorphism so that p can be consid-
ered to be an Sp(2g,Q)-invariant vector as an element of the Sp(2g,Q)-module
Hom(Λ3UQ, HQ). Now we use the following commutative diagram

(Λ4(Λ3HQ))Sp ρ∗1−→ H4(Mg,∗,Q)
↓ ↓

Λ4(Λ3HQ)
τ∗−→ H4(Ig,∗,Q)

constructed by Morita [Mo4] where ρ1 is the extended Johnson homomorphism
defined in [Mo3]. Then we see that p ∈ Λ4(Λ3HQ) comes from the invariant
part

(Λ3UQ ⊗HQ)Sp ⊂ (Λ4(Λ3HQ))Sp
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which is 1-dimensional for g ≥ 5. The top horizontal map ρ∗1 in the above
diagram is completely determined by Kawazumi and Morita in [KM] where they
calculated the images of basis elements described by trivalent graphs. Hence we
need to write the invariant vector of (Λ3UQ⊗HQ)Sp using them. By the method
described in [Mo6], we obtain an equality

c · p = 4(g − 1)3Λ3 + 12(g − 1)2Λ4 + 2(g + 5)(g − 1)Λ5

+2(g − 1)2Λ7 + (7g − 1)Λ8

where c is some non-zero scalar and Λi (i = 1, 2, · · · , 8) are trivalent graphs
defined in [KM]. We may assume that c = 1. Then

ρ∗1(p) = 2(g − 1)(2g + 1)(g + 1)e2 + 4(g − 1)2(2g + 1)(g + 1)e2
+(2g + 1)(g + 1)e21 + (g − 1)(2g + 1)(g + 1)ee1.

Considering that e1 vanishes on H∗(Ig,∗,Q), we obtain

τ∗(p) = 2(g − 1)(2g + 1)(g + 1){e2 − (2− 2g)e2}.

Therefore we can say that

τ∗(v[1]) = 0 ∈ H3(Ig,Q) ⇐⇒ e2 − (2− 2g)e2 = 0 ∈ H4(Ig,∗,Q).

This completes the proof of Theorem 3.3. ✷

Using the well-known fact about the realization of homology classes, we see
that the problem is reduced to the case of three dimensional groups, which are
fundamental groups of some three dimensional closed manifolds. This gives
a new approach to the non-triviality problem of characteristic classes of sur-
face bundles on the Torelli group. Notice that the same argument is valid for
summands [1] of higher degrees in Λ∗UQ
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