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REGULAR PROJECTIVELY ANOSOV FLOWS ON THE SEIFERT
FIBERED 3-MANIFOLDS

TAKASHI TSUBOI

Abstract. This paper concerns projectively Anosov flows ϕt with smooth
stable and unstable foliations Fs and Fu on a Seifert fibered 3-manifold M

over a hyperbolic orbifold. We show that if the foliations Fs and Fu do not

have compact leaves, then after changing the parameter, ϕt is differentiably
isotopic to a quasi-Fuchsian flow lifted to a finite cover.

1. Introduction and the statement of the result

A non singular flow ϕt on a closed 3-dimensional manifold M is a projectively

Anosov flow if there exist a continuous Riemannian metric on M , a continuous

splitting Êu ⊕ Ês of TM/Tϕ invariant under the action of T̂ϕt on TM/Tϕ, and

a positive real number C such that the following inequality holds for t ≥ 0, vu ∈
Êu \ {0} and vs ∈ Ês \ {0}:

‖(T̂ϕt)vu‖
‖(T̂ϕt)vs‖ ≥ eCt ‖vu‖

‖vs‖ .

This definition was given in [7], where Eliashberg and Thurston called it a con-

formally Anosov flow. The same flow was investigated by Mitsumatsu [19] (see also

[20]) and was called a projectively Anosov flow.

The invariant line bundles Êu and Ês give rise to the invariant plane fields Eu

and Es over M . As is remarked in [7], the plane fields Eu and Es are continuous

and integrable, but frequently they are not uniquely integrable. It is, however,

interesting to investigate the case where the plane fields Eu and Es are smooth,

and then Eu and Es determine codimension 1 smooth foliations Fu and Fs of M .

In this case, we call the projectively Anosov flow regular.

There are a large variety of the Anosov flows with stable and unstable foliations

of class C1 but not C2. On the other hand, the Anosov flows with smooth (at least
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C3) stable and unstable foliations (regular Anosov flows) are classified by Ghys

([12], [13]). Up to finite cover and parameter change, they are either isotopic to

the suspension flow of the Anosov diffeomorphisms of the torus or to the quasi-

Fuchsian flows on the Seifert fibered 3-manifolds over hyperbolic orbifolds. These

are the most important examples of regular projectively Anosov flows.

For a regular projectively Anosov flow, the smooth foliations Fu and Fs may

have compact leaves which are tori ([7]). In [20], Noda investigated the regular

projectively Anosov flows with compact leaves, and he also gave the classification

of those flows with compact leaves on torus bundles over the circle.

In this paper, we look at regular projectively Anosov flows without compact

leaves on the Seifert fibered 3-manifolds over hyperbolic orbifolds, and show that

they are in fact the Anosov flows (quasi-Fuchsian flows). More precisely, we show

the following theorem.

Theorem 1.1. Let ϕt be a regular projectively Anosov flow on a Seifert fibered

3-manifold M over a hyperbolic orbifold. Assume that the unstable foliation Fu

and the stable foliation Fs do not have compact leaves. Then after changing the

parameter of the flow, ϕt is differentiably isotopic to a quasi-Fuchsian flow lifted to

a finite cover.

Noda showed in [21] that a Seifert fibered 3-manifold over a hyperbolic orbifold

does not admit regular projectively Anosov flows with compact leaves in the un-

stable foliation Fu or the stable foliation Fs. Hence the above theorem gives the

classification of regular projectively Anosov flows on a Seifert fibered 3-manifold.

Note that Barbot ([1]) classified the Anosov flows (which are not necessarily reg-

ular) on a large family of graph manifolds including Seifert fibered 3-manifold M

over a hyperbolic orbifold.

Note also that Theorem 1.1 for the regular projectively Anosov flows without

compact leaves on the unit tangent bundle of a closed hyperbolic surface was shown

in [22].

By the assumption of our theorem that the foliations Fu and Fs do not have

compact leaves, the theorems of Thurston ([24]), Levitt ([16]), Eisenbud-Hirsch-

Neumann ([6]), Matsumoto ([17]) and Brittenham ([2]) assert that each foliation

Fu and Fs can be individually isotoped to be transverse to the fibers. Hence

the lifted foliations F̃u and F̃s of the universal covering space M̃ are the product

foliations.
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To show our results, we first look at the leaf spaces Qu and Qs of the lifted

foliations F̃u and F̃s and the orbit space of the lifted flow ϕ̃t on the universal

covering space M̃ together with the action of the fundamental group π1(M). This

procedure is the same as in [22], and the orbit foliation ϕ̃ of M̃ is again shown to

be Hausdorff. The Hausdorffness follows from two facts, namely, that the flow is

projectively Anosov and that the lifted foliations F̃u and F̃s are product foliations.

We review it in Section 2. In the recent paper [18], it is also shown that without

the assumption of being projectively Anosov, the transverse intersection of Fu and

Fs of the unit tangent bundle of the hyperbolic surface is not unique and the orbit

foliation ϕ̃ of M̃ is not Hausdorff.

To proceed further, we need to know the topology of the leaves of Fu and Fs.

We show in Section 3 that each leaf of Fu or Fs is homeomorphic either to a plane

or to a cylinder. By a simple argument of Poincaré-Hopf type, this follows from

the fact that the lifted flow on each lifted leaf is Hausdorff.

The information on the topology of the leaves of smooth foliations has a remark-

able consequence by the unpublished famous work by Duminy [5] (announced in

[15], a proof is given by Cantwell-Conlon [3]). Duminy showed that the end set of

a semiproper leaf of an exceptional minimal set of a codimension 1, C2 foliation of

a closed manifold is homeomorphic to the Cantor set. In our situation, Duminy’s

result implies that all leaves of Fu or Fs are dense.

Then in Sections 4, 5 and 6, we look at the action of π1(M) on the orbit space

M̃/ϕ̃ and we study the shape of the image p(M̃). If there is a closed orbit of ϕ, then

we have a fixed point in M̃/ϕ̃ for the action of the element of π1(M) represented

by the closed orbit. Even if we assume that there are no closed orbits, we show

that there is an element of π1(M) whose action on Qu and on Qs have fixed points.

Then, in both cases, the image p(M̃) should not be very large and should look like a

band from (−∞,−∞) to (∞,∞) inQu×Qs. We see that the boundary components

of the band are graphs of homeomorphisms Qu −→ Qs, for otherwise the action of

π1(M) on Qu or on Qs has exceptional minimal set and this contradicts Duminy’s

theorem.

In Section 7, we construct an action on the circle of the fundamental group

of the base 2-orbifold of the Seifert fibered 3-manifold. The fact that the flow is

projectively Anosov implies that the action on the circle is as is described by Barbot

[1], that is, this induces a convergence group action on the circle. Using the results
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of Tukia [27], Casson-Jungreis [4] or Gabai [10] as in [1], the action is shown to be

topologically conjugate to a Fuchsian action in Section 8.

In Section 9, we use these result to show our main theorem. Since the holonomy

of the foliations Fu and Fs are topologically conjugate to the lifts of those of

the Anosov foliations for the geodesic flow on the unit tangent bundle of the base

orbifold, M is a finite covering space of the unit tangent bundle of the base orbifold

and the foliations Fu and Fs are topologically conjugate to the Anosov foliations

lifted to the finite cover M . Since our foliations Fu and Fs are smooth foliations

topologically conjugate to the lifted Anosov foliations, the result of Ghys in [13] says

that there are hyperbolic metrics gu and gs such that Fu and Fs are differentiably

conjugate to the the Anosov foliations with respect to gu and gs lifted to the finite

cover M . This enable us to follow the argument of Ghys [12] to show our theorem.

The author is grateful to the Erwin Schrödinger Institute for its warm hospitality

where he could almost finish this work. He is also grateful to Franz Kamber for

organizing an excellent workshop at ESI in 2002.

2. Lifted flow and foliations in the universal covering

Let ϕt be a regular projectively Anosov flow on a 3-manifold M . Let Fu and

Fs be the unstable foliation and the stable foliation for ϕt, respectively. Let ϕ̃t,

F̃u and F̃s denote the induced flow and foliations on the universal covering space

M̃ of M .

We look at the leaf spaces Qu = M̃/F̃u and Qs = M̃/F̃s ([8], [1]). For the

purpose of this paper, we restrict our attention to the case where Qu and Qs are

Hausdorff, i.e., F̃u and F̃s are diffeomorphic to the product foliation of R3 with

leaves R2 × {∗}. Then Qu and Qs are diffeomorphic to the real line R. The

projections pu : M̃ −→ Qu and ps : M̃ −→ Qs are both π1(M) equivariant and

determine the foliations Fu and Fs, respectively.

We consider the juxtaposition map of projections;

p = (pu, ps) : M̃ −→ Qu ×Qs.

The map p to the plane is a π1(M) equivariant submersion and it determines the

structure of the orbit foliation ϕ of the flow ϕt.

The problem we need to treat first is to know whether the orbit foliation ϕ̃ of

the lifted flow on M̃ is Hausdorff. We have the following proposition ([22]) which

we also include the proof.
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Proposition 2.1 ([22]). Let ϕt be a regular projectively Anosov flow on a 3-

manifold M . Assume that the lifted stable foliation F̃s of the universal covering

space M̃ is diffeomorphic to the product foliation of R3. Then the lifted orbit foli-

ation ϕ̃ restricted to each leaf L̃u of the lifted unstable foliation F̃u is Hausdorff.

Proof. Assume that there are two distinct orbits � and �′ of ϕ̃ on L̃u such that

a sequence {�i} of orbits of ϕ̃ on L̃u converges to them simultaneously. Let L̃s
i

denote the unstable leaf passing �i. Then by the assumption that F̃s is the product

foliation, the leaf L̃s
i converges to a leaf L̃s. Thus � and �′ are components of the

intersection of L̃u and L̃s. See Figure 1.

We take points x and x′ on � and �′, respectively. Then we take bi-foliated

rectangles T and T ′ at x and x′ transverse to ϕ̃, respectively. There are curves γu

and γs on L̃u and L̃s joining x and x′. Then we obtain holonomies hu
γu and hs

γs

for the foliations F̃u and F̃s along γu and γs, respectively. Since L̃u and L̃s are

contractible, the holonomies do not depend on the paths on the leaves.

Take a Riemannian metric on M adapted for the projectively Anosov flow ϕ.

We lift it to the universal covering space M̃ . We look at the intersections xi, x′
i of

the orbit �i and the bi-foliated rectangles T , T ′. We may assume that ϕ̃ti
(xi) = x′

i

for positive ti. Then we see that ti → ∞ as i → ∞. This implies that

‖(T̂ ϕ̃ti
)vu‖

‖(T̂ ϕ̃ti
)vs‖ ≥ eCti

‖vu‖
‖vs‖

for vu ∈ (T F̃u/T ϕ̃) \ {0} and vs ∈ (T F̃s/T ϕ̃) \ {0} at xi. Thus this ratio tends to

the infinity as i → ∞.
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This ratio can also be calculated as the ratio of the derivatives of the holonomies

hu
γu and hs

γs at that points, and hence the ratio is bounded. This is the contradic-

tion. �

In our case, both the lifted unstable foliation F̃u and the lifted stable foliation

F̃s are diffeomorphic to the product foliation of R3, and Proposition 2.1 implies

the following lemma.

Lemma 2.2. If both the lifted unstable foliation F̃u and the lifted stable foliation

F̃s are diffeomorphic to the product foliation of R3, then the orbit foliation ϕ̃ of M̃

is Hausdorff and p : M̃ −→ Qu ×Qs is a fibration to the image with fiber being the

orbit of ϕ̃t. The image p(M̃) has the following properties.

(i) The image p(M̃) is a simply connected domain in Qu ×Qs.

(ii) The intersection p(M̃) ∩ (Qu × {ys}) for ys ∈ Qs or p(M̃) ∩ ({xu} × Qs)

for xu ∈ Qu is either empty or homeomorphic to the real line.

3. Poincare-Hopf type invariant

First we review an invariant for the immersed curves on a foliated surface, which

should have been well known.

Let ϕ be a nonsingular flow on an oriented 2-manifold L. LetX be the generating

vector field for the flow ϕ. For a smooth immersion γ : S1 −→ L, one can count the

degree of t �−→ γ′(t)/‖γ′(t)‖ with respect to the trivialization of Tγ(t)L given by

X(γ(t))/‖X(γ(t))‖ and its normal vector in the positive orientation. This integer

NRϕ(γ) (the number of rotations of γ with respect to ϕ) depends on the regular

homotopy class of the curve γ on L.

We have the following well known lemma.

Lemma 3.1 (Poincare-Hopf Theorem). Let ϕ be a nonsingular flow on an oriented

2-manifold L. Let S be a smoothly embedded compact surface with boundary ∂S in

L. Then ∑
γ⊂∂S

NRϕ(γ) = χ(S),

where γ ⊂ ∂S is given the induced orientation and χ(S) denotes the Euler charac-

teristic of S.

Proposition 3.2. Let ϕt be a nonsingular flow on an oriented 2-manifold L. As-

sume that the induced orbit foliation ϕ̃ on the universal covering space L̃ of L is
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the product foliation (R2,R × {∗}). Then L is homeomorphic either to the plane,

to the cylinder or to the torus.

Proof. If L is homeomorphic neither to the plane, to the cylinder nor to the torus,

one can find a pair P of pants (the 2-disk with two 2-disks deleted) embedded as an

essential submanifold, i.e., the embedding induces the injection in the fundamental

groups. Lemma 3.1 says that the sum of the invariant NRϕ(γ) over the three

boundaries of P is −1, hence one of the boundary components, say γ0, has non-

zero invariant.

On the other hand, (L̃, ϕ̃) is the product foliation and the action of the element

α of π1(L) represented by the closed curve γ0 preserves the product foliation with

orientation. Then γ0 is regularly homotopic in L to a closed curve γ1 which is

an orbit or a curve transverse to ϕ. (γ1 may not be a simple closed curve in the

argument.) The reason is as follows. By the assumption, π1(L) acts on the leaf

space L̃/ϕ̃ homeomorphic to R. If the action of α on L̃/ϕ̃ has a fixed point, then

this fixed orbit is a lift of a closed orbit γ1 in L. If the action of α has no fixed

point on L̃/ϕ̃, we can take a curve γ̃1 in L̃ transverse to ϕ̃ which is invariant under

the action of α. This γ̃1 defines a closed curve γ1 on L. Let γ̂0 and γ̂1 be the lifts of

γ0 and γ1 in L̃/α which are simple closed curves. Since the simple closed curves γ̂0

and γ̂1 are in the same homotopy class α in L̃/α, γ̂0 and γ̂1 are in the same regular

homotopy class in L̃/α. Hence γ0 and γ1 are in the same regular homotopy class

in L. Thus NRϕ(γ1) = NRϕ(γ0).

Since γ1 is tangent or transverse to ϕ, NRϕ(γ1) = 0. This contradicts that

NRϕ(γ0) �= 0. �

When we look at a flow on a 3-manifold tangent to an oriented foliation, this in-

variant should play an essential role. In fact the above proposition has the following

corollary.

Corollary 3.3. Let ϕ be a regular projectively Anosov flow on a closed 3-dimensional

manifold M . Assume that the lifted foliation F̃s of the universal covering space M̃

of M is the product foliation. Then each leaf of Fu is homeomorphic either to the

plane, to the cylinder or to the torus.

Now we cite the theorem of Duminy [5] (announced in [15], a proof is given by

Cantwell-Conlon [3]).
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Theorem 3.4 (Duminy). The end set of a semiproper leaf of an exceptional min-

imal set of a codimension 1, C2 foliation of a closed manifold is homeomorphic to

the Cantor set.

Corollary 3.5. Let ϕ be a regular projectively Anosov flow on a closed 3-dimensional

manifold M with the associated foliations Fu and Fs being without compact leaves.

Assume that the lifted foliations F̃u and F̃s of the universal covering space M̃ of

M are product foliations. Then each leaf of Fu or Fs is dense and homeomorphic

either to the plane or to the cylinder.

4. Properties of the orbit space

Our situation is as follows. We have foliations Fu and Fs of the Seifert fibered

3-manifold M without compact leaves. By the theorems of Thurston ([24]), Levitt

([16]), Eisenbud-Hirsch-Neumann ([6]), Matsumoto ([17]) and Brittenham ([2]), the

foliations Fu and Fs can be isotoped to be transverse to the fibers. Hence the lifted

foliations F̃u and F̃s of the universal covering space M̃ are the product foliations.

Let Qu = M̃/F̃u and Qs = M̃/F̃s denote the leaf spaces. Then we have the

projection p : M̃ −→ Qu × Qs. Since the intersection Fu ∩ Fs is projectively

Anosov, p is a fibration to the image by Lemma 2.2.

Now the transverse structure of the foliations and the flow is given by the diagonal

π1(M) action on the image p(M̃) in the product Qu ×Qs. The fundamental group

π1(M) has the center Z whose generator is represented by the general fiber of the

Seifert fibration. Since the foliations Fu and Fs can be isotoped to be transverse

to the general fiber, the generator of the center acts by a non trivial translation

on the leaf space Qu as well as on the leaf space Qs. We fix a generator c of the

center Z and fix the transverse orientations of Fu and Fs so that the action of the

generator c of Z is the translation by 1 on Qu and on Qs.

Then using Lemma 2.2 and Corollary 3.5, we see the following lemmas.

Lemma 4.1. The image p(M̃) ⊂ Qu ×Qs has the following property.

(i) The image p(M̃) is a simply connected domain in Qu ×Qs.

(ii) The intersection p(M̃)∩Qu×{ys} (ys ∈ Qs) or p(M̃)∩{xu}×Qs (xu ∈ Qu)

is non empty and homeomorphic to the real line.

(iii) For xu
1 , xu

2 ∈ Qu and xs
1, xs

2 ∈ Qs such that xu
1 < xu

2 < xu
1 + 1 and

xs
1 < xs

2 < xs
1+1, if (xu

1 , x
s
2) and (xu

2 , x
s
1) belong to p(M̃), then (xu

1 , x
s
1) and

(xu
2 , x

s
2) belong to p(M̃).
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(iv) If A is a component of the boundary of p(M̃), then A is the graph of a

homeomorphism Qu −→ Qs.

Proof. The statements (i) and (ii) follow from the first part of Lemma 2.2 and the

fact that the center acts as non trivial translations on Qu and on Qs.

The statement (iii), which is a kind of convexity property, is shown as follows.

By the invariance under the action of the center, (xu
1 + 1, xs

2 + 1) belongs to p(M̃)

as well. Note that any path from (xu
1 , x

s
2) to (x

u
1 +1, xs

2 +1) in p(M̃) passes across

the union of half lines:

{xu
2} × [xs

2,∞) ∪ [xu
2 ,∞)× {xs

2}.

Hence either (xu
2 , x

s
3) ∈ p(M̃) for xs

3 ≥ xs
2 or (x

u
3 , x

s
2) ∈ p(M̃) for xu

3 ≥ xu
2 . In either

case, by statement (ii), (xu
2 , x

s
2) belongs to p(M̃).

In a similar way, (xu
1 , x

s
1) belongs to p(M̃).

For the statement (iv), the statements (i) and (ii) imply that a component A

of the boundary of p(M̃) is the completed graph of a non decreasing function

Qu −→ Qs. Here the completed graph means that gaps of the graph are filled by

vertical segments.

Now A is invariant under the action of π1(M). If A is not the graph of a

homeomorphism, there is either a vertical segment or a horizontal segment in A.

Assume that there is a vertical segment J ⊂ A. We take a maximal vertical

segment containing J and contained in A, and by changing the name let J denote

the maximal one. Since the action of π1(M) on Qu ×Qs is the diagonal action, an

element of π1(M) sends a vertical segment to a vertical segment in A. Then the

orbit π1(M)(IntJ) is an invariant set under the action of π1(M). Again since the

action of π1(M) on Qu × Qs is the diagonal action, ps(π1(M)(IntJ)) is invariant

under the action of π1(M) on Qs. Since ps(π1(M)(IntJ)) is a disjoint union of open

intervals, the closure of an orbit of a point of the complement of ps(π1(M)(IntJ))

is not equal to the whole Qs. This implies that a leaf of Fs is not dense. This

contradicts Corollary 3.5.

If there is a horizontal segment J ⊂ A, then we see in the same way that a leaf

of Fu is not dense. and this contradicts Corollary 3.5.

Thus the statement (iv) is proved. �

Lemma 4.2. Neither Fu nor Fu is a foliation without holonomy.
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Proof. If Fu is without holonomy, then the global holonomy of the foliated bundle

over the orbifold is contained in a subgroup conjugate to the group of rotations.

This implies that each leaf is a covering associated to a subgroup containing the

commutator subgroup of the base space, and hence has nontrivial genus. This

contradicts Corollary 3.5. �

5. Closed orbits

We look at the closed orbits of our regular projectively Anosov flows. The

existence of a closed orbit gives a lot of restrictions on the shape of the orbit space.

Lemma 5.1. If there is a closed orbit γ of ϕ, the actions of the element [γ] ∈ π1(M)

on Qu and Qs have fixed points and there is a fixed point (xu
0 , x

s
0) ∈ p(M̃) of the

action of [γ] in the image p(M̃) such that for a positive real number ε, the interval

(xu
0 , x

u
0 + ε) ⊂ Qu or (xs

0, x
s
0 + ε) ⊂ Qs does not contain fixed points for [γ].

Proof. If there is a closed orbit γ of ϕ, then by taking a suitable lift γ̃ ⊂ M̃ ,

p(γ̃) = (pu(γ̃), ps(γ̃)) is a fixed point for the action of [γ] ∈ π1(M).

If the germ of the action of [γ] at pu(γ̃) ∈ Qu is the identity, γ has a neighborhood

in Ls saturated by closed orbits, where Ls is the leaf of the stable foliation Fs

containing γ. Since all leaves are dense and homeomorphic either to the plane or to

the cylinder by Corollary 3.5, all leaves of the unstable foliation Fu are cylinders.

Then it is easy to see that the unstable foliation Fu is without holonomy and

topologically conjugate to a linear foliation by cylinders on T 3, contradicting the

assumption on the manifold M (or Lemma 4.2).

Thus the germ of the action of [γ] on the positive side of pu(γ̃) ∈ Qu is not that

of the identity.

If there are no fixed points on (pu(γ̃), pu(γ̃)+ ε), we take xu
0 = pu(γ̃). Otherwise

pu(γ̃) is an accumulation point of the fixed point set of the action of [γ] on Qu and

we can find a desired xu
0 (> pu(γ̃)) such that (xu

0 , p
u(γ̃)) ∈ p(M̃).

In a similar way, we can take xs
0 ∈ Qs and (xu

0 , x
s
0) is the desired point.

Note that p−1(xu
0 , p

u(γ̃)) corresponds to a closed orbit γ′ which is in the same

stable leaf as γ and parallel to γ. In the same way, p−1(xu
0 , x

s
0) corresponds to a

closed orbit γ′′ which is in the same unstable leaf as γ′ parallel to γ′. �

We will see that there is a unique closed orbit on each cylindrical leaf of the

unstable foliation Fu or of the stable foliation Fs. But it is necessary to see the
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Figure 2. Proof of Lemma 5.2 (i).

consequences of the unrealizable case where there are two closed orbit on a leaf.

We have the following technical lemma.

Lemma 5.2. For xu
0 < xu

1 ≤ xu
0 + 1 and xs

0 < xs
1 ≤ xs

0 + 1, let [xu
0 , x

u
1 ] ⊂ Qu

and [xs
0, x

s
1] ⊂ Qs be invariant intervals for the action of [γ] ∈ π1(M) such that the

action of [γ] has no fixed points in the open intervals (xu
0 , x

u
1) and (xs

0, x
s
1).

(i) If the interval [xu
0 , x

u
1 ]×{xs

0} is contained in p(M̃), then the interval {xu
1}×

[xs
0, x

s
1] is contained in p(M̃).

If {xu
0} × [xs

0, x
s
1] is contained in p(M̃), then the interval [xu

0 , x
u
1 ]× {xs

1} is

contained in p(M̃).

(ii) If the point (xu
0 , x

s
0) belongs to p(M̃), then the point (xu

1 , x
s
1) belongs to

p(M̃).

If the point (xu
1 , x

s
1) belongs to p(M̃), then the point (xu

0 , x
s
0) belongs to

p(M̃).

Proof. (i). Assume that [xu
0 , x

u
1 ]× {xs

0} is contained in p(M̃). By the invariance of

p(M̃) under the action of [γ], the half intervals {xu
0} × [xs

0, x
s
1) and {xu

1} × [xs
0, x

s
1)

are contained in p(M̃). Hence by Lemma 4.1 (ii), [xu
0 , x

u
1 ]× [xs

0, x
s
1) is contained in

p(M̃).

If the point (xu
1 , x

s
1) does not belong to p(M̃), by Lemma 4.1 (iii), the point

(xu
0 , x

s
1) does not belong to p(M̃). See Figure 2. By the invariance under the action

of the center, p(M̃) intersects {xu
1}×[xs

1,∞)∪[xu
1 ,∞)×{xs

1}, but by Lemma 4.1 (ii),
p(M̃) does not intersect {xu

1}× [xs
1,∞), and p(M̃) intersects [xu

1 ,∞)×{xs
1} Hence

again by Lemma 4.1 (ii), [xu
0 , x

u
1 ] × {xs

1} is a horizontal segment on the boundary

of p(M̃). This contradicts Lemma 4.1 (iv) and the assertion (i) is shown.

The case where {xu
0} × [xs

0, x
s
1] is contained in p(M̃) is treated in a similar way.
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(xu

0 , x
s
0) (xu

1 , x
s
0)

(xu
0 , x

s
1) (xu

1 , x
s
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0 , x

s
0) (xu

1 , x
s
0)

(xu
0 , x

s
1) (xu

1 , x
s
1)

Figure 3. Proof of Lemma 5.2 (ii).

(ii). By the invariance of p(M̃) under the action of [γ], [xu
0 , x

u
1)× {xs

0} ∪ {xu
0} ×

[xs
0, x

s
1) is contained in p(M̃). If the point (xu

1 , x
s
1) does not belong to p(M̃), then

by (i) just shown, the points (xu
1 , x

s
0) and (xu

0 , x
s
1) do not belong to p(M̃). By the

invariance under the action of the center, p(M̃) intersects {xu
1}×(xs

1,∞)∪(xu
1 ,∞)×

{xs
1}.
If p(M̃) intersects {xu

1} × (xs
1,∞), then by Lemma 4.1 (iii), p(M̃) does not

intersect {xu
1}× (−∞, xs

1) and does intersect (xu
0 , x

u
1 )×{xs

1}. See Figure 3. By the
invariance under the action of [γ], (xu

0 , x
u
1 ) × {xs

1} is contained in p(M̃), and by

Lemma 4.1 (iii), [xu
0 , x

u
1 )× [xs

0, x
s
1) is contained in p(M̃). Then {xu

1} × [xs
0, x

s
1] is a

vertical segment on the boundary of p(M̃). This contradicts Lemma 4.1 (iv).

If p(M̃) intersects (xu
1 ,∞)× {xs

1}, we find in a similar way that [xu
0 , x

u
1 ]× {xs

1}
is a horizontal segment on the boundary of p(M̃) and this contradicts Lemma 4.1

(iv). Thus the assertion (ii) is shown. �

Lemma 5.3. Let γ be a closed orbit, and (xu
0 , x

s
0) = p(γ̃) ∈ Qu × Qs is the point

invariant under the action of [γ] ∈ π1(M). Then the point (xu
0 , x

s
0) is neither an

attractor nor a repeller for each of the 4 quadrants.

Proof. Assume that the point (xu
0 , x

s
0) is an attractor in one of the 4 quadrants for

the action of [γ]. Since the flow in M is projectively Anosov, the action of [γ] on

the tangent space T(xu
0 ,xs

0)
Qu × Qs at the point (xu

0 , x
s
0) sends the direction of the

vectors nearer to the direction of Qs. Thus xu
0 is a linearly nontrivial attractor for

the action of [γ] on Qu.

Then we have the nearby fixed points xu
−1 and xu

1 for the action of [γ] on Qu.

These points (xu
−1, x

s
0) and (xu

1 , x
s
0) do not belong to p(M̃). The reason is as

follows. If the point (xu
1 , x

s
0) is in the image p(M̃), p−1([xu

0 , x
u
1 ] × {xs

0}) projects
to an embedded annulus on a leaf Ls with the boundary components being closed
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(xu
0 , x

s
0) (xu

1 , x
s
0)

(xu
0 , x

s
1) (xu

1 , x
s
1)

(xu
−1, x

s
0)

Figure 4. Proof of Lemma 5.3.

orbits. Then the action at the closed orbit corresponding to p−1(xu
1 , x

s
0) is repelling

in the direction of Qu (that is, in the direction of Ls) and attracting in the direction

of Qs (that is in the direction of Lu). This contradicts the definition of Fu and Fs.

Thus the point (xu
1 , x

s
0) is not in the image p(M̃).

By the same reason, the point (xu
−1, x

s
0) is not in the image p(M̃).

Now we assume that the action of [γ] is attracting in a neighborhood in the

upper half plane Qu × [xs
0,∞). Let xs

1 (x
s
0 < xs

1) be the adjacent fixed point for the

action of [γ]. Then the point (xu
0 , x

s
1) belongs to p(M̃) by the following reason. By

the invariance of p(M̃) under the action, (xu
−1, x

u
1)× [xs

0, x
s
1) is contained in p(M̃).

See Figure 4. Then by (ii) just shown, the point (xu
1 , x

s
1) belongs to p(M̃). If the

point (xu
0 , x

s
1) does not belong to p(M̃), [xu

−1, x
u
0 ) × {xs

1} is a horizontal segment

on the boundary of p(M̃) contradicting Lemma 4.1 (iv). Hence the point (xu
0 , x

s
1)

belongs to p(M̃).

Now by Lemma 5.2 (ii), if the point (xu
0 , x

s
1) belongs to p(M̃), the point (xu

−1, x
s
0)

belongs to p(M̃). This contradicts the above.

If we assume that the action of [γ] is attracting in a neighborhood in the lower half

plane Qu×(−∞, xs
0], then we see that the point (x

u
0 , x

s
−1) belongs to p(M̃), Lemma

5.2 (ii) implies that the point (xu
1 , x

s
0) belongs to p(M̃) and we have contradiction.

If the point (xu
0 , x

s
0) is a repeller in one of the 4 quadrants, we argue in a similar

way. That is, then xs
0 is a linearly nontrivial repeller for the action of [γ] on Qs,

and for the nearby fixed points xs
−1 and xs

1, the points (xu
0 , x

s
−1) and (xu

0 , x
s
1) do

not belong to p(M̃), and however, (xu
1 , x

s
0) or (xu

−1, x
s
0) belongs to p(M̃). This

contradicts Lemma 5.2 (ii). �

Thus we obtain the following lemma.

Lemma 5.4. Let γ be a closed orbit. Let (xu
0 , x

s
0) = p(γ̃) be the fixed point for the

action of [γ]. Then for [γ] or [γ]−1, xu
0 is a repeller for the action on Qu and xs

0

is an attractor for the action on Qs. For the adjacent fixed points xu
−1 < xu

0 < xu
1
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Figure 5. Toplogically hyperbolic action

and xs
−1 < xs

0 < xs
1, {(xu

−1, x
s
−1), (x

u
1 , x

s
1)} ⊂ p(M̃) and

{(xu
−1, x

s
0), (x

u
0 , x

s
−1), (x

u
0 , x

s
1), (x

u
1 , x

s
0)} ∩ p(M̃) = ∅.

The cylindrical leaves Lu and Ls containing γ do not contain other closed orbits.

Proof. We proceed as in the proof of Lemma 5.1. Then for the closed orbit γ′′,

the action of [γ] = [γ′] = [γ′′] is hyperbolic in a quadrant. If γ′ �= γ′′, we find an

attracting or repelling orbit in a quadrant between γ′ and γ′′, or γ′ is attracting or

repelling in a quadrant. By Lemma 5.3, γ′ = γ′′. In a similar way, γ = γ′.

The same argument shows the statement for the adjacent fixed points. �

If there are closed orbits, then we see that the holonomy of the closed orbit is

topologically hyperbolic by Lemma 5.4 and we also determined the shape of the

orbit space. To summarize what we have shown we have the following proposition.

See Figure 5.

Proposition 5.5. If a cylindrical leaf Lu of Fu contains a closed orbit γ, γ is in

the intersection of Lu and a cylindrical leaf Ls of Fs and γ is the unique closed

orbit on Lu and on Ls.

There are periodic homeomorphisms f+ : Qu −→ Qs and f− : Qs −→ Qu such

that

p(M̃) = {(xu, xs) ; f−−1(xu) < xs < f+(xu)},
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where periodic means f±(x+ 1) = f±(x) + 1.

Let γ̃ be a lift of γ, and L̃u and L̃s be the lifts containing γ̃. Then

p(L̃u) = ({pu(γ̃)} ×Qs) ∩ p(M̃) = {pu(γ̃)} × (f−−1(pu(γ̃)), f+(pu(γ̃))),
p(L̃s) = (Qu × {ps(γ̃)}) ∩ p(M̃) = (f+

−1(ps(γ̃)), f−(ps(γ̃)))× {ps(γ̃)}.
For integers m, (f−f+)m(pu(γ̃)) are attracting fixed points and (f−f+)mf−(ps(γ̃))

are repelling fixed points for the action of [γ] on Qu, and (f+f−)mf+(pu(γ̃)) are

attracting fixed points and (f+f−)m(ps(γ̃)) are repelling fixed points for the action

of [γ] on Qs. Since the actions commute with the action of the center c, there is an

integer k such that (f−f+)k(xu) = xu + 1 and (f+f−)k(xs) = xs + 1.

6. Cylindrical leaves without closed orbits

Assume that a cylindrical leaf Lu of the unstable foliation Fu does not contain

closed orbits of ϕ. Then by Proposition 2.1, the orbits of ϕ traverse from one end

of Lu to the other. Hence we can take a simple closed transverse curve σ for the

orbits on Lu.

Lemma 6.1. Assume that a cylindrical leaf Lu of the unstable foliation Fu does

not contain closed orbits of ϕ. Let σ be a simple closed transverse curve for the

orbits on Lu.

(i) By a suitable choice of the lift L̃u, the action of [σ] on Qu has a fixed point

xu = pu(L̃u).

(ii) The action of [σ] on ps(L̃u) has no fixed points.

(iii) The action of [σ] on Qs has fixed points.

Proof. The statements (i), (ii) follows from the choice of σ and L̃u.

To show the statement (iii), assume that the action of [γ] on Qs has no fixed

points. Then p(L̃u) = {pu(L̃u)} ×Qs and since p(M̃) is invariant under the action

of the center, Lemma 4.1 (ii) implies p(M̃) = Qu ×Qs.

Then we take a point (xu, xs) on p(L̃u) and draw a curve δ from (xu, xs) to

(xu + 1, xs + 1). We have a parallelogram P bounded by the curves δ, [σ]δ, and

segments {xu}× [xs, [σ]xs], {xu+1}× [xs+1, [σ]xs+1]. If the curve [σ]δ intersects

the curve δ, we replace [σ]δ by [σ]mδ for a large m, and the argument goes without

change. The boundary of P can be lifted to M̃ so that they connects ˜(xu, xs),

c ˜(xu, xs), c[γ] ˜(xu, xs), [γ] ˜(xu, xs), where c denotes the generator of the center Z

of π1(M). Then P can be lifted to M̃ , and in M it defines an immersed torus

transverse to the flow. By modifying the immersed transverse torus as in Fried [9],
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(xu
0 , x

s
0)

(xu
0 , x

s
1)

(xu
−1, x

s
0)

(xu
1 , x

s
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Figure 6. Cylindrical leaves without closed orbits.

we obtain an oriented embedded surface transverse to the flow. Since the embedded

surface is transverse to Fu and Fs, its connected component is again a torus. Since

the orbit under [σ] and c of P covers Qu × Qs, the obtained embedded surface

intersects all orbits of ϕt. Thus M is a torus bundle over the circle and is not a

Seifert fibered 3-manifold over a hyperbolic orbifold. �

Lemma 6.2. Assume that all cylindrical leaves of the unstable foliation Fu and

the stable foliation Fs do not contain closed orbits of ϕ. Let σ be a simple closed

transverse curve for the orbits on a cylindrical leaf Lu of the unstable foliation Fu.

Then the following holds.

(i) ps(L̃u) is a bounded interval (xs
0, x

s
1), where xs

0 and xs
1 are fixed points for

the action of [σ] on Qs, and [σ] has no fixed points on (xs
0, x

s
1).

(ii) There are fixed points xu
−1 < xu

0 < xu
1 for the action of [σ] on Qu such that

Qu × {xs
0} ∩ p(M̃) = (xu−1, x

u
0 )× {xs

0} and
Qu × {xs

1} ∩ p(M̃) = (xu
0 , x

u
1 )× {xs

1}
Proof. (i) is shown in the previous Lemma 6.1. If the action of [σ] on Qs has fixed

points, then ps(L̃u) is a bounded interval (xs
0, x

s
1), where xs

0 and xs
1 are fixed points

for the action of [σ] on Qs. Then p(L̃u) = {xu
0} × (xs

0, x
s
1), where xu

0 = pu(L̃u) is a

fixed point for the action of [σ] on Qu, and [σ] has no fixed points on (xs
0, x

s
1). We

look at the intersection of Qu×{xs
0} and p(M̃), or Qu×{xs

1} and p(M̃). See Figure

6. Then we see that Qu ×{xs
1} intersects p(M̃) on (xu

0 , x
u
1 )×{xs

1} for xu
0 < xu

1 and

Qu ×{xs
0} intersects p(M̃) on (xu

−1, x
u
0 )×{xs

0} for xu
−1 < xu

0 . Then xu
−1 and xu

1 are

the fixed points of the action of [σ] on Qu. Since we are assuming that there are

no closed orbits, there are no fixed points for this action on (xu
−1, x

u
0 ) or (x

u
0 , x

u
1).

Considering Lemma 4.1 (iv), if the action of [σ] on (xs
0, x

s
1) ⊂ Qs is increasing,

then the action of [σ] on (xu
−1, x

u
0) or (x

u
0 , x

u
1) is increasing. �

To summarize what we know for the (unrealized) case where there are no closed

orbits, we have the following proposition.
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Figure 7. Topologically parabolic action

Proposition 6.3. Suppose that all cylindrical leaves of the unstable foliation Fu

and the stable foliation Fs do not contain closed orbits of ϕ. Then there are periodic

homeomorphisms f+ : Qu −→ Qs and f− : Qs −→ Qu such that

p(M̃) = {(xu, xs) ; f−−1(xu) < xs < f+(xu)}.

Let σ be a simple closed transverse curve for the orbits on Lu. Then

p(L̃u) = ({pu(L̃u)} ×Qs) ∩ p(M̃) = {pu(L̃u)} × (f−−1(pu(L̃u)), f+(pu(L̃u))).

For integers m, (f−f+)m(pu(L̃u)) are fixed points for the action of [σ] on Qu, and

(f+f−)mf+(pu(L̃u)) are fixed points for the action of [σ] on Qs. Both of the actions

of [σ] on Qu and on Qs are simultaneously non decreasing or non increasing. Since

the actions commute with the action of the center c, there is an integer k such that

(f−f+)k(xu) = xu + 1 and (f+f−)k(xs) = xs + 1.

7. Conjugate actions on the circle

By Propositions 5.5 and 6.3, we know of the shape of p(M̃) ⊂ Qu × Qs. That

is, we always have periodic homeomorphisms f+ : Qu −→ Qs and f− : Qs −→ Qu

such that

p(M̃) = {(xu, xs) ; f−−1(xu) < xs < f+(xu)}.
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Moreover there is an integer k such that (f−f+)k(xu) = xu +1 and (f+f−)k(xs) =

xs + 1.

Since p(M̃) ⊂ Qu × Qs is invariant under the action of π1(M), as the image of

the rectangle (xu, f−(xs))× (xs, f+(xu)) by the action of α ∈ π1(M), we have the

following equality:

(αxu, αf−(xs))× (αxs, αf+(xu)) = (αxu, f−(αxs))× (αxs, f+(αxu)).

Hence we have

αf−(xs) = f−(αxs) and αf+(xu) = f+(αxu).

Then we see that the action of α on Qu commutes with f−f+ and the action of α

on Qs commutes with f+f−.

Now we look at the circles obtained from Qu and Qs by identifying by the

actions of f−f+ and f+f−, respectively. Let S1
u = Qu/(f−f+) and S1

s = Qs/(f+f−)

denote them. The graphs of f+ and f− are identified to give rise to a graph of a

homeomorphism f : Qu/(f−f+) −→ Qs/(f+f−). The diagonal action of π1(M)

on Qu × Qs induces an action of π1(M) on S1
u × S1

s = Qu/(f−f+) × Qs/(f+f−)

for which the graph of f is invariant subset. Note that this action factors through

the orbifold fundamental group πorb
1 (Σ) of the base space Σ of the Seifert fibered

3-manifold M .

The actions of π1(M) on S1
u and S1

s are conjugate by the homeomorphism f :

S1
u −→ S1

s .

We arrived at the delicate point that f−f+ and f+f− may not be differentiable.

They are topological translations whose k-th powers are the translation by 1. The

argument by Ghys [13] on the projective structure on the general fiber of the Siefert

fibered 3-manifold asserts thet infact they are differentiable. See Section 9.

8. Convergence group action

A convergence group is a subgroup G of the group of orientation preserving

homeomorphisms of the circle with the following property: For any infinite sequence

{gi} of G, there are a pair of points x and y (possibly x = y) and a subsequence

{gij
} such that gij

→ x uniformly on the compact sets in S1 − {y} and gij
−1 → y

uniformly on the compact sets in S1 − {x}. By the result of Tukia [27], Casson-

Jungreis [4] or Gabai [10], the convergence groups are topologically conjugate to

the Fuchsian group.
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For our case, we have a little easier criterion to be a convergence group which is

found in [1].

Theorem 8.1 ([1]). A finitely generated group G of Homeo+(S1) satisfying the

following condition is a convergence group.

(i) All orbits are dense.

(ii) Any element g of G has at most 2 fixed points and if g has 2 fixed point,

one is attracting and the other is repelling.

(iii) The isotropy subgroup of a point is either trivial or cyclic.

(iv) For a fixed point (x0, y0) ∈ S1 × S1 \ ∆ for the diagonal action of α ∈ G

on S1 × S1, its G orbit is discrete on S1 × S1 \∆.

(v) G is not a free group.

We are going to show that the image of π1(M) in Homeo(S1
u) is a convergence

group.

If we identify S1
u × S1

s with S1
u × S1

u, by the homeomorphism

(id, f−1) : S1
u × S1

s −→ S1
u × S1

u,

the action of an element α of π1(M) on S1
u × S1

u is given by

(α(x), f−1(α(f(y))),

and the action is the diagonal action. That is, the action of π1(M) on S1
u × S1

s is

conjugate to the diagonal action.

Now we use the action of π1(M) on S1
u × S1

s to show that the image of π1(M)

in Homeo(S1
u) satisfies the conditions of Theorem 8.1.

Lemma 8.2. If the action of an element α of π1(M) has a fixed point [xu] ∈
Qu/(f−f+) = S1

u, then f([xu]) ∈ Qs/(f+f−) = S1
s is a fixed point. If the action is

not trivial, either the action of α has no other fixed points on Qu/(f−f+) = S1
u, or

the action of α has only one other fixed point [xu
1 ] ∈ Qu/(f−f+) = S1

u and one of

two fixed points is attracting and the other is repelling.

Proof. Let k be the integer such that (f−f+)k(xu) = xu + 1. If there is a fixed

point [xu] ∈ Qu/(f−f+) = S1
u, there is an integer � such that the action of αkc� on

Qu has a fixed point. Since p(M̃) is invariant under the diagonal action of αkc�,

the action of αkc� on Qs has fixed points. If there are two other fixed points on

Qu/(f−f+) = S1
u, the configuration of the fixed points gives two closed orbits on a

leaf of Fs or Fu. This contradicts Lemma 5.4. �
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Lemma 8.3. If the action of an element α of π1(M) on S1
u has a periodic point of

period greater than 1, the action of α is finite order.

Proof. Let k be the integer such that (f−f+)k(xu) = xu + 1. Assume that the

action of α is not finite order and [xu] ∈ S1
u is a non trivial periodic point. Then

there is an integer m > 1 such that αm[xu] = [xu] and [xu], α[xu], . . . , αm−1[xu]

are distinct points in S1
u. Since these [x

u], α[xu], . . . , αm−1[xu] are fixed points for

αm and they are conjugate by the action of α, we have a contradiction to Lemma

8.2 �

Lemma 8.4. Assume that there is an element α of π1(M) such that the action of

α on S1
u has no periodic points. Then the followings hold.

(i) The action of α on S1
s has no periodic points.

(ii) The action of α on S1
u or S1

s is topologically conjugate to an irrational

rotation.

(iii) There is a closed orbit γ for the projectively Anosov flow ϕ.

Proof. By Lemma 8.2, the assertion (i) follows.

The assertion (ii) follows from the assumption that foliations are smooth and

the Denjoy theorem.

To show the assertion (iii), first note that the action of α and c generates a group

topologically conjugate to a dense subgroup of translations of Qu and Qs. Hence

there are integers m, n such that αmcn is a positive translation C0 close to the

identity.

If we do not find a closed orbit, we may assume that the situation is as in

Proposition 6.3. Then for an element β ∈ π1(M) which has a fixed point xu on Qu,

the action of β is parabolic like and we assume it is not decreasing on {xu} ×Qs.

Then if r = αmcn is taken close to the identity, there are points xu
1 a little

larger than xu and xu
2 a little smaller than f−f+(xu) such that r(xu

1) = β(xu
1 ) and

r(xu
2) = β(xu

2 ), respectively. There are also points xs
1 a little larger than f−−1(xu)

and xs
2 a little smaller than f+(xu) such that r(xs

1) = β(xs
1) and r(xs

2) = β(xs
2),

respectively. Then (xu
1 , x

s
2) ∈ p(M̃) is a fixed point for the action of r−1β on p(M̃).

Thus this corresponds to a periodic orbit of ϕ. �

Lemma 8.5. Either the action of an element α of π1(M) is conjugate to a rotation

of finite order, or the action of α has 1 or 2 fixed points on Qu/(f−f+). If the action

has 2 fixed points, one is attracting and the other is repelling.
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Proof. We show that there are no elements α of π1(M) such that the action of α

on S1
u has no periodic points. Then the statement follows from Lemmas 8.2 and

8.3.

If such α exists, by Lemma 8.4(iii), there is a closed orbit γ. It is easy to show

that the image of the lifts of γ which is the π1(M) orbit of the image p(γ̃) of a lift

is discrete in p(M̃). (For, a finite family of compact disks in p(M̃) has a lift in M̃

and project to M which have only finitely many intersection with γ.) On the other

hand, the action of α and c makes an accumulation of the π1(M) orbit of p(γ̃) to

p(γ̃). This contradiction shows the lemma. �

Proposition 8.6. The image of π1(M) or πorb
1 (Σ) in Homeo(S1

u) is a convergence

group.

Proof. We verify the conditions of Theorem 8.1. The condition (i) is Corollary 3.5.

The condition (ii) is Lemma 8.5. The condition (iii) also follows from Corollary 3.5,

because the isotropy subgroup is the holonomy of the leaves of Fu or Fs, which are

homeomorphic either to the plane or to the cylinder. The condition (iv) is satisfied

because the fixed point (x0, y0) ∈ S1
u × S1

u \∆ corresponds to a closed orbit γ. The

π1(M) orbit of (x̃0, y0) in the universal cover X̃ of X = S1
u ×S1

u \∆ is the image of

the lifts of γ and is discrete in p(M̃) identified with X̃ . Since the image is invariant

under the action of the center Z and X̃/Z is a k fold covering of X = S1
u × S1

u \∆,
the G orbit of (x0, y0) is discrete in S1

u × S1
u \ ∆. The condition (v) is satisfied

because G is image of the fundamental group of the base orbifold. �

Thus the image of π1(M) in Homeo(S1
u) is a convergence group. By the result of

Tukia [27], Casson-Jungreis [4] or Gabai [10], this group is topologically conjugate

to a Fuchsian group.

A Fuchsian group corresponds to a hyperbolic orbifold Σ0 and it is isomorphic

to the orbifold fundamental group πorb
1 (Σ0).

Lemma 8.7. The base orbifold Σ of Seifert fibered 3-manifold M is diffeomorphic

to Σ0.

Proof. We have the surjective homomorphism πorb
1 (Σ) −→ πorb

1 (Σ0). If the kernel is

non trivial, we take a closed curve γ representing a nontrivial element of the kernel.

Then the global holonomy of the foliation Fu (or Fs) along γ is the identity. As in

the proof of Lemma 5.1, using Corollary 3.5, we see that all leaves of the unstable
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foliation Fu are cylinders, that the unstable foliation Fu is without holonomy and

topologically conjugate to a linear foliation by cylinders on T 3, contradicting the

assumption on the manifold M (or Lemma 4.2). �

Since the Fuchsian group action is determined by the base orbifold Σ of the

Seifert fibered 3-manifold, it cannot have the parabolic element whose action was

drawn in Figure 7.

9. Proof of the main theorem

Let Σ be a hyperbolic orbifold with the hyperbolic structure g0. We have the

Anosov geodesic flow on the unit tangent bundle T1Σ of the orbifold Σ. The stable

foliation and the unstable foliation for the Anosov geodesic flow are both defined

by the holonomy homomorphism which is a Fuchsian group representation:

πorb
1 (Σ) −→ PSL(2;R) ⊂ Homeo(RP 1).

Note that the holonomy homomorphisms for the stable foliation and for the unsta-

ble foliation are conjugate by an elliptic element of PSL(2;R) and the holonomy

homomorphisms for different hyperbolic structures are topologically conjugate.

The homomorphism πorb
1 (Σ) −→ Homeo(S1

u) derived from Fu determines a fo-

liation of a Seifert fibered space over Σ. By the argument of Section 8, πorb
1 (Σ) −→

Homeo(S1
u) is topologically conjugate to a Fuchsian group representation πorb

1 (Σ) −→
PSL(2;R). Hence πorb

1 (Σ) −→ Homeo(S1
u) determines a topological foliation of

T1Σ transverse to the fibers.

By the argument of Section 7, the action of πorb
1 (Σ) on S1

u = Qu/(f−f+) lifts

to the action on the k-fold cyclic covering Qu/Z of S1
u = Qu/(f−f+). That is,

we have a homomorphism πorb
1 (Σ) −→ Homeo(Qu/Z). Hence the Fuchsian group

action of πorb
1 (Σ) on RP 1 also lifts to the action on the k-fold cyclic covering

(RP 1)k of RP 1. This determines the transversely projective foliations Fu
g0

or F s
g0

of Mk = (T1Σ)k which is the k-fold cyclic covering of T1Σ in the direction of

the fibers. Since the lifted homomorphism πorb
1 (Σ) −→ Homeo(Qu/Z) determines

the smooth foliation Fu, this is a homomorphism to the diffeomorphism group:

πorb
1 (Σ) −→ Diffeo(Qu/Z).

Now Ghys showed in [13] the following:

A smooth foliation F of Mk topologically isotopic to F s
g0

is transversely projective

and hence differentiably isotopic to F s
g for a hyperbolic structure g of Σ.

By this result, Fu is differentiably isotopic to Fu
gu
.
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In the same way, There is a hyperbolic structure gs, such that Fs is differentiably

isotopic to F s
gs
.

For a pair gu and gs of hyperbolic strucutres on Σ, we have the quasi-Fuchsian

flow on T1Σ which is the Anosov flow with the unstable foliation and the stable

foliation differentiably isotopic to those of the geodesic flows determined by the

hyperbolic structures gu and gs, respectively [12]. We can lift the quasi-Fuchsian

flow on Mk and obtain an Anosov flow φ on Mk such that the unstable foliation

and the stable foliation differentiably isotopic to Fu
gu

and F s
gs
, respectively.

We are going to show that our projectively Anosov flow ϕ is differentiably isotopic

to φ.

Proof of Theorem 1.1. There is a homeomorphism H ∈ Homeo(RP 1) which con-

jugates the holonomy homomorphism hu of the unstable foliation of the geodesic

flow determined by the hyperbolic structures gu to that hs of the stable foliation

of the geodesic flow determined by the hyperbolic structures gs:

H(hu
α(H

−1(xs))) = hs
α(x

s) for α ∈ πorb
1 (Σ).

This homeomorphism H lifts to homeomorphisms of the k-fold cyclic covering

(RP 1)k as well as those of the universal covering R̃P 1.

We identify Qu/Z with (RP 1)k by the diffeomorphism conjugating the holonomy

of Fu to that of Fu
gu
. Since the action of f−f+ on Qu/Z is order k and commutes

with all the holonomy, the action of f−f+ is identified with the 1/k rotation. For,

if the action of α ∈ πorb
1 (Σ) as hyperbolic fixed points, it has k attracting fixed

points in Qu/Z which are in the orbit of the 1/k rotation in (RP 1)k. Such fixed

points are dense in the circle.

In the same way, we identify Qs/Z with (RP 1)k by the diffeomorphism conju-

gating the holonomy of Fs to that of F s
gs

and the action of f+f− is also identified

with the 1/k rotation.

Hence S1
u = Qu/(f−f+) and S1

s = Qs/(f+f−) have the differentiable struc-

ture and in fact the homomorphisms πorb
1 (Σ) −→ Homeo(S1

u) and πorb
1 (Σ) −→

Homeo(S1
s ) are homomorphisms to the diffeomorphism groups: πorb

1 (Σ) −→ Diff(S1
u)

and πorb
1 (Σ) −→ Diff(S1

s ), respectively. As is shown in Section 7, these two homo-

morphisms are conjugate by the homeomorphism f : S1
u −→ S1

s .

The result of Ghys implies that πorb
1 (Σ) −→ Diff(S1

u) and πorb
1 (Σ) −→ Diff(S1

s )

are conjugate to the holonomy homomorphisms of Anosov foliations for the geodesic
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flows with respect to gu and gs, respectively. We identify S1
u, S

1
s with RP 1 with

the conjugating diffeomorphisms. and we compare the homeomorphisms H and f .

Since H−1f commute with hu
α for any α ∈ πorb

1 (Σ), f coincides with H:

S1
u

f−−−−→ S1
s

|| ||
RP 1 −−−−−→

H
RP 1 .

For the foliations Fu
gu

and F s
gs

of Mk, we take the lifts F̃u
gu

and F̃ s
gs

of them

to the universal covering space M̃k. The lifted foliations F̃u
gu

and F̃ s
gs

are product

foliations and we look at the map to the product of their leaf spaces:

p0 : M̃k −→ M̃k/F̃
u
gu

× M̃k/F̃
s
gs
.

Since the product action on RP 1 × RP 1 of the Fuchsian group actions on RP 1

with respect to gu and gs leaves the graph of H invariant, the image p0(M̃k) is the

region between the two adjacent graphs of lifts of H. (See [12]).

The action of π1(M) on p(M̃) is effective, because the action of πorb
1 (Σ) on S1

u or

S1
s is effective and the action of the class of general fiber is a nontrivial translation.

Since the image of π1(M) in Homeo(p(M̃)) coincides with the image of π1(Mk) in

Homeo(p(M̃)), we obtain the isomorphism; π1(M) ∼= π1(Mk).

Now we can prove that our projecctively Anosov flows are differentiablly isotopic

to Anosov flows.

We follow the argument by Ghys [12].

We compare the map p : M̃ −→ Qu ×Qs = M̃/F̃u × M̃/F̃s defined by F̃u and

F̃s with p0 : M̃k −→ M̃k/F̃
u
gu

× M̃k/F̃
s
gs

defined by F̃u
gu

and F̃ s
gs
. As we discussed,

the images of p and p0 coincide. The actions of π1(M) ∼= π1(Mk) on the images

also coincide. They define the transverse structure of the orbit foliations ϕ and φ.

This implies that the holonomy groupoids for ϕ and φ are equivalent.

For a closed orbit c of ϕ on M , we look at a lift c̃ of c in M̃ and its image

in Qu × Qs. The curve c represents an element α ∈ π1(M) and the image of c̃ in

Qu×Qs is a fixed point of the action of α and the action is topologically hyperbolic.

Hence the holonomy covering of c is contractible.

For a closed orbit c of φ on Mk, we have a lift c̃ of c in M̃k and its image in

M̃k/F̃
u
gu

× M̃k/F̃
s
gs
. In a similar way, the holonomy covering of c is contractible.

Thus both (M,ϕ) and (Mk, φ) are the classifying space for the groupoid ([14]).

Hence we have a homotopy equivalence M −→ Mk which sends the orbit of ϕ to the

orbit of φ and is transversely a diffeomorphism. As in [11] (see also [1], [18]), one



REGULAR PROJECTIVELY ANOSOV FLOWS 25

can deform this homotopy equivalence to a diffeomorphism which sends an orbit of

ϕ to an orbit of φ.

In fact the Seifert fibered 3-manifold M is determined by its fundamental group.

Since the resultant diffeomorphism can be thought inducing the identity on the

fundamental group, it is isotopic to the identity. �

Remark 9.1. Since the fibrations M̃ −→ p(M̃) and M̃k −→ p0(M̃k) are locally

trivial fibration with fiber being R, we can construct an equivariant lift M̃ −→ M̃k

as described in [18]:
M̃ −→ M̃k

p
� �p0

p(M̃) = p0(M̃k) .

This also shows that we have a homotopy equivalence M −→ Mk which sends the

orbit of ϕ to the orbit of φ which is transversely a diffeomorphism.
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tionary isotropic Lamé system and the applications.

2003–20 Takashi Tsuboi: Regular projectively Anosov flows on the seifert fibered 3-
manifolds.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


