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APPLICATION TO AN INVERSE PROBLEM

Oleg Yu. Imanuvilov1, Masahiro Yamamoto2

1Department of Mathematics, Iowa State University
400 Carver Hall Ames IA 50011-2064 USA

e-mail: vika@iastate.edu
2 Department of Mathematical Sciences, The University of Tokyo

Komaba Meguro Tokyo 153-8914 Japan
e-mail:myama@ms.u-tokyo.ac.jp

Abstract. In this paper, we establish Carleman estimates for the two dimensional

isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions.
Using this estimate, we prove the uniqueness and the stability in determining spatially

varying density and two Lamé coefficients by a single measurement of solution over
(0, T )×ω, where T > 0 is a sufficiently large time interval and a subdomain ω satisfies

a non-trapping condition.

§1. Introduction.

This paper is concerned with Carleman estimates for the two dimensional non-

stationary isotropic Lamé system with the zero Dirichlet boundary conditions and

an application to an inverse problem of determining spatially varying density and

the Lamé coefficients by a single interior measurement of the solution. The Carle-

man estimate is a weighted L2-estimate of solution to a partial differential equation

and it has been fundamental for proving the uniqueness in a Cauchy problem for

the partial differential equation or the unique continuation.
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More precisely, we consider the two dimensional isotropic non-stationary Lamé

system:

(Pu)(x0, x
′) ≡ ρ(x′)∂2

x0
u(x0, x

′)− (Lλ,µu)(x0, x
′) = f(x0, x

′),

x ≡ (x0, x
′) ∈ Q ≡ (0, T )× Ω, (1.1)

where

(Lλ,µv)(x′) ≡ µ(x′)∆v(x′) + (µ(x′) + λ(x′))∇x′divv(x′)

+(divv(x′))∇x′λ(x′) + (∇x′v + (∇x′v)T )∇x′µ(x′), x′ ∈ Ω.
(1.2)

Throughout this paper, Ω ⊂ R2 is a bounded domain whose boundary ∂Ω is of

class C3, x0 and x′ = (x1, x2) denote the time variable and the spatial variable

respectively, and u = (u1, u2)T where ·T denotes the transpose of matrices, Ek is

the unit matrix of the size k × k,

∂xj
ϕ = ϕxj

=
∂ϕ

∂xj
, j = 0, 1, 2.

We set ∇x′v = (∂xk
vj)1≤j,k≤2 for a vector function v = (v1, v2)T and ∇x′φ =

(∂x1φ, ∂x2φ)
T for a scalar function φ. Henceforth ∇ means ∇x = (∂x0 , ∂x1 , ∂x2) if

we do not specify.

Moreover the coefficients ρ, λ, µ satisfy

ρ, λ, µ ∈ C2(Ω), ρ(x′) > 0, µ(x′) > 0, λ(x′) + µ(x′) > 0 for x′ ∈ Ω. (1.3)

The Carleman estimate is an essential technique not only for the unique continua-

tion, but also for solving the exact controllability and stabilizability (e.g.,Bellassoued

[B1]-[B3], Imanuvilov [Im1], Kazemi and Klibanov [KK], Tataru [Ta], and Lasiecka
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and Triggiani [LT] as related books) and the inverse problems (e.g., Bukhgeim [Bu],

Bukhgeim and Klibanov [BuK], Klibanov [Kl]). Thus the first main purpose of this

paper is to establish the Carleman estimates for system (1.1), (1.2).

Since the pioneering work [Ca] by Carleman, the theory of inequalities of Carle-

man’s type has been rapidly developed and now many general results are available

for a single partial differential equation (see [E1], [Hö], [Is2], [Is3], [Ta]), while for

strongly coupled systems of partial differential equations, the situation is more com-

plicated and much less understood. To our best knowledge, a most general result

for systems of partial differential equations is Calderon’s uniqueness theorem (see

e.g., [E1], [Zui]). The technique developed by Calderon, reduces the system of par-

tial differential equations to a system of pseudo-differential operators of the first

order:

du
dx0

= M(x0, x
′, Dx′)u+ f ,

where M(x0, x
′, Dx′) is a matrix pseudo-differential operator. Then by some change

of variables u = Q(x0, x
′, Dx′)ũ, this matrix pseudo-differential operator M is

reduced to Q−1MQ such that Q−1MQ consists of blocks of a small size located on

the main diagonal and that in each block the principal symbols of all the operators

located below the main diagonal are zero. In order to construct the matrix Q, the

eigenvalues and eigenvectors of the matrix M(x0, x
′, ξ) should be smooth functions

of the variables x0, x′ and ξ ∈ R
2 and each eigenvalue should not change the

multiplicity. This condition is restrictive, especially in the case where we are looking

for a Carleman estimate near boundary, and therefore the choice for a variable x0

is limited. For example, with the time variable x0, the non-stationary Lamé system
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does not satisfy this condition, in general. On the other hand, for the stationary

Lamé system, this method works well (see [DR]).

As long as the non-stationary Lamé system is concerned, it is known that thanks

to the special structure of the system, the functions divu and rotu satisfy scalar

wave equations (modulo lower order terms). The system of partial differential

equations for functions u, divu, rotu, is coupled via first order terms. This allows

us to apply the Carleman estimate for a scalar hyperbolic equation in the case

where the function u has a compact support (see [EINT], [IIY], [INY]).

On the other hand, the structure of our proof is in principle similar to the

paper [Y]. That is, we work mainly with two hyperbolic equations depending

on a parameter s > 0 for the functions zλ+2µ ≡ esφdivu and zµ ≡ esφrotu:

Pλ+2µ(x0, x
′, D, s)zλ+2µ = (div f)esφ and Pµ(x0, x

′, D, s)zµ = (rot f)esφ. The main

difficulty one should overcome, is that there are no boundary conditions for these

functions. This problem is solved in the following way: Outside an exceptional

set in T ∗(Q), the operators Pλ+2µ and Pµ can be microlocally factorized into the

product of two pseudo-differential operators of the first order:

Pβ(x0, x
′, Dx′ , s) = P−,β(x0, x

′, Dx′ , s)P+,β(x0, x
′, Dx′ , s),

where β = λ+ 2µ or = µ, P±,β = Dx2 − Γ±
β (x0, x

′, Dx′ , s), and x2 is normal to the

boundary ∂Ω. Since the principal symbol of the operator Γ−
β (x0, x

′, ξ, s) satisfies

the inequality

−ImΓ−
β (x0, x

′, ξ, s) ≥ C|s|

with a constant C > 0, we have a priori estimates for P+,β(x0, x
′, Dx′ , s)zβ|x2=0

in L2. These estimates and the zero Dirichlet boundary condition yields the H1
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boundary estimates for zβ . The set on which we cannot factorize both the operators

Pβ(x0, x
′, Dx′ , s) into a product of the first order operators, has to be discussed

separately.

For the uniqueness and the stability in our inverse problem with the minimum

number of observations, we are required to prove a Carleman estimate whose right

hand side is estimated in H−1-space. The Carleman estimate with right hand side

in H−1-space was proved by Imanuvilov [Im2], Ruiz [R], for a scalar hyperbolic

equation and by Imanuvilov and Yamamoto [IY1] for a parabolic equation. In this

paper, by a method in [IY1], we will derive an H−1-Carleman estimate (Theorem

2.3) for (1.1) from a Carleman estimate (Theorem 2.1) with H1-norm.

This paper is composed of eight sections and two appendices. In Section 2, we

will show Carleman estimates (Theorems 2.1 - 2.3) for functions which do not have

compact supports but satisfy the zero Dirichlet boundary condition on (0, T )×∂Ω.

Theorem 2.1 is a Carleman estimate whose right hand side is estimated in H1-

space. Theorems 2.2 and 2.3 are Carleman estimates respectively with right hand

sides in L2-space and in H−1-space. In Section 3, we will apply the H−1-Carleman

estimate (Theorem 2.3), and prove the uniqueness and the conditional stability in

the inverse problem with a single interior measurement. In Sections 4-7, we prove

Theorem 2.1, while Theorems 2.2 and 2.3 are proved in Section 8.

§2. Carleman estimates for the two dimensional non-stationary Lamé

system.

Let us consider the two dimensional Lamé system

Pu(x0, x
′) ≡ ρ(x′)∂2

x0
u(x0, x

′)− (Lλ,µu)(x0, x
′) = f(x0, x

′) in Q, (2.1)
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u|(0,T )×∂Ω = 0, u(T, x′) = ∂x0u(T, x
′) = u(0, x′) = ∂x0u(0, x

′) = 0, (2.2)

where u = (u1, u2)T , f = (f1, f2)T are vector-valued functions, and the partial

differential operator Lλ,µ is defined by (1.2). The coefficients ρ, λ, µ ∈ C2(Ω) are

assumed to satisfy (1.3).

Let ω ⊂ Ω be an arbitrarily fixed subdomain. Denote by  n(x′) = (n1(x′), n2(x′))

the outward unit normal vector to ∂Ω at x′ and set ∂v
∂n

= ∇x′v ·  n.

We set

Qω = (0, T )× ω.

Let ξ = (ξ0, ξ′) = (ξ0, ξ1, ξ2). We set
p1(x, ξ) = ρ(x′)ξ2

0 − µ(x′)(|ξ1|2 + |ξ2|2),

p2(x, ξ) = ρ(x′)ξ2
0 − (λ(x′) + 2µ(x′))(|ξ1|2 + |ξ2|2)

(2.3)

and ∇ξ = (∂ξ0 , ∂ξ1 , ∂ξ2). For arbitrary smooth functions ϕ(x, ξ) and ψ(x, ξ), we

define the Poisson bracket by the formula

{ϕ, ψ} =
2∑

j=0

(∂ξj
ϕ)(∂xj

ψ)− (∂ξj
ψ)(∂xj

ϕ).

We set i =
√−1 and < a, b >=

∑3
k=1 akbk for a = (a1, a2, a3), b = (b1, b2, b3) ∈ C3.

We assume that the density ρ, the Lamé coefficients λ, µ and the domains Ω, ω

satisfy the following condition (cf. [Hö]).

Condition 2.1. There exists a function ψ ∈ C3(Q) such that

{pk, {pk, ψ}}(x, ξ) > 0, ∀k ∈ {1, 2} (2.4)

if (x, ξ) ∈ (Q \Qω)× (R3 \ {0}) satisfies pk(x, ξ) =< ∇ξpk,∇ψ >= 0, and

{pk(x, ξ − is∇ψ(x)), pk(x, ξ + is∇ψ(x))}/2is > 0, ∀k ∈ {1, 2} (2.5)
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if (x, ξ, s) ∈ (Q \Qω)× (R3 \ {0})× (R \ {0}) satisfies

pk(x, ξ + is∇ψ(x)) =< ∇ξpk(x, ξ + is∇ψ(x)),∇ψ(x) >= 0.

On the lateral boundary, we assume

p1(x,∇ψ) < 0, ∀x ∈ (0, T )× ∂Ω and
∂ψ

∂ n

∣∣∣∣
(0,T )×(∂Ω\∂ω)

< 0. (2.6)

Let ψ(x) be the weight function in Condition 2.1. Using this function, we intro-

duce the function φ(x) by

φ(x) = eτψ(x), τ > 1, (2.7)

where the parameter τ > 0 will be fixed below. Denote

‖u‖2
B(φ,Q) =

∫
Q

(
2∑

|α|=0

s4−2|α||∂αxu|2 + s|∇rotu|2 + s3|rotu|2

+s|∇divu|2 + s3|divu|2
)
e2sφdx,

where α = (α0, α1, α2), αj ∈ N ∪ {0}, ∂αx = ∂α0
x0

∂α1
x1

∂α2
x2

.

Now we formulate our Carleman estimates as main results.

Theorem 2.1. Let f ∈ (H1(Q))2, and let the function φ satisfy Condition 2.1.

Then there exists τ̂ > 0 such that for any τ > τ̂ , there exists s0 = s0(τ ) > 0 such

that for any solution u ∈ (H1(Q))2 ∩ L2(0, T ; (H2(Ω))2) to problem (2.1) - (2.2),

the following estimate holds true:

‖u‖2
Y (φ,Q) ≡ ‖u‖2

B(φ,Q) + s

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(H1((0,T )×∂Ω))2
+ s

∥∥∥∥∂2u
∂ n2

esφ
∥∥∥∥2

(L2((0,T )×∂Ω))2

+s3

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(L2((0,T )×∂Ω)))2

≤C1(s2‖fesφ‖2
(L2(Q))2 + ‖(∇f)esφ‖2

(L2(Q))2 + ‖u‖2
B(φ,Qω)), ∀s ≥ s0(τ ), (2.8)
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where the constant C1 = C1(τ ) > 0 is independent of s.

Next we formulate Carleman estimates where norms of the function f are taken

in (L2(Q))2 and L2(0, T ; (H−1(Ω))2). In particular, the latter Carleman estimate

is essential for obtaining our sharp uniqueness result in the inverse problem.

In addition to Condition 2.1, we assume

∂x0φ(T, x
′) < 0, ∂x0φ(0, x

′) > 0, ∀x′ ∈ Ω. (2.9)

Theorem 2.2. Let f ∈ (L2(Q))2 and let the function φ satisfy (2.9) and Condition

2.1. Then there exists τ̂ > 0 such that for any τ > τ̂ , there exists s0 = s0(τ ) > 0

such that for any solution u ∈ (H1(Q))2 to problem (2.1) - (2.2), the following

estimate holds true:

∫
Q

(|∇u|2 + s2|u|2)e2sφdx

≤C1

(
‖fesφ‖2

(L2(Q))2 +
∫
Qω

(|∇u|2 + s2|u|2)e2sφdx

)
, ∀s ≥ s0(τ ),

(2.10)

where the constant C1 = C1(τ ) > 0 is independent of s.

Theorem 2.3. Let f = f0 +
∑2

j=1 ∂xj
fj with f0 ∈ L2(0, T ; (H−1(Ω))2) and f1, f2 ∈

(L2(Q))2, and let the function φ satisfy (2.9) and Condition 2.1. Then there exists

τ̂ > 0 such that for any τ > τ̂ , there exists s0 = s0(τ ) > 0 such that for any solution

u ∈ (L2(Q))2 to problem (2.1) - (2.2), the following estimate holds true:

∫
Q

|u|2e2sφdx

≤ C1

‖f0esφ‖2
L2(0,T ;(H−1(Ω))2) +

2∑
j=1

‖fjesφ‖2
(L2(Q))2 +

∫
Qω

|u|2e2sφdx
 , ∀s ≥ s0(τ ),

(2.11)

where the constant C1 = C1(τ ) > 0 is independent of s.
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§3. Determination of the density and the Lamé coefficients by a single

measurement.

Here we set recall that the differential operator Lλ,µ is defined by (1.2). We assume

(1.3) for ρ, λ, µ. By u = u(λ, µ, ρ,p,q, η)(x), we denote the sufficiently smooth

solution to

ρ(x′)(∂2
x0
u)(x) = (Lλ,µu)(x), x ∈ Q, (3.1)

u(x) = η(x), x ∈ (0, T )× ∂Ω, (3.2)

u(T/2, x′) = p(x′), (∂x0u)(T/2, x
′) = q(x′), x′ ∈ Ω, (3.3)

where η, p and q are suitably given functions.

Let ω ⊂ Ω be a suitably given subdomain. We consider the

Inverse Problem. Let pj ,qj , ηj, 1 ≤ j ≤ N , be appropriately given. Then

determine λ(x′), µ(x′), ρ(x′), x′ ∈ Ω, by

u(λ, µ, ρ,pj,qj , ηj)(x), x ∈ Qω ≡ (0, T )× ω. (3.4)

Our formulation of the inverse problem is one with a finite number of observations

(i.e., N <∞), and as for inverse problems for the non-stationary Lamé equation by

infinitely many boundary observations (i.e., Dirichlet-to-Neumann map), we refer

to Rachele [Ra], for example. Moreover see a monograph by Yahkno [Yak] for

inverse problems for the Lamé system.

For the formulation with a finite number of observations, Bukhgeim and Klibanov

[BuK] proposed a remarkable method based on a Carleman estimate and estab-

lished the uniqueness for similar inverse problems for scalar partial differential

equations. See also Bukhgeim [Bu], Bukhgeim, Cheng, Isakov and Yamamoto
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[BCIY], Imanuvilov and Yamamoto [IY2], [IY3], [IY4], Isakov [Is1], [Is2], [Is3],

Isakov and Yamamoto [IsY], Khăıdarov [Kh1], [Kh2], Klibanov [Kl], Puel and Ya-

mamoto [PY1], [PY2], Yamamoto [Ya] after Bukhgeim and Klibanov [BuK].

The Carleman estimate for the non-stationary Lamé equation was obtained for

functions with compact supports, by Eller, Isakov, Nakamura and Tataru [EINT],

Ikehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov and Yamamoto [IIY],

Isakov [Is1], and, by the methodology by [BuK] or [IY2], several uniqueness results

are available for the inverse problem for the Lamé system (3.1) - (3.3):

[Is1] Isakov established the uniqueness in determining a single coefficient ρ(x′),

using four measurements.

Later [INY] reduced the number of measurements to three.

Recently [IIY] proved conditional stability and the uniqueness in the determina-

tion of the three functions λ(x′), µ(x′), ρ(x′), x′ ∈ Ω, was proved with only two

measurements.

In all the papers [Is1], [INY], [IIY], the authors have to assume that ∂ω ⊃ ∂Ω

because the basic Carleman estimates require that solutions under consideration

have compact supports in Q.

In [Is1] and [INY], the key is a Carleman estimate where the right hand side is

estimated in an L2-space with the divergence, while in [IIY], the key is a Carleman

estimate with L2-right hand side without the divergence of u. In [IIY], we need not

take extra divergence for the Carleman estimate, and as its consequence, we can

relax N for simultaneous determination of all the three functions λ, µ, ρ.

In this section, we will further apply a Carleman estimate (Theorem 2.3) whose

right hand side is estimated in H−1 space to prove the conditional stability and the
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uniqueness with a single measurement: N = 1. Thus the main achievements are

(1) the reduction of the number of observations, i.e., N = 1. The previous

paper [IIY] requires N = 2.

(2) the reduction of the observation subdomain ω.

We notice that our results are true also in the three dimensional case.

In order to formulate our main result, we will introduce notations and an admis-

sible set of unknown parameters λ, µ, ρ. Henceforth we set (x′, y′) =
∑2

j=1 xjyj for

x′ = (x1, x2) and y′ = (y1, y2). Let a subdomain ω ⊂ Ω satisfy

∂ω ⊃ {x′ ∈ ∂Ω; ((x′ − y′),  n(x′)) ≥ 0} ≡ Γ (3.5)

with some y′ �∈ Ω. Under condition (3.5) on ω, we can prove the observability

inequality for the wave equation with constant coefficients (e.g., [Li2]).

Denote

d = ( sup
x′∈Ω

|x′ − y′|2 − inf
x′∈Ω

|x′ − y′|2) 1
2 . (3.6)

Next we define an admissible set of unknown coefficients λ, µ, ρ. We introduce the

conditions:

β(x′) ≥ θ1 > 0, x′ ∈ Ω,

‖β‖C3(Ω) ≤M0,
(∇x′β(x′), (x′ − y′))

2β(x′)
≤ 1− θ0, x′ ∈ Ω \ ω (3.7)

for any fixed constants M0 ≥ 0 and 0 < θ0 ≤ 1, θ1 > 0. For fixed functions a, b, η

on ∂Ω and p, q in Ω, we set

W =WM0,M1,θ0,θ1,a,b =

{
(λ, µ, ρ) ∈ (C3(Ω))3;λ = a, µ = b on ∂Ω,

λ+ 2µ
ρ

,
µ

ρ
satisfy (3.7), ‖u(λ, µ, ρ,p,q, η)‖W 7,∞(Q) ≤M1

}
(3.8)
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where the constant M1 is given. We choose θ > 0 such that

θ +
M0d√
θ1

√
θ < θ0θ1, θ1 inf

x′∈Ω
|x′ − y′|2 − θd2 > 0. (3.9)

Here we note that by y′ �∈ Ω, such θ > 0 exists.

By [·]1, we denote the first component of the vector under consideration. Let

(λ, µ, ρ) be an arbitrary element of W.

Now we are ready to state

Theorem 3.1. We assume that

Ω = {(x1, x2); γ0(x2) < x1 < γ1(x2), x2 ∈ I} (3.10)

with some open interval I and γ0, γ1 ∈ C3(I). Moreover we assume that the

functions p = (p1, p2)T and q = (q1, q2)T satisfy

det

(
(Lλ,µp)(x′) (divp(x′))E2 (∇x′p(x′) + (∇x′p(x′))T )(x′ − y′)
(Lλ,µq)(x′) (divq(x′))E2 (∇x′q(x′) + (∇x′q(x′))T )(x′ − y′)

)
�= 0, ∀x′ ∈ Ω,

(3.11)

det

(
(Lλ,µp)(x′) ∇x′p(x′) + (∇x′p(x′))T (divp)(x′ − y′)
(Lλ,µq)(x′) ∇x′q(x′) + (∇x′q(x′))T (divq)(x′ − y′)

)
�= 0, ∀x′ ∈ Ω,

(3.12)

and

x1 − y1 �= 0,

[Lλ,µq]1(∂1p2 + ∂2p1)(x′) �= [Lλ,µp]1(∂1q2 + ∂2q1)(x′), ∀x′ ∈ Ω
(3.13)

and that

T >
2√
θ
d. (3.14)
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Then there exist constants κ = κ(W, ω,Ω, T, λ, µ, ρ) ∈ (0, 1) and

C = C(W, ω,Ω, T, λ, µ, ρ) > 0 such that

‖λ̃− λ‖L2(Ω) + ‖µ̃− µ‖L2(Ω) + ‖ρ̃− ρ‖H−1(Ω)

≤C‖u(λ, µ, ρ,p,q, η)− u(λ̃, µ̃, ρ̃,p,q, η)‖κH4(0,T ;(L2(ω))2)

for any (λ̃, µ̃, ρ̃) ∈ W.

Our stability and uniqueness result requires only one measurement: N = 1, but

the conditions on the initial values p, q are more restrictive.

Example of Ω, p, q meeting (3.11) - (3.13). We assume that λ, µ are positive

constants and that {(x1, x2) ∈ Ω; x2 = y2} and {(x1, x2) ∈ Ω; x1 = y1} are empty.

Moreover we take

p(x′) =
(

0
(x1 − y1)(x2 − y2)

)
, q(x′) =

(
(x2 − y2)2

0

)
.

Then (3.11) - (3.13) are all satisfied.

Remark. In place of (3.10), let us assume

Ω = {(x1, x2); γ̃0(x1) < x2 < γ̃1(x1), x1 ∈ Ĩ} (3.10’)

with some open interval Ĩ. Then, after replacing (3.13) by

x2 − y2 �= 0,

[Lλ,µq]2(∂1p2 + ∂2p1)(x′) �= [Lλ,µp]2(∂1q2 + ∂2q1)(x′), x′ ∈ Ω,
(3.13’)

the conclusion of Theorem 3.1 holds under conditions (3.11), (3.12) and (3.14).

Moreover in the case when Ω is a more general smooth domain, we can prove the
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conditional stability in our inverse problem under other conditions of ω ⊂ Ω. We

will omit the details, for the sake of compact description of the proof.

We set

ψ(x) = |x′ − y′|2 − θ

(
x0 − T

2

)2

, φ(x) = eτψ(x), x = (x0, x
′) ∈ Q. (3.15)

First we show

Lemma 3.1. Let (λ, µ, ρ) ∈ W, and let us assume (3.9) and (3.14). Then, for

sufficiently large τ > 0, the function ψ given by (3.15) satisfies Condition 2.1 and

(2.9). Therefore the conclusion of Theorem 2.3 holds and the constans C1(τ ), τ̂

and s0(τ ) in (2.11) can be taken uniformly in (λ, µ, ρ) ∈ W.

Proof. The conditions (2.9) and the second condition in (2.6) are directly verified

by means of (3.5). The conditions (2.4) and (2.5) can be verified by the same way

as in Imanuvilov and Yamamoto [IY4], for example. Finally we have to verify the

first condition in (2.6). Without loss of generality, we may assume that T = 2d√
θ
+ε,

where ε > 0 is sufficiently small. Because if Theorem 3.1 is proved for this value of

T , then conclusion is true for any T̃ > T . Let β = λ+2µ
ρ or = µ

ρ . Then it suffices

to verify

−(θ(x0 − T/2))2 + β(x′)|x′ − y′|2 > 0

for x ∈ [0, T ] × ∂Ω. In fact, by means of the second inequality in (3.8) and (3.9),

we have

4β(x′)|x′ − y′|2 − 4θ2

(
x0 − T

2

)2

≥ 4θ1 inf
x′∈Ω

|x′ − y′|2 − θ(θT 2)

≥4θ1 inf
x′∈Ω

|x′ − y′|2 − θ(2d+ ε
√
θ)2 > 0
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because ε > 0 is sufficiently small. The uniformity of the constants C1(τ ), τ̂ and

s0(τ ) follows similarly to [IIY]. Thus the proof of Lemma 3.1 is complete. �

Next we prove a Carleman estimate for a first order partial differential operator

(P0g)(x′) =
2∑

j=1

p0,j(x′)∂xj
g(x′).

Lemma 3.2. We assume

2∑
j=1

p0,j(x′)∂xj
φ(T/2, x′) > 0, x′ ∈ Ω. (3.16)

Then there exists a constant τ0 > 0 such that for all τ > τ0, there exist s0 =

s0(τ ) > 0 and C = C(s0, τ0,Ω, ω) > 0 such that

∫
Ω

s2|g|2e2sφ(T/2,x′)dx′ ≤ C

∫
Ω

|P0g|2e2sφ(T/2,x′)dx′

for all s > s0 and g ∈ H1(Ω) satisfying g = 0 on {x′ ∈ ∂Ω;
∑2

j=1 p0,j(x′)nj(x′) ≥

0}.

Lemma 3.3. We assume

2∑
j=1

p0,j(x′)∂xj
φ(T/2, x′) �= 0, x′ ∈ Ω.

Then the conclusion of Lemma 3.2 is true for all s > s0 and g ∈ H1
0 (Ω).

Proof of Lemma 3.2. For simplicity, we set φ0(x′) = φ(T/2, x′) and w = esφ0g,

Q0w = esφ0P0(e−sφ0w). Then

∫
Ω

|P0g|2e2sφ(T/2,x′)dx′ =
∫

Ω

|Q0w|2dx′.

We have

Q0w = P0w − sq0w,
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where q0(x′) =
∑2

j=1 p0,j(x′)∂xj
φ0(x′). Therefore, by (3.16) and integration by

parts, we obtain

‖Q0w‖2
L2(Ω) = ‖P0w‖2

L2(Ω) + s2‖q0w‖2
L2(Ω) − 2s

∫
Ω

2∑
j=1

p0,j(∂xj
w)q0wdx′

≥s2

∫
Ω

q0(x′)2w2(x′)dx′ − s

∫
Ω

2∑
j=1

p0,jq0∂xj
(w2)dx′

≥C0s
2

∫
Ω

w2(x′)dx′ − s

∫
∂Ω

2∑
j=1

p0,jq0w
2njdS + s

∫
Ω

2∑
j=1

∂xj
(p0,jq0)w2dx′

≥(C0s
2 − C1s)

∫
Ω

w2dx′ − s

∫
∂Ω∩{P2

j=1 p0,jnj≤0}

 2∑
j=1

p0,jnj

 q0w
2dS.

By (3.16), we have q0 ≥ 0 on ∂Ω, so that the right hand side is greater than or

equal to (C0s
2 − C1s)

∫
Ω
w2dx′. Thus by taking s > 0 sufficiently large, the proof

of Lemma 3.2 is complete. �

The proof of Lemma 3.3 is similar, thanks to the fact that the integral on ∂Ω

vanishes by g ∈ H1
0 (Ω).

Now we proceed to

Proof of Theorem 3.1. The proof is similar to Isakov, Imanuvilov and Yamamoto

[IIY], Imanuvilov and Yamamoto [IY2] - [IY4] and the new ingredient is an H−1-

Carleman estimate (Lemma 3.1) . Henceforth, for simplicity, we set

u = u(λ, µ, ρ,p,q, η), v = u(λ̃, µ̃, ρ̃,p,q, η)

and

y = u− v, f = ρ− ρ̃, g = λ− λ̃, h = µ− µ̃.

In (3.13), without loss of generality, we may assume that

x1 − y1 > 0, (x1, x2) ∈ Ω.
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Then we set

F (x1, x2) =
∫ x1

γ1(x2)

f(ξ, x2)dξ, (x1, x2) ∈ Ω. (3.17)

If x1 − y1 < 0 for (x1, x2) ∈ Ω, then it is sufficient to replace (3.17) by F (x1, x2) =∫ x1

γ0(x2)
f(ξ, x2)dξ, (x1, x2) ∈ Ω. Then

ρ̃∂2
x0
y = Leλ,eµy +Gu in Q (3.18)

and

y
(
T

2
, x′
)

= ∂x0y
(
T

2
, x′
)

= 0, x′ ∈ Ω (3.19)

and

y = 0 in (0, T )× ∂Ω. (3.20)

Here we set

Gu(x) = −∂x1F (x′)∂2
x0
u(x) + (g + h)(x′)∇x′(divu)(x) + h(x′)∆u(x)

+(divu)(x)∇x′g(x′) + (∇x′u(x) + (∇x′u(x))T )∇h(x′). (3.21)

By (3.14), we have the inequality θT 2

4 > d2. Therefore, by (3.6) and definition

(3.15) of the function φ, we have

φ(T/2, x′) ≥ d1, φ(0, x′) = φ(T, x′) < d1, x′ ∈ Ω

with d1 = exp(τ infx′∈Ω |x′−y′|2). Thus, for given ε > 0, we can choose a sufficiently

small δ = δ(ε) > 0 such that

φ(x) ≥ d1 − ε, x ∈
[
T

2
− δ,

T

2
+ δ

]
× Ω (3.22)

and

φ(x) ≤ d1 − 2ε, x ∈ ([0, 2δ] ∪ [T − 2δ, T ])× Ω. (3.23)
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In order to apply Lemma 3.1, it is necessary to introduce a cut-off function χ

satisfying 0 ≤ χ ≤ 1, χ ∈ C∞(R) and

χ =
{

0 on [0, δ] ∪ [T − δ, T ]
1 on [2δ, T − 2δ].

(3.24)

Henceforth C > 0 denotes generic constants depending on s0, τ , M0, M1, θ0, θ1, η,

Ω, T , y′, ω, χ and p, q, ε, δ, but independent of s > s0.

Setting z1 = χ∂2
x0
y, z2 = χ∂3

x0
y and z3 = χ∂4

x0
y, we have



ρ̃∂2
x0
z1 = Leλ,eµz1 + χG(∂2

x0
u) + 2ρ̃(∂x0χ)∂

3
x0
y + ρ̃(∂2

x0
χ)∂2

x0
y,

ρ̃∂2
x0
z2 = Leλ,eµz2 + χG(∂3

x0
u) + 2ρ̃(∂x0χ)∂

4
x0
y + ρ̃(∂2

x0
χ)∂3

x0
y,

ρ̃∂2
x0
z3 = Leλ,eµz3 + χG(∂4

x0
u) + 2ρ̃(∂x0χ)∂

5
x0
y + ρ̃(∂2

x0
χ)∂4

x0
y in Q.

(3.25)

Henceforth we set

E =
∫
Qω

(|∂2
x0
y|2 + |∂3

x0
y|2 + |∂4

x0
y|2)e2sφdx.

Noting u ∈W 7,∞(Q), in view of (3.24), we apply Lemma 3.1 to (3.25), so that

4∑
j=2

∫
Q

|∂jx0
y|2χ2e2sφdx ≤ C(‖Fesφ‖2

L2(Q) + ‖gesφ‖2
L2(Q) + ‖hesφ‖2

L2(Q))

+C
5∑

j=3

‖(∂x0χ)(∂
j
x0
y)esφ‖2

L2(0,T ;(H−1(Ω))2)

+C
4∑

j=2

‖(∂2
x0
χ)(∂jx0

y)esφ‖2
L2(0,T ;(H−1(Ω))2) + CE

≤C(‖Fesφ‖2
L2(Q) + ‖gesφ‖2

L2(Q) + ‖hesφ‖2
L2(Q)) + Ce2s(d1−2ε) + CE

(3.26)

for all large s > 0.
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On the other hand,

∫
Ω

|(∂2
x0
y)(T/2, x′)|2e2sφ(T/2,x′)dx′

=
∫ T/2

0

∂

∂x0

(∫
Ω

|(∂2
x0
y)(x0, x

′)|2χ(x0)2e2sφdx′
)
dx0

=
∫ T/2

0

∫
Ω

2((∂3
x0
y) · (∂2

x0
y))χ2e2sφdx

+2s
∫ T/2

0

∫
Ω

|∂2
x0
y|2χ2(∂x0φ)e

2sφdx+
∫ T/2

0

∫
Ω

|∂2
x0
y|2(∂x0(χ

2))e2sφdx

≤C
∫
Q

sχ2(|∂3
x0
y|2 + |∂2

x0
y|2)e2sφdx+ Ce2s(d1−2ε).

Therefore (3.26) yields

∫
Ω

|(∂2
x0
y)(T/2, x′)|2e2sφ(T/2,x′)dx′

≤Cs

∫
Q

(|F |2 + |g|2 + |h|2)e2sφdx+ Cse2s(d1−2ε) + CsE (3.27)

for all large s > 0. Similarly we can estimate
∫
Ω
|(∂3

x0
y)(T/2, x′)|2e2sφ(T/2,x′)dx′ to

obtain

∫
Ω

(|(∂2
x0
y)(T/2, x′)|2 + |(∂3

x0
y)(T/2, x′)|2)e2sφ(T/2,x′)dx′

≤Cs

∫
Q

(|F |2 + |g|2 + |h|2)e2sφdx+ Cse2s(d1−2ε) + CsE (3.28)

for all large s > 0.

On the other hand, by (3.18), (3.19) and u,v ∈W 7,∞(Q), we have

ρ̃∂2
x0
y
(
T

2
, x′
)

= Gu
(
T

2
, x′
)
, ρ̃∂3

x0
y
(
T

2
, x′
)

= G∂x0u
(
T

2
, x′
)
. (3.29)
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Then, setting



− 1
ρ
Lλ,µp =

(
a11

a21

)
, −1

ρ
Lλ,µq =

(
a12

a22

)
,

divp = b1, divq = b2,

∇x′p+ (∇x′p)T =
(
c1 d1

d1 e1

)
, ∇x′q+ (∇x′q)T =

(
c2 d2

d2 e2

)
,

ρ̃∂2
x0
y
(
T

2
, x′
)
− (g + h)∇x′(divp)− h∆p =

(
G1

G2

)
,

ρ̃∂3
x0
y
(
T

2
, x′
)
− (g + h)∇x′(divq)− h∆q =

(
G3

G4

)
,

(3.30)

we rewrite (3.29) as


a11 b1 0
a21 0 b1
a12 b2 0
a22 0 b2


 ∂x1F

∂x1g
∂x2g

 =


G1 − c1∂x1h− d1∂x2h
G2 − d1∂x1h− e1∂x2h
G3 − c2∂x1h− d2∂x2h
G4 − d2∂x1h− e2∂x2h

 . (3.31)

Because linear system (3.31) possesses a solution (∂x1F, ∂x1g, ∂x2g), the coefficient

matrix must satisfy

det


a11 b1 0 G1 − c1∂x1h− d1∂x2h
a21 0 b1 G2 − d1∂x1h− e1∂x2h
a12 b2 0 G3 − c2∂x1h− d2∂x2h
a22 0 b2 G4 − d2∂x1h− e2∂x2h

 = 0,

that is,

(∂x1h)det


a11 b1 0 c1
a21 0 b1 d1

a12 b2 0 c2
a22 0 b2 d2

+ (∂x2h)det


a11 b1 0 d1

a21 0 b1 e1
a12 b2 0 d2

a22 0 b2 e2



=det


a11 b1 0 G1

a21 0 b1 G2

a12 b2 0 G3

a22 0 b2 G4

 , (3.32)

by the linearity of the determinant. Under condition (3.11), taking into considera-

tion h = µ− µ̃ = 0 on ∂Ω and considering (3.32) as a first order partial differential
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operator in h, we apply Lemma 3.3, so that

s2

∫
Ω

|h|2e2sφ(T/2,x′)dx′ ≤ C

∥∥∥∥∥∥∥det


a11 b1 0 G1

a21 0 b1 G2

a12 b2 0 G3

a22 0 b2 G4

 esφ(T/2,·)

∥∥∥∥∥∥∥
2

L2(Ω)

≤C
∫

Ω

(∣∣∣∣∂2
x0
y
(
T

2
, x′
)∣∣∣∣2 + ∣∣∣∣∂3

x0
y
(
T

2
, x′
)∣∣∣∣2
)
e2sφ(T/2,x′)dx′

+C

∫
Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′, (3.33)

in view of (3.30). We rewrite (3.29) as


a11 c1 d1

a21 d1 e1
a12 c2 d2

a22 d2 e2


 ∂x1F

∂x1h
∂x2h

 =


G1 − b1∂x1g
G2 − b1∂x2g
G3 − b2∂x1g
G4 − b2∂x2g


and, using (3.12), we can similarly deduce

s2

∫
Ω

|g|2e2sφ(T/2,x′)dx′ ≤ C

∫
Ω

(∣∣∣∣∂2
x0
y
(
T

2
, x′
)∣∣∣∣2 + ∣∣∣∣∂3

x0
y
(
T

2
, x′
)∣∣∣∣2
)
e2sφ(T/2,x′)dx′

+C

∫
Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′ (3.34)

for all large s > 0. By (3.33) and (3.34), for sufficiently large s > 0, we have

s2

∫
Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′

≤C
∫

Ω

(∣∣∣∣∂2
x0
y
(
T

2
, x′
)∣∣∣∣2 + ∣∣∣∣∂3

x0
y
(
T

2
, x′
)∣∣∣∣2
)
e2sφ(T/2,x′)dx′.

(3.35)

Moreover, eliminating ∂x2h in the first and the third rows in (3.31) and using (3.13),

we have

∂x1

(
F +

d2b1 − d1b2
d2a11 − d1a12

g +
d2c1 − d1c2
d2a11 − d1a12

h

)
=

d2G1 − d1G3

d2a11 − d1a12
+ g∂x1

(
d2b1 − d1b2

d2a11 − d1a12

)
+ h∂x1

(
d2c1 − d1c2
d2a11 − d1a12

)
.
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By (3.10) and (3.17), if n1(x′) ≥ 0, then x1 = γ1(x2), that is, we have F (x1, x2) = 0

if n1(x′) ≥ 0. Therefore, noting g = h = 0 on ∂Ω and setting p0,1 = 1, p0,2 = 0 in

Lemma 3.2, we can apply the lemma. Thus, in view of (3.35) and (3.30), we obtain

s2

∫
Ω

|F |2e2sφ(T/2,x′)dx′

≤C
∫

Ω

(∣∣∣∣∂2
x0
y
(
T

2
, x′
)∣∣∣∣2 + ∣∣∣∣∂3

x0
y
(
T

2
, x′
)∣∣∣∣2
)
e2sφ(T/2,x′)dx′

(3.36)

for all large s > 0. Consequently, substituting (3.35) and (3.36) into (3.28) and

using φ(T/2, x′) ≥ φ(x0, x
′) for (x0, x

′) ∈ Q, we obtain

∫
Ω

(|F |2 + |g|2 + |h|2)e2sφ(T/2,x′)dx′

≤CT

s

∫
Ω

(|F |2 + |g|2 + |h|2)e2sφ(T/2,x′)dx′ +
C

s
e2s(d1−2ε) +

C

s
E

for all large s > 0. Taking s > 0 sufficiently large and noting e2sφ(T/2,x′) ≥ e2sd1

for x′ ∈ Ω, we obtain

∫
Ω

(|F |2+|g|2+|h|2)dx′ ≤ Ce−4sε+Ce2sC
∫
Qω

(|∂2
x0
y|2+|∂3

x0
y|2+|∂4

x0
y|2)dx (3.37)

for all large s > s0: a constant which is dependent on τ , but independent of s.

Therefore we take C > 0 again dependently on s0 > 0, so that (3.37) holds for all

s > 0.

Now we choose s > 0 such that

e2sC
∫
Qω

(|∂2
x0
y|2 + |∂3

x0
y|2 + |∂4

x0
y|2)dx = e−4sε,

that is,

s = − 1
4ε+ 2C

log
∫
Qω

(|∂2
x0
y|2 + |∂3

x0
y|2 + |∂4

x0
y|2)dx.
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Here we may assume that
∫
Qω

(|∂2
x0
y|2 + |∂3

x0
y|2 + |∂4

x0
y|2)dx < 1 and so s > 0.

Then it follows from (3.37) that

∫
Ω

(|F |2 + |g|2 + |h|2)dx′

≤2C
(∫

Qω

(|∂2
x0
y|2 + |∂3

x0
y|2 + |∂4

x0
y|2)dx

) 4ε
4ε+2C

.

By definition (3.17) of F , we have

∫
Ω

frdx1dx2 =
∫

Ω

(∂x1F )rdx1dx2 =
∫

Ω

F (∂x1r)dx1dx2

for all r ∈ H1
0 (Ω) by integration by parts. Hence we can directly verify that

‖f‖H−1(Ω) ≤ C‖F‖L2(Ω), so that the proof of Theorem 3.1 is complete. �

§4. Proof of Theorem 2.1 (the beginning).

Henceforth we set

Dxj
=

1
i
∂xj

, j = 0, 1, 2, etc.,

and c denotes the complex conjugate of c ∈ C.

Without loss of generality, we may assume that ρ ≡ 1. Otherwise we introduce

new coefficients µ1 = µ/ρ, λ1 = λ/ρ to argue similarly. We can directly verify that

the functions rotu ≡ ∂x1u2 − ∂x2u1 and divu satisfy the equations

∂2
x0
rot u− µ∆rotu = m1, ∂2

x0
divu− (λ+ 2µ)∆divu = m2 inQ, (4.1)

where

m1 = K1rotu+K2divu+K1u+ rot f , m2 = K3rotu+K4divu+K2 + div f

and Kj, Kk are first order differential operators with L∞ coefficients.



24 O.Y. IMANUVILOV AND M. YAMAMOTO

Thanks to Condition 2.1 on the weight function ψ, there exists τ̂ such that for

all τ̃ > τ̂ , we have

s‖(∇rotu)esφ‖2
(L2(Q))2 + s‖(∇divu)esφ‖2

(L2(Q))2

+s3‖(rotu)esφ‖2
(L2(Q))2 + s3‖(divu)esφ‖2

(L2(Q))2

≤C1

(
s2‖fesφ‖2

(L2(Q))2 + ‖(∇f)esφ‖2
(L2(Q))2 + s

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(H1((0,T )×∂Ω))2

+s

∥∥∥∥∂2u
∂ n2

esφ
∥∥∥∥2

(L2((0,T )×∂Ω))2
+ s3

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(L2((0,T )×∂Ω))2
+ ‖u‖2

B(Qω)

)
, ∀s ≥ s0(τ̃),

(4.2)

where the constant C1 is independent of s.

In order to estimate the H1(Q)-norm of the function u, we need the following

proposition.

Proposition 4.1. There exists τ̂ > 1 such that for any τ̃ > τ̂ , there exists s0(τ̃)

such that∫
Q

1
s

2∑
j,k=1

|∂xj
∂xk

u|2 + s|∇x′u|2 + s3|u|2
 e2sφdx

≤C2

(
‖(rotu)esφ‖2

H1(Q) + ‖(divu)esφ‖2
H1(Q) +

∫
Qω

(s|∇u|2 + s3|u|2)e2sφdx

)
,

∀s ≥ s0(τ̃), u ∈ (H1
0 (Q))2. (4.3)

Proof of Proposition 4.1. Denote rotu = y and divu = w and let rot∗v =(
∂v
∂x2

,− ∂v
∂x1

)
. Using a well-known formula: rot∗rot = −∆x′ +∇x′div , we obtain

−∆x′u = −rot∗ y−∇x′w in Ω, u|∂Ω = 0.

Then (4.3) follows from the Carleman estimate for an elliptic equations obtained

by the first author in [Im1].�

By (4.2) and (4.3), we estimate
∑2

|α|=0,α=(0,α1,α2)
‖(∂αxu)esφ‖2

(L2(Q))2 via the

right hand side of (4.2). Next using this estimate and equation (1.1), we obtain the
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estimate for the norm ‖(∂2
x0
u)esφ‖2

(L2(Q))2 via the right hand side of (4.2). Finally

we obtain the estimate for ‖(∂x0∂xj
u)esφ‖2

(L2(Q))2 and s2‖(∂x0u)e
sφ‖2

(L2(Q))2 by the

interpolation argument. Therefore, combining these estimates with (4.2), we have

‖u‖2
Y (φ,Q) ≤ C3

(
s2‖fesφ‖2

(L2(Q))2 + ‖(∇f)esφ‖2
(L2(Q))2

+s

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(H1((0,T )×∂Ω))2
+ s

∥∥∥∥∂2u
∂ n2

esφ
∥∥∥∥2

(L2((0,T )×∂Ω))2

+s3

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(L2((0,T )×∂Ω))2
+ ‖u‖2

B(φ,Qω)

)
, ∀s ≥ s0(τ̃), (4.4)

where the constant C3 is independent of s.

Now we need to estimate the boundary integrals at the right hand side of (4.4).

In order to do that, it is convenient to use another weight function ϕ such that

ϕ|∂Ω = φ|∂Ω and ϕ(x) < φ(x) for all x ∈ Q. We construct such a function ϕ locally

near the boundary ∂Ω:

ϕ(x) = eeτ
eψ(x), ψ̃(x) = ψ(x)− ε̂A1(x′) +NA21(x

′),

where ε̂ > 0 is a small positive parameter, N > 0 is the large positive parameter,

and A1 ∈ C3(Ω) is a function such that

A1(x′) > 0, ∀x′ ∈ Ω, A1|∂Ω = 0, ∇x′A1|∂Ω �= 0.

Denote ΩN = {x′ ∈ Ω; dist (x′, ∂Ω) ≤ 1
N2 }. Obviously for any fixed ε̂ > 0, there

exists N0(ε̂) such that

ϕ(x) < φ(x), ∀x ∈ [0, T ]×ΩN , N ∈ (N0,∞).

Now we will prove the following estimate: there exists τ̂ > 0 such that for all
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τ̃ > τ̂ , there exists s0(τ̃) such that

‖u‖2
Y (ϕ,Q) +N

2∑
|α|=0

s4−2|α|‖(∂αxu)esϕ‖2
(L2(Q))2 ≤ C4(s2‖fesϕ‖2

(L2(Q))2

+‖(∇f)esϕ‖2
(L2(Q))2 + ‖u‖2

B(ϕ,Qω)), ∀s ≥ s0(τ̃ , N), suppu ⊂ [0, T ]× ΩN ,
(4.5)

where the constant C4 is independent of s and N .

Proof of (4.5). First we note that, thanks to the large parameter N , it suffices

to prove (4.5) only locally by assuming

suppu ⊂ Bδ ∩ ([0, T ]× ΩN ),

where Bδ is the ball of the radius δ > 0 centred at some point y∗. In the case of

Bδ ∩ ((0, T )× ∂Ω) = ∅, we can prove in a usual way for a function with compact

support (see e.g., [Hö]). Without loss of generality, we may assume that y∗ =

(y∗0 , 0, 0). Moreover the parameter δ > 0 can be chosen arbitrarily small. Assume

that near (0, 0), the boundary ∂Ω is locally given by the equation x2 − A(x1) = 0.

Furthermore, since the function ũ = Ou(x0,O−1x′) satisfies system (2.1) and (2.2)

with f̃ = Of(x0,O−1x′) for any orthogonal matrix O, we may assume that

A′(0) ≡ dA

dx1
(0) = 0. (4.6)

Making the change of variables y1 = x1 and y2 = x2 − A(x1), we reduce equation

(2.1) to the form

P1u =
∂2u1

∂y2
0

− µ

(
∂2u1

∂y2
1

− 2A′(y1)
∂2u1

∂y1∂y2
+ (1 + |A′(y1)|2)∂

2u1

∂y2
2

)
+ µA

′′
(y1)

∂u1

∂y2

−(λ+ µ)
∂

∂y1

(
divu− ∂u1

∂y2
A′
)
+ (λ+ µ)

∂

∂y2

(
divu− ∂u1

∂y2
A′
)
A′ + K̃1u = f1,

P2u =
∂2u2

∂y2
0

− µ

(
∂2u2

∂y2
1

− 2A′(y1)
∂2u2

∂y1∂y2
+ (1 + |A′(y1)|2)∂

2u2

∂y2
2

)
+ µA

′′
(y1)

∂u2

∂y2

−(λ+ µ)
∂

∂y2

(
divu− ∂u1

∂y2
A′
)
+ K̃2u = f2,

(4.7)
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where we use the same notations u, f after the change of variables and K̃1, K̃2 are

partial differential operators of the first order. We set P = (P1,P2). After the

change of variables, equations (4.1) have the form

Pµz1 =
∂2z1
∂y2

0

− µ

(
∂2z1
∂y2

1

− 2A′(y1)
∂2z1

∂y1∂y2
+ (1 + |A′(y1)|2)∂

2z1
∂y2

2

)
+µA

′′
(y1)

∂z1
∂y2

= m1 in GN � R
2 ×
[
0,

κ̂

N2

]
, (4.8)

Pλ+2µz2 =
∂2z2
∂y2

0

− (λ+ 2µ)
(
∂2z2
∂y2

1

− 2A′(y1)
∂2z2

∂y1∂y2
+ (1 + |A′(y1)|2)∂

2z2
∂y2

2

)
+(λ+ 2µ)A

′′
(y1)

∂z2
∂y2

= m2 in GN . (4.9)

Here we set

z1 =
∂u2

∂y1
− ∂u2

∂y2
A′(y1)− ∂u1

∂y2
, z2 =

∂u1

∂y1
+

∂u2

∂y2
− ∂u1

∂y2
A′(y1),

we use the same notations m1, m2 after the change of variables and the constant

κ̂ > 0 is chosen sufficiently large such that the image of [0, T ]×ΩN belongs to GN .

Henceforth we write (z1, z2) = R(y,D)u.

Now we claim that in order to prove estimate (4.5), it suffices to establish the

following estimate for the function w = (w1, w2) = esϕ(z1, z2) = esϕR(y,D)u:

‖w‖2
∗ ≡ s‖w‖2

(H1(GN ))2 + s3‖w‖2
(L2(GN ))2 + s

∥∥∥∥ ∂w∂y2

∥∥∥∥2
(L2(∂GN ))2

+ s‖w‖2
(H1(∂GN ))2

+s3‖w‖2
(L2(∂GN ))2 ≤ C5(‖Puesϕ‖2

(H1(GN ))2 + s2‖Puesϕ‖2
(L2(GN ))2 + s‖g‖2

(L2(∂GN ))2

+
2∑

|α|=0

s4−2|α|‖(∂αy′u)esϕ‖2
(L2(GN ))2), ∀s ≥ s0(τ̃ , N), (4.10)

for all u ∈ H2(GN ) satisfying u|∂GN
= 0 and suppu ⊂ Bδ ∩ GN . Obviously the

function w satisfies the boundary condition

∂w1

∂y2
=

λ+ 2µ
µ

∂w2

∂y1
+ sϕy2(y

∗)w1 − s
λ+ 2µ

µ
ϕy1(y

∗)w2 + g1, on ∂GN , (4.11)
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∂w2

∂y2
= − µ

λ+ 2µ
∂w1

∂y1
+ sϕy2(y

∗)w2 + s
µ

λ+ 2µ
ϕy1(y

∗)w1 + g2, on ∂GN , (4.12)

where the function g = (g1, g2) satisfies the estimate

s‖g‖2
(L2(∂GN ))2 ≤ ε(δ)

(
s

∥∥∥∥ ∂w∂y2

∥∥∥∥2
(L2(∂GN ))2

+ s‖w‖2
(H1(∂GN ))2

+s3‖w‖2
(L2(∂GN ))2

)
+ C6s‖Puesϕ‖2

(L2(∂GN ))2 , (4.13)

and limδ→0 ε(δ) = 0.

The boundary conditions (4.11) and (4.12) with property (4.13) follow from (4.8),

(4.9) and the zero Dirichlet boundary condition for u. In order to deduce (4.5) from

estimate (4.10), we need

‖u‖2
Y (ϕ,GN ) ≤ C7(‖w‖2

∗ + ‖Puesϕ‖2
(H1(GN ))2 + s2‖Puesϕ‖2

(L2(GN ))2) (4.14)

and the following proposition:

Proposition 4.2. There exist τ̂ > 1 and N0 > 1 such that for any τ̃ > τ̂ and

N > N0(τ̃), there exists s0(τ̃ , N) such that

N

∫
GN

 1
sϕ

2∑
j,k=1

|∂yj
∂yk

u|2 + sϕ|∇y′u|2 + s3ϕ3|u|2
 e2sϕdy′

≤C8(‖z1 e
sϕ‖2

H1(GN ) + ‖z2e
sϕ‖2

H1(GN )), ∀u ∈ (H1
0 (GN ))2, suppu ⊂ Bδ ∩ GN , ∀s ≥ s0(τ̃ , N),

where the constant C8 is independent of N.

We give the proof of Proposition 4.2 in Appendix I.

Thanks to Proposition 4.2 and equations (4.7), we obtain

N‖(∂2
y0
u)esϕ‖2

(L2(GN ))2 +
2∑

|α|=0,α=(0,α1,α2)

Ns4−2|α|‖(∂αy′u)esϕ‖2
(L2(GN ))2

≤C9(‖u‖2
Y (ϕ,GN ) +N‖Puesϕ‖2

(L2(GN ))2) ∀s ≥ s0(τ̃ , N). (4.15)
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By (4.13), (4.14) and (4.15), we obtain

N‖(∂2
y0
u)esϕ‖2

(L2(GN ))2 +
2∑

|α|=0,α=(0,α1,α2)

Ns4−2|α|‖(∂αy′u)esϕ‖2
(L2(GN ))2 + ‖u‖2

Y (ϕ,GN )

≤C10(‖∇(Pu)esϕ‖2
(L2(GN ))2 + s2‖Puesϕ‖2

(L2(GN ))2) ∀s ≥ max{s0(τ̃ , N), N}.
(4.16)

Finally, combining (4.16) with the estimates

s2‖(∂y0u)e
sϕ‖2

(L2(GN ))2 ≤ C11(‖(∂2
y0
u)esϕ‖2

(L2(GN ))2 + s4‖uesϕ‖2
(L2(GN ))2)

and

‖(∂y0∂yk
u)esϕ‖2

(L2(GN ))2 ≤ C11

2∑
j=0

‖(∂2
yj
u)esϕ‖2

(L2(GN ))2 , k ∈ {1, 2},

we obtain (4.5).

We set Pµ,s = e|s|ϕPµe−|s|ϕ and Pλ+2µ,s = e|s|ϕPλ+2µe
−|s|ϕ. By p(y, ξ0, ξ1, ξ2)

and pβ(y, ξ0, ξ1, ξ2) with β = µ or λ + 2µ, we denote the principal symbols of the

operators P and Pβ respectively. In order to prove the Carleman estimate (4.10) it is

convenient for us to introduce a new variable σ and consider s as a dual variable to

σ. Following [T1, Chapter 14], we consider the pseudo-differential operators defined

by

Pβ(y,Dσ, Dy0 , Dy1 , Dy2)v

=
∫

R3
pβ(y, ξ0 + i|s|ϕy0 , ξ1 + i|s|ϕy1 , Dy2 + i|s|ϕy2)v̂(s, ξ0, ξ1, y2)ei(<y′,ξ′>+σs)dσdξ′,

Pσ(y,Dσ, Dy0 , Dy1 , Dy2)v

=
∫

R3
p(y, ξ0 + i|s|ϕy0 , ξ1 + i|s|ϕy1 , Dy2 + i|s|ϕy2)v̂(s, ξ0, ξ1, y2)ei(<y′,ξ′>+σs)dσdξ′,

where ξ′ = (ξ0, ξ1), y′ = (y0, y1) and v̂(s, ξ0, ξ1, y2) is the Fourier transform of

v(σ, y0, y1, y2) with respect to σ, y0, y1. Let v(σ, y) = (v1(σ, y), v2(σ, y)) be a func-

tion with the domain Q = R1
+ ×R3. Henceforth Fσ denotes the Fourier transform
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with respect to the variable σ. Let h(s) = (1 + s2)
1
4 , Σ = ∂Q. Moreover we set

g = (g1, g2),

Rs(y,D)U = e|s|φR(y,D)e−|s|φU , (4.17)

and
B1w � −∂w1

∂y2
+

λ+ 2µ
µ

∂w2

∂y1
+ |s|ϕy2(y

∗)w1 − |s|λ+ 2µ
µ

ϕy1(y
∗)w2,

B2w � −∂w2

∂y2
− µ

λ+ 2µ
∂w1

∂y1
+ |s|ϕy2(y

∗)w2 + |s| µ

λ+ 2µ
ϕy1(y

∗)w1, on Σ

for w = (w1, w2), provided that the right hand sides are well-defined.

Then we claim that in order to prove (4.5), it suffices to establish the following

estimate

|||v|||2 �
1∑

j=0

‖h(Dσ)3−2jv‖2
L2(R1;(Hj(GN ))2) + ‖h(Dσ)3−2jv‖2

(Hj(Σ))2 +
∥∥∥∥h(Dσ)

∂v
∂y2

∥∥∥∥2
(L2(Σ))2

≤C12(‖Pσ(y,D)F−1
σ U‖2

(H1(Q))2 + ‖h(Dσ)F−1
σ g‖2

(L2(Σ))2 + ‖U‖2
(H2(Q))2), (4.18)

if U and v satisfy suppU ⊂ R1 × (Bδ ∩ GN ), suppF−1
σ U ⊂ (−σ0, σ0)× (Bδ ∩ GN )

with arbitrarily small parameter σ0 > 0, and
Rs(y,D)U = Fσv, U|Σ = 0

B1(Fσv) = g1, B2(Fσv) = g2 on Σ.

We set

Fσv = w.

Then

(B1w, B2w) = (g1, g2) ≡ g. (4.19)

This fact can be proved exactly in the same way as in [T1, Chapter 14, Section 2].

Consider the finite covering of the unit sphere S2 ≡ {(s, ξ0, ξ1); s2 + ξ2
0 + ξ2

1 = 1}:
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S2 ⊂ ∪ζ∗∈S2{ζ = (s, ξ0, ξ1) ∈ S2; |ζ − ζ∗| < δ1} and the partition of unity χν(ζ):∑K(δ1)
ν=1 χν(ζ) = 1 for any ζ ∈ S2 and suppχν ⊂ {ζ ∈ S2; |ζ − ζ∗ν | < δ1}.

We extend the function χν on the set |ζ| > 1 as the homogeneous function of

the order zero in such a way that

suppχν ⊂ O(δ1) ≡
{
ζ;
∣∣∣∣ ζ|ζ| − ζ∗

∣∣∣∣ < δ1

}
.

We set D′ = (Dσ, Dy0 , Dy1), and consider the pseudo-differential operator χν(D′)

and the function χν(D′)v. Obviously equalities (4.19) hold true with w and g re-

placed by wν = 1√
2π

∫ +∞
−∞ χν(D′)ve−isσdσ and gν = 1√

2π

∫ +∞
−∞ χν(D′)F−1

σ ge−isσdσ.

Moreover we claim that instead of (4.18), it suffices to prove the following esti-

mate

|||χν(D′)v||| ≤ C13(‖Pσχν(D′)F−1
σ U‖(H1(Q))2

+‖h(Dσ)χν(D′)F−1
σ g‖(L2(Σ))2 + ‖U‖(H2(Q))2), (4.20)

where

Rs(y,D′)U = Fσv, U|Σ = 0, suppF−1
σ U ⊂ (−σ0, σ0)× (Bδ ∩ GN ),

B1(w1,ν , w2,ν) = g1,ν , B2(w1,ν , w2,ν) = g2,ν (4.21)

and C13 is independent of N. In fact, assume that estimate (4.20) is already proved.
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Then

|||v|||2 ≤
K(δ1)∑
ν=1

|||χν(D′)v|||2

≤C14

K∑
ν=1

(‖Pσ(y,D)χνF−1
σ U‖2

(H1(Q))2 + ‖h(s)gν‖2
(L2(Σ))2 + ‖χν(D′)F−1

σ U‖2
(H2(Q))2)

≤C15

K∑
ν=1

(‖χν(D′)Pσ(y,D)F−1
σ U‖2

(H1(Q))2 + ‖[χν(D′),Pσ(y,D′)]F−1
σ U‖2

(L2(Q))2

+‖h(s)gν‖2
(L2(Σ))2 + ‖χν(D′)U‖2

(H2(Q))2)

≤C16(‖Pσ(y,D)F−1
σ U‖2

(H1(Q))2 + ‖h(s)g‖2
(L2(Σ))2 + ‖U‖2

(H2(Q))2),

where K = K(δ1) and C16 are independent of N .

The rest of this section and Sections 5 - 7 is devoted to verification of (4.20).

The principal symbol of the operator Pβ,s has the form

pβ(y, s, ξ0, ξ1) = −(ξ0 + i|s|ϕy0)
2 + β[(ξ1 + i|s|ϕy1)

2 − 2A′(ξ1 + i|s|ϕy1)(ξ2 + i|s|ϕy2)

+(ξ2 + i|s|ϕy2)
2|G|2], (4.22)

where |G|2 = 1+(A′(y1))2. The roots of this polynomial with respect to the variable

ξ2, are

Γ±
β (y, s, ξ0, ξ1) = −i|s|ϕy2(y) + α±

β (y, s, ξ0, ξ1), (4.23)

α±
β (y, s, ξ0, ξ1) =

(ξ1 + i|s|ϕy1(y))A
′(y1)

|G|2 ±
√

rβ(y, s, ξ0, ξ1), (4.24)

rβ(y, ζ) =
((ξ0 + i|s|ϕy0(y))

2 − β(ξ1 + i|s|ϕy1(y))
2)|G|2 + β(ξ1 + i|s|ϕy1)

2(A′)2

β|G|4 ,

(4.25)

where √rβ is defined below.

Denote γ = (y∗, ζ∗) = (y∗, s∗, ξ∗0 , ξ
∗
1). Suppose that |rβ(γ)| ≥ 2δ̂ > 0. Now

we claim that there exists δ0(δ̂) > 0 such that for all δ, δ1 ∈ (0, δ0), there exists a
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constant C20 > 0, independent of s, such that for one of the roots of the polynomial

(4.22), which we denote by Γ−
β , we have

−ImΓ−
β (y, s, ξ0, ξ1) ≥ C20|s|, ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1). (4.26)

Proof of (4.26). If Im
√

rβ(γ) �= 0, then the statement (4.26) is trivial. So it

suffices to consider the case Im
√

rβ(γ) = 0. Let θ ∈ (0, 1
8 ) be constant. We may

assume that Re rβ(γ) ≥ (1− θ)|rβ(γ)|. Obviously there exists δ̃(θ) such that for all

δ, δ1 ∈ (0, δ̃(θ)),

Re rβ(y, ζ) ≥ (1− 2θ)|rβ(y, ζ)|, ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1).

Then

|Im rβ(y, ζ)| ≤ 2θ
1− 2θ

Re rβ(y, ζ), ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1).

We denote b(y, ζ) = Im rβ(y, ζ) and a(y, ζ) = Re rβ(y, ζ) with ζ = (s, ξ0, ξ1). First,

if Im
√

rβ(γ) = 0 we have a(γ) > 0 and b(γ) = 0. In that case we can define the

function
√

rβ(y, ζ) by the infinite series

(1 + x)
1
2 =

∞∑
n=0

cnx
n, |x| < 1,

where cn =
1
2 ( 1

2−1)( 1
2−2)...( 1

2−(n−1))

n! .

That is, assuming that | ba | < 2θ
1−2θ < 1

2 for all (y, s, ξ0, ξ1) ∈ Bδ ×O(δ1), we set

√
rβ(y, ζ) =

√
a

∞∑
n=0

cn

(
ib

a

)n
=
√
a+

i

2
|s|
(

b

|s|√a

)
−|s|

(
b

a

)
b

|s|√a

∞∑
n=0

cn+2

(
ib

a

)n
.

(4.27)

The first term in infinite series (4.27) is real, and the absolute value of the third

term is
∣∣∣|s| b

|s|√a

∣∣∣O(θ). The function b
|s|√a

is a continuous homogeneous function of

the order zero in the variable ζ.
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If b(γ)

|s∗|
√

a(γ)
≤ 0, then we take Γ−

β (y, ζ) = −i|s| ∂ϕ∂y2
+ α−

β (y, ζ) where α−
β (y, ζ)

equals the right hand side of (4.27) plus (ξ1+i|s|ϕy1)A
′(y1)/|G|2. Otherwise Γ−

β (y, ζ) =

−i|s| ∂ϕ∂y2
+ α+

β (y, ζ) where α+
β (y, ζ) equals the right hand side of (4.27) multiplied

by −1 plus (ξ1 + i|s|ϕy1)A
′(y1)/|G|2.

For b
|s∗|√a

(γ) ≤ 0, we obtain that b
|s|√a

(γ) − 1
2ϕy2(y) < 0 for all (y, s, ξ0, ξ1) ∈

Bδ × O(δ1) and for b
|s∗|√a

(γ) ≥ 0 we obtain that − b
|s|√a

(γ) − 1
2ϕy2(y) < 0 for all

(y, s, ξ0, ξ1) ∈ Bδ × O(δ1). These inequalities imply (4.26) provided that δ0 taken

sufficiently small.

Under some conditions, we can see that the operator Pβ can be represented as

a product of two first order pseudo-differential operators:

Proposition 4.3. Let β ∈ {µ, λ + 2µ} and |rβ(y, ζ)| ≥ δ̂ > 0 for all (y, ζ) ∈

Bδ ×O(2δ1). Then we can factorize the operator Pβ into the product of two first

order pseudo-differential operators:

Pβχν(D′)V = β|G|2(Dy2 − Γ−
β (y,D

′))(Dy2 − Γ+
β (y,D

′))χν(D′)V + TβV, (4.28)

where suppV ⊂ Bδ ∩ GN and Tβ is a continuous operator:

Tβ : L2(0, 1;H1(R3))→ L2(0, 1;L2(R3)).

Let us consider the equation

(Dy2 − Γ−
β (y,D

′))χν(D′)V = q, V |y2=1 = 0, supp V ⊂ Bδ ∩ GN .

For solutions of this problem, we have an a priori estimate:

Proposition 4.4. Let β ∈ {µ, λ + 2µ} and |rβ(y, ζ)| ≥ δ̂ > 0 for all (y, ζ) ∈

Bδ × O(2δ1). Then there exists a constant C22 > 0, which is independent of N ,



LAME SYSTEM 35

such that

‖h(Dσ)χν(D′)V |y2=0‖L2(R3) ≤ C22‖q‖L2(Q). (4.29)

Proof of Proposition 4.4. Taking the scalar product of q and h2(Dσ)χν(D′)V

for fixed y2, we obtain

2Re (q(y2), h2(Dσ)χν(D′)V (y2))L2(Σ)e
2eκy2 =

∂

∂y2

(
e2eκy2‖h(Dσ)χν(D′)V (y2)‖2

L2(Σ)

)
− 2Re (iΓ−

β (y,D
′)χν(D′)V + κ̃χν(D′)V, h2(Dσ)χν(D′)V )L2(Σ)e

2eκy2 .

By (4.26) and Proposition 2.4.A in [T2], for sufficiently large positive κ, we have

Re (iΓ−
β (y,D

′)h−2(Dσ)h2(Dσ)χν(D′)V + κ̃χν(D′)V, h2(Dσ)χν(D′)V )L2(Σ)

≥C23‖h2(Dσ)χν(D′)V ‖2
L2(Σ).

Thus

2Re (q(y2), h2(Dσ)χν(D′)V (y2))L2(Σ)e
2eκy2

≤ ∂

∂y2

(
e2eκy2‖h(Dσ)χν(D′)V (y2)‖2

L2(Σ)

)
− C24‖h2(Dσ)χν(D′)V (y2)‖2

L2(Σ)e
2eκy2 ,

and (4.29) follows from Gronwall’s inequality. �

Let w̃(s, y) satisfy a scalar second order hyperbolic equation

Pβ,sw̃ = q in GN ,
∂w̃

∂y2
|y2=1 = w̃|y2=1 = 0, supp w̃ ⊂ R

1 × (Bδ ∩ GN )

for almost all s ∈ R1. Let P ∗
β,s be the formally adjoint operator to Pβ,s, where

β ∈ {µ, λ+ 2µ}. Set

L+,β =
Pβ,s + P ∗

β,s

2
, L−,β =

Pβ,s − P ∗
β,s

2
.
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One can easily check that the principal part operator L−,β is given by formula

L−,βw̃ = −2|s|ϕy0

∂w̃

∂y0
+ β

(
2|s|ϕy1

∂w̃

∂y1
− 2|s|A′(y1)

(
ϕy2

∂w̃

∂y1
+ ϕy1

∂w̃

∂y2

)

+2|s|(1 + (A′(y1))2)ϕy2

∂w̃

∂y2

)
.

Obviously L+,βw̃ + L−,βw̃ = q. For almost all s ∈ R1, the following equality

holds true:

Bβ + ‖L−,βw̃‖2
L2(GN ) + ‖L+,βw̃‖2

L2(GN ) +Re
∫
GN

([L+,β, L−,β]w̃, w̃)dy

=‖q‖2
L2(GN ), (4.30)

where

Bβ = Re
∫
∂GN

p̃β(y,∇ϕ,− e3)(|s|p̃β(y,∇w̃)− |s|3p̃β(y,∇ϕ,∇ϕ)w̃2)dy0dy1

+Re
∫
∂GN

p̃β(y,∇w̃,− e3)L−,βw̃dy0dy1, (4.31)

 e3 = (0, 0, 1) and

p̃β(y, ξ, ξ̃) = ξ0ξ̃0 − β(ξ1ξ̃1 − A′(y1)(ξ1ξ̃2 + ξ2ξ̃1) + (1 + |A′(y1)|2)ξ2ξ̃2).

We note that φyk
|Σ = ϕyk

|Σ for k ∈ {0, 1} and ϕy2 |Σ = (φy2 − ε̂τ(∂y2A1)φ)|Σ.

Therefore on Σ the function ∇ϕ is independent of N and |∇φ(y)−∇ϕ(y)| ≤ C25ε̂

for all y ∈ Σ where C25 > 0 is independent of ε̂ and N . In particular, taking ε̂

sufficiently small, we have (2.6) for the function ϕ. It is convenient for us to rewrite

(4.31) in the form

Bβ = B
(1)
β +B

(2)
β ,

B
(1)
β ≡ Re

∫
y2=0

2|s|β ∂w̃

∂y2

(
β
∂w̃

∂y1
ϕy1(y∗) + β

∂w̃

∂y2
ϕy2(y∗)−

∂w̃

∂y0
ϕy0(y∗)

)
dy0dy1

+
∫
y2=0

|s|βϕy2(y
∗)

{∣∣∣∣ ∂w̃∂y0

∣∣∣∣2 − β

(∣∣∣∣ ∂w̃∂y1

∣∣∣∣2 + ∣∣∣∣ ∂w̃∂y2

∣∣∣∣2
)

−|s|2(ϕ2
y0
(y∗)− β(ϕ2

y1
(y∗) + ϕ2

y2
(y∗))|w̃|2

}
dy0dy1.
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Then

|B(2)
β | ≤ ε0

(
|s|
∥∥∥∥ ∂w̃∂y2

∥∥∥∥2
L2(∂GN )

+ |s|‖w̃‖2
H1(∂GN ) + |s|3‖w̃‖2

L2(∂GN )

)
, (4.32)

where ε0 = ε0(δ) → 0 as |δ| → 0. It is known (see e.g., [Im2]) that there exists a

parameter τ̂ > 1 such that for any τ̃ > τ̂ , there exists s0(τ̃) such that

‖L−,βw̃‖2
L2(GN ) + ‖L+,βw̃‖2

L2(GN ) +Re
∫
GN

([L+,β, L−,β]w̃, w̃)dy

+C′
26|s|‖w̃‖L2(∂GN )‖∂y2w̃‖L2(∂GN ) ≥ C26(|s|‖w̃‖2

H1(GN )+|s|3‖w̃‖2
L2(GN )), ∀|s| ≥ s0(τ̃),

(4.33)

where C26 > 0 is independent of s. We also claim that the constant C26 is inde-

pendent of N. The proof of this statement is given in Appendix II.

Set

Ξβ =
∫ ∞

−∞
Bβds, Ξ

(j)
β =

∫ ∞

−∞
B

(j)
β ds, j = 1, 2.

Therefore, integrating (4.33) with respect to s in R1, we have

C27(‖h(s)w̃‖2
H1(Q) + ‖h3(s)w̃‖2

L2(Q)) +Ξβ ≤ C26|s|
∫ ∞

−∞
‖w̃‖L2(∂GN )‖∂y2w̃‖L2(∂GN )ds

+‖q‖2
L2(Q) + ‖w̃‖2

H1(Q) ∀|s| ≥ s0(τ ) (4.34)

with some constant C27 > 0 and by (4.32)

|Ξ(2)
eβ |+ |s|

∫ ∞

−∞
‖w̃‖L2(∂GN )‖∂y2w̃‖L2(∂GN )ds ≤ ε

∥∥∥∥( ∂w̃

∂y2
, w̃

)∥∥∥∥2
X

, (4.35)

where we set

∥∥∥∥( ∂w̃

∂y2
, w̃

)∥∥∥∥2
X

=
∥∥∥∥h(s) ∂w̃∂y2

∥∥∥∥2
L2(Σ)

+ ‖h(s)w̃‖2
L2(R1;H1(R2)) + ‖h(s)w̃‖2

L2(Σ)

and the parameter ε(δ)→ +0 as δ → +0.
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We set

w1,ν = Fσχν(D′)v1, w2,ν = Fσχν(D′)v2.

Later we will need to apply (4.34) and (4.35) to the functions w1,ν and w2,ν , because

we would like to take the advantage of (4.28). However it is directly impossible

because the condition suppχν(D′)v ⊂ Bδ × R1 does not hold true, in general. On

the other hand, using the fact that

∫
R2\B2δ

∫
R1

h4(s)
∑
|α|≤2

|Dαwj,ν |2dy0dy1ds ≤ C28‖v‖2
(H1(Q))2 ,

we can modify (4.34) and (4.35):

C29(‖h(s)wj(β),ν‖2
H1(Q) + ‖h3(s)wj(β),ν‖2

L2(Q)) +Ξβ

≤‖Pβ,swj(β),ν‖2
L2(Q) + C30‖v‖2

(H1(Q))2 + C30|s|
∫ ∞

−∞
‖w̃j(β),ν‖L2(∂GN )‖∂y2w̃j(β),ν‖L2(∂GN )ds,

(4.36)

where C29 > 0 is independent of s, N and we set j(β) = 1 if β = µ and j(β) = 2 if

β = λ+ 2µ, and

|Ξ(2)
β |+ |s|

∫ ∞

−∞
‖w̃j(β),ν‖L2(∂GN )‖∂y2w̃j(β),ν‖L2(∂GN )ds

≤ε

∥∥∥∥(∂wj(β),ν

∂y2
, wj(β),ν

)∥∥∥∥2
X

+ C31‖v‖2
(H1(Q))2 . (4.37)

Now we will prove (4.20) separately in the cases: rµ(γ) = 0 (Section 5), rλ+2µ(γ) =

0 (Section 6) and rµ(γ) �= 0, rλ+2µ(γ) �= 0 (Section 7).

§5. The case rµ(γ) = 0.

In this section, we treat the case where rµ(γ) = 0 with γ = (y∗, ζ∗) ≡ (y∗, s∗, ξ∗0 , ξ
∗
1) ∈

Σ× S2. Let χν be a member of the partition of unity such that

suppχν ⊂ O(δ1) ≡
{
ζ = (s, ζ0, ζ1);

∣∣∣∣ ζ|ζ| − ζ∗
∣∣∣∣ < δ1

}
.
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We note that by (4.36) and (4.37), there exist C1 > 0 and C2 > 0 such that

C1(‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q)) +Ξ(1)
µ

≤C2(‖Pµv1,ν‖2
L2(Q) + ‖w1,ν‖2

H1(Q)) + ε(δ)
∥∥∥∥(∂w1,ν

∂y2
, w1,ν

)∥∥∥∥2
X

, (5.1)

and the parameter ε can be taken sufficiently small, if we decrease δ. Note that

Ξ
(1)
µ can be written in the form

Ξ(1)
µ =

∫
Σ

(
|s|µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + |s|3µ2ϕ3
y2
(y∗)|w1,ν |2

)
dΣ

+Re
∫

Σ

2|s|µ∂w1,ν

∂y2

(
µϕy1(y∗)

∂w1,ν

∂y1
− ϕy0(y∗)

∂w1,ν

∂y0

)
dΣ

+
∫

Σ

|s|µϕy2(y
∗)(ξ2

0 − µξ2
1 − s2ϕ2

y0
(y∗) + s2µϕ2

y1
(y∗))|v̂1,ν |2dΣ

≡J1 + J2 + J3. (5.2)

Let us introduce the set M by formula

M =

{
ζ = (s, ξ0, ξ1) ∈ S2;

µ

2
ϕy2(y

∗)Ĉs2 > 4µ2
ϕ2
y1
(y∗)

|ϕy2(y∗)|
ξ2
1 + 4

ϕ2
y0
(y∗)

|ϕy2(y∗)|
ξ2
0 + 2µ2ϕy2(y

∗)(|ξ0|2 + |ξ1|2)
}
,
(5.3)

where Ĉ = −pµ(y∗,∇ϕ(y∗)). From (2.6), it follows that Ĉ is positive.

Next we introduce the set M̃ by formula

M̃ =

{
ζ = (s, ξ0, ξ1) ∈ S2;

µ

4
ϕy2(y

∗)Ĉs2 < 4µ2
ϕ2
y1
(y∗)

|ϕy2(y∗)|
ξ2
1 + 4

ϕ2
y0
(y∗)

|ϕy2(y∗)|
ξ2
0 + 2µ2ϕy2(y

∗)(|ξ0|2 + |ξ1|2)
}
.

Then we can see that S2 ⊂M∪M̃. Therefore, taking the parameter δ1 sufficiently

small, we obtain either O(δ1) ⊂ M or O(δ1) ⊂ M̃ . Thus we need to consider two

cases:
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Case A. Assume that supp v̂ν ⊂ O(δ1) ⊂M.

Applying the Cauchy-Bunyakovskii inequality and using (5.3) and (2.6), we ob-

tain that there exists a constant C3 > 0 such that

Ξ(1)
µ ≥

∫
Σ

(
|s|µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 − |s|3µϕy2(y
∗)pµ(y∗,∇ϕ(y∗))|w1,ν |2

)
dΣ

−
∫

Σ

(
1
2
|s|µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + 4|s|µ2
ϕ2
y1
(y∗)

|ϕy2(y∗)|
∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2 + 4|s| ϕ
2
y0
(y∗)

|ϕy2(y∗)|
∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2
)
dΣ

−
∫

Σ

|s|µ2ϕy2(y
∗)ξ2

1 |v̂1,ν |2dΣ

≥C3

∫
Σ

(
1
2
|s|µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + |s|
∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2
+|s|
∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2 + 1
2
|s|3µϕy2(y

∗)Ĉ|w1,ν |2
)
dΣ. (5.4)

We note that by (4.21), we have the equality

∂w2,ν

∂y2
− |s|ϕy2(y

∗)w2,ν = − µ

λ+ 2µ

(
∂w1,ν

∂y1
− |s|ϕy1(y

∗)w1,ν

)
+ g2,ν . (5.5)

Taking the L2-norm of the left and right hand sides of this equality and using

estimate (5.4), we obtain

∫
Σ

(
h2(s)

∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + h6(s)ϕ2
y2
(y∗)|w2,ν |2

)
dΣ ≤ C4

(
Ξ(1)
µ + ‖h(s)g‖2

(L2(Σ))2

+ε(σ0)
∥∥∥∥(∂w1,ν

∂y2
, w1,ν

)∥∥∥∥2
X

+
∫

Σ

(∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + s2ϕ2
y2
(y∗)|w2,ν |2

)
dΣ

)
,

where ε(σ0)→ 0 as σ0 → 0. By (5.3) and (4.21),

∫
Σ

h2(s)

(∣∣∣∣∂w2,ν

∂y1

∣∣∣∣2 + ∣∣∣∣∂w2,ν

∂y0

∣∣∣∣2
)
dΣ

≤C5

(
Ξ(1)
µ + ‖h(s)g‖2

(L2(Σ))2 +
∫

Σ

(∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + s2ϕ2
y2
(y∗)w2

2,ν

)
dΣ

)
.

(5.6)

If we apply (4.36) with β = λ+ 2µ, then (5.1), (5.4) and (5.6) imply (4.20).
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Case B. Assume that supp v̂ν ⊂ M̃.

By (4.23) - (4.25), there exists C6 > 0 such that

|ξ2
0 − s2ϕ2

y0
(y∗)− µξ2

1 + µs2ϕ2
y1
(y∗)|+ |ξ0sϕy0(y

∗)− µsξ1ϕy1(y
∗)|

≤δ1C6(|ξ1|2 + |ξ0|2 + s2), ∀ζ ∈ O(δ1). (5.7)

Now we suppose that the parameter δ1 is sufficiently small such that there exists

a constant C7 > 0 such that

|ξ0|2 ≤ C7(|ξ1|2 + s2), ∀ζ ∈ O(δ1). (5.8)

Then, by (5.7), we have

|J3| ≤ δ1µϕy2(y
∗)
∥∥∥∥(∂w1,ν

∂y2
, w1,ν

)∥∥∥∥2
X

. (5.9)

Moreover we claim that there exists δ0 > 0 such that if δ1 ∈ (0, δ0), then there

exists C8 > 0 such that

|ξ0| ≤ C8|ξ1|, ∀ζ ∈ O(δ1). (5.10)

Our proof is by contradiction. Suppose that (5.10) is not true. Then for the

sequence δ1(n) = 1
n
, there exists a sequence (ξ0(n), ξ1(n)) → (ξ∗0 , ξ

∗
1) such that

ξ1(n)/ξ0(n) → 0. Hence for ζ∗ we have rµ(y∗, ζ∗) = 0, and ξ∗1 = 0, ξ∗0 �= 0 by

the definition of the set M̃. Therefore s∗ϕy0(y
∗) = 0. If s∗ = 0, then we obtain

(ξ∗0)
2 = 0 and if ϕy0(y

∗) = 0, then (ξ∗0)
2 + µϕ2

y1
(y∗)(s∗)2 = 0 by (4.25). Therefore

in the both cases, we have the equality ξ∗0 = 0 which leads us to a contradiction.

Note that if rλ+2µ(γ) = 0, then

ϕy0(y
∗) = 0, ϕy1(y

∗) = 0, ξ∗0 = ξ∗1 = 0, s∗ = 1.
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and the conic neighborhood of ζ∗ is in the set M provided that the parameter

δ1 is chosen sufficiently small. Therefore if γ ∈ M̃ and rµ(γ) = 0, then we have

rλ+2µ(γ) �= 0 and by Proposition 4.4 the decomposition (4.28) holds true. We set

V +
λ+2µ = (Dy2 − Γ+

λ+2µ(y,D
′))v2,ν . Then

Pλ+2µv2,ν = β|G|2(Dy2 − Γ−
λ+2µ(y,D

′))V +
λ+2µ + Tλ+2µv2,ν ,

where Tλ+2µ ∈ L(H1(Q), L2(Q)). This decomposition and Proposition 4.4 imme-

diately imply

‖h(Dσ)(Dy2 − Γ+
λ+2µ(y,D

′))v2,ν |y2=0‖L2(Σ)

≤C9(‖Pλ+2µ,sw2,ν‖L2(Q) + ‖v‖(H1(Q))2). (5.11)

Now we need again obtain the estimate of Ξ(1)
µ . We start from the term J2. By

(4.21), we have

J2 = Re
∫

Σ

2|s|(λ+ 2µ)
(
∂w2,ν

∂y1
− |s|ϕy1(y

∗)w2,ν

)
×
(
µ
∂w1,ν

∂y1
ϕy1(y∗)−

∂w1,ν

∂y0
ϕy0(y∗)

)
dΣ

+Re
∫

Σ

2|s|µ(|s|ϕy2(y
∗)w1,ν + g1,ν)

(
µ
∂w1,ν

∂y1
ϕy1(y∗)−

∂w1,ν

∂y0
ϕy0(y∗)

)
dΣ.
(5.12)

and

− µ

λ+ 2µ

(
∂v1,ν

∂y1
− |Dσ|ϕy1(y

∗)v1,ν

)
− iα+

λ+2µ(y,D
′)v2,ν

=iV +
λ+2µ(·, 0)−

µ

λ+ 2µ
F−1
σ g2,ν . (5.13)

Here and henceforth |Dσ| is the pseudo-differential operator with the symbol |s|.

First assume that s∗ = 0. Then we can see by |s∗|2 + |ξ∗0 |2 + |ξ∗1 |2 = 1

that |α+
λ+2µ(γ)| = |rλ+2µ(γ)| �= 0. Therefore, by Proposition 4.2.A from [T2,
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p.105], there exists a parametrix of the operator α+
λ+2µ(y,D

′) which we denote

by (α+
λ+2µ(y,D

′))−1. From (5.13) we obtain

v2,ν = −1
i
(α+

λ+2µ(y,D
′))−1

(
µ

λ+ 2µ

(
∂v1,ν

∂y1
− |Dσ|ϕy1(y

∗)v1,ν

)

+iV +
λ+2µ(·, 0)−

µ

λ+ 2µ
g2,ν

)
+ T0v2,ν , (5.14)

where T0 ∈ L(L2(Σ), H1(Σ)). Using (5.14), we transform (5.12) to obtain

J2 = Re
∫

Σ

−2|Dσ|µ
i

(
∂

∂y1
− |Dσ|ϕy1(y

∗)
)
(α+

λ+2µ(y,D
′))−1

(
∂v1,ν

∂y1
− |Dσ|ϕy1(y

∗)v1,ν

)(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ+ κ3,

(5.15)

where

κ3 = Re
∫

Σ

2|Dσ|µ(|Dσ|ϕy2(y
∗)v1,ν + g1,ν)

(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ

+Re
∫

Σ

2|Dσ|(λ+ 2µ)
(

∂

∂y1
− |s|ϕy1(y

∗)
)

×
[
− 1

i
(α+

λ+2µ(y,D
′))−1

(
iV +

λ+2µ(·, 0)−
µ

λ+ 2µ
F−1
σ g2,ν

)
+ T0v2,ν

]
×
(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ.

Then we have

|κ3| ≤ ε

∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

+ C10(‖h(s)g‖2
(L2(Σ))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q)) (5.16)

and ε can be chosen arbitrarily small by taking δ small enough.

Let us consider the pseudo-differential operator

b(y,D′) ≡ 1
i

(
∂

∂y1
− |s|ϕy1(y

∗)
)
(α+

λ+2µ(y,D
′))−1.
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By (5.7), for the principal symbol of this operator, we have

b(y∗, ζ) =
1
i
(iξ1 − |s|ϕy1(y

∗))(α+
λ+2µ(y

∗, ζ))−1

≡− sign(ξ∗1)

√
λ+ µ

λ+ 2µ
(y∗)

(iξ1 − |s|ϕy1(y
∗))

ξ1 + i|s|ϕy1(y∗)
+ b̃(y∗, ζ)

=
1
i

√
λ+ µ

λ+ 2µ
(y∗) + b̃(y∗, ζ), (5.17)

where b̃(y∗, ξ∗) = 0. Therefore the operator b(y,D′) can be represented in the form

b(y,D′) =
1
i

√
λ+ µ

λ+ 2µ
(y) + b̃(y,D′),

where b̃(y,D′) ∈ L(L2(Σ), L2(Σ)) and

‖b̃(y,D′)‖L(L2(Σ),L2(Σ)) ≤ ε. (5.18)

Using (5.17) in (5.15), we obtain

J2 = Re
∫

Σ

−2|Dσ|µ
(
sign(ξ∗1)

i

√
λ+ µ

λ+ 2µ
+ b̃(y,D′)

)(
∂v1,ν

∂y1
− |Dσ|ϕy1(y

∗)v1,ν

)
(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ+ κ3

=Re
∫

Σ

−2|Dσ|µb̃(y,D′)
(
∂v1,ν

∂y1
− |Dσ|ϕy1(y

∗)v1,ν

)
(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ+ Reκ3.

By (5.7), (5.16) and (5.18), taking the parameters δ, δ1 sufficiently small, we obtain

|J2| ≤ ε

∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

+C11(‖h(s)g‖2
(L2(Σ))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2).

(5.19)

Next assume that s∗ �= 0. Then we have

|ϕy1(y
∗)ξ1 − ϕy0(y

∗)ξ0| ≤ Cδ1|ζ|, ∀ζ ∈ O(δ1)
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and (5.19) follows immediately. Therefore, for any s∗ ∈ R
1, by (5.1), (5.2), (5.9)

and (5.19), we have

∫
Σ

(
h2(s)µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + h6(s)µ2ϕ3
y2
(y∗)|w1,ν |2

)
dΣ

+C12(‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q)) ≤ C13(‖Pλ+2µ,sw2,ν‖2
L2(Q)

+‖h(s)g‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2) + ε

∥∥∥∥(∂wν

∂y2
,wν)

∥∥∥∥2
X

. (5.20)

From (4.21), we obtain

∫
Σ

(
|s|
∣∣∣∣∂w2,ν

∂y1

∣∣∣∣2 + |s|3µ2ϕ2
y1
(y∗)|w2,ν |2

)
dΣ

≤C14

∫
Σ

(
|s|µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + |s|3µ2ϕ3
y2
(y∗)|w1,ν |2

)
dΣ+ C14‖h(s)gν‖2

(L2(Σ))2 .
(5.21)

Using (5.10), (5.21) and the definition of the set M̃, we obtain

∫
Σ

(
h2(s)

∣∣∣∣∂w2,ν

∂y1

∣∣∣∣2 + h2(s)
∣∣∣∣∂w2,ν

∂y0

∣∣∣∣2 + h6(s)|w2,ν |2
)
dΣ

≤C15

{∫
Σ

(
|s|µ2ϕy2(y

∗)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + |s|3µ2ϕ3
y2
(y∗)|w1,ν |2

)
dΣ

+ε(σ0)
∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

+ ‖h(s)gν‖2
(L2(Σ))2

}
. (5.22)

From (5.11) and (5.22), we have

∫
Σ

h2(s)
∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 dΣ
≤C16

{∫
Σ

(
h2(s)

∣∣∣∣∂w2,ν

∂y1

∣∣∣∣2 + h2(s)
∣∣∣∣∂w2,ν

∂y0

∣∣∣∣2 + h6(s)|w2,ν |2
)
dΣ

+‖V +
λ+2µ(·, 0)‖2

L2(Σ) + ε(σ0)
∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

+ ‖h(s)gν‖2
(L2(Σ))2

}

≤C17

{∫
Σ

(
h2(s)

∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + h6(s)|w1,ν |2
)
dΣ+ ‖h(s)gν‖2

(L2(Σ))2

+‖v‖2
(H1(Q))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q) + ε(σ0)
∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

}
.

(5.23)
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Finally (4.21), (5.8), (5.10) and (5.23) imply

∫
Σ

h2(s)

(∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2
)
dΣ

≤C18

{∫
Σ

(
h2(s)

∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 + h6(s)|w1,ν |2
)
dΣ+ ‖h(s)gν‖2

(L2(Σ))2

+‖v‖2
(H1(Q))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q) + ε(σ0)
∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

)
.

(5.24)

The inequalities (5.1), (5.20) - (5.24) imply

∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

+ ‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q) ≤ ε

∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

+ C19(‖v‖2
(H1(Q))2 + ‖h(s)gν‖2

(L2(Σ))2 + ‖Pµ,sw2,ν‖2
L2(Q) + ‖Pλ+2µ,sw2,ν‖2

L2(Q)).

From this inequality and (4.34), (4.35) with β = λ+ 2µ, we obtain (4.20).�

§6. The case rλ+2µ(γ) = 0.

Let γ = (y∗, ζ∗) be a point on Σ×S2 such that rλ+2µ(γ) = 0 and suppχν ⊂ O(δ1) ⊂

M̃. We note that if rµ(γ) = 0, then s∗ �= 0 and ξ∗0 = ξ∗1 = ϕy0(y
∗) = ϕy1(y

∗) = 0.

Consequently ζ∗ ∈M and this case was treated in the previous section. Therefore,

taking the parameters δ and δ1 sufficiently small, we may assume that there exists

a constant Ĉ > 0 such that

|rµ(y, ζ)| ≥ Ĉ|ζ|, ∀(y, ζ) ∈ Bδ ×O(δ1).

By (4.24) and (4.25), there exist δ0 > 0 and C1 > 0 such that for all δ1 ∈ (0, δ0) we

have

|ξ0|2 ≤ C1(ξ2
1 + s2), ∀ζ ∈ O(δ1). (6.1)

We consider the following three cases.
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Case A. Assume that s∗ = 0 and limζ→ζ∗ Im rµ(y∗, ζ)/|s| = 0. In that case,

there exists a constant C2 > 0 such that

−ImΓ±
µ (y, ζ) ≥ C2|s|, ∀(y, ζ) ∈ Bδ ×O(δ1),

provided that |δ|+ |δ1| is sufficiently small. Since s∗ = 0, we may assume that for

some constant C3 > 0,

|ξ0|2 + s2 ≤ C3ξ
2
1 , ∀ζ ∈ O(δ1), (6.2)

taking a sufficiently small δ1. We set V ±
µ = (Dy2 −Γ±

µ (y,D
′))v1,ν . Then, by Propo-

sition 4.3,

Pµv1,ν = |G|2β(Dy2 − Γ∓
µ (y,D

′))V ±
µ + T±

µ v1,ν , (6.3)

where T±
µ ∈ L(H1(Q), L2(Q)). This decomposition and Proposition 4.4 imply

‖h(Dσ)(Dy2 − Γ±
µ (y,D

′))v1,ν |y2=0‖L2(Σ) ≤ C4(‖Pµv1,ν‖L2(Q) + ‖v‖(H1(Q))2).
(6.4)

We have

V +
µ (·, 0)− V −

µ (·, 0) = (α+
µ (y,D

′)− α−
µ (y,D

′))v1,ν on Σ. (6.5)

Since α+
µ (y

∗, ζ∗)− α−
µ (y

∗, ζ∗) = 2
√

rµ(y∗, ζ∗) �= 0, we have

∫
Σ

(
h2(s)

(∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2
)

+ h6(s)|w1,ν |2
)
dΣ

≤C5(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2) (6.6)

by (6.4), (6.5) and Garding’s inequality.

From (6.6) and (6.4), we obtain

∫
Σ

h2(s)
∣∣∣∣∂w1,ν

∂y2

∣∣∣∣2 dΣ ≤ C6(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2). (6.7)
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Finally, by (6.6), (6.7) combined with (4.21), we obtain∥∥∥∥(∂w2,ν

∂y2
, w2,ν

)∥∥∥∥2
X

≤ C7(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2 + ‖h(s)g‖2
(L2(Σ))2). (6.8)

By (6.6) - (6.8), (4.36) and (4.37), we obtain (4.20).

Case B. Assume that s∗ = 0 and limζ→ζ∗ Im rµ(y∗, ζ)/|s| �= 0. By s∗ = 0, we

note that Re rµ(y∗, ζ∗) > 0. Set I = sign limζ→ζ∗ Im rµ(y∗, ζ)/|s|. For all (y, ζ) ∈

Bδ ×O(δ1), we have

Γ+
µ (y

∗, ζ∗) = I
√
Re rµ(y∗, ζ∗).

Therefore

Γ+
µ (y

∗, ζ∗)(µϕy1(y
∗)ξ∗1 − ϕy0(y

∗)ξ∗0) > 0.

Taking the parameters δ > 0 and δ1 > 0 sufficiently small, we obtain

ReΓ+
µ (y

∗, ζ)(µϕy1(y
∗)ξ1 − ϕy0(y

∗)ξ0) > 0, ∀(y, ζ) ∈ Bδ ×O(δ1). (6.9)

Let us consider the estimate (5.1). Let us recall that J1, J2, J3 are defined in (5.2).

We have

J2 = Re
∫

Σ

2|s|µ∂w1,ν

∂y2

(
µ
∂w1,ν

∂y1
ϕy1(y∗)−

∂w1,ν

∂y0
ϕy0(y∗)

)
dΣ

=Re
∫

Σ

2|Dσ|µiΓ+
µ (y,D

′)v1,ν

(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ

+Re
∫

Σ

2|Dσ|µiV +
µ (·, 0)

(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ

=Re
∫

Σ

2µ(Dy1ϕy1(y
∗)−Dy0ϕy0(y

∗))Γ+
µ (y,D

′)|Dσ| 12 v̂1,ν |Dσ| 12 v̂1,νdΣ

+Re
∫

Σ

2|Dσ|µiV +
µ (·, 0)

(
µ
∂v1,ν

∂y1
ϕy1(y∗)−

∂v1,ν

∂y0
ϕy0(y∗)

)
dΣ. (6.10)

By (6.9) and Garding’s inequality, we obtain from (6.10)

J2 ≥ C8

∫
Σ

(
h2(s)

(∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2
)

+ h6(s)|w1,ν |2
)
dΣ

− C9ε(δ, δ1)
∥∥∥∥(∂w1,ν

∂y2
, w1,ν

)∥∥∥∥2
X

− C10(δ, δ1)(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2).
(6.11)
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Now we will estimate J3. By (4.23) and (4.24), there exists a constant C11 > 0 such

that

|ξ2
0 − s2ϕ2

y0
(y∗)− (λ+ 2µ)ξ2

1 + (λ+ 2µ)s2ϕ2
y1
(y∗)|

≤C11δ1(|ξ0|2 + |ξ1|2 + s2), ∀ζ ∈ O(δ1). (6.12)

Using (6.12), we obtain

ξ2
0 − µξ2

1 − s2ϕ2
y0
(y∗) + s2µϕ2

y1
(y∗)

=(λ+ µ)(ξ2
1 − s2ϕ2

y1
(y∗)) + (ξ2

0 − (λ+ 2µ)ξ2
1 − s2ϕ2

y0
(y∗) + s2(λ+ 2µ)ϕ2

y1
(y∗))

≥(λ+ µ)(ξ2
1 − s2ϕ2

y1
(y∗))− C12δ1(|ξ0|2 + |ξ1|2 + s2).

Therefore, for all sufficiently small δ1, there exists C13 > 0 such that

ξ2
0 − µξ2

1 − s2ϕ2
y0
(y∗) + s2µϕ2

y1
(y∗) ≥ C13δ1(|ξ0|2 + |ξ1|2 + s2). (6.13)

By (6.13), we see that J3 ≥ 0. Therefore Ξ
(1)
µ = J1 + J2 + J3 ≥ J1 + J2, so that by

(6.11) and (5.1), there exists a constant C14 > 0 such that

Ξ(1)
µ ≥ C14

∥∥∥∥(∂w1,ν

∂y2
, w1,ν

)∥∥∥∥2
X

− C10(δ, δ1)(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2).

This inequality and (4.21) implies

Ξ(1)
µ ≥ C15

∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

−C16(δ, δ1)(‖Pµ,sw1,ν‖2
L2(Q) + ‖h(s)g‖2

(L2(Σ))2 + ‖v‖2
(H1(Q))2).

(6.14)

From (6.14), (4.36) and (4.37), we obtain (4.20).

Case C. Assume that s∗ �= 0. If δ1 > 0 is small enough, then there exists a

constant C17 > 0 such that

|ξ0ϕy1(y
∗)− (λ+ 2µ)ξ1ϕy1(y

∗)|2 ≤ δ2
1C17(|ξ1|2 + s2). (6.15)



50 O.Y. IMANUVILOV AND M. YAMAMOTO

By (4.36), there exists C18 > 0 such that

Ξ
(1)
λ+2µ + C18(‖h(s)w2,ν‖2

H1(Q) + ‖h3(s)w2,ν‖2
L2(Q))

≤C18(‖Pλ+2µv2‖2
L2(Q) + ‖v‖2

(H1(Q))2) + ε

∥∥∥∥(∂w2,ν

∂y2
, w2,ν

)∥∥∥∥2
X

.
(6.16)

Note that

Ξ
(1)
λ+2µ =

∫
Σ

(
|s|(λ+ 2µ)2ϕy2(y

∗)
∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + |s|3(λ+ 2µ)2ϕ3
y2
(y∗)|w2,ν |2

)
dΣ

+Re
∫

Σ

2|s|(λ+ 2µ)
∂w2,ν

∂y2

(
(λ+ 2µ)ϕy1(y∗)

∂w2,ν

∂y1
− ϕy0(y∗)

∂w2,ν

∂y0

)
dΣ

+
∫

Σ

|s|(λ+ 2µ)ϕy2(y
∗)(ξ2

0 − (λ+ 2µ)ξ2
1 − s2ϕ2

y0
(y∗) + s2(λ+ 2µ)ϕ2

y1
(y∗))|v̂2,ν |2dΣ

=J̃1 + J̃2 + J̃3. (6.17)

By (6.12) and (6.15), we have

|J̃2 + J̃3| ≤ C19δ1

∥∥∥∥(∂w2,ν

∂y2
, w2,ν

)∥∥∥∥2
X

. (6.18)

By (6.18) we obtain from (6.17) that there exists a constant C20 > 0 such that

Ξ
(1)
λ+2µ ≥ −ε

∥∥∥∥(∂w2,ν

∂y2
, w2,ν

)∥∥∥∥2
X

+C20

∫
Σ

(
h2(s)(λ+ 2µ)2ϕy2(y

∗)
∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + h6(s)(λ+ 2µ)2ϕ3
y2
(y∗)|w2,ν |2

)
dΣ.
(6.19)

From (4.21), we easily obtain∥∥∥∥h(s)(∂w2,ν

∂y2
− sϕy2(y

∗)w2,ν + g2,ν

)∥∥∥∥2
L2(Σ)

=
µ2

(λ+ 2µ)2

(∥∥∥∥h(s)∂w1,ν

∂y1

∥∥∥∥2
L2(Σ)

+ ϕ2
y1
(y∗)‖h3(s)w1,ν‖2

L2(Σ)

)
.

Hence (6.19) and this equality imply

Ξ
(1)
λ+2µ ≥ C21

∫
Σ

(
h2(s)

(∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2
)

+ h6(s)|w2,ν |2
)
dΣ

−ε

∥∥∥∥(∂w2,ν

∂y2
, w2,ν

)∥∥∥∥2
X

− C22‖h(s)g‖2
(L2(Σ))2 . (6.20)
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Now we claim that inequality (6.2) holds true for all sufficiently small δ1. First

we may assume that for all ζ ∈ O(δ1) we have s2 ≤ C23(ξ2
0 + ξ2

1). In fact, if the last

inequality is not true, then ζ∗ ∈M and the case was treated in the previous section.

Suppose that (6.2) is not true. In that case ξ∗1 = 0 and ξ∗0 �= 0, s∗ �= 0. Therefore

ϕy0(y
∗) = 0 by (4.23). However, this implies (ξ∗0)

2+(λ(y∗)+2µ(y∗))ϕ2
y1
(y∗)(s∗)2 =

0. Hence we arrived at a contradiction and the verification of (6.2) is complete.

The inequalities (6.2) and (6.20) imply

Ξ
(1)
λ+2µ ≥ C24

∫
Σ

(
h2(s)

(∣∣∣∣∂w2,ν

∂y2

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2
)

+ h6(s)|wν |2
)
dΣ

−ε

∥∥∥∥(∂w2,ν

∂y2
, w2,ν

)∥∥∥∥2
X

− C22‖h(s)g‖2
(L2(Σ))2 . (6.21)

From inequality (6.4) for V +
µ (·, 0), we obtain the estimate

∥∥∥∥h(s)∂w1,ν

∂y2

∥∥∥∥2
L2(Σ)

≤ C25

{∫
Σ

(
h2(s)

(∣∣∣∣∂w1,ν

∂y1

∣∣∣∣2 + ∣∣∣∣∂w1,ν

∂y0

∣∣∣∣2
)

+ h6(s)|w1,ν |2
)
dΣ

+‖Pµv1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2

}
. (6.22)

The inequalities (6.21) and (6.22) imply

Ξ
(1)
λ+2µ ≥ C26

∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥2
X

−C27(δ, δ1)(‖Pµ,sw1,ν‖2
L2(Q) + ‖h(s)g‖2

(L2(Σ))2 + ‖v‖2
(H1(Q))2).

(6.23)

From (6.23), (4.36) and (4.37), we obtain (4.20). �

§7. The case rµ(γ) �= 0 and rλ+2µ(γ) �= 0.

In this section, we consider the conic neighborhood O(δ1) of the point γ ≡ (y∗, ζ∗)

such that

|rµ(y∗, ζ∗)| �= 0 and |rλ+2µ(y∗, ζ∗)| �= 0. (7.1)
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In that case, thanks to (7.1) and Proposition 4.3, decomposition (4.28) holds true

for β = µ and β = λ+ 2µ. Therefore we have

(Dy2 − Γ+
µ (y,D

′))v1,ν |y2=0 = V +
µ (·, 0), (7.2)

(Dy2 − Γ+
λ+2µ(y,D

′))v2,ν |y2=0 = V +
λ+2µ(·, 0). (7.3)

By Proposition 4.4, we have an a priori estimate

‖h(Dσ)V +
µ (·, 0)‖2

L2(Σ) + ‖h(Dσ)V +
λ+2µ(·, 0)‖2

L2(Σ)

≤C1(‖Pλ+2µv2‖2
L2(Q) + ‖Pµv1‖2

L2(Q) + ‖v‖2
(H1(Q))2). (7.4)

Using (4.21), we may rewrite (7.2) and (7.3) as

λ+ 2µ
µ

(
∂v2,ν

∂y1
− |Dσ|ϕy1(y

∗)v2,ν

)
− iα+

µ (y,D
′)v1,ν = V +

µ (·, 0)−F−1
σ g1,ν , (7.5)

µ

λ+ 2µ

(
−∂v1,ν

∂y1
+ |Dσ|ϕy1(y

∗)v1,ν

)
− iα+

λ+2µ(y,D
′)v2,ν = V +

λ+2µ(·, 0)− F−1
σ g2,ν .

(7.6)

Let B(y,D′) be the matrix pseudo-differential operator with the symbol

B(y, ζ) =
( −iα+

µ (y, ζ)
λ+2µ
µ

(iξ1 − |s|ϕy1(y))
µ

λ+2µ(−iξ1 + |s|ϕy1(y)) −iα+
λ+2µ(y, ζ)

)
.

By (4.24) and (4.25), we see: If detB(y∗, ζ∗) = 0, then

ζ∗ ∈
{
ζ ∈ R

3; (ξ1 + i|s|ϕy1(y
∗))2 =

(ξ0 + i|s|ϕy0(y
∗))2

(λ+ 3µ)(y∗)

}
. (7.7)

Now we consider two cases

Case A. detB(γ) �= 0.

In that case, there exists a parametrix of the operator B(y,D′), which we denote

by B−1(y,D′), such that

(v1,ν , v2,ν) = B−1(y,D′)(V +
µ (·, 0)−F−1

σ g1,ν , V
+
λ+2µ(·, 0)−F−1

σ g2,ν)T

+K(v1,ν , v2,ν), (7.8)
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where K : (L2(Q))2 → (H1(Q))2. By (7.4) and (7.8),

|Ξµ|+ |Ξλ+2µ| ≤ C2(‖Pµv1‖2
L2(Q) + ‖Pλ+2µv2‖2

L2(Q)

+‖h(s)g‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2). (7.9)

(Here and henceforth, for simplicity, we do not distinguish aT from a vector a.) By

(7.9), (4.36) and (4.37), we obtain (4.20).

Case B. detB(γ) = 0.

We claim that this situation is possible in the two cases:

(i) ϕy0(y
∗) = ϕy1(y

∗) = ξ∗0 = ξ∗1 = 0, s∗ = 1,

(ii) ξ∗0 = 0, s∗ϕy0(y
∗) = 0. (7.10)

The first case was treated in Section 5. Let us consider the second case (7.10).

Moreover we may assume that

ζ∗ ∈ M̃.

Otherwise, ζ∗ ∈ M, so that the case was treated in Section 5. Moreover we may

assume that

ImΓ+
µ (γ) = ImΓ+

λ+2µ(γ) ≥ 0. (7.11)

Really if

ImΓ+
µ (γ) = ImΓ+

λ+2µ(γ) < 0, (7.12)

then the situation is simple since we have the decomposition

Pβvj(β),ν = β|G|2(Dy2 − Γ∓
β (y,D

′))V ±
β + T±

µ vj(β),ν ,
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where T±
β ∈ L(H1(Q), L2(Q)), β ∈ {µ, λ+ 2µ}, j(β) = 1 for β = µ and j(β) = 2

for β = λ+ 2µ. This decomposition, (7.12) and Proposition 4.3 imply

‖h(Dσ)(Dy2 − Γ±
β (y,D

′))vj(β),ν |y2=0‖L2(Σ)

≤C3(‖Pβvj(β),ν‖L2(Q) + ‖v‖(H2(Q))2). (7.13)

Obviously

V +
β (·, 0)− V −

β (·, 0) = (α+
β (y,D

′)− α−
β (y,D

′))v1,ν on Σ.

Since α+
µ (y

∗, ζ∗)− α−
µ (y

∗, ζ∗) = 2
√

rµ(y∗, ζ∗) �= 0, we have

∥∥∥∥(∂wν

∂y1
,wν

)∥∥∥∥2
X

≤ C4(‖Pλ+2µ,sw2,ν‖2
L2(Q)+‖Pµ,sw1,ν‖2

L2(Q)+‖v‖2
(H1(Q))2) (7.14)

by (7.13) and Garding’s inequality.

From (7.14), (4.36) and (4.37), we obtain (4.20) under condition (7.12).

In order to treat (7.10) under (7.11), we will use Calderon’s method. First we

introduce the new variables U = (U1, U2) with four components, where

U1 = Λ(D′)F−1
σ U , U2 = (D2 + i|Dσ|ϕy2)F−1

σ U ,

and Λ is the pseudodifferential operator with the symbol (s2 + ξ2
1 + ξ2

0 +1)
1
2 . In the

new notations, problem (4,6) and (4.7) can be written in the form

Dy2U = M(y,D′)U + F in R
3 × [0, 1], U1(y)|y2=0 = 0, (7.15)

where F = (0,PσF−1
σ U). Here M(y,D′) is the matrix pseudo-differential operator

with principal symbol M1(y, ζ) is given by

M1(y, ζ) =
(

0 Λ1E2

A−1M21Λ−1
1 A−1M22

)
+ i|s|ϕy2E4
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(see [Y]). Here we set  θ = (ξ1 + i|s|ϕy1 , 0), G(y1) = (−dA(y1)/dy1, 1), Λ1 = |ζ|,

M21(y, ξ′+i|s|∇y′ϕ(y)) = ((ξ0+i|s|ϕy0(y))
2−µ(ξ′+i|s|ϕy1(y))

2)E2−(λ+µ)(y) θT  θ,

M22(y, ξ′) = −(λ+µ)(y) θTG+GT  θ−2µ( θ, G)E2, A = (λ+µ)(y)GTG+µ(y)|G|2E2.

The matrix M1(γ) has only two eigenvalues given by (4.23)-(4.25). Moreover it is

known that the Jordan form of the matrix M1(γ) has two Jordan blocks of the form

M± =
(
Γ±
µ (γ) 1
0 Γ±

µ (γ)

)
.

Following [T1] and using the change of variables W = S−1(y,D′)U which is con-

structed below, we can reduce the system (7.11) to the form

Dy2W = M̃(y,D′)W + T (y,D′)W + F̃ , (7.16)

where the matrix M̃ has the form

M̃(y, ζ) =
(
M+(y, ζ) 0

0 M−(y, ζ)

)
, M± =

(
Γ±
λ+2µ(y, ζ) m±

12(y, ζ)
0 Γ±

µ (y, ζ)

)
,

the operator T is in L∞(0, 1;L((H1(Σ))4, (H1(Σ))4)), m±
12(y,D

′) is a first order

operator and

‖F̃‖L2(R1;(H1(Σ))2) ≤ C5(‖PσF−1
σ U‖(H1(Q))2 + ‖F−1

σ U‖L2(R1;(H1(Σ))2)).

Now we describe the construction of the pseudo-differential operator S. We take

the symbol S in the form S = (s+
1 , s

+
2 , s

−
1 , s

−
2 ). Here

s±1 =
(
( θ + α±

λ+2µG)Λ−1
1 , α±

λ+2µ( θ + α±
λ+2µG)Λ−1

1

)
are the eigenvectors of the matrix M1(y, ζ) on the sphere ζ ∈ S2 which corresponds

to the eigenvalue Γ±
λ+2µ and the vectors s±2 are given by the formula

s±2 = E±s±, E± =
1
2πi

∫
C±

(z −M1(y, ζ))−1dz,
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where C± are small circles centered at Γ±
µ (γ) and s± solves the equation M1(γ)s±−

Γ±
µ (γ)s± = s±1 . Since ζ∗ ∈ M̃ and ξ∗0 = 0 we have ξ∗1 �= 0. Therefore the circles C±

may be taken such that the disks bounded by these circles do not intersect. Note

that the vectors s±j ∈ C2(Bδ×Oδ1) are homogeneous functions of the order zero in

(s, ξ0, ξ1). Now using a standard argument (see [Ku], p.241), we can estimate the

last two components of W as follows

‖(W3,W4)‖
(H

3
2 (Σ))2

≤ C6(‖PσF−1
σ U‖(H1(Q))2 + ‖U‖(H2(Q))2),

where the constant C6 is independent of N.

Now we need to estimate the first two components of the vector function W on

Σ. Thanks to the zero boundary conditions for U3 and U4, we have

S11(y0, y1, 0, D′)(W1,W2)

=− S12(y0, y1, 0, D′)(W3,W4) + T−1(y0, y1, 0, D′)F−1
σ U , (7.17)

where we set

S(y, ζ) =
(
S11(y, ζ) S12(y, ζ)
S21(y, ζ) S22(y, ζ)

)
, T−1 : (H1(Σ))2 → (H2(Σ))2.

The principal symbol of the pseudo-differential operator S11 is the 2 × 2 matrix

such that the first column equals the last two coordinates of the vector s+
1 and the

second column equals the last two coordinates of the vector s+
2 . At the point γ,

these vectors are given by the formulae

 η = (ξ∗1 + is∗ϕy1(y
∗), isign(ξ∗1)(ξ

∗
1 + is∗ϕy1(y

∗)))

s+
1 (γ) =

(
 η, i

sign(ξ∗1)(ξ
∗
1 + is∗ϕy1(y

∗))√
(ξ∗1)2 + (s∗)2

 η

)
,
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 ς =
−1√

(ξ∗1)2 + (s∗)2
λ+ 3µ
2(λ+ µ)

(isign(ξ∗1), 1),

s+
2 (γ) =

(
 ς,

1√
(ξ∗1)2 + (s∗)2

(isign(ξ∗1)(ξ
∗
1 + is∗ϕy1(y

∗)) ς +  η)

)
.

Therefore detS11(γ) �= 0. From (7.15), (7.16) and Garding’s inequality, we obtain∥∥∥∥(∂wν

∂y2
,wν

)∥∥∥∥
X

≤ C7(‖PσF−1
σ U‖(H1(Q))2 + ‖U‖(H2(Q))2), (7.18)

where the constant C7 is independent of N . By (7.9), (4.36) and (4.37), we obtain

(4.20). �

End of the proof of Theorem 2.1. Let us fix the parameter N such that (4.5)

holds true. We take δ ∈ (0, 1
N2 ) sufficiently small such that

φ(x) > ϕ(x), ∀x ∈ Ωδ \ Ωδ/2. (7.19)

We consider a cut off function θ̃ ∈ C3(Ωδ) such that θ̃|Ω δ
2
= 1 and θ̃|Ωδ\Ω 3δ

4
= 0.

The function θ̃u satisfies the equation

P (θ̃u) = θ̃f+[P, θ̃]u, u|(0,T )×∂Ω = 0, u(0, ·) = ux0(0, ·) = u(T, ·) = ux0(T, ·) = 0

Applying Carleman estimate (4.5) to this equation, we obtain

s

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(H1((0,T )×∂Ω))2
+ s

∥∥∥∥∂2u
∂ n2

esφ
∥∥∥∥2

(L2((0,T )×∂Ω))2
+ s3

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(L2((0,T )×∂Ω))2

≤C8(s2‖fesϕ‖2
(L2(Q))2 + ‖(∇f)esϕ‖2

(L2(Q))2 + s2‖[P, θ̃]uesϕ‖2
(L2(Q))2

+‖∇([P, θ̃]u)esϕ‖2
(L2(Q))2 + ‖u‖2

B(φ,Qω)), ∀s ≥ s0(τ̃). (7.20)

Since the supports of the coefficients of the commutator [P, θ] are in Ωδ \ Ωδ/2 by

(7.19), we have

s2‖[P, θ̃]uesϕ‖2
(L2(Q))2 + ‖∇([P, θ̃]u)esϕ‖2

(L2(Q))2 + ‖u‖2
B(ϕ,Qω)

≤C9

 2∑
|α|=0

s3−2|α|‖(∂αxu)esφ‖2
(L2(Q))2 + ‖u‖2

B(φ,Qω)

 . (7.21)
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Combining (7.20) and (7.21), we obtain

s

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(H1((0,T )×∂Ω))2
+ s

∥∥∥∥∂2u
∂ n2

esφ
∥∥∥∥2

(L2((0,T )×∂Ω))2
+ s3

∥∥∥∥∂u∂ nesφ
∥∥∥∥2

(L2((0,T )×∂Ω))2

≤C10

(
s2‖fesϕ‖2

(L2(Q))2 + ‖(∇f)esϕ‖2
(L2(Q))2 +

2∑
|α|=0

s3−2|α|‖(∂αxu)esφ‖2
(L2(Q))2

+‖u‖2
B(φ,Qω)

)
, ∀s ≥ s0(τ̃). (7.22)

Finally we will estimate the surface integrals at the right hand side of (4.4) by the

right hand side of (7.22). In the new inequality, the term

2∑
|α|=0

s3−2|α|‖(∂αxu)esφ‖2
(L2(Q))2

which appears at the right hand side, can be absorbed by ‖u‖2
Y (φ,Q). Thus the

proof of Theorem 2.1 is complete. �

§8. Proofs of Theorems 2.2 and 2.3.

Proof of Theorem 2.2.

We introduce the Banach space X = (H1(Q))2 with the norm ‖w‖2
X =

∫
Q
(|∇w|2+

s2w2)dx. In order to prove the theorem, we consider the following extremal problem

J(z,v1,v2) =
1
2
‖ze−sφ‖2

(L2(Q))2 +
1
2
‖v1e

−sφ‖2
(L2(Qω))2 +

1
2s2

‖v2e
−sφ‖2

(L2(Qω))2

→ inf , (8.1)

Pz = ue2sφ +
∂v1

∂x0
+ v2 in Q, (8.2)

suppvj ⊂ Qω, j ∈ {1, 2}, z|(0,T )×∂Ω = 0, zx0(0, x
′) = zx0(T, x

′) = 0. (8.3)

Denote by (z,v1,v2) the solution to extremal problem (8.1)-(8.3).

We have
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Lemma 8.1. Under the conditions of Theorem 2.2 for all u ∈ (L2(Q))2, there

exists a unique solution (z,v1,v2) ∈ (L2(Q))2× (L2(Qω))4 to problem (8.1) - (8.3).

Moreover this solution satisfies the optimality system

P ∗p+ ze−2sφ = 0 in Q, (8.4)

p|(0,T )×∂Ω = 0, px0(0, ·) = px0(T, ·) = p(0, ·)|ω = p(T, ·)|ω = 0, (8.5)

p =
1
s2
v2e

−2sφ in Qω,
∂p
∂x0

= −v1e
−2sφ in Qω, (8.6)

Pz = ue2sφ +
∂v1

∂x0
+ v2 in Q, (8.7)

z|(0,T )×∂Ω = 0, zx0(0, ·) = zx0(T, ·) = 0. (8.8)

Here P ∗ denotes the formal adjoint operator to P . The proof of this lemma

requires only the standard arguments (see e.g., [Li1]).

We extend the function p on the set Q̃ = [−T, 2T ]×Ω by the formula: p(x0, x
′) =

p(−x0, x
′) for x ∈ [−T, 0]×Ω and p(x0, x

′) = p(2T−x0, x
′) for (x0, x

′) ∈ [T, 2T ]×Ω.

In the same way, we extend the function −ze−2sφ on the domain Q̃ and denote the

extended function by f̃ . By (8.4), we have

P ∗p = f̃ in Q̃. (8.9)

Since we assume that ∂φ
∂x0

(T, x′) < 0 for all x′ ∈ Ω and ∂φ
∂x0

(0, x′) > 0 for all x′ ∈ Ω,

there exists δ > 0 such that we can continue the function φ on [−δ, T + δ] × Ω up

to a C3-function such that ∂φ(x)
∂x0

< 0 for all x ∈ [T, T + δ]×Ω and ∂φ(x)
∂x0

> 0 for all

x ∈ [−δ, 0]×Ω. Also Condition 2.1 for the function φ(x) holds true if we exchange

the domains Q,Qω on Q̃, [−δ, T + δ]×ω respectively. Let χ1 ∈ C∞
0 [−δ, T + δ] be a

cut-off function such that χ1|[− δ
2 ,T+ δ

2 ] = 1. Then

P ∗χ1p = χ1 f̃ − [χ1, P
∗]p in Q̃, (8.10)
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where supp [χ1, P
∗]p ⊂ ([T+ δ

2 , T+δ]×Ω)∪([−δ,− δ
2 ]×Ω). We will apply Carleman

estimate (2.8) to equation (8.10).

We observe that

‖f̃esφ‖L2(−δ,T+δ;(L2(Ω))2) ≤ C1‖ze−sφ‖(L2(Q))2 ,

‖[χ1, P
∗]p‖L2(−δ,T+δ;(L2(Ω))2) ≤ C2

s
‖p‖X . (8.11)

Moreover we can prove that at the right hand side of (2.8), we can exchange the

integral over Qω by the following integral

∫
Qω

(∣∣∣∣∂2u
∂x2

0

∣∣∣∣2 + s2

∣∣∣∣ ∂u∂x0

∣∣∣∣2 + s4|u|2
)
e2sφdx.

Note that thanks to the choice of extension of the function φ, we have

∫
eQω

(∣∣∣∣∂2(χ1p)
∂x2

0

∣∣∣∣2 + s2

∣∣∣∣∂(χ1p)
∂x0

∣∣∣∣2 + s4|χ1p|2
)
e2sφdx

≤C3

∫
Qω

(∣∣∣∣∂2p
∂x2

0

∣∣∣∣2 + s2

∣∣∣∣ ∂p∂x0

∣∣∣∣2 + s4|p|2
)
e2sφdx. (8.12)

Using estimates (8.11) and (8.12), by Theorem 2.1, we obtain

∑
|α|=2

‖(∂αxp)esφ‖2
(L2(Q))2 + s2‖pesφ‖2

X ≤ C14J1(z,v1,v2), (8.13)

where we set

J1(z,v1,v2) = ‖ze−sφ‖2
X +
∫
Qω

(∣∣∣∣∂v1

∂x0

∣∣∣∣2 + s2|v1|2 + |v2|2
)
e−2sφdx.

By (8.4), (8.5), (8.7), (8.8) and integration by parts, we have

(
ue2sφ +

∂v1

∂x0
+ v2, p

)
(L2(Q))2

=(Pz,p)(L2(Q))2 = (z, P ∗p)(L2(Q))2 = −(z, ze−2sφ)(L2(Q))2 .
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Therefore, taking the scalar product of (8.7) and p in (L2(Q))2 and using (8.3) and

(8.6), we obtain

2J(z,v1,v2) = −1
2

∫
Q

(ue2sφ,p)dx.

By (8.13), we obtain from this inequality

s2J(z,v1,v2) ≤ C5‖uesφ‖(L2(Q))2J1(z,v1,v2)
1
2 . (8.14)

Next we differentiate equations (8.4) and (8.7) with respect to the variable x0:

P ∗ ∂p
∂x0

=
∂

∂x0
f̃ in Q, (8.15)

P
∂z
∂x0

=
∂(ue2sφ)

∂x0
+

∂2v1

∂x2
0

+
∂v2

∂x0
in Q. (8.16)

Taking the scalar product of (8.16) and ∂p
∂x0

in (L2(Q))2 and integrating by parts,

we similarly obtain

2J
(

∂z
∂x0

,
∂v1

∂x0
,
∂v2

∂x0

)
=
∫
Q

((
ue2sφ,

∂2p
∂x2

0

)
+ 2sφx0

(
∂z
∂x0

, z
)
+ 2sφx0

(
∂v1

∂x0
,v1

)
+

2φx0

s

(
∂v2

∂x0
,v2

))
dx.

This equality and (8.13), (8.14) imply

J(∂x0z, ∂x0v1, ∂x0v2) ≤ C6‖uesφ‖(L2(Q))2J1(z,v1,v2)
1
2 . (8.17)

Let L̃ denote the part of first order of Lλ,µ, that is, (L̃v)(x′) = divv(x′)∇x′λ(x′)+

(∇x′v + (∇x′v)T )∇x′µ(x′). Taking the scalar product of (8.7) with ze−2sφ in

(L2(Q))2, we obtain∫
Q

(µ|∇x′z|2 + (λ+ µ)(div z)2)e−2sφdx−
∫
Q

(L̃z, ze−2sφ)dx

=
∫
Q

(∣∣∣∣ ∂z∂x0

∣∣∣∣2 − 2sφx0

(
∂z
∂x0

, z
))

e−2sφdx

+
∫
Q

(
2µs

2∑
k=1

(∂xk
z, (∂xk

φ)z) + 2(λ+ µ)(div z)(∇x′φ, z)

)
e−2sφdx

−
∫
Q

(s2ue2sφ, z)e−2sφdx+
∫
Q

(
∂v1

∂x0
+ v2, ze−2sφ

)
dx.
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We note that |∂xj
zk||z4| ≤ ε

2 |∂xj
zk|2+ 1

2ε |z4|2 for any ε > 0. Therefore if we take

sufficiently small ε > 0 and sufficiently large s > 0, then by (8.13) and (8.17), we

obtain

‖ze−sφ‖2
X +
∥∥∥∥∂v1

∂x0
e−sφ

∥∥∥∥2
(L2(Qω))2

+ ‖v2e
−sφ‖2

(L2(Qω))2 ≤ C7‖uesφ‖2
(L2(Q))2 . (8.18)

Finally, taking the scalar product of (1.1) with z in (L2(Q))2 and integrating by

parts, we obtain the equality

‖uesφ‖2
(L2(Q))2 =

∫
Q

(f, z)dx−
∫
Qω

(
u,

∂v1

∂x0
+ v2

)
dx. (8.19)

Applying (8.18) to this equality and using again an inequality |ab| ≤ ε
2
|a|2 + 1

2ε
|b|2

for any ε > 0, we obtain

∫
Q

s2|u|2e2sφdx

≤C1(‖fesφ‖2
(L2(Q))2 +

∫
Qω

(|∇u|2 + s2|u|2)e2sφdx), ∀s ≥ s0(τ ),
(8.20)

In order to estimate the first derivatives for the function u, we consider extremal

problem (8.1)-(8.3) with ∂u
∂x0

instead of u. Using the same notations for solution of

this extremal problem and repeating the previous arguments, we obtain an analogue

of (8.18):

‖ze−sφ‖2
X +
∥∥∥∥∂v1

∂x0
e−sφ

∥∥∥∥2
(L2(Qω))2

+ ‖v2e
−sφ‖2

(L2(Qω))2 ≤ C8

∥∥∥∥ ∂u∂x0
esφ
∥∥∥∥2

(L2(Q))2
.

(8.21)

Since the Lamé coefficients are independent of x0, we have

P
∂u
∂x0

=
∂f
∂x0

in Q,
∂u
∂x0

|(0,T )×∂Ω = 0,ux0(T, x
′) = ux0(0, x

′) = 0, (8.22)
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Taking the scalar product of (8.22) with z in (L2(Q))2 and integrating by parts,

we obtain the equality∥∥∥∥ ∂u∂x0
esφ
∥∥∥∥2

(L2(Q))2
=
∫
Q

(
∂f
∂x0

, z
)
dx−

∫
Qω

(
∂u
∂x0

,
∂v1

∂x0
+ v2

)
dx.

Applying (8.18) and the inequality 2|ab| ≤ δ|a|2 + 1
δ |b|2 to the second term at the

right hand side of this equality, we obtain∫
Q

(∣∣∣∣ ∂u∂x0

∣∣∣∣2 + s2|u|2
)
e2sφdx

≤C9(‖fesφ‖2
(L2(Q))2 +

∫
Qω

(|∇u|2 + s2|u|2)e2sφdx), ∀s ≥ s0(τ ),
(8.23)

Finally, taking the scalar product of (1.1) with ue2sφ in (L2(Q))2, we obtain∫
Q

(µ|∇u|2 + (λ+ µ)(divu)2)e2sφdx =
∫
Q

(∣∣∣∣ ∂u∂x0

∣∣∣∣2 + 2sφx0

(
∂u
∂x0

,u
))

e2sφdx

−
∫
Q

(
2µs

2∑
k=1

(∂xk
u, (∂xk

φ)u) + 2(λ+ µ)(div z)(∇x′φ,u)

)
e2sφdx

+
∫
Q

(L̃u,ue2sφ)dx+
∫
Q

(f,u)e2sφdx.

This equality and (8.23) imply (2.10), the conclusion of Theorem 2.2. �

Proof of Theorem 2.3.

In order to complete the proof, it is sufficient to estimate
∫
Q
(f , z)dx in (8.19) as

follows: ∣∣∣∣∫
Q

(f0, z)dx
∣∣∣∣ ≤ ‖f0esφ‖L2(0,T ;(H−1(Ω))2)‖ze−sφ‖L2(0,T ;(H1

0(Ω))2)

≤‖f0esφ‖L2(0,T ;(H−1(Ω))2)‖ze−sφ‖X

and ∣∣∣∣∫
Q

(∂xj
fj , z)dx

∣∣∣∣ = ∣∣∣∣∫
Q

(fj , ∂xj
z)dx
∣∣∣∣ ≤ ‖fjesφ‖(L2(Q))2‖(∂xj

z)e−sφ‖(L2(Q))2

≤C10‖fjesφ‖(L2(Q))2(‖∇(ze−sφ)‖(L2(Q))2 + s‖ze−sφ‖(L2(Q))2)

≤C11‖fjesφ‖(L2(Q))2‖ze−sφ‖X .
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Therefore ∣∣∣∣∣∣
∫
Q

f0 + 2∑
j=1

∂xj
fj

 , z

 dx

∣∣∣∣∣∣
≤C12

‖f0esφ‖L2(0,T ;(H−1(Ω))2 +
2∑

j=1

‖fjesφ‖(L2(Q))2

 ‖ze−sφ‖X .

Appendix I. Proof of Proposition 4.2.

In order to prove the proposition, it is convenient to use the coordinate x instead of

y. Moreover it suffices to prove the estimate for an arbitrary but fixed x0 ∈ [0, T ].

Therefore we should establish the estimate: There exist τ̂ > 1 and N0 > 1 such

that for any τ̃ > τ̂ and N > N0, there exists s0(τ̃ , N) such that

N

∫
ΩN

 1
sϕ

2∑
j,k=1

|∂xj
∂xk

u|2 + sϕ|∇x′u|2 + s3ϕ3|u|2
 e2sϕdx′

≤C0(‖rotu esϕ‖2
H1(ΩN ) + ‖divuesϕ‖2

H1(ΩN )),

∀u ∈ (H1
0 (ΩN ))2, ∀s ≥ s0(τ̃), suppu ⊂ Bδ ∩ΩN , (1)

where the constant C0 is independent of N.

First we choose N0 > 0 sufficiently large such that

∇x′ψ(x) �= 0, ∀x′ ∈ ΩN , ∀x0 ∈ (0, T ).

The existence of such N0 follows from (2.6).

Denote rotu ≡ ∂u2
∂x1

− ∂u1
∂x2

= y and divu ≡ w. Let rot∗v = ( ∂v
∂x2

,− ∂v
∂x1

). Using a

formula rot∗rot = −∆x′ +∇x′div , we obtain

−∆x′u = −rot∗ y−∇x′w in ΩN , u|∂ΩN
= 0.

The function ũ = uesϕ satisfies the equation

L1ũ+ L2ũ = qs in ΩN , ũ|∂ΩN
= 0, (2)
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where L1ũ = −∆x′ ũ − s2|∇x′ϕ|2ũ, L2ũ = 2s
∑2

k=1(∂xk
ũ)ϕxk

+ s(∆x′ϕ)̃u and

qs = (−rot∗ y − ∇x′w)esϕ. Taking the L2 norms of the right and the left hand

sides of equation (2), we obtain

‖L1ũ‖2
(L2(ΩN ))2 + ‖L2ũ‖2

(L2(ΩN ))2 + 2(L1ũ, L2ũ)(L2(ΩN ))2 = ‖qs‖2
(L2(ΩN ))2 .

Therefore we can obtain the formula

(L1ũ, L2ũ)(L2(ΩN ))2 =
∫

ΩN

(
2s

2∑
k,j=1

(∂xj
ũ)(∂xk

ũ)ϕxjxk
+ s3(div(|∇x′ϕ|2∇x′ϕ)

−|∇x′ϕ|2∆x′ϕ)|ũ|2 − s

2

2∑
j=1

∂2∆x′ϕ

∂x2
j

|ũ|2
)
dx′ − s

∫
∂Ω

∣∣∣∣∂ũ∂ n
∣∣∣∣2 (∇x′ϕ, n)dσ. (3)

By (2.6), the last integral in (3) is nonnegative. Denote ψ1(x) = ψ(x) − ε̂A1(x).

Then

div(|∇x′ϕ|2∇x′ϕ)− |∇ϕx′ |2∆x′ϕ = 2
2∑

k,j=1

ϕxk
ϕxj

ϕxkxj

=2ϕ3
2∑

k,j=1

τ̃4(∂xk
ψ1 + 2NA1∂xk

A1)2(∂xj
ψ1 + 2NA1∂xj

A1)2

+τ̃3(∂xk
ψ1 + 2NA1∂xk

A1)(∂xj
ψ1 + 2NA1∂xj

A1)(∂xj
∂xk

ψ1 + 2N∂xk
A1∂xj

A1 + 2NA1∂xk
∂xj

A1).

Since (∇x′ψ1,∇x′A1) > 0 on ∂Ω, there exists a constant C1 > 0 which is indepen-

dent of N, τ̃ , s such that

div(|∇x′ϕ|2∇x′ϕ)− |∇x′ϕ|2∆x′ϕ ≥ 2ϕ3τ̃4|∇x′ψ1|4 + C1Nτ̃3ϕ3 + ϕ2O(τ̃3). (4)

On the other hand, by the definition of ψ̃ = ψ − ε̂A1 +NA21 = ψ1 +NA21,

2∑
k,j=1

(∂xj
ũ)(∂xk

ũ)ϕxjxk
= τ̃2(∇x′ ũ,∇x′ψ̃)2ϕ

+τ̃
2∑

k,j=1

(∂xj
ũ)(∂xk

ũ)(∂xj
∂xk

ψ1 + 2NA1∂xj
∂xk

A1)ϕ+ 2Nτ̃(∇x′ ũ,∇x′A1)2ϕ.
(5)
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Note that there exists a constant C2 > 0, independent of N , such that

‖NA1∂
2
xixj

A1‖C0(ΩN ) ≤ C2/N. (6)

By (3)-(6), we obtain

‖L1ũ‖2
(L2(ΩN ))2 + ‖L2ũ‖2

(L2(ΩN ))2 +
∫

ΩN

(2ϕ3τ̃4|∇x′ψ1|4 + C1Nτ̃3ϕ3)|ũ|2dx′

−sτ̃C3

∫
ΩN

ϕ|∇x′ ũ|2dx′ ≤ ‖qs‖2
(L2(ΩN ))2 . (7)

Multiplying equation (2) by sNϕũ and integrating by parts, we obtain

∫
ΩN

(sNϕ|∇x′ũ|2 + s2N(∆x′ϕ)ϕ|ũ|2 − s3ϕ3|∇x′ϕ|2|ũ|2 − sN

2
divϕ|ũ|2)dx′

=
∫

ΩN

qssNϕũdx′. (8)

Next we note that

∆x′ϕ = (|∇x′ ψ̃|2τ̃2 + τ̃∆x′ψ1 + 2τ̃N |∇x′A1|2 + 2τ̃NA1∆x′A1)ϕ ≥ C4τ̃Nϕ.

This inequality and (8) imply

∫
ΩN

{sNϕ|∇x′ũ|2 + 1
2
s2N(∆x′ϕ)ϕ|ũ|2 − s3ϕ3|∇x′ϕ|2|ũ|2}dx′ ≤ C4‖qs‖2

(L2(ΩN ))2 .

(9)

From (7) and (9), we obtain

‖L1ũ‖2
(L2(ΩN ))2 + ‖L2ũ‖2

(L2(ΩN ))2 +
∫

ΩN

(
1
2
ϕ3τ̃4|∇x′ψ1|4 + C1Nτ̃3ϕ3

)
|ũ|2dx′

+sN

∫
ΩN

ϕ|∇x′ũ|2dx′ ≤ C5‖qs‖2
(L2(ΩN ))2 . (10)

Let ũ = ũ1 + ũ2 where the functions ũj are solutions to the initial value problems

−∆x′ ũ1 = L1ũ in ΩN0 , ũ1|∂ΩN0
= 0, −∆x′ ũ2 = s2|∇x′ϕ|2ũ inΩN0 , ũ2|∂ΩN0

= 0.



LAME SYSTEM 67

From a standard a priori estimate for the Laplace operator, we have

‖ũ1‖(H2(ΩN ))2 ≤ C6‖L1ũ‖(L2(ΩN )2 , (11)

√
N√
s
‖ũ2‖(H2(ΩN ))2 ≤ C7

√
N‖s 3

2 |∇x′ϕ|2ũ‖(L2(ΩN ))2 , (12)

where the constants C6 and C7 are independent of N. Taking s0(τ,N) ≥ N , we

obtain (1) from (9) - (12). �

Appendix II. Proof of the estimate (4.33).

We prove (4.33) for a more general hyperbolic operator. Denote x = (x0, x
′) =

(x0, x1, ..., xn), ξ = (ξ0, ξ′) = (ξ0, ξ1, ..., ξn) and GN = Rn × [0, 1
N2 ].

Let a function w ∈ H1(GN ) satisfy the equations

R(x′, D)w =
∂2w

∂x2
0

−
n∑

j,k=1

∂

∂xj

(
ajk(x′)

∂w

∂xk

)

+
n∑

j=0

bj(x′)
∂w

∂xj
+ c(x′)w = g in GN , (1)

w|xn= 1
N2

=
∂w

∂xn
|xn= 1

N2
= 0, suppw ⊂ Bδ(x∗), (2)

where x∗ is an arbitrary point on ∂GN and Bδ(x∗) is a ball of radius δ centered at

x∗.

We assume that the coefficients of the linear operator R satisfy the conditions

ajk ∈ C1(GN ), ajk = akj , 1 ≤ j, k ≤ n, b4 ∈ L∞(GN ), 0 ≤ A ≤ n, c ∈ L∞(GN )

(3)

and the uniform ellipticity: there exists δ > 0 such that

a(x′, ξ, ξ) ≡
n∑

j,k=1

ajk(x′)ξjξk ≥ δ|ξ|2, ∀ξ ∈ R
n+1, ∀x ∈ GN . (4)



68 O.Y. IMANUVILOV AND M. YAMAMOTO

By R(x′, ξ), we denote the principal symbol of the operator R:

R(x′, ξ) = −ξ2
0 +

n∑
j,k=1

ajk(x′)ξjξk,

and by R̃(x′, ξ1, ξ2) the quadratic form

R̃(x′, ξ1, ξ2) = ξ1
0ξ

2
0 −

n∑
j,k=1

ajk(x′)ξ1
j ξ

2
k

with ξ1 = (ξ1
0 , ..., ξ

1
n) and ξ2 = (ξ2

0 , ..., ξ
2
n). Following [Hö], we introduce the nota-

tions:

R(j)(x′, ξ) =
∂R(x′, ξ)

∂ξj
, R(j,k)(x′, ξ) =

∂2R(x′, ξ)
∂ξj∂ξk

, R(j)(x′, ξ) =
∂R(x′, ξ)

∂xj
.

We assume that there exists a function ψ1 ∈ C2(GN ) such that

{R, {R, ψ1}}(x, ξ) > 0 (5)

if (x, ξ) ∈ (GN \Bδ(x∗))× (Rn+1 \ {0}) satisfies

R(x′, ξ) =< ∇ξR(x′, ξ),∇ψ1(x) >= 0,

and

{R(x′, ξ − is∇ψ1(x)), R(x′, ξ + is∇ψ1(x))}/2is > 0 (6)

if (x, ξ, s) ∈ (GN \Bδ(x∗))× (Rn+1 \ {0})× (R \ {0}) satisfies

R(x′, ξ + is∇ψ1(x)) =< ∇ξR(x′, ξ + is∇ψ1(x)),∇ψ1(x) >= 0.

R(x,∇ψ1) < 0.

Using the function ψ1 and following [Hö], we construct the function ϕ by

φ(x) = eeτψ1(x), τ̃ > 1. (7)
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It is known (see e.g., Theorem 8.6.2 [Hö,p.205]) that if the parameter τ̃ is sufficiently

large, then:

{R, {R, φ}}(x, ξ)> 0 (8)

if (x, ξ) ∈ (GN \Bδ(x∗))× (Rn+1 \ {0}) satisfies

R(x′, ξ) = 0, (9)

and

{R(x′, ξ − is∇φ(x)), R(x′, ξ + is∇φ(x))}/2is > 0

if (x, ξ, s) ∈ (GN \Bδ(x∗))× (Rn+1 \ {0})× (R \ {0}) satisfies

R(x′, ξ + is∇φ(x)) = 0.

Now we fix the parameter τ̃ such that inequalities (8) and (9) hold true. Let

A1 ∈ C2(GN ) be a function such that A1|xn=0 = 0. Let ψ̃(x) = ψ1(x) +NA21(x) and

ϕ = eeτ eψ. Since ϕ(x) = φ(x)eeτN421(x), using A1|xn=0 = 0, we have

ϕ→ φ in C1(GN ) as N → +∞. (10)

Moreover

{R(x′, ξ − is∇ϕ(x)), R(x′, ξ + is∇ϕ(x))}/2is

−2Nτ̃

n∑
j,k=1

(∂xj
A1(x))(∂xk

A1(x))(R(j)(x′, ξ)R(k)(x′, ξ)+s2R(j)(x′,∇ϕ)R(k)(x′,∇ϕ))

−→ {R(x′, ξ − is∇φ(x)), R(x′, ξ + is∇φ(x))}/2is in C(GN × Sn) as N → +∞.
(11)

By (8) - (11), there exists N0 > 0 such that for any N > N0, the following

inequalities hold true:

{R, {R, ϕ}}(x, ξ)> 0 (12)
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if (x, ξ) ∈ (GN \Bδ(x∗))× (Rn+1 \ {0}) satisfies R(x, ξ) = 0, and

{R(x′, ξ − is∇ϕ(x)), R(x′, ξ + is∇ϕ(x))}/2is > C1(|ξ|2 +Ns2) (13)

if (x, ξ, s) ∈ (GN \Bδ(x∗))×(Rn+1\{0})×(R\{0}) satisfies R(x′, ξ+is∇ϕ(x)) = 0,

where the constant C1 > 0 is independent of ξ, s, N.

Denote w̃(x) = w(x)esϕ. By (11), the following equality holds:

esφR(x′, D)(e−sϕw̃) = gesϕ in GN . (14)

The short calculations give the equation

L2,ϕw̃ + L1,ϕw̃ = gs in GN , (15)

where

L1,ϕw̃ = −
n∑

j=0

sϕxj
R(j)(x′,∇w̃), L2,ϕw̃ = Rw̃ + s2R(x′,∇ϕ)w̃,

gs(x) = gesϕ + w̃Rϕ. (16)

Taking the L2-norms of the both sides of (15), we obtain

‖gs‖2
L2(GN ) = ‖L2,ϕw̃‖2

L2(GN ) + ‖L1,ϕw̃‖2
L2(GN ) + 2(L1,ϕw̃, L2,ϕw̃)L2(GN ). (17)

Denote

Gφ(x, s, w̃) = {R, {R, φ}}(x′,∇w̃) + s2
n∑

j,k=0

R(k)(x′,∇φ)R(j)(x′,∇φ)w̃2

+s2
n∑

j,k=0

φxjxk
R(j)(x′,∇φ)R(k)(x′,∇φ)w̃2 (18)

and Gϕ(x, s, w̃) is defined similarly.
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Let us transform the last term at the right side of (17). In [Im2], one can find

the following identity:

(L1,ϕw̃, L2,ϕw̃)L2(GN ) =
∫
∂GN

R̃(x′,  n,∇w̃)L1,ϕw̃ dΣ+ s

∫
∂GN

R̃(x′,∇ϕ, n)R(x′,∇w̃)dΣ

−s3

∫
∂GN

R(x′,∇ϕ)R̃(x′,  n,∇ϕ)w̃2dΣ+
∫
GN

sGϕ(x, s, w̃) dx

+
∫
GN

s

2

 n∑
j,k=0

R
(k)
(k)(x

′,∇w̃)ϕxj
R(j)(x′,∇w̃)− θ(R(x′,∇w̃)− s2R(x′,∇ϕ)w̃2)

 dx,
(19)

where  n is the unit outward normal vector to ∂GN and

θ(x) =
n∑

l,m=0

(ϕxlxm
R(l,m)(x′,∇w̃) + ϕxl

R
(l,m)
(m) (x′,∇w̃)).

Now we need the following Lemma proved in [Im2].

Lemma 1. Let w ∈ H1(GN ) be a solution to (1) and (2).

s

∫
GN

(|∇w̃|2 + s2w̃2)dx ≤ C2

∫
GN

sGφ(x, s, w̃)dx

+C3

(
1
s
‖L2,φw̃‖2

L2(GN )+
1
s
‖L1,φw̃‖2

L2(GN )+s‖w̃‖L2(∂GN )‖∂xn
w̃‖L2(∂GN )

)
, ∀s ≥ s0(τ̃),

(20)

where the constants C2 and C3 are independent of s, N.

We claim :∣∣∣∣∣∣
∫
GN

s

2

 n∑
j,k=0

R
(k)
(k)(x

′,∇w̃)ϕxj
R(j)(x′,∇w̃)− θ{R(x′,∇w̃)− s2R(x′,∇ϕ)w̃2}

 dx

∣∣∣∣∣∣
≤
∣∣∣∣∣∣s2
∫
GN

n∑
j,k=0

R
(k)
(k)(x

′,∇w̃)ϕxj
R(j)(x′,∇w̃) dx

∣∣∣∣∣∣+
∣∣∣∣s ∫GN

θ(R(x′,∇w̃)− s2R(x′,∇ϕ)w̃2)dx
∣∣∣∣

≤εs

2

∫
GN

(|∇w̃|2 + s2w̃2)dx+ C4

(
1
sε
‖L1,ϕw̃‖2

L2(GN ) +
1
sε
‖L2,ϕw̃‖2

L2(GN )

+s‖w̃‖L2(∂GN )‖∂xn
w̃‖L2(∂GN )

)
. (21)
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In fact, by the Cauchy-Bunyakovskii inequality,∣∣∣∣∣∣
∫
GN

s
n∑

j,k=0

R
(k)
(k)(x

′,∇w̃)ϕxj
R(j)(x′,∇w̃)dx

∣∣∣∣∣∣ ≤ εs

4
‖w̃‖2

H1(GN ) +
C5

sε
‖L1,ϕw̃‖2

L2(GN ).

(22)

Since the function θ is continuous, there exists θε ∈ C2(GN ) such that ‖θ −

θε‖C(GN ) ≤ ε
8
. Taking the scalar product in L2(GN ) of the functions θεw̃ and L2,ϕw̃,

we obtain the equality

∫
GN

θε(sR(x′,∇w̃)− s3R(x′,∇ϕ)w̃2)dx = −s
∫
GN

(L2,ϕw̃)θεw̃dx

+s

∫
GN

n∑
j,k=1

(
∂ajk
∂xj

∂w̃

∂xk
θεw̃ − R̃(x′,∇w̃,∇θε)w̃

)
dx+

∫
∂GN

a(x,  n,∇w̃)θεw̃dΣ.

Thus

∣∣∣∣∫GN

θ(sR(x′,∇w̃)− s3R(x′,∇ϕ)w̃2)dx
∣∣∣∣

≤
∣∣∣∣∫GN

(θ − θε)(sR(x′,∇w̃)− s3R(x′,∇ϕ)w̃2)dx
∣∣∣∣+ ∣∣∣∣∫GN

θε(sR(x′,∇w̃)− s3R(x′,∇ϕ)w̃2)dx
∣∣∣∣

≤εs

4

∫
GN

(|∇w̃|2 + s2w̃2)dx+ C6

(
1
s
‖L1,ϕw̃‖2

L2(GN ) +
1
s
‖L2,ϕw̃‖2

L2(GN )

+s‖w̃‖L2(∂GN )‖∂xn
w̃‖L2(∂GN )

)
. (23)

The inequalities (22) and (23) imply (21).

By Lemma 1, we have

s

∫
GN

(|∇w̃|2 + s2w̃2)dx+
∫
GN

4Nτ̃
n∑

j,k=1

∂xj
A1(x′)∂xk

A1(x′){R(j)(x′,∇w̃)R(k)(x′,∇w̃)

+s2R(j)(x,∇ϕ)R(k)(x′,∇ϕ)}dx ≤
∫
GN

2sGϕ(x, s, w̃)dx+
∫
GN

{
2sGφ(x, s, w̃)− 2sGϕ(x, s, w̃)

+4Nτ̃
n∑

j,k=1

∂xj
A1(x′)∂xk

A1(x′){R(j)(x′,∇w̃)R(k)(x′,∇w̃) + s2R(j)(x′,∇ϕ)R(k)(x′,∇ϕ)}
}
dx

+C8

(
1
s
‖L2,φw̃‖2

L2(GN ) +
1
s
‖L1,φw̃‖2

L2(GN ) + s‖w̃‖L2(∂GN )‖∂xn
w̃‖L2(∂GN )

)
. (24)
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Note that there exists a constant C9 > 0, independent of N , such that

∫
GN

4Nτ̃
n∑

j,k=1

∂xj
A1(x′)∂xk

A1(x′){R(j)(x′,∇w̃)R(k)(x′,∇w̃)

+s2R(j)(x′,∇ϕ)R(k)(x′,∇ϕ)}dx ≥ C9N

∫
GN

w̃2dx (25)

for all sufficiently large N.

By (11), we have

∫
GN

(
2sGϕ(x, s, w̃)− 2sGφ(x, s, w̃)

−4Nτ̃

n∑
j,k=1

∂xj
A1(x′)∂xk

A1(x′){R(j)(x′,∇w̃)R(k)(x′,∇w̃) + s2R(j)(x′,∇ϕ)R(k)(x′,∇ϕ)}
)
dx

≤C10(N)s
∫
GN

(|∇w̃|2 + s2w̃2)dx, (26)

where C10(N)→ 0 as N → +∞. By (10), we obtain

∣∣∣∣1s‖L2,φw̃‖2
L2(GN ) +

1
s
‖L1,φw̃‖2

L2(GN ) −
1
s
‖L2,ϕw̃‖2

L2(GN ) −
1
s
‖L1,ϕw̃‖2

L2(GN )

∣∣∣∣
≤C11(N)s

∫
GN

(|∇w̃|2 + s2w̃2)dx, (27)

where C11(N)→ 0 as N → +∞. Using (25)-(27), from (24) we obtain

1
C7

s

∫
GN

(|∇w̃|2 + s2w̃2)dx ≤ 1
4
‖L1,ϕw̃‖2

L2(GN ) +
1
4
‖L2,ϕw̃‖2

L2(GN )

+
∫
GN

2sGφ(x, s, w̃)dx+ sC9‖w̃‖L2(∂GN )‖∂xn
w̃‖L2(∂GN ), ∀s ≥ s0(τ̃).

(28)

Inequalities (21), (28) imply (4.33). The proof is finished. �
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