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ABSTRACT. In this paper, we establish Carleman estimates for the two dimensional
isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions.
Using this estimate, we prove the uniqueness and the stability in determining spatially
varying density and two Lamé coefficients by a single measurement of solution over
(0,T) xw, where T > 0 is a sufficiently large time interval and a subdomain w satisfies
a non-trapping condition.

¢1. Introduction.

This paper is concerned with Carleman estimates for the two dimensional non-
stationary isotropic Lamé system with the zero Dirichlet boundary conditions and
an application to an inverse problem of determining spatially varying density and
the Lamé coefficients by a single interior measurement of the solution. The Carle-
man estimate is a weighted L2-estimate of solution to a partial differential equation
and it has been fundamental for proving the uniqueness in a Cauchy problem for
the partial differential equation or the unique continuation.
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Z . Y. IMANUVILOV AND M. YANMANO1O
More precisely, we consider the two dimensional isotropic non-stationary Lamé

system:

(Pu)(zo,2') = p(2')02,u(wo, 2') — (La,pu)(zo, 2') = f(z0, '),

r = (z9,2') €Q = (0,T) x Q, (1.1)
where

(Lauv)(2') = p(z) Av (@) + (u(z’) + A(@")) Verdiv v(z')

+(divv(z") )V d(2) + (Vv + (Verv) D Ve u(a), z' e .
(1.2)

Throughout this paper, @ C R? is a bounded domain whose boundary 952 is of
class C3, xg and 2’ = (z1,2) denote the time variable and the spatial variable
respectively, and u = (uy,us)? where -7 denotes the transpose of matrices, Ej, is

the unit matrix of the size k x k,

dyp .
8mj90:90$j:%7 J=0,1,2
J

We set Vv = (0,vj)1<jk<2 for a vector function v = (vy,v2)T and V¢ =
(O, &, 0z, d)T for a scalar function ¢. Henceforth V means V, = (04y, 0z, Op,) if
we do not specify.

Moreover the coefficients p, A\, p satisfy
pAnEC@), pla') >0, p(a') >0, @) + (') >0 fora/ €D (13)

The Carleman estimate is an essential technique not only for the unique continua-
tion, but also for solving the exact controllability and stabilizability (e.g.,Bellassoued

[B1]-[B3], Imanuvilov [Im1], Kazemi and Klibanov [KK], Tataru [Ta], and Lasiecka
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and Triggiani [LT] as related books) and the inverse problems (e.g., Bukhgeim [Bu],
Bukhgeim and Klibanov [BuK], Klibanov [Kl]). Thus the first main purpose of this

paper is to establish the Carleman estimates for system (1.1), (1.2).

Since the pioneering work [Ca] by Carleman, the theory of inequalities of Carle-
man’s type has been rapidly developed and now many general results are available
for a single partial differential equation (see [E1], [H8], [Is2], [Is3], [Ta]), while for
strongly coupled systems of partial differential equations, the situation is more com-
plicated and much less understood. To our best knowledge, a most general result
for systems of partial differential equations is Calderon’s uniqueness theorem (see
e.g., [E1], [Zui]). The technique developed by Calderon, reduces the system of par-
tial differential equations to a system of pseudo-differential operators of the first

order:

du

d—q,‘o = M(QT(), xl, Dx/)u + f,

where M (xo, 2, D,/) is a matrix pseudo-differential operator. Then by some change
of variables u = Q(xg,2’, D,s)u, this matrix pseudo-differential operator M is
reduced to Q' M@ such that QM Q consists of blocks of a small size located on
the main diagonal and that in each block the principal symbols of all the operators
located below the main diagonal are zero. In order to construct the matrix @, the
eigenvalues and eigenvectors of the matrix M (zg, 2, £) should be smooth functions
of the variables zg, 2’ and ¢ € R? and each eigenvalue should not change the
multiplicity. This condition is restrictive, especially in the case where we are looking
for a Carleman estimate near boundary, and therefore the choice for a variable zq

is limited. For example, with the time variable z(, the non-stationary Lamé system
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does not satisfy this condition, in general. On the other hand, for the stationary
Lamé system, this method works well (see [DR]).

As long as the non-stationary Lamé system is concerned, it is known that thanks
to the special structure of the system, the functions divu and rot u satisfy scalar
wave equations (modulo lower order terms). The system of partial differential
equations for functions u, div u, rot u, is coupled via first order terms. This allows
us to apply the Carleman estimate for a scalar hyperbolic equation in the case
where the function u has a compact support (see [EINT], [ITY], [INY]).

On the other hand, the structure of our proof is in principle similar to the
paper [Y]. That is, we work mainly with two hyperbolic equations depending
on a parameter s > 0 for the functions zy;2, = e**divu and 2z, = e*rotu:
Pyiou(w0,2', D, 8)2xt2, = (divE)e®® and P,(zg, 2, D, )z, = (rot £)e*?. The main
difficulty one should overcome, is that there are no boundary conditions for these
functions. This problem is solved in the following way: Outside an exceptional

set in T%(Q), the operators Pyyg, and P, can be microlocally factorized into the

product of two pseudo-differential operators of the first order:
Ps(zo,2', Dy 8) = P_ g(xg, @', Dyr, 8) Py (w0, @', Dy 8),

where = A+2uor = p, Pr g=D,, — I’g:(aco, x', Dy, 8), and x5 is normal to the
boundary ). Since the principal symbol of the operator I'; (w0, 2, , s) satisfies
the inequality

—Im F[; (ill‘o, xlv 57 S) 2 C‘S’

with a constant C' > 0, we have a priori estimates for Py g(xo, ', Dy, 5)28|5,=0

in L?. These estimates and the zero Dirichlet boundary condition yields the H!
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boundary estimates for z3. The set on which we cannot factorize both the operators
Pg(zo,2', Dy, s) into a product of the first order operators, has to be discussed
separately.

For the uniqueness and the stability in our inverse problem with the minimum
number of observations, we are required to prove a Carleman estimate whose right
hand side is estimated in H ~!-space. The Carleman estimate with right hand side
in H~l-space was proved by Imanuvilov [Im2], Ruiz [R], for a scalar hyperbolic
equation and by Imanuvilov and Yamamoto [[Y1] for a parabolic equation. In this
paper, by a method in [IY1], we will derive an H ~!-Carleman estimate (Theorem
2.3) for (1.1) from a Carleman estimate (Theorem 2.1) with H!-norm.

This paper is composed of eight sections and two appendices. In Section 2, we
will show Carleman estimates (Theorems 2.1 - 2.3) for functions which do not have
compact supports but satisfy the zero Dirichlet boundary condition on (0,7") x 0€2.
Theorem 2.1 is a Carleman estimate whose right hand side is estimated in H*-
space. Theorems 2.2 and 2.3 are Carleman estimates respectively with right hand
sides in L?-space and in H ~!-space. In Section 3, we will apply the H ~!-Carleman
estimate (Theorem 2.3), and prove the uniqueness and the conditional stability in
the inverse problem with a single interior measurement. In Sections 4-7, we prove

Theorem 2.1, while Theorems 2.2 and 2.3 are proved in Section 8.

§2. Carleman estimates for the two dimensional non-stationary Lamé
system.

Let us consider the two dimensional Lamé system

Pu(zg,2') = p(z')03 u(zo, ') — (L uu)(zo,2’) = f(zo,2") in Q, (2.1)
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ulo.ryxo0 =0, u(T,2') =, u(T,z") =u(0,z') = d,,u(0,2") =0, (2.2)

where u = (u1,u2)?,f = (f1, fo)T are vector-valued functions, and the partial
differential operator Ly , is defined by (1.2). The coefficients p, A, p € C?(f2) are
assumed to satisfy (1.3).

Let w C Q be an arbitrarily fixed subdomain. Denote by 7i(x’) = (n1(z), na(z’))
the outward unit normal vector to 9 at ' and set % = Vv n.

We set

Q.= (0,T) X w.

Let 5 = (5075/) = (507&17&2)' We set

pi(x, &) = p(x")&§ — p(a) (|61 + &),
(2.3)
pa(x, €) = p(a')&5 — (M) + 2u(z")) (|62 + |&2%)

and Ve = (0g,, Og,,0¢,). For arbitrary smooth functions ¢(z,§) and ¢ (x,§), we

define the Poisson bracket by the formula

2

{00} =D (0e,0)(2,1) — (9e,1) (D, 0).-

§=0
We set i = v/—1 and < a,b >= Zizl apby, for a = (a1, as,a3),b = (by, be, b3) € C3.
We assume that the density p, the Lamé coefficients A, u and the domains 2, w

satisfy the following condition (cf. [HG]).

Condition 2.1. There exists a function 1) € C3(Q) such that
{pe, {pr, Y3} (2, §) >0, Vk € {1,2} (2.4)
if (2,€) € (Q\ Qu) x (R?\ {0}) satisfies py(z,&) =< Vepg, Vip >= 0, and

{pk(z,& —isV(x)), pp(z, & +isV(x))}/2is >0, Vk e {1,2} (2.5)
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if (2,€,8) € (Q\ Qu) x (R3\ {0}) x (R\ {0}) satisfies
pr(z, & +isV(z)) =< Vepg(z, {4+ isVY(z)), Vip(z) >= 0.

On the lateral boundary, we assume

p1(z,Vip) <0, Vxe (0,T)x 9 and 9y < 0. (2.6)

—

on (0,T) x (9Q\Ow)
Let ¢ (x) be the weight function in Condition 2.1. Using this function, we intro-

duce the function ¢(x) by
o) =@ 1>, (2.7)

where the parameter 7 > 0 will be fixed below. Denote

2
||11H%(¢,Q) = /Q < Z st2el|9ou)? + s|Vrot u)? + s°|rot u)?

||=0

+5|Vdivul* + s?|div u\2> > da,

where a = (o, a1, a2), a; € NU{0}, 0% = 020091 092.

To "T1 T2

Now we formulate our Carleman estimates as main results.

Theorem 2.1. Let f € (H'(Q))?, and let the function ¢ satisfy Condition 2.1.
Then there exists T > 0 such that for any T > 7, there exists so = so(7) > 0 such
that for any solution u € (H'(Q))? N L?(0,T; (H?*(Q))?) to problem (2.1) - (2.2),
the following estimate holds true:

2 2

2
u
7 es?

on?

ou |
¢
o M

(H((0,T)%x0%))?

[ull$ 5.0y = lallBs.q) + 3
(L2((0,T) x00))2
ou 2

oit

+53 e5?

(L2((0,T)x69)))?

<C1 (5”1 [|F 122 + (VD (1202 + IullEs.0.)) Vs = so(7), (2.8)
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where the constant C; = C1(7) > 0 is independent of s.

Next we formulate Carleman estimates where norms of the function f are taken
in (L?(Q))? and L2*(0,T; (H~1(Q))?). In particular, the latter Carleman estimate
is essential for obtaining our sharp uniqueness result in the inverse problem.

In addition to Condition 2.1, we assume
Do (T, ") <0,  0yyp(0,2") > 0, vr' € Q. (2.9)

Theorem 2.2. Let f € (L?(Q))? and let the function ¢ satisfy (2.9) and Condition
2.1. Then there exists T > 0 such that for any T > T, there exists so = so(7) > 0
such that for any solution u € (H'(Q))? to problem (2.1) - (2.2), the following

estimate holds true:

/(\Vu|2 + $2ul?)e2da
Q

<Ci (Hf68¢||%L2(Q))2 +/Q (IVual* + 32|u’2)€23¢dl‘) , Vs> so(7), 210
w 2.10

where the constant C; = C1(7) > 0 is independent of s.

Theorem 2.3. Let f =f —i—Z?:l 0x,f; with o € L*(0,T; (H1(2))?) and f;,f; €
(L%(Q))?, and let the function ¢ satisfy (2.9) and Condition 2.1. Then there exists
7 > 0 such that for any T > 7, there exists so = so(7) > 0 such that for any solution

u € (L*(Q))? to problem (2.1) - (2.2), the following estimate holds true:

/ lu|?e?*?dx
Q

2
< Hf068¢H2L2(0,T;(H—1(Q))2) + Z "fjes¢"(2L2(Q))2 +/ luf*e**?dx |, Vs > so(7),
j=1 Qu (2.11)

where the constant C; = C1(7) > 0 is independent of s.
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§3. Determination of the density and the Lamé coefficients by a single
measurement.

Here we set recall that the differential operator Ly , is defined by (1.2). We assume
(1.3) for p, \, . By u = u(\, p, p,p,q,n)(x), we denote the sufficiently smooth

solution to

p(2") (07, u)(2) = (Lauu)(2), = €Q, (3.1)
u(z) = n(x), xz € (0,T) x 09, (3.2)
w(T/2,2") = p(a'), (9,u)(T/2,2") =q(a'), 2'€Q, (3-3)

where 7, p and q are suitably given functions.

Let w C Q be a suitably given subdomain. We consider the

Inverse Problem. Let pj,q;,n;, 1 < j < N, be appropriately given. Then

determine A(z'), u(z"), p(z'), =’ € Q, by

u()‘7ﬂ7p7 pj7qj777j)(x)7 WS Qw = (O7T> X w. (34)

Our formulation of the inverse problem is one with a finite number of observations
(i.e., N' < 00), and as for inverse problems for the non-stationary Lamé equation by
infinitely many boundary observations (i.e., Dirichlet-to-Neumann map), we refer
to Rachele [Ra], for example. Moreover see a monograph by Yahkno [Yak]| for
inverse problems for the Lamé system.

For the formulation with a finite number of observations, Bukhgeim and Klibanov
[BuK] proposed a remarkable method based on a Carleman estimate and estab-
lished the uniqueness for similar inverse problems for scalar partial differential

equations. See also Bukhgeim [Bu], Bukhgeim, Cheng, Isakov and Yamamoto
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[BCIY], Imanuvilov and Yamamoto [IY2], [IY3]|, [IY4], Isakov [Isl], [Is2], [Is3],
Isakov and Yamamoto [IsY], Khaidarov [Khl1], [Kh2|, Klibanov [Kl], Puel and Ya-
mamoto [PY1], [PY2], Yamamoto [Ya] after Bukhgeim and Klibanov [BuK].

The Carleman estimate for the non-stationary Lamé equation was obtained for
functions with compact supports, by Eller, Isakov, Nakamura and Tataru [EINT],
Ikehata, Nakamura and Yamamoto [INY], Imanuvilov, Isakov and Yamamoto [IIY],
Isakov [Is1], and, by the methodology by [BuK] or [IY2], several uniqueness results
are available for the inverse problem for the Lamé system (3.1) - (3.3):

[Is1] Isakov established the uniqueness in determining a single coefficient p(z’),
using four measurements.

Later [INY] reduced the number of measurements to three.

Recently [ITY] proved conditional stability and the uniqueness in the determina-
tion of the three functions A(z'), p(z'), p(z’), ' € Q, was proved with only two
measurements.

In all the papers [Is1], [INY], [ITY], the authors have to assume that dw D 9
because the basic Carleman estimates require that solutions under consideration
have compact supports in Q).

In [Is1] and [INY], the key is a Carleman estimate where the right hand side is
estimated in an L2-space with the divergence, while in [II'Y], the key is a Carleman
estimate with L2-right hand side without the divergence of u. In [IIY], we need not
take extra divergence for the Carleman estimate, and as its consequence, we can
relax A for simultaneous determination of all the three functions A, u, p.

In this section, we will further apply a Carleman estimate (Theorem 2.3) whose

right hand side is estimated in H ~! space to prove the conditional stability and the
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uniqueness with a single measurement: A’ = 1. Thus the main achievements are

(1) the reduction of the number of observations, i.e., N' = 1. The previous
paper [IIY] requires N = 2.
(2) the reduction of the observation subdomain w.
We notice that our results are true also in the three dimensional case.
In order to formulate our main result, we will introduce notations and an admis-
sible set of unknown parameters A, u, p. Henceforth we set (2/, ') = Z§:1 x;y; for

' = (x1,x2) and ¥’ = (y1,y2). Let a subdomain w C Q satisfy
Ow D {2’ € 0Q; ((«' —v'),7A(z") >0} =T (3.5)

with some 3’ ¢ Q. Under condition (3.5) on w, we can prove the observability
inequality for the wave equation with constant coefficients (e.g., [Li2]).
Denote
d=(sup [2' —y/* = inf |a' - y%)2. (3.6)

Next we define an admissible set of unknown coefficients A, u, p. We introduce the

conditions:

B(x') >0, >0, 2/ €q,

(Vo B(2), (2" = ¢/))

25 <1—6), 2'€Q\w (3.7)

18l ca @y < Mo,

for any fixed constants My > 0 and 0 < 6y < 1, #; > 0. For fixed functions a, b, n

on 0f) and p, q in €2, we set

W = W, My ,00.01.0,0 = {()\, wp) €(C3A) A A=a,p=0>b on 09,

A+20 p .
P M? ; satisfy (37)7 Hu<)‘7ﬂ7p7paq; 77)HW7’°°(Q) < Ml} (38)
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where the constant M; is given. We choose 6 > 0 such that

Moyd

0+
Vo

VO < 0001, 6, inf |2/ —y'* —6d® > 0. (3.9)
x' e

Here we note that by 3’ & €, such 6 > 0 exists.
By [-]1, we denote the first component of the vector under consideration. Let
(A, i, p) be an arbitrary element of W.

Now we are ready to state

Theorem 3.1. We assume that

Q= {(x1,22); v0(x2) < 21 < Y1(22), 22 € [} (3.10)

with some open interval I and vy,71 € C3(I). Moreover we assume that the

functions p = (p1,p2)’ and q = (q1,q2)T satisfy

(Lxup)(z')  (divp(a'))E2  (Vp(z') + (Vap(a)))(@ —y') S eq
det ((Lx,uq)(zc') (divq(z'))Es  (Vaq(z') + (Vm/q(fL’/))T)(x/ _ y,)) #0, Vo' € Q,

(Lrup)(@)  Varp(a') + (Vorp(e)" (divp)(a’ —y) -
det((ﬂx,uqxx’) Vara(a!) + (Vara(@)” <djvq><x'-y'>)7é0’v -5

(3.12)
and
1 — Y1 7é 07
[La.nq)1(01p2 + Oop1)(2) # [Lx,up)1(01q2 + Oaqn)(2), V' € Q
(3.13)
and that
2
T> 4. (3.14)
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Then there exist constants kK = k(W,w, Q, T, \, u, p) € (0,1) and

C=CW,w,Q,T,\, u,p) >0 such that

1A= Allz2 ) + [l = pllzz@) + 17 = plla-1@

SCHU()U u, P, P, qd, 77) - U()\, ﬁv 57 p,q, 77) H,;-I‘l((),T;(LQ(w))z)

for any (X, i, p) € W.

Our stability and uniqueness result requires only one measurement: N/ = 1, but

the conditions on the initial values p, q are more restrictive.

Example of ), p, q meeting (3.11) - (3.13). We assume that \,  are positive
constants and that {(z1,22) € Q; 72 = y2} and {(x1,22) € Q; 1 = y1 } are empty.

Moreover we take

p(:z:’) B ((901 — yl)o(m - 92)) 7 q(x’) - ((m _Oyz)g) ‘

Then (3.11) - (3.13) are all satisfied.

Remark. In place of (3.10), let us assume

Q = {(x1,22); Jo(x1) < 22 < 1(x1), 21 € I} (3.10")

with some open interval I. Then, after replacing (3.13) by

372—927507

[Lx,.d)2(01p2 + Oop1)(z") # [Lx,upl2(01g2 + O2g1)(2'), 2’ € Q, ( )
3.13

the conclusion of Theorem 3.1 holds under conditions (3.11), (3.12) and (3.14).

Moreover in the case when 2 is a more general smooth domain, we can prove the
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conditional stability in our inverse problem under other conditions of w C Q. We
will omit the details, for the sake of compact description of the proof.

We set

T

2
P(x) =" —y'|* — 0 (1‘0 - 5) , () =™z =(20,2') €Q. (3.15)

First we show

Lemma 3.1. Let (A, u,p) € W, and let us assume (3.9) and (3.14). Then, for
sufficiently large 7 > 0, the function v given by (3.15) satisfies Condition 2.1 and

(2.9). Therefore the conclusion of Theorem 2.3 holds and the constans Cy(T), T

and so(7) in (2.11) can be taken uniformly in (X, u, p) € W.

Proof. The conditions (2.9) and the second condition in (2.6) are directly verified
by means of (3.5). The conditions (2.4) and (2.5) can be verified by the same way
as in Imanuvilov and Yamamoto [IY4], for example. Finally we have to verify the
first condition in (2.6). Without loss of generality, we may assume that T = \2/—% +e,
where € > 0 is sufficiently small. Because if Theorem 3.1 is proved for this value of
T, then conclusion is true for any T >T. Let 8= % or = %. Then it suffices

to verify

—(O(z0 — T/2))* + B(a")]2" —y'[* > 0
for z € [0,T] x 99Q. In fact, by means of the second inequality in (3.8) and (3.9),
we have
TN 2
48(x") |2’ — o |* — 467 (xo — 5) > 46, ian |z’ —y'|? — 6(0T?)
LS

>4, inf |a' y'|? — 60(2d 4+ evV0)? > 0
A
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because € > 0 is sufficiently small. The uniformity of the constants Ci(7), 7 and
so(7) follows similarly to [IIY]. Thus the proof of Lemma 3.1 is complete. B

Next we prove a Carleman estimate for a first order partial differential operator

(Pog) (= ZPO,J ().

Lemma 3.2. We assume

Zpo,] o(T/2,2') >0, ' e (3.16)

Then there exists a constant 7q > 0 such that for all T > 7o, there exist sg =

s0(T) > 0 and C = C(so, 79,2, w) > 0 such that
/s2|g|2€2s¢(T/2’x,)dm' < C/ | Pog|2e259(T/2:2) g/
@ Q

for all s > sq and g € H'(Q) satisfying g = 0 on {2’ € 9Q; 25:1 po,j(z")n;(z") >
0}.
Lemma 3.3. We assume

Zp()’] &(T/2,2") #0, 2 €.

Then the conclusion of Lemma 3.2 is true for all s > so and g € Hg ().

Proof of Lemma 3.2. For simplicity, we set ¢o(2') = ¢(T/2,2') and w = e*?0g,

Qow = e*?° Py(e~*?0w). Then

/|Pog|2628¢(T/2,m/)dx/:/ |Q0w‘2d$/.
Q Q

We have

Qow = Pyw — sqow,
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where qo(z') = 25:1 po,j(2")0x, do(2"). Therefore, by (3.16) and integration by

parts, we obtain
2
|QowlZzg0) = IPowlzz) + s*llaowlZeq) — 25 / > p05(0e; w)gowda’
j=1
2
232/ qo(zv’)2w2(x’)dx’—s/ Zp()’jqo@xj(wQ)dx'
Q Q5
2 2
20082/ w2(a:’)dx'—s/ Zpo’jqoande%—s/ Z@mj(po,jqo)w%a:’

2
>(Cys?® — C’ls)/ wide' — s/ Zpo,jnj qow?dS.
Q 890{2?:1}30’]-71]- SO}

j=1
By (3.16), we have ¢y > 0 on 012, so that the right hand side is greater than or
equal to (Cos® — Cys) [, w?da’. Thus by taking s > 0 sufficiently large, the proof
of Lemma 3.2 is complete. B
The proof of Lemma 3.3 is similar, thanks to the fact that the integral on 02
vanishes by g € H} ().

Now we proceed to

Proof of Theorem 3.1. The proof is similar to Isakov, Imanuvilov and Yamamoto
[ITY], Imanuvilov and Yamamoto [IY2] - [[Y4] and the new ingredient is an H~!-

Carleman estimate (Lemma 3.1) . Henceforth, for simplicity, we set

u = u()\7/-117107p7q7 77)7 V= U()\,ﬁ, ﬁ?paqa 77)

and

In (3.13), without loss of generality, we may assume that

x1—y >0, (x1,22) € L
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Then we set

F(%l,xg) = /a':1 f(€,$2)d§, (%1,.’1)2) e Q. (317)

1(z2)

If 21 —y; < 0 for (wq,22) € Q, then it is sufficient to replace (3.17) by F(xy,x2) =

[20F(€, w2)dE, (1, x2) € Q. Then

Yo (z2)

pozy = Ly vy +Gu inQ (3.18)

and
y (%,x') = O,y (g,aj’) =0, e (3.19)

and
y=0 in (0,T) x 09Q. (3.20)

Here we set

Gu(z) = —0,, F(2')02, u(z) + (g + h)(2")V (divu)(z) + h(z")Au(z)

+(divu)(2)Vag(@') + (Veu(z) + (Veu(z) D) Vh(z). (3.21)

By (3.14), we have the inequality % > d?. Therefore, by (3.6) and definition

(3.15) of the function ¢, we have
gb(T/Q, LL‘/) > dy, (b((),x') = ¢(T, l‘/) < dy, ' eQ

with d; = exp(7inf,cq |2’ —%'|?). Thus, for given € > 0, we can choose a sufficiently

small § = d(e) > 0 such that

T T
¢(x)>dy—e, z€ l——é,—

5 5+ 5} x € (3.22)

and

d(x) < dy —2e, z€([0,25]U[T —26,T)) x Q. (3.23)
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In order to apply Lemma 3.1, it is necessary to introduce a cut-off function y

satisfying 0 < x < 1, x € C*°(R) and

{0 on [0,8] U [T — 6, T]

3.24
1 on[20,T — 24). (3:24)

Henceforth C' > 0 denotes generic constants depending on sg, 7, My, M, 8y, 01, n,

Q,T,y, w, x and p, q, &, J, but independent of s > sg.
Setting z; = Xagoy, Zo = Xai’oy and z3 = Xaféoy, we have

(

pO 71 = L5 zz1 + XG (97, 0) + 25(020X) 0,y + (07, X)05, ¥

pO7,22 = L5 ;22 + XG(05,1) + 25(02 X) 5,y + p(07,X) 0, ¥ (3.25)

po7,23 = Ly ;23 + XG(95,0) + 20(00y X)O5, ¥ + P(7,X) 0,y in Q.

Henceforth we set

€= /Q (102,31 + 102 yI? + 0% y[?)e2* da.

Noting u € W"*°(Q), in view of (3.24), we apply Lemma 3.1 to (3.25), so that

4
Z/Q |33:0}’|2X2628¢d90 < C(HF@Sd)H%?(Q) + ||968¢||%2(Q) + ’|h68¢’|%2(Q))
j=2
5 .
+C D 1120 X) (02, )€% 1320140111 (02
j=3

4
+CZ H(a:%oX)(ancOY)ew||%2(0,T;(H*1(Q))2) +0¢
j=2

<O(IFe”|I22(q) + ll9e* I 72(q) + 1€ (122(q)) + Ce* (@729 4 Ce 520
3.26

for all large s > 0.
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On the other hand,

/| T/2 x)|2 25¢>(T/2a:)dx

T/2
- (/ |(a§0y)(m0’x’)|2x($o)2625¢da:’> dzo
0 To \Ja
T/2
= / / 2((82,y) - (92,y))X2e>du
T/2 T/2
+23/ /| OY|2X2 20 @ )2s¢>da:—|—/ /| 0y| (8 (X2))€28¢dm

<C [ sx?(02 317 + 102 yP) ¥ + 002,
Q
Therefore (3.26) yields

/| Oy T/2 .Z‘)|2 23¢>T/2:c)dx

§C’s/ (IF)? +g|* + |h|?)e**?dx 4+ Cse?s(h=22) 4 s (3.27)
Q

for all large s > 0. Similarly we can estimate [, [(92, y)(T/2,2")[2e2¢(T/22") dz’ to

obtain

J 0029 /2,00 4 105,3)(T /2, )T/
Q

SC’S/ (IF)? + |g|* + |n|?)e**?dx 4+ Cse?s(h=22) 4 s (3.28)
Q

for all large s > 0.

On the other hand, by (3.18), (3.19) and u,v € W">(Q), we have

POy (%x’) = Gu (%x’) , POy (%x') = GOp,u (ga:') . (3.29)
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Then, setting

we rewrite (3.29) as

ail bl 0
a1 0 bl
a1 b2 0
aoo 0 bg

- T )
502y (51;) — (g + BV (divp) — hAAp = (

- T )
P,y (57 w’) — (9 + h)Ve(divg) — hAq = (

(1 a1 1 a2
_ 1 — _ —
P x\uP (a21> ’ P A, pad (a22 ;
divp = by, divq = bs,
Vop + (Vop)T = 5 dl Vea+ (Veq)' = 7 2 (3.30)

G1 - Claxlh - dlﬁmh

%xlF . G2 — dlamlh — elﬁmQh (3 31)
19 o Gg — CQleh — d26x2h '
ang

G4 - dgamlh — egamQh

Because linear system (3.31) possesses a solution (0, F, 0x, 9, 05,9), the coefficient

matrix must satisfy

aii
det 21
a2
a2
that is,

ail
(0y, h)det | “2
ai2
a22
ail bl O
a1 0 b1

=det
¢ a9 b2 O
aze 0 b

by O
0 b
b O
0 by
G
Go
G3
Gy

Gl — cﬁxlh — d16x2h
G2 — dlamlh — elﬁmQh

Gy — 20, h—dydy b | =0

G4 — dgamlh — egamQh

Cc1 air b 0 dy
dq a1 0 b1 e
e + (Oz,h)det as by 0 do
do azg 0 by e

(3.32)

by the linearity of the determinant. Under condition (3.11), taking into considera-

tion h = p— =0 on I and considering (3.32) as a first order partial differential
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operator in h, we apply Lemma 3.3, so that

ain bi 0 Gy 2
52/ |h|2625¢(T/2,x’)dm/SC det az1 0 b1 Go e50(T/2,°)
Q

a2 by 0 Gjs
SC’/ <6§y(z,x')
0 7\ 2

azxp 0 by Gy L2(Q)
2
+C/(’g!2+!h|2)628¢(T/2’x/)de'7 (3.33)
Q

+

3 r ., ? 2sp(T/2,2") 7,/
05,y 5,3: e *dx

in view of (3.30). We rewrite (3.29) as

a1 ¢ di G, — blamlg
a di e O, I Gy — b10
a21 C1 d1 8331h _ GQ - blang
12 2 2 8m2h 3 202, 9
aze da e Gy — b25m29

and, using (3.12), we can similarly deduce

32/ 9223?7220 4y < C/ <5§0y (z,x’) o3y (39@’)
o o 2 oY\ 9

+C [ (gl + ) T2 3.3
Q

2
+

2
) e2s¢)(T/2,a:/)dx/

for all large s > 0. By (3.33) and (3.34), for sufficiently large s > 0, we have

82 /{2(‘9‘2 + ‘h’2>€25¢(T/2,m )d.fI?l

2
SC/ (83 y (Z,w’) a3y (z,x’)
o \|720Y 2 AN

_|._
Moreover, eliminating 0, h in the first and the third rows in (3.31) and using (3.13),

2
) 62S¢(T/2’w/)dl‘/.
(3.35)

we have

d2b1 — d1b2 dQCl — d102 )
Oz, | F+ + h
( deaqy — dlamg daair — diais

d2G1 — d1G3 ( d2b1 — dlbg ) ( d261 — d162 )
== 0y, |+ hO,, [ ——m—m——= ).
deayr — diaqz 90 deair — diaq2 ! daair — diais
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By (3.10) and (3.17), if ny(z") > 0, then 1 = 1 (x2), that is, we have F(z1,z2) =0
if ny(z’) > 0. Therefore, noting g = h = 0 on 9 and setting pp1 =1, pp2 = 0 in

Lemma 3.2, we can apply the lemma. Thus, in view of (3.35) and (3.30), we obtain

82/ |F|2623¢>(T/2,:c’)dx/
Q

T T
SC’/ (65 y(—,x') + 193 y(—,a:’)
o \|GmY 2 AW

for all large s > 0. Consequently, substituting (3.35) and (3.36) into (3.28) and

2

2
) erqS(T/Q,m')da:/
(3.36)

using ¢(T/2,2") > ¢(xg,x’) for (zg,2’) € Q, we obtain

[ PP 41 + Ihp)eeo/2eas
Q

T ’
<5 [UFP +1gP + )esoT/2e0 e’ 4 Zesttn 1 Cg
Q

for all large s > 0. Taking s > 0 sufficiently large and noting ¢2s¢(Z/2:2) > ¢2sd

for ' € Q, we obtain

JLOFP s < Ceeg0e |08y 10 yI 10,y (337

for all large s > sg: a constant which is dependent on 7, but independent of s.
Therefore we take C' > 0 again dependently on sg > 0, so that (3.37) holds for all
s> 0.

Now we choose s > 0 such that

o [ (02 yIP + 102, + 108,y o = e

w

that is,

1

2 12 3 |2 4 v|?
S:_mlog/cgw(\axoyy + 102 y2 + |0 y?)da
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Here we may assume that |, (102,¥1* + 102, y|* + |03,¥*)dz < 1 and so s > 0.

Then it follows from (3.37) that

JUFF 41 + 1P)as’
Q

de
4e+2C
<20 ([ (o2,yP +102yP + 1ot yPias)
Qu

By definition (3.17) of F', we have

/frda:ldxg:/(ELch)rdxlda:g:/F(@xlr)dxldatg
Q Q

Q

for all r € H}(Q) by integration by parts. Hence we can directly verify that

| fllz-1() < C||F||12(q), so that the proof of Theorem 3.1 is complete. W

§4. Proof of Theorem 2.1 (the beginning).
Henceforth we set

1
D, = ;3%., 7 =0,1,2, etc.,

and ¢ denotes the complex conjugate of ¢ € C.
Without loss of generality, we may assume that p = 1. Otherwise we introduce
new coefficients 3y = p/p, A1 = \/p to argue similarly. We can directly verify that

the functions rotu = 0,, u2 — 0,,u; and divu satisfy the equations
(ﬁorot u — pArotu = my, Giodivu — (A 4+ 2p)Adiva = meg inQ, (4.1)
where
mq = Kirotu + Kodivu + Kiu +rotf, mg = Ksrotu + Kydiva + Ko + divf

and K, Ky, are first order differential operators with L> coefficients.
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Thanks to Condition 2.1 on the weight function 1), there exists 7 such that for

all 7 > 7, we have

SH (Vrot u)68¢ ||?L2(Q))2 + SH (lev u)68¢ ||?L2(Q))2

+5%||(rot u)esd’H(QLz(Q))z + 5%||(divu)e®® H(2L2(Q))2

2
5¢

__»e
on

<C <82’|f63¢l|?m<@))2 + (Ve (T2 + 5 (H((0,7) % 59))2

2 2

ou

2
u . du
o7

on?

+ 53 e5?

(L2((0,T)x0%))?

+s

+ ||11H?3(Qw)>, Vs > s0(T)
(L2((0,T) x 592))>

where the constant C; is independent of s.
In order to estimate the H!(Q)-norm of the function u, we need the following

proposition.

Proposition 4.1. There exists T > 1 such that for any 7 > T, there exists so(T)

such that
T
L5 3 100,000 9+ | 0o
Q g k=1

<Cs (H(I'Otu)GS(z)H%_Il(Q) + H(divu)esqufql(Q) +/Q (s|Vu|* + sg\u]2)e23¢d:1;) ,

w

Vs > s0(7), u € (Hy(Q))*. (4.3)

Proof of Proposition 4.1. Denote rotu = y and divu = w and let rot*v =

<§—;’2, —%). Using a well-known formula: rot*rot = —A,, + V,/div, we obtain

—Ayu=—rot'y — Vyw in U\aQ =0.

Then (4.3) follows from the Carleman estimate for an elliptic equations obtained
by the first author in [Im1].H

By (4.2) and (4.3), we estimate Z|2a|:0,a:(0,a1, (agu)esd’H%Lz(Q))z via the

az) |

right hand side of (4.2). Next using this estimate and equation (1.1), we obtain the
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estimate for the norm ||(92, u)es¢\]?L2(Q))2 via the right hand side of (4.2). Finally
we obtain the estimate for [|(0y, 0z, u)es‘z’H%LQ(Q))Q and s?|| (8x0u)es¢||(2L2(Q))2 by the

interpolation argument. Therefore, combining these estimates with (4.2), we have

[ull$4.0) < Cs <S2||f68¢||?L2(Q))2 + (VD 202

2 2
82
+s —_,65(1S + s —_,12163(15
Ol (e ((0,1)x00))2 Oon*l(L2((0,1)x00))2
ou 2 .
+53 || == e? + Hu||%(¢’Qw) , Vs > so(7), (4.4)
on (L2((0,T) x 9))2

where the constant C3 is independent of s.

Now we need to estimate the boundary integrals at the right hand side of (4.4).
In order to do that, it is convenient to use another weight function ¢ such that
©vlan = dlaa and ¢(z) < ¢(x) for all x € Q. We construct such a function ¢ locally

near the boundary 0f:
pla) =0, (a) = U(x) — e (@) + NE@),

where € > 0 is a small positive parameter, N > 0 is the large positive parameter,

and /1 € C3(Q) is a function such that
(i(2') >0, V' eQ, Lo =0, Vali|ag #0.

Denote Qy = {2’ € ; dist (2/,09Q) < = }. Obviously for any fixed € > 0, there

exists Ny(€) such that
p(z) < o(x), Vo el0,T]x Oy, N € (No,00).

Now we will prove the following estimate: there exists 7 > 0 such that for all
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T > T, there exists so(7) such that

2
HUH%f(@,Q) +N Z g2l H(aﬁu)es*"ll?m@))z < C4(32Hf€‘w||?L2(Q))2
|a|=0

+H(Vf)ewu(2L2(Q))2 + HUH%(@,QW)>7 Vs > s0(7, N), suppu C [0, 7] x Qu,
(4.5)

where the constant Cy is independent of s and N.

Proof of (4.5). First we note that, thanks to the large parameter N, it suffices

to prove (4.5) only locally by assuming
suppu C Bs N ([0,T] x Qn),

where Bj is the ball of the radius § > 0 centred at some point y*. In the case of
Bs N ((0,T) x 092) = 0, we can prove in a usual way for a function with compact
support (see e.g., [H6]). Without loss of generality, we may assume that y* =
(y$,0,0). Moreover the parameter § > 0 can be chosen arbitrarily small. Assume
that near (0,0), the boundary 99 is locally given by the equation x5 — ¢(x1) = 0.
Furthermore, since the function 1 = Ou(xg, O~ 'a’) satisfies system (2.1) and (2.2)

with £ = Of(zg, O~ 'a’) for any orthogonal matrix O, we may assume that
(0)=—(0)=0. (4.6)

Making the change of variables y; = z1 and yo = x2 — £(x1), we reduce equation

(2.1) to the form

PQUZ (1—}—%1 yl

( 82u1 82u1 82U1 Ul
IP) — _ _ / 1 /
u o ( o 20" (yy >8y18 + (14 [¢'(y1)| ) + uf Y1) —6
0 ouy 0
A+ divu——é’)—i— A+ —(dlvu—— 0+ Kiu=fi,
—(A )5 o0 ( 95 (A4 n) s fi

82uQ (82u2 82u2

_ _ o
oy} oy} ) Y10y

0 . Gul , ~
J— _— —_— — p—
()\+u)ay2 (dlvu Gygg) + Kou = fo,
(4.7)
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where we use the same notations u, f after the change of variables and K 1 IN(Q are
partial differential operators of the first order. We set P = (P;,P3). After the

change of variables, equations (4.1) have the form

6221 6221 622’1 6221
P = — — — 2 1 ! H_ =
=g~ (G 2 g+ OOR 5 )
1 82 . //5
+,LL£ (yl)a—y: =mi1 1n gN £ ]R2 X |:O, ﬁ:| y (48)
622’2 6222 622’2 622’2
P =— —(A+2 —— 140 2
v = 2 - ) (53 - 20 e (P 5 )
" a .
+A+2u)f (yl)ﬁ =msy in Ggy. (4.9)
Y2
Here we set
6“2 6“2 / Gul Gul 6“2 Gul /
21 = —— — —f - = Zo = + - g )
! Iy Y2 (1) Y2 ? 9y Y2 Y2 ()

we use the same notations mq, mo after the change of variables and the constant
k > 0 is chosen sufficiently large such that the image of [0, T] x Qx belongs to Gy .
Henceforth we write (21, 22) = R(y, D)u.

Now we claim that in order to prove estimate (4.5), it suffices to establish the

following estimate for the function w = (wq,ws) = €°9(21, 22) = e** R(y, D)u:

ow ||

905 + 5[ WlIta 9g.0)2

IwlZ = sllwlitm a2 + 5 IWITL2 (a2 + 8
(12(9Gx))?

+5° [ WlIT2agny)z < Cs(IPUe?|[E gz + $° P [Er2 gy + 511l Lz 0gx )2

2
+ Y sN05)e? F gy 2)s Vs = s0(F N, (4.10)
|ex|=0

for all u € H2(Gy) satisfying u|sg, = 0 and suppu C Bs N Gy. Obviously the

function w satisfies the boundary condition

Owy A+ 2u dws
Y2 w0y

* A+2 *
+ SPys (y )wl - STMQOZA (y )w2 + g1, on 8gN7 (411)
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8w2__ o Owy
dys  A+2u Oy

* 1% *
+ 50y, (¥ )wa + Sm%l (y*)wi + g2, on dGy, (4.12)

where the function g = (g1, g2) satisfies the estimate

ow ||?
SHgH%m(agN))? < 6(5) (8 @ + SHWH%H1(agN))2
211(L2(0gn))?
+53||WH%L2(8QN))2> + C6SHPU—€S(‘OH%L2(89N))27 (413)

and lims_,g €(d) = 0.
The boundary conditions (4.11) and (4.12) with property (4.13) follow from (4.8),
(4.9) and the zero Dirichlet boundary condition for u. In order to deduce (4.5) from

estimate (4.10), we need
lall¥ (.6 < CrUIWIE + IPue™®|[Fg (g, )2 + s*[Pue?|[fragyyy2)  (4.14)

and the following proposition:

Proposition 4.2. There exist T > 1 and Ny > 1 such that for any 7 > 7 and

N > No(T), there exists so(T, N) such that

2
1
N — > 10,0y, ul* + 5| Vyu]? + 2%l | e*dy’
gn \ 5P j k=1

<Cs(]|z1 eS(PH?;Il(gN) + ||226‘9“’||%[1(g]\1))7 Yu € (H}(Gn))?, suppu C Bs NG, Vs > s59(7, N),

where the constant Cy is independent of N.

We give the proof of Proposition 4.2 in Appendix I.
Thanks to Proposition 4.2 and equations (4.7), we obtain

2
N||(3§0u)6w“%L2(gN))2 + Z N5472|a|||(3§/u)ew||?L2(gN))2

|a|=0,a=(0,1,cx2)

§C9(HUH§/(¢,QN) -+ NH]Pue'SSOH(sz(gN)P) Vs 2 80(77, N) (415)
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By (4.13), (4.14) and (4.15), we obtain

2
N[0y, we™ [1FL2 (g2 + > Ns* =2l (0 w)e?|[Ba(gyye + [0lF (4.0

|a|=0,0=(0,a1,002)

<Cio([V(Pw)e*?|[Era(g )z + 5°[Pue™([frz(gyy)2) Vs > max{so(7, N), N}.

(4.16)

Finally, combining (4.16) with the estimates
32\](8y0u)es“"H%L2(gN))2 < Cll(”(8§0u)€s¢"(2L2(gN))2 + 34’\1168@\’(2&(%))2)

and

2
||(ayoayku)ewn?m(g]v)y <Cn Z H(aiju)@wH%m(gN))% ke {1,2},

=0

we obtain (4.5).

Weset P, s = e|s|‘PP“e_‘s|‘P and  Pyio,s = e's‘“’P,\Jrgue_'S'“’. By p(v, o, &1, &2)
and pg(y, &o,&1,&2) with § = p or A + 24, we denote the principal symbols of the
operators [P and Pg respectively. In order to prove the Carleman estimate (4.10) it is
convenient for us to introduce a new variable o and consider s as a dual variable to
o. Following [T1, Chapter 14|, we consider the pseudo-differential operators defined

by
Ps(y, Do, Dy, Dy, Dy, )v
= /R o, €+ lsleye, &+ ilslpy, s Dy, +ilsley,)0(s, €0, 61, y2)e € dode!,
Py (y, Do, Dy, Dy, , Dy, )v
= /R Py €0+ ilslpy, &1 + ilslipy,, Dy, +ilslpy,)0(s, €0, 1, 90) e’ <07 dode!,
where & = (£,&1),y = (yo,y1) and 0(s, &, &1, y2) is the Fourier transform of

v(a, Yo, Y1, y2) With respect to o,y0,y1. Let v(o,y) = (v1(0,y),va(0,y)) be a func-

tion with the domain @ = R} x R®. Henceforth F,, denotes the Fourier transform
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with respect to the variable o. Let h(s) = (1 + s2)3, ¥ = Q. Moreover we set

g = (91792)7
R, (y, DYU = el1* Ry, D)e™ U, (4.17)
and
Biw2 - At
1W B + . Our + ‘5’90?!2 (y )w1 ’S‘ p Oya (y )w27
dwy @ Owy [
Byw & 202 _ : e, :
2w ay2 )\+2M 8?]1 + |8|90y2(y )w2+ |8|)\+2Mgpy1 (y )wl, on

for w = (w1, ws), provided that the right hand sides are well-defined.
Then we claim that in order to prove (4.5), it suffices to establish the following

estimate

1 2
iy iy ov
VI 2 S 1AD0) 212 5 0myey + IDV25 B s + thg)@
j=0 21l(L2(:))2
<C12(|[Ps (y, D)F,; UIT e o))z + I1M(Do) Fo gl iz sy + 1U a2 0))2): (4.18)

if U and v satisfy suppU C R x (Bs NGx), supp F, *U C (—0g,00) X (Bs NGnN)
with arbitrarily small parameter og > 0, and

Rs(y, DU = Fyv, Uls =0

Bi(Fov) =g1, Bao(F,v)=g2 onX.

We set

Then

(Biw, Baw) = (g1, 92) = &. (4.19)

This fact can be proved exactly in the same way as in [T1, Chapter 14, Section 2].

Consider the finite covering of the unit sphere S? = {(s, &, &1); s2 + &2 + &3 = 1}:
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5% C Upres2{C = (s,&0,&1) € S? [¢ — ¢*|] < 61} and the partition of unity x,(¢):

ZK(&) X»(¢) =1 for any ¢ € S% and suppx, C {¢ € S%; | — | < 01}

v=1
We extend the function x, on the set || > 1 as the homogeneous function of

the order zero in such a way that

<

supp X, C O(1) = {C; ]

<(51}.

We set D' = (D,, D,,, D,,), and consider the pseudo-differential operator x, (D’)
and the function y, (D’)v. Obviously equalities (4.19) hold true with w and g re-

placed by w,, = \/%—,r ff;o v (D)ve *%do and g, = \/%_ﬁ fj;j Yo (D) Flge 57 do.

Moreover we claim that instead of (4.18), it suffices to prove the following esti-

mate

1 (DI < Crs(IPoxo (D) F5 Ul (111 (02

+|h(Do)xu (DN F; gl 2my)2 + Ul (12(0))2), (4.20)
where

Rs(y7 D,)u = Fova u|2 = 07 Supp}—;lu - (_00700) X (BéS N gN)7

Bi(wip,w2,) = g1, Ba(wiy,wsy)= g2, (4.21)

and C13 is independent of N. In fact, assume that estimate (4.20) is already proved.
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Then

K(d1)

IIvIl]* < ZH\XV vlI®

<014Z IPo(y. D)xuFo Ulle ()2 + I1A(8)8u [T ()2 + o (D)Fy U2 (0)2)

K
<Ci5 Y _(Ixv(D")Po(y, D)F; U110y + (D), Po(y, D)F, U2 o)
v=1

+HA(5)gu 1FL2 ()2 + e (D U[Ek(g))2)

<Ci6([|Po (v, D)]:;1LI]|%H1(Q))2 + ||h(3)g\|%L2(2))2 + HUH%HZ(Q))2)7

where K = K (61) and Ci¢ are independent of N.
The rest of this section and Sections 5 - 7 is devoted to verification of (4.20).

The principal symbol of the operator Pg ¢ has the form

Pa(y5,€0,61) = —(6o +ilsley,)® + Bl(&1 + ilsley,)* — 20 (& +ilsley, ) (€2 + il sley,)

+(&2 +ilsloy, )2 IG P, (4.22)

where |G]? = 1+ (¢ (y1))?. The roots of this polynomial with respect to the variable

527 are
F;Bt(y; 8750751) = _i‘8|gpy2 (y> + O%:(y’ S, 507 51)7 (423)
aj(y,s, &,&) = (¥ ils ||%/|12( v)¢w) +1/75(y, s, &0, 1), (4.24)
ro(y,¢) (6o + lslpy, (1))* — B(&1 +ilsley, (¥)IGI + B& + ilslpy,)*(¢)?

glGI* ’
(4.25)

where /T3 is defined below.
Denote v = (y*,(*) = (y*,s*,&},&7). Suppose that |rg(y)| > 25 > 0. Now

~

we claim that there exists d9(d) > 0 such that for all §,6; € (0,d), there exists a
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constant Cyy > 0, independent of s, such that for one of the roots of the polynomial

(4.22), which we denote by I';, we have

_Imrg(y7 87&)751) Z 020‘8|7 V(ya 87&)751) € B5 X 0(51) (426)

Proof of (4.26). If Imy/rz(y) # 0, then the statement (4.26) is trivial. So it
suffices to consider the case Imy/rg(y) = 0. Let 6 € (0, ) be constant. We may
assume that Rerg(y) > (1 —6)|rg(v)|. Obviously there exists 5(6) such that for all

8,01 € (0,5(6)),

Rers(y,¢) > (1 —20)|rs(y, )|,  Y(y,s,0,&1) € Bs x O(61).

Then

|Imrﬂ(y7C) Rerg(y, C)? V(yas7£07£1) € B5 X 0(51)

< 1-—260
We denote b(y, () = Imrz(y, () and a(y, () = Rers(y, () with ¢ = (s, &, &1). First,

if Im\/7r3(y) = 0 we have a(vy) > 0 and b(y) = 0. In that case we can define the

function/73(y, ¢) by the infinite series

1—%—:1;% ch <1,
where ¢, = %(%—1)(%—273!...@,(”,1)).
That is, assuming that |2| < 245 < 1 for all (y, s, &0, &1) € Bs x O(01), we set
b .
Vol 0 =i (3) =i ||(|_) i (2) b e ()
(4.27)

The first term in infinite series (4.27) is real, and the absolute value of the third

(#). The function ﬁa is a continuous homogeneous function of

term is

the order zero in the variable (.
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f % < 0, then we take I';(y,() = —ils |a@ + a5 (y, () where a;(y, ()
equals the right hand side of (4.27) plus (£1+i]s]py, )¢ (y1)/|G|?. Otherwise L'y, Q) =
—i|s |8“’ +ag *(y, ) where a;(y, () equals the right hand side of (4.27) multiplied
by —1 plus (€1 + ilsly, )€ (11)/|GP
For W( v) < 0, we obtain that B I\/_( v) — 3¢y, (y) < 0 for all (y,s,&,&) €

B;s x O(61) and for ﬁ(v) > 0 we obtain that —ﬁ(’y) — 1y, (y) < 0 for all

(y,8,€0,&1) € Bs x O(d1). These inequalities imply (4.26) provided that dg taken
sufficiently small.
Under some conditions, we can see that the operator Pz can be represented as

a product of two first order pseudo-differential operators:

Proposition 4.3. Let 8 € {u, A + 2u} and |rg(y, ()| > 5 > 0 for all (y,¢) €
Bs x O(2601). Then we can factorize the operator Pg into the product of two first

order pseudo-differential operators:
Psxu (D) = BIG*(Dy, — T (y, D) (Dy, — T (y, D))xu(D)V + T5V, (4.28)
where suppV C Bs NGy and T is a continuous operator:
Ts : L?(0,1; HY(R?)) — L*(0, 1; L*(R%)).
Let us consider the equation
(Dy, = T35y, D'))xu(D")V =¢q, Vl]y,=1 =0, supp V C BsNGn.

For solutions of this problem, we have an a priori estimate:

Proposition 4.4. Let § € {u, A + 2u} and |rg(y,¢)| > 5 > 0 for all (y,¢) €

Bs x O(261). Then there exists a constant Coy > 0, which is independent of N,
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such that

17(Dg)x0 (D) V |ys=0ll 23y < Caz2llql|L2(0)- (4.29)

Proof of Proposition 4.4. Taking the scalar product of ¢ and h?(D,)x, (D")V

for fixed yo, we obtain

2Re (a(02): H2(Da) o (DWV (1)) 123y = o (5 [B(Da ) DIV (1) sy

= 2Re (il ; (y, D")xo (D")V + Fxo (D")V, B3 (D )Xo (D) V) 123342,
By (4.26) and Proposition 2.4.A in [T2], for sufficiently large positive x, we have

Re (ZFE (y7 D,)h72(Da)h2(DU)XV(D/)V + ’A{XV(D/)Vﬂ hQ(DU)XV(D/)V)LQ(E)

>Co3]|h* (Do) xu (D")V 1225y
Thus

2Re (q¢(y2), h* (D)X (D')V (y2)) 12 ()2

0 = )
Sa—yg (62 y2||h(Da)Xy(D’)V(y2)H%Q(E)) — Coal|h* (Do) X (D")V (y2) 1725y,

and (4.29) follows from Gronwall’s inequality. B
Let w(s,y) satisfy a scalar second order hyperbolic equation

ow

—|yo=1 = W|y,=1 =0, suppw C R! x (Bs N Gn)
Jy2

Pﬂ,s'&j:q in gNa

for almost all s € R, Let P3  be the formally adjoint operator to Pg s, where

B e {p, A+ 2u}. Set

Pﬁ’s + P2 Pﬁ’s — P
Lig= f,s, L_g= fﬁs
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One can easily check that the principal part operator L_ g is given by formula

- ow ow ow ow
L_ pgw= _2|5|80yoa—y0 + 5<2|3|90y16—y1 — 2|s]¢(y1) (Sf’yza—yl + oy 6—y2>

F2s|(L+ (£/(51)))24 3”)

Obviously Ly gw + L_ gw = q. For almost all s € R, the following equality

holds true:

By 4 eyl g) + Wil + B | (Lo Lol )y

N

ZHQH2L2(QN)7 (4.30)

where
By=Re | By, Vo ~) 1l (v, V) ~ 5By, Vo, V)i oy
+Re/ ps(y, Vi, —€3) L_ swdyody, (4.31)
9GN
€3 =(0,0,1) and
P5(y:6,8) = bofo = Al&aér — L' (1) (Gr&2 + &81) + (1 + 10 (1) ))a)-

We note that ¢y, |5 = ¢y, |s for & € {0,1} and ¢y,|s = (¢y, — €7(0y,l1)P)|x-
Therefore on X the function Ve is independent of N and |[Vé(y) — Vo(y)| < Cose
for all y € ¥ where Cy5 > 0 is independent of € and N. In particular, taking €
sufficiently small, we have (2.6) for the function ¢. It is convenient for us to rewrite

(4.31) in the form

Bs = By + BY,

By :Re/yz 2]s Iﬁ ( By, P )+ B e (07) = 5pu (Y ))dyody1

Yo
. ow|? oW
+/yF0|s|ﬁsoy2<y>{\a—yo —B(ayl )

—[s]*(e2, (") — Blez, (v*) + &3, (y*))!@\z}dyodyl.

o
0y
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Then

ow ||?

0y

2 ~ ~
BS| < e <|8| + sl g, + |8|3||w||2L2<agN)> ;o (4.32)

L2(0GnN)

where ¢y = €y(d) — 0 as |6] — 0. It is known (see e.g., [Im2]) that there exists a
parameter 7 > 1 such that for any 7 > 7, there exists so(7) such that

1L 0|1 32(g ) + 1L+ 5072y + Re/g ([L+,p, L— glw, w)dy

N

Ll 06100 06) 2 ConslTl gy P I ). V11 2 20

where (o6 > 0 is independent of s. We also claim that the constant Cyg is inde-
pendent of N. The proof of this statement is given in Appendix II.

Set

Eﬁ:/ Bgds, Eg”:/ BYds, j=1,2.

— 00 — 00

Therefore, integrating (4.33) with respect to s in R, we have

Cor([|A(s) 71 (o) + 1B (s) @ T2(0)) + Z < 026\81/_ 10| 22 (9g) 19y, 0] L2 (2g x) s

Hlall 72 (o) + @l F ) Vsl > so(r) (4.34)

with some constant Cy7 > 0 and by (4.32)

2

, (4.35)
X

(22)
52/2’

—(2 RN N
|:é, )| + 5] / |0 22 (0G| Oy W L2 (g Ny ds < €

where we set

|(57)

and the parameter €(0) — 40 as § — +0.

g

9 + () Bl T2 @11 (g2)) + () B2 )

L2(%)

2
X
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We set

w1,y = Foxu(DYv1, w2, = Foxu (D )va.
Later we will need to apply (4.34) and (4.35) to the functions w; , and ws ,,, because
we would like to take the advantage of (4.28). However it is directly impossible
because the condition supp x, (D’)v C Bs x R! does not hold true, in general. On
the other hand, using the fact that

/ / h4 Z | D wy, V’ dyodyrds < C28HVH(HI(Q))2’
R?\Bzs J/R! || <2

we can modify (4.34) and (4.35):

Coo([lh(s)ws(a) I (@) + 117 ($)wj(). 112 () + Z5

SHPB,swj(ﬁ),VH%?(Q) —+ C?:OHVH%Hl(Q))? + 030|3|/ ij(ﬁ)ﬂ/HLNagN)Hayzwj(ﬁ),v||l/2(8g(zi)g6s)’

where Cy9 > 0 is independent of s, N and we set j() =1 if f = p and j(5) = 2 if

B8 =X+ 2u, and

—=(2)
=20 bl [ ol 200000 1001220050 s

2

H (awm), Wi, )
J Vv
X

Now we will prove (4.20) separately in the cases: 7,(v) = 0 (Section 5), rx42,(7) =

+ C31HVH%H1(Q))2‘ (437)

0 (Section 6) and 7, (y) # 0, x42,(7) # 0 (Section 7).

5. The case 7,(7y) = 0.
In this section, we treat the case where r,(v) = 0 withy = (y*, (*) = (v*, 5%, &, &7) €

¥ x S2. Let x, be a member of the partition of unity such that

* <51}.

SUpp Xv C 0(51> = {C = (Sa CO?Cl); % -
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We note that by (4.36) and (4.37), there exist C; > 0 and Cy > 0 such that

Crllr(s)wrwlin @) + 11 ()wiplZa(g)) + EY

<C2(||P/ﬂ)1 z/||L2(Q)+||w1”HH1(Q) +e(d H( 0ya . U)

2

X
and the parameter € can be taken sufficiently small, if we decrease . Note that

=(1)
—H

can be written in the form
8w17,, 2

E(l):/ s 2 *
h . (\ 170y, (Y") 9

Gwl v awl v 8wl WV
e [ A28 ) P2 P

+ sl ey, (y *)!wl,u\2> dx.

+/Z |s| oy, (y*) (&5 — néf — 829020 (") + s*uel, (y*))|vL,]2dS

EJl -+ J2 -+ Jg.
Let us introduce the set M by formula

M= {C = (3550751) S ‘92,

2 * 2 *
A ey, (y7) Py (U7) )
L (y)Cs” > 4> T 4 4l 4 2%, (57) (0l + 6 ?) |
|oya ()] | oya ()] (5.3)
where C = —pu(y*, V(y*)). From (2.6), it follows that C is positive.

Next we introduce the set M by formula

—~

M= {C = (3550751) S ‘92,

!

2 * 2 *
)0 < %gl+4%5§+2u%y2<y*><w+\m}.

Then we can see that S2 ¢ M UM. Therefore, taking the parameter §; sufficiently

small, we obtain either O(d;) C M or O(d1) C M. Thus we need to consider two

cases:
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Case A. Assume that suppv, C O(§;) C M.
Applying the Cauchy-Bunyakovskii inequality and using (5.3) and (2.6), we ob-

tain that there exists a constant C3 > 0 such that

— * 3w1 v ? * * *
g 2/ 810y, () |52 — I8Py (W )pu(y™, Veo(y™)wiw|? | dS
= ay2
1 8wl v 2 2 902 (y*> 67vU1 v 2 902 (y*> 8w1 v
- =8|y, (¥*) 2 4 4fs|pt 2 L 4 4]s| 2 :
/2 <2 ! Y2 0w ()| | Oy [Py ()| | 9yo
—/EIS|M290y2(y*)§f\51,u|2dE
1 ow 2 0wy ,, 2
>C - 2 * bl )
2y [ (215\u o) |G| 415 | e
owi . S| A
sl [ T2+ S sy, (5 Clwr, |? | 2. (5.4)
Byo 2

We note that by (4.21), we have the equality

81'02,1/

0y2

. owy
~Islpy (y* iy = —— ( L

N _ Yy, L. (5.5
o (G onons )t 69

Taking the L?-norm of the left and right hand sides of this equality and using

estimate (5.4), we obtain
2 dwsa,y ’ 6 2 /% 2 =(1) 2

g h*(s) s + 17 (8)py, (Y ) waw|” | dX < Cu| 7 + [[R(s)8l(12(s))2

8wl v ) 2 / '6w2 v

Y ow, I :

'( oy )l T s\l o

where €(0g) — 0 as 0p — 0. By (5.3) and (4.21),
2 2

/ h2(s) (’8“’2’” )dZ

by oy

- Owg v
<Cjs <:,31) + 1h(s)gll7r2 (m)2 +/2 <‘ =

2

+€(00) + 82¢§2(y*)|w2,u|2> dE),

' 8w27,,
Yo

If we apply (4.36) with 5 = A 4 2p, then (5.1), (5.4) and (5.6) imply (4.20).
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Case B. Assume that supp v, C M.

By (4.23) - (4.25), there exists Cg > 0 such that

165 — s%00 (y*) — péf + sl (Y)| + €050y, (U™) — usérey, (¥*)]

<61Cs(|&1]* + &l +5%), V¢ € O(6). (5.7)

Now we suppose that the parameter 97 is sufficiently small such that there exists

a constant C'; > 0 such that
[6ol* < Cr(j&1]* + 5%), V¢ € O(6). (5.8)

Then, by (5.7), we have

2

| J3| < 0100y, (y™) (5.9)

awl,u w
8y2 » Wl,v

Moreover we claim that there exists o > 0 such that if 6; € (0,dp), then there

X

exists Cg > 0 such that
60| < Csl&i|, V¢ € O(61). (5.10)

Our proof is by contradiction. Suppose that (5.10) is not true. Then for the
sequence &(n) = +, there exists a sequence (§o(n),&1(n)) — (£5,&5) such that
&1(n)/&o(n) — 0. Hence for ¢* we have r,(y*,{*) = 0, and & = 0,§5 # 0 by
the definition of the set M. Therefore $*py, (") = 0. If s* = 0, then we obtain
(&5)? = 0 and if ,, (y*) = 0, then (£5) + ppy (y*)(s*)? = 0 by (4.25). Therefore
in the both cases, we have the equality {; = 0 which leads us to a contradiction.

Note that if ry\42,(7) = 0, then

Soyo(y*) =0, Pyq (y*) =0, fg = fik =0, s =1.
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and the conic neighborhood of (* is in the set M provided that the parameter
81 is chosen sufficiently small. Therefore if v € M and ru(y) = 0, then we have
rx+2,(7) # 0 and by Proposition 4.4 the decomposition (4.28) holds true. We set

+
V)\—|—2u

(Dy, =T 19, (y, D"))va,. Then
P20, = BIGI*(Dy, — T3 10,y D)Via, + Driouvan,

where Th;2, € L(H'(Q), L*(Q)). This decomposition and Proposition 4.4 imme-

diately imply

1h(Do)(Dy, = T3 45, (y, D))

(%)

<Cy (|| Prr2p,sw2,vllz2(0) + IVI(a1(0))2)- (5.11)

Now we need again obtain the estimate of u( ). We start from the term Js. By

(4.21), we have

ows ., .
g2 =R [ 200+ 200 (52— ooy 7))
) Y1

owi , owy
) * _ ) * Z
X(u By P (y*) . Dyo (Y ))d

” aw v aw SV
+Re [ 2lsnllson (s on + 910) (u#% () - —1¢y0<y*>)dz.
> oY1 Yo
(5.12)
and
— (9 D o e ) — ity (9, D Yuns
)\+2/,(/ ay]_ Y1 ) >\+2‘LL ) )
_ZV):QM( 0) — . Fy g2 (5.13)

A+ 2p

Here and henceforth |D,| is the pseudo-differential operator with the symbol |s|.
First assume that s* = 0. Then we can see by [s*|? + |57 + |72 = 1

that |oz}\L+2ﬂ(7)| = |rap2u(7)] # 0. Therefore, by Proposition 4.2.A from [T2,
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p.105], there exists a parametrix of the operator aj\r+2“(y,D' ) which we denote

by (¥4, (y, D'))~". From (5.13) we obtain

1 _ 14 Ovq
_ = + / 1 LA *
1)271/ - 'L (a)\+2/_1,(y5 D )) <)\ 4 2/,6 ( ayl ’DU‘SD?JI (y )ULIJ)

+iv)\++2u('7 0) - \ f2ﬂg2,u> + T0v2,1/7 (514)

where Ty € L(L*(X), HY(X)). Using (5.14), we transform (5.12) to obtain

2|DO"/’L 9 * -
Jo = Re/z i (8—y1 — Doy, (y )) (@LrQ“(y,D')) 1

]

ov v * ov v ov v
( ~ — Doy, (y )vl,u> (M—lsoyl(y*) — —1wyo(y*))d2+m3,
W 1 Yo (5.15)

where

% 6’1)17,,
o = Re | 2Dull|Daloys (57 Vor + 910 (G o %) = S
by o

0 .
+Re/ 2|Dgs (A +2p) (—6 — [s]y, (y ))
= Y1

i
A+ 20

1 1 /(. _
X |: - ;(aj—‘,—Zﬂ(y? D,)) ! (/LV)::—Z”('? 0) - fo’ 192,1/) + T0U2,U:|

ovy . ov1
’ «) — L ) ) d.
X(u AL (y*) 0 ©yo (Y ))d

Then we have

(GW,, )
a9 WV
0y

and € can be chosen arbitrarily small by taking § small enough.

2

k| < e + Cro([18(5)g {122 + 1Pas2nswrnlliz ) (5-16)
X

Let us consider the pseudo-differential operator

1
b(ya D/) = ;

j (aiyl = sley, (y*)) (ozj\rﬂu(y,D/))—l‘
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By (5.7), for the principal symbol of this operator, we have

by, ©) = 2 (06 — Islon (57 (@ 12,07 )

— _ Q] * )\+ M * (251 - |8|90y1 (y*)) Tox
- Slgn(gl )\+2M(y ) 51 +Z‘3‘50y1(y*> +b(y 7()
= g2 W) o0, (5.17)

where Z(y*, €*) = 0. Therefore the operator b(y, D’) can be represented in the form

1A+ ~
b(y,D") = Z /\+2/L(y)+b(y,D’),

where b(y, D) € L(L2(), L3(%)) and

160y, D)l 222,205y < € (5.18)

Using (5.17) in (5.15), we obtain

sign(&y) [ A+p  ~ , ovy ., .
Jo =R —2|D,, - b(y, D — — | D, v
2 e/E | \u( - N2 +b(y, D') 7 | Do oy, (y*)v1,

vt v,
Lo () — S (y7) ) dS
(15 o 07) = S5 0) ) 2 4

~ ov1 .
e [ 21D, o D) (G2 - Dol (e
by Y
vy, vy,
’ - L *) )dS + Re .
(1 o 07) = S50 0) ) 2 4 e

By (5.7), (5.16) and (5.18), taking the parameters J, §; sufficiently small, we obtain

(52
8y2 ) 1%

+C1(11(9)8lI¢L2 ()2 + [Prvpswzolliz o) + IVITa (@)2)-

2

‘JQ‘ SE

X

(5.19)

Next assume that s* # 0. Then we have

[0 (U7)61 = 2y (¥7)€0| < C1IC],  VC € O(61)
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and (5.19) follows immediately. Therefore, for any s* € R, by (5.1), (5.2), (5.9)

and (5.19), we have

/’<h%snﬂww<yv
>

+012(||h(8)w1,u||§{1(g) + th(s)wl,l/H%?(Q)) < 013(||P/\+2u,sw2,u||%2(g)

81'01,1/
Y2

2
+1(s)p vy, (y*)\wl,u!2> dx

%,Wy)

oyt (5.20)

+Ih(s)gllFrz(myy + IVITar (o)) + €
X

From (4.21), we obtain
IR
by oy
SCM/Z (!S\uzwm(y*)
Using (5.10), (5.21) and the definition of the set M, we obtain
/(W@)
s
§015{/Z (’3‘M290y2(y*)
Gl
a5 Wy
Y2
From (5.11) and (5.22), we have
8w2
h*(s ’—’V
/2 (s) Y2
6w2 v ?
<C / h2(s ‘ :
16{ by < =) o(0}
+HV,\12“(',0)H%2(2) + €(00)

aUjl v
<C h2 Ly
__n{é< |5

HVIIFe 02 + 1 Pryapswa,

2
+[sPuey, (y*)|w2,u\2> dx.

8w1,,,

0y

2
+ s, (y*)\wl,u\2> d% + CmHh(S)guH?Lz((z))z)-
5.21

2 2

ow
2 2,v
+ h*(s) ‘—6

Yo

ng,y

h® U2 ] de
3 + 17 (s)|wa,u| )

8w1,,,

0y2

2
+ s, (y*)\wl,u\2> d%

+€(0’0) + Hh(s)ng%LQ(E))Q} (522)

X

2
dy

2
6w2,1/

+ h? ‘
(s) .

a9 WI/
0y

2
+ h6(5)|w1,u\2> A3 + [|h(s)gu {2 (s>

‘@—Z’WV) X}' (5.23)

+ h6(8)|w2,,,|2> dx

2

+ Hh(s)guH(zm(z)P}
X

%2(Q) + €(00)
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Finally (4.21), (5.8), (5.10) and (5.23) imply

/h2(s) ’6“}1’”2 N s
b oy

<eud [ (126 22] 4 10 ounal?) a5 + o
<Cig . 942 Ly Bril(L2(:))2

ow, 2
+||VH%H1(Q))2 + ’|P)\+2u,sw2,y||%2(g) + ¢(09) '(W,Wu) )
2 X (5.24)

2

’ 8w17,,
Yo

The inequalities (5.1), (5.20) - (5.24) imply

— w, -—, W,
0ya Y2

+ 019(HVH%H1(Q))2 + Hh(s)gvu%m(z))? + HPM,SwQ,VHQL%Q) + HPA+2u,sw2,vH%2(g))-

2

+[h(s)wry

210y + 1R (s)wi 72y <€

X X

From this inequality and (4.34), (4.35) with 8 = A 4 2u, we obtain (4.20).H

§6. The case ry2,(7) = 0.

Let v = (y*,(*) be a point on X x 5% such that 72, (7) = 0 and suppy, C O(41) C
M. We note that if ru(y) =0, then s* # 0 and &§; = & = @y, (V") = ¢y, (¥*) = 0.
Consequently (* € M and this case was treated in the previous section. Therefore,

taking the parameters ¢ and d; sufficiently small, we may assume that there exists

a constant 6 > 0 such that

7. (y, O > CICl,  Y(y,C) € Bs x O(61).

By (4.24) and (4.25), there exist 6y > 0 and C7 > 0 such that for all 4, € (0, ) we

have

o? < C1(&F +57), V¢ € O(6). (6.1)

We consider the following three cases.
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Case A. Assume that s* = 0 and lim¢_.¢« Im7,(y*,¢)/|s| = 0. In that case,

there exists a constant C5 > 0 such that
_Imr/:i:(?%C) Z 02‘8|7 V(ya C) € B5 X 0(61)7

provided that |§]| + |d1] is sufficiently small. Since s* = 0, we may assume that for

some constant C3 > 0,
€0l + 5% < Cs¢7, V¢ € O(6), (6.2)

taking a sufficiently small ;. We set Vf = (Dy, — Ff (y, D"))v1 . Then, by Propo-
sition 4.3,

P,uvl,u = ’G’2ﬁ(Dy2 - F/:f(ya Dl))vu:t + T/j,tv].,l/7 (63)

where T € L(H'(Q), L*(Q)). This decomposition and Proposition 4.4 imply

|M(Dg)(Dy, — T3 (y, D)Nviwlye=ollz2sy < CallPuviwllizcoy + VI oy2)-

(6.4)
We have
V,Lj—('? 0) - V/f('? 0) = (Oz:(y, Dl) - Oé/: (ya D/))Ul,u on X. (65)
Since oot (y*, ¢*) — o, (y*, ¢*) = 2/ (y*, ¢*) # 0, we have
Gwl 2 ‘8101 2
h2(s ' i i + BS(s)|wy ,? | dX
/Z(m(ayl o (5)
<Cs5(/|Pu,swi w720y + 1VITa q)2) (6.6)
by (6.4), (6.5) and Garding’s inequality.
From (6.6) and (6.4), we obtain
2 dwy,y ’ 2 2
g h*(s) v d% < Co(|[Py,swiv 720y + IVITH1 (0))2)- (6.7)
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Finally, by (6.6), (6.7) combined with (4.21), we obtain
2
< Cr(||PyswiulF20y + IVIEE1 Q)2 + 17(5)8IITr2(x))2)- (6.8)

, W2,u
6y2 X

By (6.6) - (6.8), (4.36) and (4.37), we obtain (4.20).

Case B. Assume that s* = 0 and lim¢_ ¢~ Im7,(y*,¢)/|s| # 0. By s* =0, we
note that Rer,(y*,{*) > 0. Set I = sign lim¢_,¢+ Im7,(y*, {)/|s|. For all (y,() €

Bs x O(671), we have

I’:(y*,C*) = I\/Rer,(y*, ).
Therefore
T (y", C) (e, (Y)ET — 9y (¥7)EG) > 0

Taking the parameters 6 > 0 and d; > 0 sufficiently small, we obtain

Re T (4™, €) (1oy, ()& — 24y (¥%)€0) >0, V(y,¢) € Bs x O(6y). (6.9)

Let us consider the estimate (5.1). Let us recall that Jy, Jo, J3 are defined in (5.2).

We have

8w1y( awly 81'011/ )
Jo =Re [ 2is : — @y, (Y*) — =y (Y*) | dX
= Re [ 2ln 5 (15, (1) — T, 1)

61)1 v 6’1)1 v

=Re/22|DU|mr;(y,D’)v1,,,( i — 0y (Y*) — o Pyo (Y *))dZ

. oV, 0vy
+Re/21DU!mVj(-,O)< 61 0y, (y*) — 61 Py (Y *))dz
by Yo

=Re/ 20Dy, 9y, (") = Dyopyo ()T (4, D) Do |21 4| D | 271, d
3

6’1)1 v 6’1)1 v

+Re [ 2|Dg|piV, (-, 0)( =0y, (%) — 50y (y*) ) d2. (6.10)
by oy Yo

By (6.9) and Garding’s inequality, we obtain from (6.10)
’ 81'01,1/
Yo

2 2
Jy > Cs/ (hz(s) (’8101’” ) +h6(3)|w1,1/‘2> dx
b oY1
2

owy
(Gt )| = €000 1Prtn oy + I
y2 X (6.11)

— Cye(0,01)
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Now we will estimate J3. By (4.23) and (4.24), there exists a constant C77 > 0 such

that
165 — s%00 (") — (A +20)E7 + (A + 2u)s°2 (y")]
§01151(‘50’2 + ’51’2 + 82), V(¢ € 0(51) (6.12)
Using (6.12), we obtain
& — nét — P2 () + sl (y)
=N+ )& — %0, (y) + (&5 — AN+ 2u)&F — 5702 (y) + s* (A +2u) 95 (¥7))

>(A 4 p) (& — s*@2 (y*)) — Cr261(|&|* + €17 + 7).
Therefore, for all sufficiently small §;, there exists Ci3 > 0 such that
& — n&t — 205 (y") + 5%l (%) > Cusdr([€ol® + [&1]? + 52). (6.13)

By (6.13), we see that J3 > 0. Therefore E’S) =J1+ Jo+ J3 > J1 + Js, so that by

(6.11) and (5.1), there exists a constant C74 > 0 such that

8w1,,, w
ay2 y Wlv

This inequality and (4.21) implies

(GW,, )
a9 WI/
0y

—Ci6(4, 51)(||Pu,sw1,u||%2(g) + ||h(3)g||?L2(2))2 + HVH%Hl(Q))?)'

2

— Cho(9, 51)(||Pu,sw1,u“%2(g) + HVH?Hl(Q))?)'
X

=M > Cy

2

=M > Cys

X

(6.14)
From (6.14), (4.36) and (4.37), we obtain (4.20).

Case C. Assume that s* # 0. If §; > 0 is small enough, then there exists a

constant C77 > 0 such that

€0y, (U) — (X + 2u)é10y, () < 07C17 (| ]* + 57). (6.15)
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By (4.36), there exists Cig > 0 such that

—(1
200, + Crs(Ih(s) w23 (@) + I1h () waul|22(0))

81'02,1/ w
ay2 y W21

2

<Cis(|[Pryauv2ll1200) + IVITH1(0))2) +€

X (6.16)
Note that
8w2 2
—~(1 sV *
E\0a = / (\ [(X+20) %0y, (y7) o0 | T s (X + 21) %5 (y )!wz,y\2> ¥
6 6’11)2 v 6’11)2 v
—|—Re/23 A+ 2 ()\—1—2 L — )dE

n / SO+ 2000 (57) (€2 — (A + 20)€2 — s%§o<y*> L 20 20062, (5)) o,

=J1 + Jo + J3. (6.17)

By (6.12) and (6.15), we have

2

|Jo + J3| < Ciody (6.18)

3w27,, w
ay2 y» W2 v

By (6.18) we obtain from (6.17) that there exists a constant Cyy > 0 such that

=(1) 8w2,,,
Satou 2 _EH( Dy y W2,p .

+C20/2 <h2(5)()\+ 211) %y, (y")

X

2

3w27,, 2
0y

+ h8(s)(A +2p)%¢), (y*)!wz,u!2> dx.
(6.19)

From (4.21), we easily obtain

2

3w27,, %
Hh(s) ( B SPy, (y )wg,,, +g2,u)

it ([

Hence (6.19) and this equality imply

L2(%)

+ oy, (y*)\\hS(S)wl,u!\%2(2)> :

L2(%)

=(1) 2 Ows ? Owy ? 6 2
A2 = > C21 5 h (S) ay2 ayl + h (S)|w27V’ dX
Oows 2 2
Ce|[( 222y V| = Gl s 6.20
€ ( By ,w2,) p 22| (S)gH(L () ( )
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Now we claim that inequality (6.2) holds true for all sufficiently small ;. First

we may assume that for all ¢ € O(d;) we have s? < Ca3(£3 +£7). In fact, if the last

inequality is not true, then (* € M and the case was treated in the previous section.

Suppose that (6.2) is not true. In that case & = 0 and &} # 0, s* # 0. Therefore

Py, (y*) = 0 by (4.23). However, this implies (£5)? 4+ (A(y*) +2u(y*)) @3, (v*)(s*)* =
0. Hence we arrived at a contradiction and the verification of (6.2) is complete.

The inequalities (6.2) and (6.20) imply

—~(1) 2 3102,;/ ? 8w17,, 2 8w1,,, 2 6 2
Sntop = Coa g h*(s) 91 i o + h°(s)|w,|* | dX
8w2 v 2 2
— — v — Casllh 2 2. 6.21
|(F2z )| - calteiele, (621

From inequality (6.4) for V. (-,0), we obtain the estimate

8w1 2 Gwl 2 Gwl 2
h(s st < C / h2(s ' i ' P + RO (s)|wy L) | dE
I %5 o { < <>( iy |20t (5) w1,
HPuv1w 720y + 1VITa 0y } (6.22)

The inequalities (6.21) and (6.22) imply

(8W,, )
- s Wy
0y

—C7(8,01) (|1 Puswi L2y + 10(5)8 112wy + IVIIEr ()2)-

2

=(1)
=X 2u > C126

X

(6.23)

From (6.23), (4.36) and (4.37), we obtain (4.20). W

§7. The case 7,(7) # 0 and rx;2,(y) # 0.
In this section, we consider the conic neighborhood O(d7) of the point v = (y*, (*)

such that

(v, ) #0 and  |rage.(y”, ¢7)| # 0. (7.1)
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In that case, thanks to (7.1) and Proposition 4.3, decomposition (4.28) holds true

for § = p and B = A 4 2u. Therefore we have

(Dy2 - F: (y7 D,))Ulv’/

y2=0 = VJ(W 0), (7.2)
(Dy, — F;rzu(y: D'))v2,plys=0 = V>\++2u('a 0). (7.3)
By Proposition 4.4, we have an a priori estimate
IR(Do )V, (- 0T sy + 1R(Do) Vi, (5 0) 172
§01(||P/\+2uv2||%2(g) + ||P/ﬂ’1||?:2(g) + HVH%Hl(Q))?)' (7.4)

Using (4.21), we may rewrite (7.2) and (7.3) as

A+2 0vo N ) -
L & ( 8;71 - |Da|90y1 (y )U2,U) - Za:(ya D/)Ul,y = V;—(',O) - fg 191,1/7 (75)
% 81}1,,, * . —
A\ 4 2'u (_ ayl + |Da‘90y1 (y )Ul,y) - 'LOéi_’_Qu(y, D/)U27U = V)\J:-Zu(" 0) _ fg 192’1/.
(7.6)
Let B(y, D’) be the matrix pseudo-differential operator with the symbol
B(y. () = ( i} (y, €) AL (ig) — |s|py, <y>>)
’ /\fzu(_zfl + [sley, (1)) —iaj\“+2u(y, <)
By (4.24) and (4.25), we see: If det B(y*,(*) = 0, then
: €o + ]3]y, (¥))?
* c c RS, + ) *\\ 2 — ( Yo ) 77
¢ {0 B (@ + il (7)) = R (7.7

Now we consider two cases
Case A. det B(v) # 0.
In that case, there exists a parametrix of the operator B(y, D’), which we denote

by B~1(y, D’), such that

(Ul,zn vQ,l/) = B_l(y7 D/)(V/j_('a O) - sz_lgl,uv V)\++2u('7 O) - sz_lg2,u)T

+K(U1,U,U2,y)7 (78)
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where K : (L?(Q))? — (H'(Q))?. By (7.4) and (7.8),

12l + [Exr20] < CoI[PuvnlFz0) + IPar2uv2ll72(0)

HIR(s)8lIEL2(zyz + IVIIE (0)2)- (7.9)

(Here and henceforth, for simplicity, we do not distinguish a from a vector a.) By
(7.9), (4.36) and (4.37), we obtain (4.20).

Case B. det B(vy) = 0.

We claim that this situation is possible in the two cases:

(i) & =0, s g, ((y") =0. (7.10)

The first case was treated in Section 5. Let us consider the second case (7.10).

Moreover we may assume that

re M.

Otherwise, (* € M, so that the case was treated in Section 5. Moreover we may

assume that

ImT}(v) = ImFLr%(W) > 0. (7.11)
Really if
ImT}f(y) =ImTY,,,(v) <0, (7.12)

then the situation is simple since we have the decomposition

Psvj(s).0 = BIGI*(Dy, —T5 (y, D)V + T vy,
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where Ty € L(H'(Q),L*(Q)), B € {u, A+ 2u}, j(B) = 1 for 3 = p and j(3) = 2

for 5 = XA+ 2u. This decomposition, (7.12) and Proposition 4.3 imply

|F(Dg)(Dy, — T3 (4, D))vj(8) 0 lyo=o0ll 2(x)

<Cs(IPsvjp) vz + IVlm2(0))2)- (7.13)
Obviously
Vi (20) — Vi (0) = (0 (5, D) — a3 (9, D'))or on 5.
Since off (y*,¢*) — a;, (y*,¢*) = 2/ru(y*, ¢*) # 0, we have

|(G)

by (7.13) and Garding’s inequality.

2

S C4(||P)\+2/J,,sw2,y
X

|%2(Q)+||P »Swlal’||%2(Q)+||V||?H1(Q))2) (714)

From (7.14), (4.36) and (4.37), we obtain (4.20) under condition (7.12).
In order to treat (7.10) under (7.11), we will use Calderon’s method. First we

introduce the new variables U = (U, Us) with four components, where
Ur = ANDF,;'U, U= (D2 +1i|Dsley,)F, U,

and A is the pseudodifferential operator with the symbol (s2 4 €2+ &2 4 1)2. In the

new notations, problem (4,6) and (4.7) can be written in the form
D, U=M(y,DVU+F inR>x[0,1], Ui(y)|yp=0 =0, (7.15)
where F = (0, P, 'U). Here M(y, D') is the matrix pseudo-differential operator

with principal symbol M;(y, () is given by

B 0 AL By .
Ml(QaC) - (A1M21A1_1 AlMgz) +Z‘8‘50y2E4
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(see [Y]). Here we set 0 = (&1 + ils]epy,,0), G(y1) = (—=dl(y1)/dy1,1), Ar = |C],
Mo (y, & +ils|Vyp(y)) = (Sotilslpy, (1) = (€ +il sy, ()2 B2 — (A+1) ()67,
Mas(y, &) = ~A+) ()07 G+GT0—-2u(0, G)Ez, A = (A1) (y)GT G +1u(y) |G| Eo.
The matrix M () has only two eigenvalues given by (4.23)-(4.25). Moreover it is

known that the Jordan form of the matrix M; () has two Jordan blocks of the form

= ()

Following [T1] and using the change of variables W = S~!(y, D")U which is con-

structed below, we can reduce the system (7.11) to the form

Dy, W = M(y, D)W + T(y, D)W + F, (7.16)

where the matrix M has the form

o (Mi(y,Q) 0 (TEL, 0.0 mhy.Q)
0.0 = (" o) M= (DY TS

the operator T is in L>(0,1; L((H*(X))*, (H'(X))%)), m&(y, D) is a first order

operator and
IF| L2 rrscm sy < Cs(IPoFy Ul crncayy: + |1 F Ul L2y cm m))2)-

Now we describe the construction of the pseudo-differential operator S. We take

the symbol S in the form S = (s], s3, 57, s5 ). Here
st = ((5 + Ak, G)ATY, a0+ aerQ“G)Afl)

are the eigenvectors of the matrix M (y, ¢) on the sphere ¢ € S? which corresponds

to the eigenvalue I‘f o and the vectors .92i are given by the formula

1 _
35‘3 = Eisi, by =— (Z - Ml(y7 C)) 1d2’,
211 Cc*
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where C* are small circles centered at Fff (7) and sT solves the equation M; (y)s* —
I’ff (7)st = sli. Since (* € M and £ = 0 we have &} # 0. Therefore the circles C*
may be taken such that the disks bounded by these circles do not intersect. Note
that the vectors s;-—L € C?(Bs x Oy, ) are homogeneous functions of the order zero in

(s,&0,&1). Now using a standard argument (see [Kul, p.241), we can estimate the

last two components of W as follows

(W3, W) < Co(IPoF, Ul ()2 + Ul rr2(0))2)

(% ()2 =
where the constant Cg is independent of N.
Now we need to estimate the first two components of the vector function W on

Y. Thanks to the zero boundary conditions for Us and Uy, we have

Sll(y()a Y1, 07 Dl)(W17 W2)

= — S12(y0, y1,0, D) (W3, Wy) + T—1(v0,y1,0, D) F,; U, (7.17)
where we set

_ (S, Q) Si2(y.¢) CCHLYNZ s (F2(3))2
S0,0 = (G008 S )~ )

The principal symbol of the pseudo-differential operator Si; is the 2 x 2 matrix
such that the first column equals the last two coordinates of the vector s{ and the
+

second column equals the last two coordinates of the vector s;. At the point 7,

these vectors are given by the formulae

7= (& + 15 py, (y*), isign(§7) (€] + 15"y, (¥7)))

n, 1 n

) = [ S1BRED(E +isTey () -
L) ( GIEENCIE )
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-1 A3
(&) + (s7)22(A + 1)

(isign(&7), 1),

Ny
I

si(v)=1|¢ L isign(&7) (&7 +is* NS+17) |-
2 (7) (c, (51‘)2+(s*)2( gn(&r) (&7 +ispy, (y ))<+n)>

Therefore det S11(y) # 0. From (7.15), (7.16) and Garding’s inequality, we obtain

ow, _
H( ) ,Wu) H < Cr(IPoF, Ul ()2 + Ul 72 (0))2), (7.18)
X

where the constant C7 is independent of N. By (7.9), (4.36) and (4.37), we obtain

(4.20). W

End of the proof of Theorem 2.1. Let us fix the parameter N such that (4.5)

holds true. We take § € (0, #) sufficiently small such that

o(z) > p(z), Vo € Q5 \ Qg9 (7.19)

We consider a cut off function § € C3(Qs) such that 5]95 =1 and 5‘95\935 =0.
2 4

The function fu satisfies the equation
P(0u) = 0f+[P,0lu, uloryxon =0, u(0,-)=1.(0,") =u(T,") = uy(T,) =0

Applying Carleman estimate (4.5) to this equation, we obtain

2 2 2

du
oit

ou .

on

2
0 U s

oii? o
n

S + s —1—53

(H((0,T)x0%))?

<Cs(s*[[£e*?|[{L2 ()2 + I(VE)e™ T2y + S°IIIP: Olue?[[EL2 )

(L2((0,T)x0%))? (L2((0,T)x0))?

HIV(IP, 0lw)e*? ([Er2 o)z + IullEg.00)s Vs> s0(7). (7.20)

Since the supports of the coefficients of the commutator [P, 6] are in €5\ €25/2 by

(7.19), we have
s°||[P, g]ueswl‘%LQ(Q))Q + [V ([P, e]u)ewu%m(cg)p + HUH%(%QUJ)

2

<Co | > SN0 w)e 122y + IullEs.0.) | - (7.21)
|a|=0
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Combining (7.20) and (7.21), we obtain

2 2 2

2
u
on?

ou

ou s Ou
on

s e3¢
on

+ 3
(L2((0,T)x00Q))2

+s
(H1((0,T)x00))2

2
<Cio <S2ers¢H%L2(Q))2 +[(VEe*# Itz (g2 + Z s> 2105 w) e (1122

|oe|=0

S

(L2((0,T)x0))?

+HUH%(¢,QW)>7 Vs > s0(T). (7.22)

Finally we will estimate the surface integrals at the right hand side of (4.4) by the
right hand side of (7.22). In the new inequality, the term
2
Z 3372'“‘||(3§U)€S¢H%L2(Q))2
|a|=0

which appears at the right hand side, can be absorbed by Hu||§/( 4.0)- Thus the

proof of Theorem 2.1 is complete. B
§8. Proofs of Theorems 2.2 and 2.3.

Proof of Theorem 2.2.
We introduce the Banach space X = (H'(Q))? with the norm [|w||% = [, ([Vw|*+

s?w?)dx. In order to prove the theorem, we consider the following extremal problem

1, 1, 1 .
J(Z,Vl,Vg) = §||Z€ ¢H%L2(Q))2 + §HV1€ d)H%Lz(Qw))z + EHVQG ¢||?L2(Qw))2
—inf, (8.1)
2s¢ avl :
Pz =ue”®” 4+ — + vy in Q, (8.2)
8900

supp v; C m7 ] € {17 2}5 Z’(O,T)X@Q = 07 Zg, (07 xl> = 2y, (T7 .77/> = 0. (83)

Denote by (z,v1,Vvs) the solution to extremal problem (8.1)-(8.3).

We have
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Lemma 8.1. Under the conditions of Theorem 2.2 for all u € (L*(Q))?, there
exists a unique solution (z,v1,vs) € (L*(Q))? x (L?(Q.))* to problem (8.1) - (8.3).

Moreover this solution satisfies the optimality system

P'p+ze 2 =0 inQ, (8.4)
p|(0,T)><BQ =0, Pzxo (07 ) = Pxo (Ta ) = p(07 )|UJ = p(Ta )|w =0, (85)
1 0
p= S—2V26728¢ in Q, 5—$p0 =—vie 2? inQ,, (8.6)
2s¢ 6V1 .
Pz =ue”*? + — + vy inQ, (8.7)
6.(170
zl0,r)x00 = 0,  24,(0,-) = 24, (T,-) = 0. (8.8)

Here P* denotes the formal adjoint operator to P. The proof of this lemma
requires only the standard arguments (see e.g., [Lil]).

We extend the function p on the set Q = [—T, 2T x 2 by the formula: p(zg,2’) =
p(—zo, ') for x € [-T,0]xQ and p(xg, ') = p(2T —xq, 2’) for (xg, 2’) € [T, 2T]xS.
In the same way, we extend the function —ze~2*¢ on the domain @ and denote the

extended function by f. By (8.4), we have

Pp=f inQ. (8.9)

Since we assume that g—i}(T, 2’) < 0 for all 2’ €  and %(0, 2') > 0 for all 2’ € Q,
there exists 6 > 0 such that we can continue the function ¢ on [—d,T + 6] x £ up
to a C3-function such that 884)—3(7? <0 forall z € [T, T+ 4] x Q and 857(‘;7) > 0 for all
x € [-4,0] x . Also Condition 2.1 for the function ¢(z) holds true if we exchange
the domains Q, Q,, on Q, [—d, T + 6] x w respectively. Let x1 € C§°[—6,T 4 0] be a

cut-off function such that Xl‘[_g,:mrg] = 1. Then

P*x1p = X{f— [x1, P*]p in @, (8.10)



O.Y. IMANUVILOV AND M. YANMAMOL1O
where supp [x1, P*|p C ([T+g,T+(5] x Q)U([-9, —%] x ). We will apply Carleman
estimate (2.8) to equation (8.10).

We observe that

£l L2 (5,745 (22(0))2) < Chillze™ [l (22(q)2

. Co
X1, PEIPl 225,746 (L2(02))2) < ?HPHM (8.11)

Moreover we can prove that at the right hand side of (2.8), we can exchange the

integral over (), by the following integral

A

Note that thanks to the choice of extension of the function ¢, we have

2

82
v + 52

2
0x§

du |* 4.2 ) 2s¢
37 + s ]u\ e dx.
0

9 2 2
/ ( 0 (X12p)' +82 a(le)' +S4\X1p\2> e28¢>d1.
3o o0x§ O0xg
62p 2 p 2
< — 2| == 4p|? | e®*?dx. 12
—03/w<axg +a?| R +s|pr>e . (812

Using estimates (8.11) and (8.12), by Theorem 2.1, we obtain

> 0PI NPz + S lIPe (|3 < Cradi(z, vi, va), (8.13)
|a|=2

where we set

8V1
J ) ’ = |13 +/ a_
1(2,v1, v2) = |lze %[5 o \ |z

2
+ 82 |vy |2 + \V2]2> e 2% dy,

By (8.4), (8.5), (8.7), (8.8) and integration by parts, we have

(uem + % + vy, p)
Zo (L2(Q))?

=(Pz,p)2(@)? = (2, P'P)12(Q))2 = — (2,26 %*?) (12())2-
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Therefore, taking the scalar product of (8.7) and p in (L?(Q))? and using (8.3) and

(8.6), we obtain

1
2J(z,v1,v3) = -3 / (ue*? p)dzx.
Q

By (8.13), we obtain from this inequality

D=

s?J(2z,v1,v2) < Csllue*®|| (2021 (2, v1,v2)2. (8.14)

Next we differentiate equations (8.4) and (8.7) with respect to the variable x:

pr op 0

P —G:Bof in Q, (8.15)

0z O(ue*?)  9%vy  Ovy .
P = . 8.16
8900 81‘0 * 8.1‘% * 8.1‘0 Hl Q ( )

Taking the scalar product of (8.16) and 88—;) in (L?(Q))? and integrating by parts,

we similarly obtain

2J(8z 8V1 8V2)

81‘0’ 8.1,‘0’ 8.1‘0

621) 0z 6V1 2¢ 6V2
- 256 B ) 49 o P o zo (U2 .
\/Q (<ue ) 83:3) + Sd)mo (axovz) + S¢x0 (6:1707‘,1) + s (651707‘,2)) dx

This equality and (8.13), (8.14) imply

J(@xoz, 8330V1, axOVQ) S C6||1168¢H(L2(Q))2 Jl (Z, Vi, Vg)% . (817)
Let L denote the part of first order of Ly, that is, (Lv)(z') = divv (2! )V A(z) +
(Vorv + (Vov)T)Veu(z'). Taking the scalar product of (8.7) with ze=2%? in

(L*(Q))?, we obtain

/ (1l Varzl® + (A + p)(divz)®)e **?de — / (Ez, ze” 2?)dx
Q

Q
B oz | 0z —2sé
_/Q<5—SL‘0 — 25¢4, (8—ac()’z)>e dx
2
+ (m S (00,2, (9, 0)2) + 2\ + 1) (div 2) (Vo6 z)) e da
Q k=1

0
—/(s2ue23¢,z)6_23¢d:1:+/ (a_V1 +V2,Z€_23¢) dz.
Q Q 2o
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We note that [0y, 2k ||2¢] < £|0x,2k|? + 5= |2¢|? for any € > 0. Therefore if we take
sufficiently small € > 0 and sufficiently large s > 0, then by (8.13) and (8.17), we

obtain

2
6V1

~ e
6.(170

+ Iv2e ™ ?IF 2Ly < Crllue™|[Z 2oy (8.18)

lze==[% + '
(L2(Quw))?

Finally, taking the scalar product of (1.1) with z in (L?(Q))? and integrating by

parts, we obtain the equality

ov
9|2 = [ (f,z)dx — L da. 8.19
[ue* {1202 /Q( ,Z)dx /Qw (u, . +V2) x (8.19)

Applying (8.18) to this equality and using again an inequality |ab| < £]a|? + 5= |b|?

for any € > 0, we obtain

/ s2|ul?e?*dx
Q

<8 Py + [ (Va4 )Pz, s = so(r)
Qu (8.20)

In order to estimate the first derivatives for the function u, we consider extremal
problem (8.1)-(8.3) with g—;} instead of u. Using the same notations for solution of

this extremal problem and repeating the previous arguments, we obtain an analogue

of (8.18):
ov ou 2
lze™*?|1% + H—l -0 + [vae ™20y < Cs || 7—e™ .
0xo Ml(12(u)y 7o Nz2@)
(8.21)
Since the Lamé coefficients are independent of xy, we have
ou of . ou
a—xo = a—xo 1n Q, 6—%‘(07']’))(39 = O, uxo (T, ./LJ) = uxo (O, .'LJ) = 07 (822)
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Taking the scalar product of (8.22) with z in (L?(Q))? and integrating by parts,
we obtain the equality

2
f
' :/ (6—,z)d:1:—/ (a—u,%%—vQ)dx.
(LQ(Q))Q Q 6:130 w 6:130 6:130

Applying (8.18) and the inequality 2|ab| < dla|? + §[b? to the second term at the

ou

—— %
6.(170

right hand side of this equality, we obtain

I

<Co([[fe*? 12,22 + /Q (IVul? + u?)e*4dz), Vs > so(r), .
w 8.23

Finally, taking the scalar product of (1.1) with ue?*® in (L?(Q))2, we obtain

2 ou
+ 2504, (—, u)) e*?dy
83:0

- /Q <2us S (00, (9, 8)0) + 203 + ) (divz) (Vo b, u>> e da

k=1

ou
8900

2
+ 82|u]2> e25?dx

ou

Vul? + (A divu)?)e**?dz =
9+ 0k i) /Q(ax

—|—/ (Lu, ue®*®)dx + / (f,u)e**?dz.
Q Q
This equality and (8.23) imply (2.10), the conclusion of Theorem 2.2. B

Proof of Theorem 2.3.

In order to complete the proof, it is sufficient to estimate fQ(f ,z)dz in (8.19) as

' /Q (£, 2)dz

<|Ifoe® || L20.m:(m-1(0))2)llZe % || %

follows:

< HfOGS(z)HL2(O,T;(H*1(Q))2)HZ6_8¢HLQ(O,T;(H(%(Q))Q)

and

< NE5e* |22 ()2 10, 2)e [l (1202

'/Q(@xjfj,z)dx = ’/Q(fj,aij)dx

<Cuollf;e*® || 202 IV (ze*?) || (r2(q))2 + sllze™*? || (r2(@))2)

<Cu1f;e*||(r2(q)z]lze || x-
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Therefore
2
/ fo+ Y 0nf | .z da
Q j=1

2
<Cha HfOes¢HLQ(O,T;(Hfl(Q))z + Z Hfj€s¢H(L2(Q))2 HZ6_8¢’H/Y.
j=1

Appendix I. Proof of Proposition 4.2.

In order to prove the proposition, it is convenient to use the coordinate x instead of
y. Moreover it suffices to prove the estimate for an arbitrary but fixed xq € [0, 7.
Therefore we should establish the estimate: There exist 7 > 1 and Ny > 1 such

that for any 7 > 7 and N > N, there exists so(7, N) such that

2
1
N — Z |0z, 0,1 + 50| Voul? + s°p%[ul? | e**¥da’
an \ 5 T
SC'O(Hl“OtU@wH%Il(QN) + HdiVU@WH%Il(QN))?
VYu e (Hj(Qn))?, Vs >so(7), suppucC BsNQy, (1)
where the constant Cj is independent of N.

First we choose Ny > 0 sufficiently large such that
Vetp(z) #0, Vi' € Qn, Voo € (0,7T).

The existence of such Ny follows from (2.6).

Denote rotu = g—;f — g—;f; =y and divu = w. Let rot*v = (88—;’2, —5—&). Using a
formula rot*rot = —A,, + V- div, we obtain
—Ax/u: —I“Ot*y—vx/w in QN, u|agN =0.

The function u = ue®”¥ satisfies the equation

Llﬁ—f— Lgﬁ = (s in QN, ﬁ‘agN =0, (2)
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where Liu = —Ayu — s2|Vypl?u, Lyu = 2s Zizl(amkﬁ)% + S(Am/goju and
qs = (—rot*y — Vpw)es?. Taking the L? norms of the right and the left hand

sides of equation (2), we obtain

ILaa[2apyyz + 1 L20lIEr2 iy + 2(L0T, o) (12 0u )2 = ldslIfr2 )2

Therefore we can obtain the formula

2
(L1, L2ﬁ)(L2(QN))2 - /Q <28 Z (amjﬁ)(amkﬁ)wxjxk + sg(div(|vw’¢|2vx’9@)
N k=1
2

S ~
!walAmwlu\2—§Z - \r2>da: s/

=1 .7

o
o |07

By (2.6), the last integral in (3) is nonnegative. Denote 11 (z) = ¥ (z) — €l (x).
Then
2
div(’vw’90|2vx’90) - ‘VSDm’PAm’SO =2 Z Py Pa;Pryx;
k,j=1
_2g03 Z m,ﬂﬁl —|— 2N€18xk€1)2(8x].¢1 + 2N€18xj£1)2
k,j=1

+73( Oz, Y1 + 2N 1104, £1)(Op ;101 + 2N 104 £1)(Op,; Oy 001 + 2N 0g 105,01 + 2N 104,05, 41).
Since (Vg1p1, Ve ly) > 0 on 0N, there exists a constant C; > 0 which is indepen-

dent of NV, 7, s such that
Aiv(|Ve 9PV @) — |V o2 App > 20374 Vb1 |2 + CINT3 03 + ?0(73).  (4)

On the other hand, by the definition of zZ =1 — el + N2 =)y + N3,

2

D (02, W) (00, W) Py, = 72 (Varll, Vi) 0

2
+7 Y (02,0) (02, 0)(Da, Oy 01 + 2N €1y, 0, 1) + 2NT (Vo Vo by )0
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Note that there exists a constant Cy > 0, independent of N, such that
NGO, Ol oy < Ca/N. (6)
By (3)-(6), we obtain

IZ48[E 20y + 1 L2801 r2 (002 +/Q 207 Vot |* + CLNT20%) [0 da’
N
—S?C'g/Q ¢|Vx/ﬁ|2da:’ S ||qSH%L2(QN))2. (7)
N

Multiplying equation (2) by sNpu and integrating by parts, we obtain

- ~ - sN .. .
| NIV + PN )l = 6 Vgl — vl
N

:/ qssNopudx'. (8)
QOn
Next we note that

Ayp = (Vo272 + FAptpy + 27N Vo by |2 + 2FNG Apily)p > C4FN .
This inequality and (8) imply

. 1 _ _
{sN@| Vot + 58" N(Awp)pla]* = s°0*| Vo *[6]* '’ < Cullas {2 oy 2-

(9)

Qn

From (7) and (9), we obtain

. . 1 4 ~ ~
L1820y + 12280z ()2 +/Q (590374|me¢1|4 + OlNTBSOS) |a|*dz’
N

+sN o golvx/ﬁ|2dg;’SC%HqSH?LQ(QN))Q. (10)
N

Let u = u; + up where the functions u; are solutions to the initial value problems

~ ~ . ~ ~ 2 A~ . ~
—Ax/ul = Llu 1n QNO, u1|aQNO = 0, —Am/UQ = S ‘Vx/g0| uanNO, UQ‘agNO = O.
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From a standard a priori estimate for the Laplace operator, we have

1] (z2n))2 < CollLatll(z2ap)2, (11)

NG . N
Bl (2 n)): < CVN 152 [Var o2 (22 ()2 (12)

s
where the constants Cg and C7 are independent of N. Taking so(7, N) > N, we

obtain (1) from (9) - (12). B

Appendix II. Proof of the estimate (4.33).

We prove (4.33) for a more general hyperbolic operator. Denote z = (z¢,2’) =

(I07x17 --wxn)? g: (5075/) = (607&17 7571) and gN =R" x [07 #]

Let a function w € H!'(Gy) satisfy the equations

0w "9 ow
/ _ - = _ . ! i
R(z',D)w = a2 E oz, (ajk(m )5l‘k)

j k=1
—|—ib»(m’)a—w+c(a¢’)w:gin gn, (1)
=0 J 8.’1)j
ow «
w]xn:# = a—%]%:# =0, suppw C Bs(z"), (2)

where z* is an arbitrary point on 0Gy and Bs(x*) is a ball of radius § centered at
*

X .

We assume that the coefficients of the linear operator R satisfy the conditions

ajkECl(%),ajk:akj, 1§j,k§n7 bgGLoo(gN), OSES’I@ CGLOO(QN)
(3)
and the uniform ellipticity: there exists 6 > 0 such that

a(@',6,6) = Y aj(r)&é > 8¢, VEER™, Vregy. (4)

7,k=1
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By R(z/,§), we denote the principal symbol of the operator R:

R, ) = =&+ Y au(a)éé,
jk=1

and by R(x’,&1,€2) the quadratic form

R(z', €1, =& — Y au(@)E&k

7,k=1

with &1 = (&},...,&}) and €% = (&3, ..., &2). Following [Hd], we introduce the nota-

n

tions:
N OR(2',€) AP O?R(x’,€) , OR(2',€)
() — 5] (4,k) = 2 \5) _ = s
RY (I‘ 75) - (95] ’ RV ($ 75) - 5535&; ) R(J)(x 7&) - 8a:j .
We assume that there exists a function 1 € C?(Gy) such that
(R, {R, 1)} (2,€) >0 (5)
if (z,€) € (Gn \ Bs(z*)) x (R*1\ {0}) satisfies
R(xlv 5) =< VgR(.fC/, 5)7 le(ill‘) >=0,
and
{R(2', € — isVipr(x)), R(a', § +isVipi (x))}/2is > 0 (6)

if (z,&,8) € (Gn \ Bs(z*)) x (R*™1\ {0}) x (R \ {0}) satisfies
R(z', & +isVii(x)) =< VeR(2', € +isVipi (), Vi (z) >= 0.

R($7 V¢1) < 0.

Using the function v, and following [H&|, we construct the function ¢ by

o(x) = @ F s, (7)
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It is known (see e.g., Theorem 8.6.2 [H6,p.205]) that if the parameter 7 is sufficiently

large, then:

{B AR, ¢}}(x,6) >0 (8)

if (z,€) € (Gn \ Bs(z*)) x (R*1\ {0}) satisfies

and

(R — is90(x), R, & + isV6(x))}/2is > 0
if (z,&,8) € (Gn \ Bs(z*)) x (R*™1\ {0}) x (R \ {0}) satisfies
R(z', &€ +1isV(x)) = 0.

Now we fix the parameter 7 such that inequalities (8) and (9) hold true. Let
¢, € C2(Gy) be a function such that £1], —o = 0. Let 9(z) = 11 (x) + N¢2(z) and

= ™. Since o(z) = ¢(x)e;N£%($), using ¢1]|,, =0 = 0, we have
¢ —¢ inCYGy) as N — +o0. (10)
Moreover

{R(z',& —isVp(x)), R(z', & +isVp(z))}/2is

—2N7 Z (0, £1()) (D, £1(2)) (RY (2, ) RP (2, £) +5” RY (2, Vo) R (o, V )
jik=1

— {R(2', £ —isVo(x)), R(x', £ +isVp(x))}/2is in C(Gy x S™) as N — —?oo)

11

By (8) - (11), there exists Ny > 0 such that for any N > Ny, the following

inequalities hold true:

{R AR, 0}}(2,6) >0 (12)
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if (z,€) € (Gny \ Bs(z*)) x (R™™1\ {0}) satisfies R(z, &) = 0, and

{R(a',§ —isVep(2)), R(z', £ +isVip(x))}/2is > CL(|€]° + Ns?)

(13)

if (z,€,5) € (Gn \ Bs(z*)) x (R*T1\ {0}) x (R\ {0}) satisfies R(z', £ +isV(z)) = 0,

where the constant C7 > 0 is independent of £, s, N.

Denote w(z) = w(x)e®?. By (11), the following equality holds:
e**R(x', D)(e™Pw) = ge*¥ in Gy.
The short calculations give the equation
Ly ,w+ Ly ,w = gs in Gy,
where

Ly ==Y sy R (2!, VW), Ly, = R+ s*R(x', Vi),
j=0

gs(x) = ge*? + wRp.
Taking the Lo-norms of the both sides of (15), we obtain
l9sl1Z2(g) = L2672 (gy) + 1 L1.0W L2 gy + 2(L1oW; Lo, W) L2(gy)-

Denote

Gy(w,5,@) = {R AR, $}}(2', V) + 5° Y Rupy(a’, Vo)RV (2, V)

7,k=0

+5% ) 60,0, BV (27, Vo) RP (2, V)i
4,k=0

and Gy (z, s, w) is defined similarly.

(16)

(17)

(18)
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Let us transform the last term at the right side of (17). In [Im2], one can find
the following identity:

(L@, Lo @) 1206y = / R\, Va) Ly y@ds +s | R, Ve, i) R(z!, VE)dS

—83/ R(z',V)R(a', 7, Vgo)@2d2—|—/ sGy(z,s,w)dx
9GN g

N

+/ ; S R, V)ga, RO, V) — (R, V) — R, Vo)) | do,
OnN k=0 (19)

where 77 is the unit outward normal vector to Gy and
9(1‘) - Z (@mlmm R(l,m)(x/, V@) + prlREinn)z) (xlv Vﬁ)/))

I,m=0

Now we need the following Lemma proved in [Im2].

Lemma 1. Let w € H'(Gy) be a solution to (1) and (2).

s/ (|V@)? + s*w?)dz < C’g/ sGy(z, s, w)dx
OnN On

1 - 1 - ~ ~ ~
+Cs (E HL2,¢>wH2L2(gN)+; IL1,p®|72(gy) +51@l 2 06x) HamanB(agN)) , Vs> SOET%)
20

where the constants Cy and C3 are independent of s, N.

We claim :

S . ~ ~
/g 2 ;()R@’iifc V@)pa, RO (2!, V) — 0{R(a/, V) - S*R(&', Vo)) | da
N Js

IN

/ Z ngg (', Vw goij(j)(m',V@) dr|+ |s O(R(z',Vw) — s*R(x', V)w?)dx
g

N 4,k=0

gN

£s _
S; . (IVa|* + s*0?)dz + Cy <—HL1 eow||L2(gN)+ HL2 sow||L2(g )
N

+SWHL2(agN)Haxn@Hm(agN))- (21)
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In fact, by the Cauchy-Bunyakovskii inequality,

Cs

(k) HLl sowHIﬂ(gN)

/ R(k) (@, V) pa, RO (2, ViF)dz| < = HwHHl(gN)+
On 7,k=0

(22)
Since the function 6 is continuous, there exists 6. € C?(Gy) such that || —
Ocllcgn) < §- Taking the scalar product in L?(Gn) of the functions §.w and Ly ,w,

we obtain the equality

/ 0.(sR(z', V) — s*R(z’, V)w?)dx = —s/ (Lo, ,w)f. wdx
9y

+s/ (8“3‘“ O o 5 — Rz, Vi, V6.)i )d:z:+/ o, 7, V)0, FdS.
G 57y \ O Ozg * G

Thus

/g@(sR(m',V@) sSR(x', V)w?)dx

< 0.(sR(x', V) — s’ R(x’, V)w?)dx

on

/g (0 — 0.)(sR(z', V&) — *R(x', Vo)) dz| +

€S - - 1 - 1 ~
SZ . (|Vw‘2+32w2)d$+06 <;||L17¢w||%2(gl\]> + ;||L27¢w”%2(gN)
N

+SWHL2(agN)Haxn@Hm(agN))- (23)

The inequalities (22) and (23) imply (21).

By Lemma 1, we have

s/ (]V@\2+s2@2)d1’+/ ANT Z O, 01(2") 0, 01 (z"){RY) (2, Vo) RW) (2, V)
on N j k=1

+5>RY (2, Vo) RM (2!, Vo) }dz < /

2sG,(z, s,w)dr + /
gn

{23G¢(a:, s, w) — 2sGy(x, s, W)
9Y

HANT Y 0 41 (2)0s, 1 (2 ){RY (2!, V&) RW (o, VD) + s*RY) (2, Vo) RW (2, V) } }d:z;
j,k=1

Lo Y@ o g
+Cs (EHLQ,wH%z(gm + Lol gy + SH“}HLQ(@QN)Ha““"”wHLz(agN)) . .
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Note that there exists a constant Cy > 0, independent of N, such that

+5?RY (2 V)R (2!, Vp)}dx > CoN | widx (25)
On

for all sufficiently large N.

By (11), we have

/ <2$G¢(a:, s, w) — 25Gy(z, s,w)
9y

—ANT Y 05, 01(2)0s, 01("W{RY (2, VD) R® (2, VD) + SQR(j)(m/’Vgp)R(k)(ml’W)}) "
k=1

<Cro(N)s / (VP + 232 de, (26)
N

where C19(N) — 0 as N — +o0o. By (10), we obtain

1 ~ 1 ~ 1 ~ 1 ~
';HL2,¢WH%2(9N) + ;HLl,aSwH%%gN) - ;HL%@@UH%%@V) - ;HLl,wwH%?(gN)

SC’H(N)S/ (VEP + s23?)da, (27)
N

where C11(N) — 0 as N — +o00. Using (25)-(27), from (24) we obtain

1

1 1
\V4 2 2~2 2 2
C7S/QN(‘ /LU’ Sw )dx <— 4HL17<PwHL2(gN) 4HL274PwHL2(gN)

—|—/ 28G¢(£IJ‘, S, ﬁ»dl’ + 809“{[7“[12(391\1)Hamn{DHLz(agN), Vs > 80(;).
OnN (28)

Inequalities (21), (28) imply (4.33). The proof is finished. W
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