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On the determination of wave speed and potential in a hyperbolic
equation by two measurements

V. G. ROMANOV1 and M. YAMAMOTO 2

Abstract. We discuss a problem of finding a speed of sound c(x) and a potential q(x) in a second-order

hyperbolic equation from two boundary observations. The coefficients are assumed to be unknown inside a

disc in R
2. On a suitable bounded part of the cylindrical surface, we are given Cauchy data for solutions to a

hyperbolic equation with zero initial data and sources located on the lines {(x, t) ∈ R
3|x · ν = 0, t = 0} for two

distinct unit vectors ν = ν(k), k = 1, 2. We obtain a conditional stability estimate under a priori assumptions

on smallness of c(x)− 1 and q(x).

§1. Statement of the inverse problem and main results

In the papers [2], [6] - [9], a new method for obtaining conditional stability estimates for prob-

lems related to determination of coefficients for linear hyperbolic equations has been proposed.

This method uses a single observation for finding one unknown coefficient.

By our method, we can prove the stability in determining coefficients by means of a finite

number of measurements where initial data are zero and impulsive inputs are added. As other

methodology for inverse problems with a finite number of measurements, we refer to [1], [4],

[5] and the references therein. However in those papers, we have to assume some positivity

or non-degeneracy of initial values, which is not practical. For our method, we need not such

restrictions on initial data, which is very practical. On the other hand, we have to assume that

unknown coefficients should be close to fixed reference coefficients which are constant.

An analysis shows that the problem with several unknown coefficients under the derivatives

of the first order can also be successfully studied by this method (see [7], [8]). However its

application to determination of coefficients under derivatives of different orders meets some
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difficulties. Recently the problems of finding a damping coefficient and a potential from two

measurements, and the speed of sound and damping, were considered in papers [3] and [10],

respectively. In this paper, by two measurements, we consider the inverse problem where

coefficients of the leading term and the lowest term are unknown. The technique of this paper

differs from [3] and [10], but keeps some common features with them.

Let u = u(x, t), x ∈ R
2, satisfy the equation

utt − c2(∆u+ qu) = 2δ(t) δ(x · ν), (x, t) ∈ R
3, (1.1)

and the zero initial condition

u|t<0 = 0. (1.2)

Here ν is a unit vector and the symbol x · ν means the scalar product of the vectors x and ν.

The solution to problem (1.1) - (1.2) depends on the parameter ν, i.e., u = u(x, t, ν).

Assume that supports of the coefficients q(x) and c(x) − 1 are located strictly inside the

disc B := {x ∈ R
2| |x− x0| < r} and B belongs to the half-plane x · ν > 0. Suppose also that

q(x) and c(x) > 0 are smooth functions in R
2 (see below).

Introduce the function τ(x, ν) as the solution to the following problem for the eikonal

equation:

|∇τ |2 = c−2(x), τ |x·ν=0 = 0. (1.3)

Let G(ν) be the cylindrical domain G(ν) := {(x, t)| x ∈ B, τ(x, ν) < t < T + τ(x, ν)} where T

is a positive number. Denote by S(ν) the lateral boundary of this domain and by Σ0(ν) and

ΣT (ν) the lower and upper basements, respectively. That is, S(ν) := {(x, t)| x ∈ ∂B, τ(x, ν) ≤
t ≤ T + τ(x, ν)}, Σ0(ν) := {(x, t)| x ∈ B, t = τ(x, ν)}, ΣT (ν) := {(x, t)| x ∈ B, t = T + τ(x, ν)},
∂B := {x ∈ R

2| |x− x0| = r}.
Consider the problem of determination of q(x) and c(x). Let the following information

be known. We take distinct unit vectors ν(1) and ν(2) such that B belongs to the half plane

x · ν(k) > 0 for k = 1, 2. Then we are given the traces of the functions τ(x, ν(k)) on ∂B, and
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the traces on S(ν(k)) := Sk of solutions and its normal derivatives to problem (1.1) - (1.2) with

ν = ν(k), that is,

u(x, t, ν(k)) = f (k)(x, t),
∂

∂n
u(x, t, ν(k)) = g(k)(x, t), (x, t) ∈ Sk;

τ(x, ν(k)) = τ (k)(x), x ∈ ∂B; k = 1, 2. (1.4)

The problem is: find q(x) and c(x) from given data, i.e., from f (k), g(k), τ (k), k = 1, 2.

For fixed constants q0 > 0 and d > 0, let Λ(q0, d) be the set of functions (q, c) satisfying the

following two conditions:

1) supp q(x), supp (c(x)− 1) ⊂ Ω ⊂ B, dist(∂B,Ω) ≥ d,

2) ‖q‖C17(Rn) ≤ q0, ‖c− 1‖C19(Rn) ≤ q0.

In particular, we note that ν(1) and ν(2) are linearly independent.

We prove here the following stability and uniqueness theorems.

Theorem 1.1. Let (qj, cj) ∈ Λ(q0, d), and let {f (k)
j , g

(k)
j , τ

(k)
j } be the data corresponding

to the solution to (1.1) - (1.2) with q = qj(x), c = cj(x) and ν = ν (k), k, j = 1, 2. Moreover let

the condition 4r/T < 1 be satisfied. Then there exist positive numbers q∗ and C depending on

T , r, d and |ν (1) − ν (2)| such that for all q0 ≤ q∗ the following inequality holds:

‖q1 − q2‖2
L2(B) + ‖c1 − c2‖2

H2(B)

≤ C

2∑
k=1

(
‖f̂ (k)

1 − f̂
(k)
2 ‖2

H3(∂B×{0}) + ‖(f̂ (k)
1 − f̂

(k)
2 )t‖2

H2(∂B×(0,T )) (1.5)

+‖(ĝ(k)
1 − ĝ

(k)
2 )t‖2

H1(∂B×(0,T )) + ‖τ (k)
1 − τ

(k)
2 ‖2

H5(∂B)

)
,

where f̂
(k)
j (x, t) = f

(k)
j (x, t− τ

(k)
j (x)) and ĝ

(k)
j (x, t) = g

(k)
j (x, t− τ

(k)
j (x)).

Theorem 1.2. Let the conditions the Theorem 1.1 be fulfilled. Then one can find a

number q∗ > 0 such that if (qj , cj) ∈ Λ(q∗, d), j = 1, 2, and the corresponding data partly

coincide, namely,

f
(k)
1 (x, t) = f

(k)
2 (x, t), (x, t) ∈ Sk; τ

(k)
1 (x) = τ

(k)
2 (x), x ∈ ∂B; k = 1, 2, (1.6)
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then q1(x) = q2(x) and c1(x) = c2(x).

Theorem 1.1 is proven in §2. To prove Theorem 1.2 we use the following assertion proven in

[10] (see §4). If u1(x, t, ν) = u2(x, t, ν) on S(ν) and τ1(x, ν) = τ2(x, ν) on ∂B, then (∇u1 · n) =
(∇u2 · n) on S(ν), where n is the outward unit normal to S(ν). Then Theorem 1.2 is a simple

corollary of Theorem 1.1.

In §2 we also use the following lemma, whose proof is similar to Lemma 1.1 in [10] and we

omit it here.

Lemma 1.1. For each fixed T0 > 0 there exists positive number q∗ = q∗(T0) such that for

(q, c) ∈ Λ(q0, d) and q0 ≤ q∗ the solution to problem (1.1) - (1.2) in the domain K(T0, ν) :=

{(x, t)| t ≤ T0 − τ(x, ν)} can be represented in the form

u(x, t, ν) =

5∑
k=0

αk(x, ν) θk(t− τ(x, ν)) + u5(x, t, ν), (1.7)

where θ0(t) is the Heaviside function: θ0(t) = 1 for t ≥ 0 and θ0(t) = 0 for t < 0, θk(t) =
tkθ0(t)

k!
,

the coefficients αk(x, ν) are given in the form

α0(x, ν) = exp(ϕ(x, ν)), ϕ(x, ν) = −1

2

∫
Γ(x,ν)

c2(ξ)∆τ(ξ, ν) ds,

αk(x, ν) =
α0(x, ν)

2

∫
Γ(x,ν)

c2(ξ)(∆αk−1(ξ, ν) + q(ξ)αk−1(ξ, ν))

α0(ξ, ν)
ds, (1.8)

k = 1, . . . , m,

where Γ(x, ν) is the geodesic line joining the line {ξ ∈ R
2|ξ · ν = 0} and x with respect

to ds, and ds is the element of the Riemannian length: ds = c−1(x)(
∑2

k=1 dx
2
k)

1/2. Then

τ(x, ν) ∈ C19(Ω(T0, ν)), αk(x, ν) ∈ C17−2k(Ω(T0, ν)) for Ω(T0, ν) := {x ∈ R
2| τ(x, ν) ≤ T0/2},

and the function u5(x, t, ν) vanishes for t ≤ τ(x, ν) and belongs to H6(K(T0, ν)) for fixed ν.

Moreover there exists a positive number C depending on T , r and q0 such that C does not

increase as q0 decreases and that the following inequalities hold

‖u− 1‖H6(G(ν)) ≤ Cq0, ‖τ(x, ν)− x · ν‖C18(B) ≤ Cq0. (1.9)
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Corollary. If (q, c) ∈ Λ(q0, d) and q0 is sufficiently small, then the function u(x, t, ν) is

continuous on the closure of domain G(ν) together with all derivatives up to the fourth-order.

§2. Proof of Theorem 1.1

Introduce the function û(x, t, ν) := u(x, t + τ(x, ν), ν). Then, by (1.1) and (1.7), the function

û(x, t, ν) for (x, t) ∈ B × (0, T ), satisfies

2∇ût · ∇τ −∆û− qû+ (∆τ) ût = 0, (x, t) ∈ B × (0, T );

û(x,+0, ν) = α0(x, ν), ût(x,+0, ν) = α1(x, ν), (2.1)

where ∇ = (∂/∂x1, ∂/∂x2).

Substituting (1.7) into (1.1) and equating the terms of δ(t− τ(x, ν)), θ0(t− τ(x, ν)), we see

that the functions ϕ(x, ν) ≡ lnα0(x, ν) and α1(x, ν) satisfy the first-order differential equations:

2∇ϕ · ∇τ +∆τ = 0,

2∇α1 · ∇τ + α1∆τ −∆α0 − qα0 = 0.
(2.2)

The latter of these equations and equation (2.1) can be rewritten respectively in the forms

2(∇α1 · ∇τ − α1∇ϕ · ∇τ)− α0(∆ϕ+ |∇ϕ|2 + q) = 0 (2.3)

and

2∇ût · ∇τ −∆û− 2(∇ϕ · ∇τ)ût − qû = 0, (x, t) ∈ B × (0, T );

û(x,+0, ν) = α0(x, ν), ût(x,+0, ν) = α1(x, ν). (2.4)

Introduce v(x, t, ν) = ln û(x, t, ν) and assume that q0 is small enough in order that the

function û(x, t, ν) is positive in B × (0, T ). The function v(x, t, ν) satisfies the relations

2∇vt · ∇τ −∆v − |∇v|2

+2(∇v · ∇τ −∇ϕ · ∇τ)vt − q = 0, (x, t) ∈ B × (0, T ); (2.5)

v(x,+0, ν) = ϕ(x, ν), vt(x,+0, ν) = β(x, ν),
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where β(x, ν) = α1(x, ν)/α0(x, ν) solves the equation

2∇β · ∇τ −∆ϕ− |∇ϕ|2 − q = 0. (2.6)

Let (qj , cj) ∈ Λ(q0, d) for j = 1, 2. Denote the functions u, û, v, ϕ, α0, β, τ corresponding

to the coefficients (qj , cj) by uj, ûj, vj , ϕj , α0j , βj, τj and introduce the differences

ũ = û1 − û2, ṽ = v1 − v2, ϕ̃ = ϕ1 − ϕ2, α̃0 = α01 − α02,

β̃ = β1 − β2, τ̃ = τ1 − τ2, c̃ = c1 − c2, q̃ = q1 − q2.

Then we can obtain the relations

2∇ṽt · ∇τ1 −∆ṽ + a1 · ∇ṽ + a2 ṽt + a3 · ∇τ̃

+a4 · ∇ϕ̃− q̃ = 0, (x, t) ∈ B × (0, T ); (2.7)

ṽ(x,+0, ν) = ϕ̃(x, ν), ṽt(x,+0, ν) = β̃(x, ν),

where a1 = −∇(v1+v2)+2(v2)t∇τ2, a2 = 2(∇v1 ·∇τ1−∇ϕ1 ·∇τ1), a3 = 2∇(v2)t+2(v2)t(∇v1−
∇ϕ1), a4 = −2(v2)t∇τ2. From equations (2.2) and (2.6), it follows that the functions α̃0(x, ν),

β̃(x, ν), ϕ̃(x, ν) satisfy the relations

α̃0 = b1ϕ̃, ∇ϕ̃ · b2 +∇τ̃ · b3 +∆τ̃ = 0,

∆ϕ̃+∇ϕ̃ · h1 +∇β̃ · h2 +∇τ̃ · h3 + q̃ = 0,

(2.8)

where

b1 =

1∫
0

exp[ϕ2(1− η) + ϕ1η] dη, b2 = ∇(τ1 + τ2), b3 = ∇(ϕ1 + ϕ2),

h1 = ∇(ϕ1 + ϕ2), h2 = −∇(τ1 + τ2), h3 = −∇(β1 + β2).

Introduce the function w(x, t, ν) := ṽt(x, t, ν). Then

2∇wt · ∇τ1 −∆w + a1 · ∇w + a2 wt + (a2)tw + (a1)t · ∇ṽ

+(a3)t · ∇τ̃ + (a4)t · ∇ϕ̃ = 0, (x, t) ∈ B × (0, T ); (2.9)

w(x,+0, ν) = β̃(x, ν).
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Note that the function ṽ can be represented in the form

ṽ(x, t, ν) = ϕ̃(x, ν) +

t∫
0

w(x, η, ν) dη, (x, t) ∈ B × (0, T ). (2.10)

¿From Lemma 1.1 and the embedding theorems, by the definition we have

max
1≤k≤4

‖ak‖C2(B×(0,T )) ≤ Cq0,

max
k=1,2

‖bk‖C1(B×(0,T )) ≤ C, ‖b3‖C1(B×(0,T )) ≤ Cq0, (2.11)

‖h2‖C(B×(0,T )) ≤ C, max
k=1,3

‖hk‖C(B×(0,T )) ≤ Cq0

Here and henceforth C > 0 denotes a generic constant which depends on T , r, q0 and does not

increase as q0 decreases. Therefore relations (2.8) – (2.11) lead to the following inequalities

‖q̃‖2
L2(B) ≤ C

(
‖ϕ̃‖2

H2(B) + ‖τ̃‖2
H1(B) + ‖β̃‖2

H1(B)

)
,

‖∆τ̃‖2
H1(B) ≤ C

(
‖ϕ̃‖2

H2(B) + q2
0‖τ̃‖2

H2(B)

)
, (2.12)

‖2∇wt · ∇τ1 −∆w‖2
H1(B×(0,T )) ≤ Cq2

0

(
‖w‖2

H2(B×(0,T )) + ‖τ̃‖2
H2(B) + ‖ϕ̃‖2

H2(B)

)
.

We will use the obvious inequality:

‖τ̃ ‖2
H3(B) ≤ C

‖∆τ̃ ‖ 2
H1(B) +

∑
|γ|≤3

‖Dγ τ̃ ‖2
L2(∂B)

 , (2.13)

where

Dγ =
∂|γ|

∂xγ1

1 ∂xγn

2

, γ = (γ1, γ2), |γ| = γ1 + γ2.

Since supp(c(x) − 1) ⊂ Ω ⊂ B and dist(∂B,Ω) ≥ d, the function τ̃ (x, ν) vanishes together

with all its derivatives on ∂B anywhere except the set ∂B+(ν) := {x ∈ ∂B| ν · (x − x0) >√
r2 − (r − d)2}. Moreover, since outside of B, the function τ̃ satisfies the equation ∇τ̃ ·

∇(τ1 + τ2) = 0, all its derivatives of τ̃ on ∂B+(ν) can be expressed via the derivatives along

∂B+(ν). Therefore we have

∑
|γ|≤3

‖Dγ τ̃ ‖2
L2(∂B) ≤ C‖τ̃ ‖2

H3(∂B). (2.14)
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Using the second inequality in (2.12), from (2.13) and (2.14) we find

‖τ̃ ‖2
H3(B) ≤ C

(
‖ϕ̃‖2

H2(B) + q2
0‖τ̃‖2

H2(B) + ‖τ̃ ‖2
H3(∂B)

)
. (2.15)

Consequently, for small q0, we obtain the inequality

‖τ̃ ‖2
H3(B) ≤ C

(
‖ϕ̃‖2

H2(B) + ‖τ̃ ‖2
H3(∂B)

)
. (2.16)

The following lemma is one key, which can be proved by the multiplier method similarly to

Lemma 4.3.6 from [8] (see also [6]).

Lemma 2.1. Let c ∈ Λ(q0, d), 4r/T < 1 and z(x, t) ∈ H2(B× (0, T )). Then for sufficiently

small q0, there exists a positive constant C such that the following inequality holds:

‖z‖2
H1(B×(0,T )) + ‖z‖2

H1(B×{0})

≤ C
(
‖2∇zt · ∇τ −∆z‖2

L2(B×(0,T )) + ‖z‖2
H1(∂B×(0,T )) + ‖∇z · n‖2

L2(∂B×(0,T ))

)
. (2.17)

Applying (2.17) with τ = τ1 to the function w(x, t, ν) and its first derivatives and using the

third inequality in (2.12), we obtain

‖w‖2
H2(B×(0,T )) + ‖w‖2

H2(B×{0})

≤ C[q2
0(‖w‖2

H2(B×(0,T )) + ‖τ̃‖2
H2(B) + ‖ϕ̃‖2

H2(B)) + ε2(ν)], (2.18)

where

ε2(ν) = ‖(f̂1 − f̂2)t‖2
H2(∂B×(0,T )) + ‖(ĝ1 − ĝ2)t‖2

H1(∂B×(0,T )). (2.19)

and f̂j(x, t) = fj(x, t− τj(x, ν)), ĝj(x, t) = gj(x, t− τj(x, ν)), j = 1, 2.

From relation (2.18) for sufficiently small q0, we derive the inequality

‖β̃‖2
H2(B) = ‖w‖2

H2(B×{0}) ≤ C[q2
0(‖τ̃‖2

H2(B) + ‖ϕ̃‖2
H2(B)) + ε2(ν)]. (2.20)

Then from the first inequality in (2.12), we see that

‖q̃‖2
L2(B) ≤ C

(
‖ϕ̃‖2

H2(B) + ‖τ̃‖2
H2(B) + ε2(ν)

)
. (2.21)
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Consider inequalities (2.16), (2.20), (2.21), the second and third relations in (2.8) for ν =

ν (k), k = 1, 2. We set α̃0(x, ν
(k)) = α̃0k(x), ϕ̃(x, ν

(k)) = ϕ̃k(x), β̃(x, ν
(k)) = β̃k(x), τ(x, ν

(k)) =

τk(x), bj(x, ν
(k)) = bjk(x), j = 1, 3, b2(x, ν

(k)) = ρk(x), ε
2(ν (k)) = ε2

k.

Inequalities (2.16), (2.20) and (2.21) lead to the relations:

‖τ̃k ‖2
H3(B) ≤ C

(
‖ϕ̃k‖2

H2(B) + ‖τ̃k ‖2
H3(∂B)

)
, k = 1, 2, (2.22)

‖β̃k‖2
H2(B) ≤ C

(
q2
0(‖τ̃k‖2

H2(B) + ‖ϕ̃k‖2
H2(B)) + ε2

k

)
, k = 1, 2, (2.23)

‖q̃‖2
L2(B) ≤ C

(
‖ϕ̃k‖2

H2(B) + ‖τ̃k‖2
H2(B) + ε2

k

)
, k = 1, 2. (2.24)

By (2.8), we have

∇ϕ̃k · ρk +∇τ̃k · b3k +∆τ̃k = 0, k = 1, 2, (2.25)

∆ϕ̃k +∇ϕ̃k · h1k +∇β̃k · h2k +∇τ̃k · h3k + q̃ = 0, k = 1, 2. (2.26)

Moreover the eikonal equation implies

∇τ̃k · ρk + c̃ (c1 + c2)c
−2
1 c−2

2 = 0, k = 1, 2. (2.27)

Setting k = 1, 2 in (2.26) and subtracting, we find that

∆ϕ̂ =
2∑

k=1

(−1)k(∇ϕ̃k · h1k +∇β̃k · h2k +∇τ̃k · h3k), (2.28)

where ϕ̂ = ϕ̃1 − ϕ̃2. Using inequalities (2.22) and (2.23), we obtain

‖∆ϕ̂‖2
H1(B) ≤ C

2∑
k=1

(
q2
0‖ϕ̃k‖2

H2(B) + ε̃2
k + ‖τ̃k ‖2

H3(∂B)

)
. (2.29)

Similarly to τ̃ (x, ν), we can prove

‖ϕ̂ ‖2
H3(B) ≤ C

‖∆ϕ̂ ‖ 2
H1(B) +

∑
|γ|≤3

‖Dγϕ̂ ‖2
L2(∂B)

 . (2.30)

The function ϕ̂ = ϕ̃1 − ϕ̃2 and each function ϕ̃k(x) vanish together with its derivatives on ∂B

anywhere except the set ∂B+(ν). Since outside of B, the function ϕ̃k satisfies the equation
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∇ϕ̃k · ρk +∇τ̃k · b3k +∆τ̃k = 0 and τ̃k satisfies the relation ∇τ̃k · ρk = 0, all their derivatives on

∂B+(ν) can be expressed via the derivatives along ∂B+(ν). Therefore we have∑
|γ|≤5

‖Dγ τ̃k‖2
L2(∂B) ≤ C‖τ̃k ‖2

H5(∂B), k = 1, 2

∑
|γ|≤3

‖Dγϕ̂ ‖2
L2(∂B) ≤ C

2∑
k=1

(
‖ϕ̃k ‖2

H3(∂B) + ‖τ̃k‖2
H5(∂B)

)
.

(2.31)

Here ϕ̃k = α̃0k/b1k,

α̃0k = ṽk(x,+0) = ln û1(x,+0, ν
(k))− ln û2(x,+0, ν

(k)) = ũ(x,+0, ν(k))Bk(x)

and the function Bk(x) is defined by the formula

Bk(x) =

1∫
0

dη

η û1(x,+0, ν (k)) + (1− η)û2(x,+0, ν (k))

and bounded in B together with all the derivatives up to the third-order. On the other

hand, ũ(x,+0, ν (k)) = f̂
(k)
1 (x,+0) − f̂

(k)
2 (x,+0) on ∂B. Therefore ‖ϕ̃k‖2

H3(∂B) ≤ C‖f̂ (k)
1 −

f̂
(k)
2 ‖2

H3(∂B×{0}). Taking into account this estimate and (2.31), we find that∑
|γ|≤3

‖Dγϕ̂ ‖2
L2(∂B) ≤ Cε̂ 2, (2.32)

where

ε̂ 2 =

2∑
k=1

(
‖f̂ (k)

1 − f̂
(k)
2 ‖2

H3(∂B×{0}) + ‖τ̃k‖2
H5(∂B)

)
.

Taking into account inequalities (2.29), (2.30) and (2.32), we find

‖ϕ̂‖2
H3(B) ≤ C

(
q2
0

2∑
k=1

‖ϕ̃k‖2
H2(B) + ε̃2

)
, (2.33)

where ε̃2 = ε2+ ε̂ 2. Therefore, for sufficiently small q0, noting that ϕ̃2 = ϕ̃1 − ϕ̂, we can absorb

q2
0‖ϕ̂‖2

H2(B) into the left hand side, so that we have

‖ϕ̂‖2
H3(B) ≤ C

(
q2
0‖ϕ̃1‖2

H2(B) + ε̃2
)
. (2.34)

Then from (2.22), (2.24) and (2.27), it follows that

max
k=1,2

‖τ̃k‖2
H3(B) ≤ C

(
‖ϕ̃1‖2

H2(B) + ε̃2
)
, (2.35)

‖q̃‖2
L2(B) ≤ C

(
‖ϕ̃1‖2

H2(B) + ε̃2
)
, ‖c̃‖2

H2(B) ≤ C
(
‖ϕ̃1‖2

H2(B) + ε̃2
)
. (2.36)
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Hence, for completing the proof, it is sufficient to estimate ‖ϕ̃1‖2
H2(B) through the data of the

inverse problem. For this, use relations (2.25) and (2.27) again. By equations (2.27) we have

∇τ̃1 · ρ1 −∇τ̃2 · ρ2 = 0. (2.37)

We can reqrite equations (2.25) in the form

∇ϕ̃1 · ρ1 +∇τ̃1 · b31 +∆τ̃1 = 0,
∇ϕ̃1 · ρ2 −∇ϕ̂ · ρ2 +∇τ̃2 · b32 +∆τ̃2 = 0.

(2.38)

Applying the operator ρ1 ·∇ to the first equation in (2.38) and the operator ρ2 ·∇ to the second

one and subtracting, we find the equation for ϕ̃1 in the form

Lϕ̃1 := ρ1 · ∇(∇ϕ̃1 · ρ1)− ρ2 · ∇(∇ϕ̃1 · ρ2) = h(x), (2.39)

where

h(x) = ρ2 · ∇(−∇ϕ̂ · ρ2 +∇τ̃2 · b32 +∆τ̃2)− ρ1 · ∇(∇τ̃1 · b31 +∆τ̃1). (2.40)

Recall that ρk := b2k = ∇(τ1 + τ2)(x, ν
(k)). By Lemma 1.1, we obtain

‖∇τ(x, ν)− ν‖C17(B) ≤ Cq0.

One can easily prove a similar estimate for the function ρk, namely,

‖ρk − 2ν (k)‖C17(B) ≤ Cq0, k = 1, 2. (2.41)

Since ν(1) and ν(2) are linearly independent, it follows that ρ1 and ρ2 are also linearly indepen-

dent in B if q0 > 0 is small. Using relations (2.37) and (2.41), one can prove that

‖h‖2
H1(B) ≤ C

(
‖ϕ̂‖2

H3(B) + q2
0 max

k=1,2
‖τ̃k‖2

H3(B)

)
, (2.42)∥∥∥∥Lϕ̃1 −

(
|ρ1|2∂

2ϕ̃1

∂ρ2
1

− |ρ2|2∂
2ϕ̃1

∂ρ2
2

)∥∥∥∥
H1(B)

≤ Cq0‖ϕ̃1‖H2(B). (2.43)

Here ∂
∂ρk

, k = 1, 2, denotes the derivative along the direction ρk. The linear independence

implies that the principal part of L is a second-order hyperbolic operator in R
2. Therefore

‖ϕ̃1‖2
H2(B) ≤ C

(
‖Lϕ̃1‖2

H1(B) + ‖ϕ̃1‖2
H2(∂B)

)
. (2.44)
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Taking into account estimates (2.42) and (2.43), we obtain

‖ϕ̃1‖2
H2(B) ≤ C

(
‖ϕ̂‖2

H3(∂B) + ‖ϕ̃1‖2
H2(∂B)

+q2
0

(‖ϕ̃1‖2
H2(B) +max

k=1,2
‖τ̃k‖2

H3(B)

))
. (2.45)

Using relations (2.32), (2.34), (2.35) and the smallness of q0, we obtain the final estimate

‖ϕ̃1‖2
H2(B) ≤ Cε̃2. (2.46)

Then relations (2.36) lead to estimate (1.5). �
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