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Abstract. For a linearized Benjamin-Bona-Mahony equation:

∂tu − ∂2
x∂tu = p(x, t)∂xu + q(x, t)u, x ∈ (0, 1), 0 < t < T,

we prove a unique continuation property by a Carleman estimate. The main result is:

if u(1, t) = ∂xu(1, t) = 0 for t ∈ (0, T ) and u(x, 0) = 0 for x ∈ (0, 1), then u(x, t) = 0
for (x, t) ∈ (0, 1) × (0, T ).

§1. Introduction.

We consider a linearized Benjamin-Bona-Mahony equation:

∂tu(x, t)− ∂2
x∂tu(x, t) = p(x, t)∂xu(x, t) + q(x, t)u(x, t), 0 < x < 1, 0 < t < T.

(1.1)

Here we assume that

p ∈ L∞((0, 1)× (0, T )), q ∈ L∞(0, T ;L2(0, 1)). (1.2)

Here and henceforth, we set

∂x =
∂

∂x
, ∂2

x =
∂2

∂x2
, ∂t =

∂

∂t
.
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We discuss a unique continuation property: for some open subset ω ⊂ (0, 1), can

we conclude that

u(x, t) = 0 for (x, t) ∈ ω × (0, T ) or u(1, t) = ∂xu(1, t) = 0 for t ∈ (0, T )

implies that u(x, t) = 0 for (x, t) ∈ (0, 1)× (0, T )? (1.3)

However, this is not necessarily true, as is pointed out in Zhang and Zuazua [11]:

let p = q ≡ 0, and let us take u(x, t) = u0(x) �≡ 0, a t-independent function such

that u0 ∈ C∞
0 (0, 1) and suppu0 ⊂ (0, 1) \ ω. Then u0 satisfies (1.1), but u0 does

not vanish identically over (0, 1).

This counterexample demonstrates one difficulty in the unique continuation

property which is different from other cases such as the KdV equation. We are

suggested that other boundary condition may guarantee the unique continuation,

as long as we assume that u vanishes in a cylindrical subdomain ω× (0, T ) or that

the lateral Cauchy data (i.e. u(1, t) = ∂xu(1, t) = 0 for t ∈ (0, T )) vanish. In fact,

Zhang and Zuazua [11] proves that (1.3) implies u ≡ 0 in (0, 1)× (0,∞) provided

that u(0, t) = u(1, t) = 0, 0 < t < T and p, q are independent of t.

In this paper, assuming that u(x, 0) = 0, 0 < x < 1, we prove that u(1, t) =

∂xu(1, t) = 0, 0 < t < T , implies u(x, t) = 0, 0 < x < 1, 0 < t < T .

Theorem. Let ∂jx∂
k
t u ∈ C([0, 1]× [0, T ]) with j = 0, 1, 2 and k = 0, 1, satisfy (1.1).

Assume (1.2). If

u(1, t) = ∂xu(1, t) = 0, 0 < t < T (1.4)

and

u(x, 0) = 0, 0 < x < 1, (1.5)
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then u(x, t) = 0, 0 < x < 1, 0 < t < T .

Our proof is based on a Carleman estimate, so that we can prove conditional

stability in the continuation by a usual method (e.g., Isakov [Chapter 3, 5]) and

our argument is valid for a multidimensional analogue

∂tu− ∂t∆u =
n∑
i=1

pi(x, t)
∂u

∂xi
+ q(x, t)u

for x = (x1, ..., xn) ∈ R
n and t ∈ (0, T ). Furthermore we can prove the theorem

under a weaker regularity assumption on u, but, for simplicity, we mainly consider

the classical solution u.

For the Benjamin-Bona-Mahony equation, we can prove the unique continuation

not across the characteristics (e.g., Theorems 3.1 - 3.2 in Davila and Menzala [3]).

For the unique continuation for other dispersive equations such as the KdV equa-

tion, we refer to Isakov [6]. In [3] and [6], the main tool is a Carleman estimate. As

for applications of the Carleman estimate to the unique continuation, we further

refer to Hörmander [4], Isakov [7], Saut and Scheurer [9], Tataru [10].

This paper is composed of three sections. Section 2 is preliminaries where we es-

tablish a simple Carleman estimate and an integral inequality. Section 3 is devoted

to the proof of our main theorem.

§2. Preliminaries.

Let Q ⊂ (0, 1)× (−T, T ) ≡ {(x, t); 0 < x < 1, −T < t < T} be a subdomain such

that the boundary ∂Q is of piecewise C2. Then we have

Lemma 1. Let ϕ ∈ C(R2), and for any T ∈ (−T, T ) let ϕ = ϕ(·, t) ∈ C∞(R)

satisfy

(∂2
xϕ)(x, t) > 0, (x, t) ∈ Q (2.1)
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and

|(∂xϕ)(x, t)| > 0, (x, t) ∈ Q. (2.2)

Then there exist constants C = C(ϕ,Q) > 0 and S = S(ϕ,Q) > 0 such that

∫
Q

(s|∂xu|2 + s3|u|2)e2sϕdxdt ≤ C

∫
Q

|∂2
xu|2e2sϕdxdt (2.3)

for all s > S and u ∈ C2(Q) such that u = ∂xu = 0 on ∂Q.

Proof. We will apply the argument in Bukhgeim [1]. By a usual density argu-

ment, it suffices to prove the lemma for u ∈ C∞
0 (Q). We set v = esϕu and

Lv = −esϕ∂2
x(e

−sϕv). Then [the right-hand side of (2.3)] = C
∫
Q
|Lv|2dxdt, and

for the proof, it is sufficient to prove that

∫
Q

(s|∂xv|2 + s3|v|2)dxdt ≤ C

∫
Q

|Lv|2dxdt.

We directly calculate:

Lv = −∂2
xv + 2s(∂xϕ)(∂xv) + (s(∂2

xϕ)− s2(∂xϕ)2)v.

Formally we calculate the adjoint operator L∗ of L to obtain

L∗v = −∂2
xv − 2s(∂xϕ)(∂xv)− (s(∂2

xϕ) + s2(∂xϕ)2)v.

Setting L+ = 1
2
(L+ L∗) and L− = 1

2
(L− L∗), we have L = L+ + L−, so that

‖Lv‖2
L2(Q) = ‖L+v‖2

L2(Q) + ‖L−v‖2
L2(Q) + (L+v, L−v)L2(Q) + (L−v, L+v)L2(Q)

≥(L+v, L−v)L2(Q) + (L−v, L+v)L2(Q) = ((L+L− − L−L+)v, v)L2(Q)

by integration by parts and v = ∂xv = 0 on ∂Q. Here and henceforth we set

(u, v)L2(Q) =
∫
Q
uvdxdt and ‖u‖L2(Q) = (u, u)

1
2
L2(Q).
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Direct calculations yield

(L+L− − L−L+)v = −s(∂4
xϕ)v − 4s(∂3

xϕ)(∂xv)

−4s(∂2
xϕ)(∂

2
xv) + 2s3(∂xϕ)∂x(|∂xϕ|2)v.

Henceforth C > 0 denotes a generic constant which is dependent on ϕ,Q, but

independent of s. By integration by parts and the Schwarz inequality, we have

‖Lv‖2
L2(Q) ≥ 4s3

∫
Q

(∂xϕ)2(∂2
xϕ)v

2dxdt− Cs

∫
Q

v2dxdt

+4s
∫
Q

(∂2
xϕ)|∂xv|2dxdt− C

∫
Q

|∂xv|2dxdt.

Therefore under assumptions (2.1) and (2.2), if we take S > 0 sufficiently large,

then the proof of Lemma 1 is complete.

We arbitrarily choose µ ∈ (0, 1) and δ > 0, and set



ψ(x, t) = 1− (x− (1 + δ))2 −
( |t|
T

)µ
,

ϕ(x, t) = eλψ(x,t) − 1.

(2.4)

If we fix λ > 0 sufficiently large, then ϕ satisfies (2.1) and (2.2) in Q ⊂ (0, 1) ×

(−T, T ). We further set

Q(ε) = {(x, t) ∈ (0, 1)× R; ϕ(x, t) > ε} (2.5)

for ε ≥ 0.

We set

hε(t) = 1 + δ −
(
1− 1

λ
log(1 + ε)−

(
t

T

)µ) 1
2

, t > 0.

Then, for sufficiently large λ > 0 and small ε ≥ 0, we have

Q(ε) = {(x, t) ∈ (0, 1)× R; hε(|t|) < x < 1}. (2.6)
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We can directly verify that (x, t) ∈ Q(ε) implies

|t| < T

(
1− δ2 − 1

λ
log(1 + ε)

) 1
µ

< T. (2.7)

Moreover we can prove the following integral inequality:

Lemma 2. There exists a constant C = C(ϕ, ε, T ) > 0 such that

∫
Q(ε)

∣∣∣∣
∫ t

0

|u(x, η)|dη
∣∣∣∣
2

e2sϕdxdt ≤ C

∫
Q(ε)

|u(x, t)|2e2sϕdxdt

for all s > 0 and u ∈ L2(Q(ε)).

Since for any x ∈ (0, 1), the function ϕ(x, t) is decreasing in t > 0 and increasing

in t < 0, the proof is directly done (e.g., Isakov [p.153, 5], Klibanov [8]). This lemma

was used originally by Bukhgeim and Klibanov [2] for proving the uniqueness in

some inverse problems by Carleman estimates. The lemma is simple but essential

for applications of Carleman estimates to inverse problems. Also see Bukhgeim [1].

§3. Proof of Theorem.

We extend u, p, q to odd functions in t ∈ (−T, T ), which are denoted by the same

notations. Then by (1.5), we see

∂2
x(∂tu)(x, t) = ∂tu(x, t)−p(x, t)∂xu(x, t)−q(x, t)u(x, t), 0 < x < 1, −T < t < T,

(3.1)

and

u(1, t) = ∂xu(1, t) = 0, −T < t < T. (3.2)

The proof is done along the argument towards the unique continuation by means

of a Carleman estimate (e.g., Hörmander [4], Isakov [5]) except for the application

of Lemma 2.
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Let ε > 0 be sufficiently small and let χ = χ(x, t) such that




χ ∈ C∞
0 (R2), 0 ≤ χ ≤ 1,

χ(x, t) =
{

1, (x, t) ∈ Q(2ε)
0, (x, t) ∈ Q(0) \Q(ε).

(3.3)

We set y = uχ. Then ∂jx∂
k
t y ∈ C([0, 1]× [−T, T ]) for j = 0, 1, 2 and k = 0, 1, and

y = ∂xy = 0 on ∂Q(0) (3.4)

by (1.4), (2.6) and (2.7). Moreover we directly see

∂2
x(∂ty)(x, t) = (∂ty)− p(∂xy)− qy + I, (3.5)

where

I = ((∂2
x∂tχ)− ∂tχ+ p(∂xχ))u+ 2(∂x∂tχ)∂xu

+(∂2
xχ)(∂tu) + (∂tχ)∂2

xu+ 2(∂xχ)(∂x∂tu), (x, t) ∈ Q(0). (3.6)

Moreover by (2.6) and (2.7), we see that Q(0) ⊂ (0, 1) × (−T, T ), and (2.1) and

(2.2) are true in Q(0). Consequently, in terms of (3.4), applying Lemma 1 to ∂ty

in (3.5), we have

∫
Q(0)

(s|∂x∂ty|2 + s3|∂ty|2)e2sϕdxdt

≤C

∫
Q(0)

(|∂ty|2 + p2|∂xy|2 + q2y2)e2sϕdxdt+
∫
Q(0)

|I(x, t)|2e2sϕdxdt.
(3.7)

Here and henceforth C > 0 denotes a generic constant which is independent of

s > 0 and m ∈ N. By defintion (3.6) of I, we have I �= 0 only in Q(ε) \Q(2ε), so

that

∫
Q(0)

|I(x, t)|2e2sϕdxdt ≤ Ce4sε max
(x,t)∈[0,1]×[−T,T ]

|I(x, t)|2 ≤ Ce4sε. (3.8)
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On the other hand, by (1.5), we have

(∂xy)(x, t) =
∫ t

0

(∂x∂ty)(x, η)dη, y(x, t) =
∫ t

0

(∂ty)(x, η)dη.

Therefore, by Lemma 2, we obtain

∫
Q(0)

|∂xy|2e2sϕdxdt =
∫
Q(0)

∣∣∣∣
∫ t

0

(∂x∂ty)(x, η)dη
∣∣∣∣
2

e2sϕdxdt

≤C

∫
Q(0)

|(∂x∂ty)(x, t)|e2sϕdxdt (3.9)

and ∫
Q(0)

|y(x, t)|2e2sϕdxdt ≤ C

∫
Q(0)

|(∂ty)(x, t)|2e2sϕdxdt. (3.10)

Noting (2.6), (2.7), the Sobolev embedding and the Schwarz inequality, we have

∫
Q(0)

q2y2e2sϕdxdt =
∫ T (1−δ2)1/µ

−T (1−δ2)1/µ

(∫ 1

h0(|t|)
q2(x, t)y2(x, t)e2sϕ(x,t)dx

)
dt

≤
∫ T (1−δ2)1/µ

−T (1−δ2)1/µ

‖q2(·, t)‖L1(0,1)‖(yesϕ)(·, t)‖2
L∞(h0(|t|),1)dt

≤C‖q‖2
L∞(−T,T ;L2(0,1))

∫ T (1−δ2)1/µ

−T (1−δ2)1/µ

(∫ 1

h0(|t|)
|∂x(yesϕ)(x, t)|2dx

)
dt

≤C

∫
Q(0)

(s2y2 + |∂xy|2)e2sϕdxdt. (3.11)

Applying (3.8) - (3.11) in (3.7), we obtain

∫
Q(0)

(s|∂x∂ty|2 + s3|∂ty|2)e2sϕdxdt

≤C

∫
Q(0)

((1 + s2)|∂ty|2 + |∂x∂ty|2)e2sϕdxdt+ Ce4sε.

Taking s > 0 sufficiently large, we can absorb the first term at the right-hand side

into the left-hand side, so that

∫
Q(0)

(s|∂x∂ty|2 + s3|∂ty|2)e2sϕdxdt ≤ Ce4sε.
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Since Q(3ε) = {(x, t) ∈ (0, 1)× R; ϕ(x, t) > 3ε} ⊂ Q(0), we have

e6sε

∫
Q(3ε)

s3|∂ty|2dxdt ≤
∫
Q(3ε)

(s|∂x∂ty|2 + s3|∂ty|2)e2sϕdxdt ≤ Ce4sε

for all large s > 0. That is,

∫
Q(3ε)

|∂ty|2dxdt ≤ Cs−3e−2sε

for all large s > 0. Taking s −→ ∞, we obtain ∂ty(x, t) = 0 for (x, t) ∈ Q(3ε).

Again, by y(x, 0) = 0, 0 < x < 1, we have y(x, t) = 0 for (x, t) ∈ Q(3ε). Since ε > 0

is arbitrary, we see that y(x, t) = 0 if

(1 + δ)−
(
1−

(
t

T

)µ) 1
2

< x < 1, 0 < t < T (1− δ2)
1
2 .

Since δ > 0 is arbitrary, we have y(x, t) = 0 if 1 − (1− ( tT )µ) 1
2 < x < 1 and

0 < t < T . Next, because µ ∈ (0, 1) is arbitrary, we can let µ tend to 0, so that

y(x, t) = 0 if 0 < t < T and 0 < x < 1. Thus the proof of the theorem is complete.
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