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FIELDS AND ITS APPLICATION TO MODULAR CURVES

TERUYOSHI YOSHIDA

Abstract. We give a geometric bound of a part of the abelian étale fun-
damental group of curves over local fields, in particular in the case of bad
reduction. We apply the result to the modular curve X0(p)/Qp to show that
the unramified abelian covering between X1(p) → X0(p) (Shimura covering)
uses up all the possible ramification over the special fiber.
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1. Introduction

The problem of classifying the abelian étale coverings of a proper smooth curve
is the central problem of the geometric class field theory, and there is an arith-
metical interest when the base field is a number field or a local field. There is a
well-formulated class field theory for these curves (e.g. Kato-Saito[6], Saito[14])
but there are very few examples where the abelian étale coverings are explicitly
classified. The most remarkable known example is the case of modular curve
X0(p) over Q (Mazur[8], Introduction, Theorem (2)), which makes use of the
deep theory of integral Hecke algebras. We give the corresponding result for
X0(p) over Qp, by proving general results for the curves over local fields.

For a proper variety X over a field K, let πab
1 (X) be the abelian étale funda-

mental group of X. There is a natural surjection πab
1 (X) → Gab

K where Gab
K =
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Gal(Kab/K) is the Galois group of the maximal abelian extension of K, and we
denote the kernel by πab

1 (X)geo :

0 �� πab
1 (X)geo �� πab

1 (X) �� Gab
K

�� 0

For a proper smooth geometrically irreducible variety X over a local field K, i.e.
a complete discrete valuation field K with finite residue field F with charF = p,

we showed in our previous paper [15] that πab
1 (X)geo is an extension of Ẑr by

a finite torsion group πab
1 (X)geo

tor . Here the rank r is the F -rank (the dimension
of the maximal F -split subtorus) of the special fiber of the Néron model of the
Albanese variety of X.

In this paper, we confine ourselves in the case of curves, and investigate the
most mysterious part of πab

1 (X)geo
tor , namely πab

1 (X)geo
ram which classifies the abelian

étale coverings of the generic fiber which are “completely ramified over the special
fiber”, defined as follows. Let XF be the special fiber of the proper flat regular
model X over the integer ring OK (Abyhankar[1]). Then we have a natural map
πab

1 (X)geo −→ πab
1 (XF )

geo which is surjective if X has a K-rational point, and
denote the kernel by πab

1 (X)geo
ram :

0 �� πab
1 (X)geo

ram
�� πab

1 (X)geo �� πab
1 (XF )

geo �� 0

Then our main result is :

Theorem 1.1. Assume that X admits a K-rational point.

(i) (Theorem 3.2) The dual of prime-to-p part of the finite abelian group πab
1 (X)geo

ram

injects to the component group Φ of the Néron model of the jacobian variety
of X.

(ii) (Theorem 4.1) Assume moreover that the absolute ramification index e of
K is less than p − 1, charK = 0, and X has semistable reduction over OK .
Then the p-primary part of πab

1 (X)geo
ram vanishes.

Note that if XF is smooth, i.e. X has good reduction, πab
1 (X)geo → πab

1 (XF )
geo

is isomorphic on the prime-to-p part by the proper smooth base change theorem
on H1

et. As πab
1 (XF )

geo can be calculated in principle from the special fiber XF ,
we have control on the whole of πab

1 (X) in the case e < p − 1, charK = 0 and X
has semistable reduction, in terms of the special fiber of the Néron model of the
jacobian of X.

In the latter part of this paper, we give an application of these results to
the modular curve X0(p), where X0(p) is the usual modular curve classifying the
elliptic curves with Γ0(p)-structure (p is a prime). For the curve X0(p)/Qp, above
theorem enables us to compute the group πab

1 (X0(p)/Qp)
geo completely :

Theorem 1.2. πab
1 (X0(p)/Qp)

geo has the following structure :

0 �� Φ(J0(p)) �� πab
1 (X0(p)/Qp)

geo ��
Ẑr �� 0
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where Φ(J0(p)) ∼= πab
1 (X0(p)/Qp)

geo
ram = πab

1 (X0(p)/Qp)
geo
tor is a cyclic group of order

equal to the numerator of p−1
12

, and r = g+h−1
2

where g is the genus of X0(p) and
h is the number of the supersingular points defined over Fp.

Acknowledgements. This work is a part of the author’s master thesis at
University of Tokyo. The author would like to express his sincere gratitude to
his thesis adviser K. Kato for suggesting the problem and his constant encour-
agement.

Notations. Throughout this paper, a local field K means a complete discrete
valuation field with finite residue field F , with charF = p. OK is the integer ring
of K. For any field K, K is a separable closure of K, and GK = Gal(K/K) is the
absolute Galois group of K. For a variety X over any field K, X = X×KSpec(K).

For an abelian group X, its Pontrjagin dual is denoted by X∨ = Hom(X, Q/Z).

Ẑ ∼= ∏
p

Zp is the profinite completion of Z.

For a scheme X over OK , we denote the generic fiber and the special fiber of
X respectively by XK , XF . For any group scheme X, X[m] denotes the kernel of
the multiplication-by-m map, which is also a group scheme. We use the notation
µN = Gm[N ] for the group scheme of N -th roots of unity over an arbitrary base,
without specifying the base scheme.

2. Preliminaries on abelian étale fundamental groups

Here we review some generalities on abelian étale fundamental groups, and fix
the notations.

2.1. Geometric abelian étale fundamental groups. For any noetherian con-
nected scheme X, the étale fundamental group π1(X) is a profinite group clas-
sifying finite étale coverings of X ([SGA1]), and we denote the maximal abelian
quotient by πab

1 (X). When X is a proper variety over a field K, there is an exact
sequence (ibid., Exposé IX, Th. 6.1) :

1 �� π1(X) �� π1(X) �� GK
�� 1(2.1)

where K is a separable closure of K, X = X ×K Spec(K), and GK = Gal(K/K)
is the absolute Galois group of K. Therefore we have surjection πab

1 (X) → Gab
K

where Gab
K = Gal(Kab/K) is the Galois group of the maximal abelian extension

of K, and denote the kernel by πab
1 (X)geo :

0 �� πab
1 (X)geo �� πab

1 (X) �� Gab
K

�� 0(2.2)

Remark 2.1. When X has a K-rational point x, (2.1) and consequently also
(2.2) has a splitting, and πab

1 (X)GK
∼= πab

1 (X)geo where the former group is the
coinvariant with respect to the GK-action by inner automorphisms. In this case,
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πab
1 (X)geo has a geometric interpretation as the group classifying the abelian finite

étale coverings of X in which x splits completely.

Now assume that K is a local field with the finite residue field F with charF = p,
and let X be a proper flat model of X over the integer ring OK , i.e. a proper flat
scheme X → Spec OK with X ×OK

Spec K ∼= X, and let XF = X ×OK
Spec F

be the special fiber. Then we have a canonical surjection :

πab
1 (X) −→ πab

1 (X ) ∼= πab
1 (XF )

Here the latter isomorphism follows by [SGA1] Exposé X, Th. 2.1 (a part of
proper base change theorem for H1

et). We have the corresponding map on the
geometric part by the commutative diagram :

0 �� πab
1 (X)geo

��

�� πab
1 (X)

��

�� Gab
K

��

�� 0

0 �� πab
1 (XF )

geo �� πab
1 (XF ) �� GF

�� 0

(2.3)

Definition 2.2. Denote the kernel of left and middle vertical maps of (2.3) by
πab

1 (X)ram, πab
1 (X)geo

ram respectively. (These groups classify the abelian étale cov-
erings of X which become completely ramified over a part of XF when extended
to the coverings over XF .)

By definition, we have an exact sequence :

0 �� πab
1 (X)geo

ram
�� πab

1 (X)geo �� πab
1 (XF )

geo(2.4)

As πab
1 (X) is the Pontrjagin dual of the étale cohomology group H1

et(X, Q/Z),
we can pass to the dual and translate the above definition into the language of
H1

et. By the Hochschild-Serre spectral sequece, we have a short exact sequence :

0 �� H1(GK , Q/Z) �� H1
et(X, Q/Z) �� H1

et(X, Q/Z)GK �� 0

where (−)GK is the Galois invariant. (Here we used H2(GK , Q/Z) = 0 for local
fields K, and the same holds when we replace K by the finite field F .) We can
view this exact sequence as the Pontrjagin dual of (2.2), and therefore we have a
canonical isomorphism :

(πab
1 (X)geo)∨ ∼= H1

et(X, Q/Z)GK(2.5)

Hence by taking the Pontrjagin dual of the exact sequence (2.4), we have :

Lemma 2.3. Let X be a proper geometrically irreducible variety over a local field
K, and let X be its proper flat model over OK , and denote the special fiber by
XF . Then there is a canonical exact sequence of abelian groups :

H1
et(XF , Q/Z)GF �� H1

et(X, Q/Z)GK �� (πab
1 (X)geo

ram)
∨ �� 0(2.6)
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Remark 2.4. Note that when X has a K-rational point, it gives a splitting of
the exact sequence (2.2), and consequently all the vertical arrows of (2.3) are
surjective, and exact sequences (2.4) and (2.6) turn out to be the short exact
sequences.

2.2. Étale cohomology groups. Here we also review some properties of the
group H1

et(X, Q/Z)GK for a proper geometrically irreducible curve X over a field
K.

First recall that, for “prime to p” part, we have :

Lemma 2.5 ([SGA4], Exposé IX, Corollaire 4.7). Let � �= charK be a prime.
For any proper geometrically connected curve X over a field K, H1

et(X, Q�/Z�) ∼=
Pic0(X)[�∞](−1) as GK-modules.

More generally, considering the long exact sequence induced from the short
exact sequence :

0 �� 1
N

Z/Z �� Q/Z
N �� Q/Z �� 0

we have H1
et(X, 1

N
Z/Z) = H1

et(X, Q/Z)[N ]. As Q/Z = lim−→
N

1
N

Z/Z and the étale

cohomology commutes with the directed inductive limits ([SGA4] Exposé VII,
Théorème 5.7), we deduce that :

H1
et(X, Q/Z) = lim−→

N

H1
et(X,

1

N
Z/Z) =

⋃
N

H1
et(X,

1

N
Z/Z)

(In particular, H1
et(X, Q/Z) is an torsion module.) Therefore we have :

H1
et(X, Q/Z)GK =

⋃
N

H1
et(X, Q/Z)[N ]GK =

⋃
N

H1
et(X,

1

N
Z/Z)GK(2.7)

and can reduce the calculation of H1
et(X, Q/Z)GK to that of H1

et(X, Z/NZ)GK ,
for which we can make use of the following generalization of Lemma 2.5 :

Lemma 2.6 (Milne[10], Theorem 3.9, Proposition 4.16). For any proper geomet-
rically irreducible curve over a field K and integer N ≥ 1, we have a canonical
isomorphism of GK-modules :

H1
et(X, Z/NZ) ∼= Homgp(µN ,Pic0(X)[N ])

where Homgp denotes the GK-module consisting of homomorphisms as group
schemes. In particular, we have :

H1
et(X, Z/NZ)GK ∼= HomK−gp(µN ,Pic0(X)[N ])

where HomK−gp denotes the abelian group consisting of homomorphisms defined
over K.
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Remark 2.7. This interpretation shows that, (πab
1 (X)geo)∨ ∼= H1

et(X, Q/Z)GK is
the maximal µ-type subgroup of Pic0(X) in the terminology of Mazur[8], I-3. This
re-interpretes the Mazur’s theory of the µ-type subgroup of the jacobian of the
modular curves as the theory of πab

1 (X)geo of the modular curves.

3. The prime-to-p part of πab
1 (X)geo

ram

From this section, we assume that X is a proper smooth geometrically irre-
ducible curve over a local field K.

In this case, the proper flat regular model X always exists by Abyhankar[1],
and denote its special fiber by XF . Let J = Pic0(X) be the jacobian variety of
X, and denote the Néron model and its special fiber respectively by J and JF .
The quotient of JF by its connected component of the identity J0

F is a finite étale
group Φ(J) over F , which we call the group of components of J (or of J , by an
abuse of language).

Now we assume that X admits a K-rational point (see Remark 2.4), and our
starting point of the investigation is the following :

Lemma 3.1 (Raynaud[11], [SGA7] Exposé IX, (12.1.12)). Assume that X ad-
mits a K-rational point. Then we have Pic0(XF ) ∼= J0

F as smooth group schemes
over F .

In this section we treat the prime-to-p part of πab
1 (X)geo

ram, and the main result
is stated as follows :

Theorem 3.2. Assume that X admits a K-rational point. Then there is an
injection of finite abelian groups (πab

1 (X)geo
ram)

∨
not p −→ Φ(J), where (−)not p denotes

the prime-to-p part (p = charF ).

In this section, we fix some notations on Galois modules, and give the proof of
the above theorem. As the theorem can be proved by establishing the injectivity
on �-primary parts for each prime number � �= p = charF , we fix an � �= p in the
remainder of this section.

3.1. Galois modules. For any smooth group scheme X of finite type over K,
define pro-� (resp. ind-�) group scheme T�(X) (resp. X[�∞]) by :

T�(X) = lim←−
n

X[�n], X[�∞] = lim−→
n

X[�n]

where X[m] denotes the kernel of the multiplication-by-m map which is an étale
group scheme over K, and inductive (resp. projective) limit is taken with respect
to the canonical inclusions (resp. multiplication-by-� maps). We use the same
notations for group schemes over OK or F . We often identify T�(X), X[�∞] with
the associated Galois modules, which are Z�-modules and satisfies :

X[�∞] ∼= T�(X)⊗ (Q�/Z�), T�(X) = Hom(Q�/Z�, X[�∞])
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Now we fix the notations concerning Galois modules. Let G = GK or GF be the
absolute Galois group, and let M be an arbitrary Z�-module with a continuous
action of G. As usual, we write Z�(1) = T�(Gm), and define the Tate twist M(r)
of M for ∀r ∈ Z by :

M(r) =




M ⊗ Z�(r) (r > 0)

M (r = 0)

Hom(Z�(−r),M) (r < 0)

as Galois modules. M 
→ M(r) gives exact functors of Galois modules for ∀r ∈ Z,
and we have canonical isomorphisms M(r)(s) ∼= M(r + s) for ∀r, s ∈ Z. The
Galois action on Z�(1) is via the cyclotomic character χ : G → Z×� . The Galois
invariant and coinvariant is denoted respectively by MG,MG.

Definition 3.3. The χ-part Mχ of M is defined by Mχ = (M(−1)G)(1). It is
canonically identified with the maximal subgroup of M on which G acts via the
cyclotomic character χ.

Note that the functors M 
→ MG, M 
→ Mχ are both left exact.

3.2. Tate modules of the jacobians of curves. Now we return to the curve
X over a local field K. Applying Lemma 2.5 and Lemma 3.1, we can restate the
Lemma 2.3 in the present case, in view of Remark 2.4, as follows :

Lemma 3.4. For a proper smooth geometrically irreducible curve X over a local
field K which admits a K-rational point, there is a canonical short exact sequence
of abelian groups :

0 �� J0
F [�
∞](−1)GF �� J [�∞](−1)GK �� (πab

1 (X)geo
ram)

∨
�

�� 0

where (πab
1 (X)geo

ram)
∨
� denotes the �-primary part of (πab

1 (X)geo
ram)

∨.

Using the canonical isomorphism M(−1)G ∼= Mχ(−1) of GF -modules, we can
express this lemma by the short exact sequence of GF -modules :

0 �� J0
F [�
∞]χ �� J [�∞]χ �� (πab

1 (X)geo
ram)

∨
� (1)

�� 0(3.1)

Now we relate this group with the component group Φ(J). For this we need
the description of Φ(J) by the Galois module associated to J , stated as follows :

Lemma 3.5 ([SGA7] Exposé IX, Proposition 11.2). For an abelian variety A over
a local field K, denote the Néron model and its special fiber respectively by A , AF .
Let A0

F be the connected component of the identity, and denote the component
group by Φ(A) = AF /A0

F . For any prime � �= charF , there is a canonical isomor-
phism of GF -modules :

Φ(A)� ∼= Coker (T�(A)I ⊗ (Q�/Z�) −→ (T�(A)⊗ (Q�/Z�))
I)

where Φ(A)� is the �-primary part of Φ(A), and (−)I denotes the invariant by
the action of the inertia group I ⊂ GK.



8 TERUYOSHI YOSHIDA

By the canonical isomorphism of GF -modules T�(A)I ∼= T�(A
0
F ) ([SGA7] Exposé

IX, Proposition 2.2.5, (2.2.3.3)), we can restate the above lemma by the short
exact sequence of GF -modules :

0 �� A0
F [�
∞] �� A[�∞]I �� Φ(A)� �� 0(3.2)

Proof of Theorem 3.2. Applying the left exact functor M 
→ Mχ to the short
exact sequence (3.2) for A = J , we have the exact sequence :

0 �� J0
F [�
∞]χ �� J [�∞]χ �� Φ(J)χ�(3.3)

Comparing this with the short exact sequence (3.1), we have a canonical injection
(πab

1 (X)geo
ram)

∨
� −→ Φ(J)χ� (−1). As Φ(J)χ� (−1) ∼= Φ(J)�(−1)G injects to Φ(J)� as

finite abelian groups and � �= p was arbitrary, we have proven the theorem.

4. The p-primary part for low absolute ramification case

As in the previous section, we consider a proper smooth geometrically irre-
ducible curve X over a local field K which admits a K-rational point. Let e ∈ N

denote the absolute ramification index of K, i.e. the normalized valuation of
p = charF in K. In this section, we prove the following :

Theorem 4.1. Assume e < p−1 and charK = 0. If X has semistable reduction
over OK, then (πab

1 (X)geo
ram)p = 0, where (−)p denotes the p-primary part (p =

charF ).

Remark 4.2. This theorem is a generalization of the Prop. 7 of Kato-Saito[6],
where it is proved in the good reduction case. Here we employ a completely
different method of proof.

Our task here is to analyze the H1
et(X, Z/pnZ)GK ∼= HomK−gp(µpn ,Pic0(X)[pn])

(Lemma 2.6). For this purpose, we recall the structure of the pn-torsion points
J [pn] of the jacobian J = Pic0(X), following [SGA7], Exposé IX. In the rest of
this section, we assume that X has semistable reduction over OK . In this case, J
has semistable reduction, i.e. the connected component of the identity J0

F of the
special fiber JF of the Néron model J is a semiabelian scheme over F . Moreover,
if we denote by J 0 the connected component of the identity of J , we know that
J 0[pn] is a quasi-finite group scheme over OK ([SGA7] Exposé IX, Lemme 2.2.1)

Now recall that any quasi-finite group scheme G over OK has the canonical and
functorial decomposition G = G f

∐
G ′ where G f (the fixed part of G ) is finite

flat over OK and G ′ has empty special fiber ([EGA] II,(6.2.6), [SGA7] Exposé IX,
(2.2.3.1)).

Coming back to our case, J 0[pn] has the decomposition :

J 0[pn] = J 0[pn]f
∐

J 0[pn]′
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where J 0[pn]f is a finite flat group scheme. We denote the generic fiber of
J 0[pn]f by J0[pn]f , which is a subgroup of J [pn], the generic fiber of J 0[pn]
(recall (J 0)K = J). Note that J 0[pn], J 0[pn]f have a common special fiber
J0

F [p
n], which is canonically isomorphic to Pic0(XF )[p

n] by Lemma 3.1 (recall the
running hypothesis that X has a K-rational point).

Moreover, we have additional information by the semi-stability hypothesis
([SGA7] Exposé IX, (5.5.8)) :

J [pn]/J0[pn]f ∼= MK ⊗ (Z/pnZ) = (M ⊗ (Z/pnZ))K(4.1)

where M denotes the character group of the toric part of JF , which is an unram-
ified Galois module, free of finite rank over Z. We consider M as an étale group
scheme over OK , therefore justifying the notation MK . (Note that in general we
have to take the corresponding object for the dual abelian variety, but we have
the autoduality of the jacobian in the present case.)

Now we apply the result of Raynaud[12] to obtain the following lemma :

Lemma 4.3. Under the hypothesis e < p − 1 and charK = 0, the following
natural homomorphism is an isomorphism :

H1
et(XF , Z/pnZ)GF

∼= �� H1
et(X, Z/pnZ)GK

Proof. By Lemma 2.6, we have :

H1
et(XF , Z/pnZ)GF ∼= HomF−gp(µpn , J0

F [p
n])

H1
et(X, Z/pnZ)GK ∼= HomK−gp(µpn , J [pn])

By (4.1), we have an exact sequence :

0 �� HomK−gp(µpn , J0[pn]f ) �� HomK−gp(µpn , J [pn])

�� HomK−gp(µpn , (M ⊗ (Z/pnZ))K)

But by Corollaire 3.3.6 of Raynaud[12], we have :

HomK−gp(µpn , (M ⊗ (Z/pnZ))K) ∼= HomOK−gp(µpn ,M ⊗ (Z/pnZ)) = 0

which vanishes simply because µpn is connected and M⊗(Z/pnZ) is étale. There-
fore we have, using [12], Corollaire 3.3.6 again,

HomK−gp(µpn , J [pn]) ∼= HomK−gp(µpn , J0[pn]f ) ∼= HomOK−gp(µpn ,J 0[pn]f )

Therefore it suffices to see that HomOK−gp(µpn ,J 0[pn]f ) ∼= HomF−gp(µpn , J0
F [p

n]),
which is equivalent by Cartier duality ([SGA3] Exposé VIIA, (3.3.1)) to :

HomOK−gp(J
0[pn]f∗, Z/pnZ) ∼= HomF−gp(J

0
F [p

n]∗, Z/pnZ)

where ∗ denotes the Cartier dual G ∗ = Hom(G , Gm). But as Z/pnZ is étale, this
is clear by the Hensel’s lemma (e.g. [EGA] IV, (18.5.12)).
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Proof of Theorem 4.1. By Lemma 2.3, it is enough to show that the canonical
homomorphism H1

et(XF , Qp/Zp)
GF −→ H1

et(X, Qp/Zp)
GK is an isomorphism. But

by exactly the same argument as in (2.7) we have :

H1
et(XF , Qp/Zp)

GF =
⋃
n

H1
et(XF , Qp/Zp)[p

n]GF =
⋃
n

H1
et(XF ,

1

pn
Z/Z)GF

H1
et(X, Qp/Zp)

GK =
⋃
n

H1
et(X, Qp/Zp)[p

n]GK =
⋃
n

H1
et(X,

1

pn
Z/Z)GK

Therefore the desired isomorphism is deduced from the corresponding result in
the each p-power torsion level, namely the Lemma 4.3.

Combining with Th. 3.2, we have :

Corollary 4.4. Assume e < p − 1 and charK = 0. If X admits a K-rational
point and has semistable reduction over OK , then there is an injection of finite
abelian groups (πab

1 (X)geo
ram)

∨ −→ Φ(J).

Remark 4.5. We have the canonical perfect dualiy :

Φ⊗ Φ −→ Q/Z

deduced by the autoduality of the jacobian and [SGA7] Exposé IX, (11.4.1) or
Conjecture 1.3 (proven in this case). This gives the canonical identification Φ ∼=
Φ∨, which enables us to state Cor. 4.4 as the surjection Φ(J) −→ πab

1 (X)geo
ram.

5. The case of the modular curve X0(p)

In this section, we apply the results of preceding section to the modular curve
X0(p)/Qp for a prime p, which is a proper smooth geometrically irreducible curve
over Qp. For the definition and basic properties of the modular curve X0(p), we
refer to Mazur [8]. The result of this section is summarized as follows :

Theorem 5.1. πab
1 (X0(p)/Qp)

geo has the following structure :

0 �� Φ(J0(p)) �� πab
1 (X0(p)/Qp)

geo ��
Ẑr �� 0

where Φ(J0(p)) ∼= πab
1 (X0(p)/Qp)

geo
ram = πab

1 (X0(p)/Qp)
geo
tor is a cyclic group of order

equal to the numerator of p−1
12

, and r = g+h−1
2

where g is the genus of X0(p) and
h is the number of the supersingular points defined over Fp.

Remark 5.2. This result should be interpreted as the local analogue of the the-
orem of Mazur which asserts that πab

1 (X0(p)/Q)geo ∼= Φ(J0(p)) ([8], Introduction,
Theorem (2)). The fact that πab

1 (X0(p)/Q)geo is equal to πab
1 (X0(p)/Qp)

geo
ram =

(πab
1 (X0(p)/Qp)

geo
tor shows that the maximal abelian étale covering of X0(p)/Q

“uses up” all the ramification allowed at the special fiber at p. The origin of this
phenomenon remains to be clarified.



CURVES OVER LOCAL FIELDS 11

5.1. The part πab
1 (X0(p)/Qp)

geo
ram. First, we apply the results of the preceding

sections to determine the part πab
1 (X0(p)/Qp)

geo
ram. As e = 1 for Qp and X0(p)

admits a Qp-rational point (e.g. the ∞-cusp), and moreover X0(p) has semistable
reduction over Zp (Deligne-Rapoport[5], V-6, or Mazur[8], II-1), we know by Cor.
4.4 that (πab

1 (X0(p)/Qp)
geo
ram)

∨ injects to Φ(J0(p)), where J0(p) is the jacobian of
X0(p). By Mazur-Rapoport[9], we know that :

Proposition 5.3 ([9], Theorem (A.1), b)). Φ(J0(p)) is a cyclic group of order
equal to the numerator of p−1

12
.

Because the Shimura covering ([8], Cor. (2.3)) gives a cyclic étale covering of
X0(p)/Qp of order equal to the numerator of p−1

12
, which is by definition completely

ramified over one of the component of the special fiber, we have :

Proposition 5.4. πab
1 (X0(p)/Qp)

geo
ram is isomorphic to Φ(J0(p)).

5.2. The part πab
1 (X0(p)/Fp)

geo. We denote by X0(p)/Zp the minimal regular
model of X0(p)/Qp following [8], and denote the special fiber by X0(p)/Fp. Here
we determine the part πab

1 (X0(p)/Fp)
geo, thereby completing the proof of Th. 5.1.

The result is :

Proposition 5.5. πab
1 (X0(p)/Fp)

geo is a free module of over Ẑ with the rank equal

to g+h−1
2

, where g is the genus of X0(p) and h is the number of the supersingular
points defined over Fp.

Proof. Put G = Gal(Fp/Fp). As each of the component of the special fiber
X0(p)/Fp of X0(p) is (geometrically) isomorphic to P1, we know that Pic0(X0(p)/Fp)
is a torus with the character group canonically isomorphic (as the G-module) to
the first homology group H1(Γ, Z) of the graph Γ of X0(p)/Fp ([SGA7] Exposé
IX, 12.3). This graph is described in Mazur-Rapoport[9], §3. In particular, if
we denote the genus of X0(p) by g, the total number of supersingular points are
g + 1, and H1(Γ, Z) is a free module over Z of rank g.

Now by (2.5), (2.7), and Lemma 2.6, we have :

πab
1 (X0(p)/Fp)

geo ∼= ( ⋃
N

HomFp−gp(µN ,Pic0(X0(p)/Fp)[N ])
)∨

∼= ( ⋃
N

HomG(H1(Γ, Z/NZ), Z/NZ)
)∨

∼= lim←−
N

(
Hom(H1(Γ, Z/NZ)G, Q/Z)∨

)
∼= lim←−

N

H1(Γ, Z/NZ)G

∼= lim←−
N

(
H1(Γ, Z)G ⊗ Z/NZ

) ∼= H1(Γ, Z)G ⊗ Ẑ
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where H1(Γ, Z)G is the G-coinvariant of H1(Γ, Z). The last isomorphism follows
from the fact that H1(Γ, Z)G is clearly a finitely generated Z-module. Now it
only remains to determine the group H1(Γ, Z)G explicitly.

As we know that the vertices of Γ is fixed by G as the irreducible components
are defined over Fp, and the edges of Γ which correspond to the supersingular
points of X0(p) are fixed or interchanged by pairs by the Frobenius automorphism
of G, according to whether the field of definition of the corresponding supersin-
gular point is Fp or Fp2 (these possibilities can be visibly read off from the Table
6 of [2]).

Therefore the Frobenius acts on the basis of the homology group formed by the
pair of the edges corresponding to the pair of supersingular points defined over
Fp2 by multipication by −1, which means that when we take the G-coinvariant,
exactly these bases vanish. Therefore if we denote the number of the supersingular
points defined over Fp and the pairs of supersingular points defined over Fp2

respectively by h and j (therefore g + 1 = h+ 2j), the G-coinvariant of H1(Γ, Z)
is a free module of rank g − j = g+h−1

2
. (This rank is equal to the rank defined

in the general setting in Saito[14], II-Def. 2.5.)
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