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FINITENESS THEOREM IN CLASS FIELD THEORY OF
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Abstract. We show that the geometric part of the abelian étale fundamental
group of a proper smooth variety over a local field is finitely generated over
Ẑ with finite torsion, and describe its rank by the special fiber of the Néron
model of the Albanese variety. As an application, we complete the class field
theory of curves over local fields developed by S.Bloch and S.Saito, in which
the theorem concerning the p-primary part in positive characteristic case has
remained unproven.
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1. Introduction

For a proper smooth geometrically irreducible variety X over a field K, πab
1 (X)

is the maximal abelian quotient of the étale fundamental group π1(X) classifying
finite étale coverings of X ([SGA1]). There is a natural surjection πab

1 (X)→ Gab
K

where Gab
K = Gal(Kab/K) is the Galois group of the maximal abelian extension

of K, and denote the kernel by πab
1 (X)

geo :

0 �� πab
1 (X)

geo �� πab
1 (X)

�� Gab
K

�� 0(1.1)

When X has a K-rational point x, πab
1 (X)

geo has a geometric interpretation as
the group classifying the abelian finite étale coverings of X in which x splits
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completely. For example, Th. 1 of [5] shows that πab
1 (X)

geo is a finite group when
K is an absolutely finitely generated field of characteristic zero.

In this paper, we are interested in the finiteness of the abelian group πab
1 (X)

geo

in the case where K is a local field, i.e. a complete discrete valuation field with
finite residue field. Our main result is follows :

Theorem 1.1. Let K be a complete discrete valuation field with finite residue
field F , and X a proper smooth geometrically irreducible variety over K. Then
πab

1 (X)
geo has the following strucuture :

0 �� πab
1 (X)

geo
tor

�� πab
1 (X)

geo ��
Ẑr �� 0

where πab
1 (X)

geo
tor is a finite group, and r is the F -rank of the special fiber of the

Néron model of the Albanese variety of X.

Here the F -rank of a linear algebraic group over F is the dimension of the
maximal F -split subtorus. In particular, we have :

Corollary 1.2. When X has potentially good reduction, i.e. has a proper smooth
model over the integer ring of some finite extension of K, πab

1 (X)
geo is finite.

The case dimX = 1 had been considered in the literature. Bloch treated the
case of curve X with good reduction when charK = 0 in [1] Prop. 2.4, and S.Saito
shows our theorem for a general curve X except for the p-primary part in the
charK = p > 0 case in [8], Section II-4. The result concerning the remaining
p-primary part had been conjectured by Saito ([8], Remark 4.2 of Section II),
and our theorem in the case of curves answers this question affirmatively. This
enables us to complete the class field theory of curves over local fields developed
in [8] in the positive characteristic case (see below).

The method of Bloch [1] employs in particular the Tate’s theorem on p-divisible
groups, and the method of Saito [8] depends on the two-dimensional class field
theory. Our approach is a direct generalization of the method of Bloch, and
we investigate πab(X)geo directly by the Tate module of Albanese variety, in-
dependently of the class field theory. The main technical tool is the theory
of monodromy-weight filtration of degenerating abelian varieties on local fields
([SGA7]), and the recent result of de Jong [3] which removes the condition on
charK in the Tate’s theorem on p-divisible groups.

In the final section, we complete the proof of the main theorem of class field
theory of curves over local fields of Saito [8], which is stated as follows (For the
definition of V (X), see Section 5) :

Theorem 1.3. Let X be a proper smooth geometrically irreducible curve over a
local field K, and denote the maximal divisible subgroup of V (X) by D. Then the
reciprocity map τ induces an isomorphism of finite groups :

V (X)/D
∼= �� πab

1 (X)
geo
tor
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Here only the p-primary part of πab
1 (X)

geo in the charK = p > 0 case was
remaining, where our finiteness result was the only missing ingredient in the
proof.

Acknowledgements. This work is a part of the author’s master thesis at
University of Tokyo. The author would like to express his sincere gratitude to his
thesis adviser K. Kato for suggesting the problem. This paper could never have
existed without his constant encouragement and inspiring lectures.

Notations. Throughout this paper, K denotes complete discrete valuation
field with residue field F , with charF = p > 0. OK is the integer ring of K. For
any field K, K is a separable closure of K, and GK = Gal(K/K) is the absolute

Galois group of K. For a variety X over K, XK = X ×K Spec(K). Ẑ ∼= ∏
p

Zp is

the profinite completion of Z.

2. Review of monodromy-weight filtration

Here we review Grothendieck’s theory of monodromy-weight filtration on Tate
module of abelian varieties, following [SGA7], Exposé IX, and fix the notations.
In this section the residue field F can be an arbitrary perfect field.

2.1. Raynaud group. Let A be an abelian variety over K, and consider its
Néron model A , which is a smooth group scheme over OK of finite type with A
as its generic fiber. The special fiber AF of A is an extension of the component
group Φ by the connected component A0

F :

0 �� A0
F

�� AF
�� Φ �� 0

The connected component A 0 is a group scheme with A as generic fiber and A0
F

as special fiber.

We assume throughout this section that A has semistable reduction, i.e. A 0
F is

an extension of an abelian variety BF by a torus TF :

0 �� TF
�� A0

F
�� BF

�� 0

The Raynaud group A� of A is a smooth group scheme over OK of finite type
whose connected component A�0 is an extension of an abelian scheme B by an

isotrivial torus T , which is characterized by the property Â� ∼= Â . Here the ·̂
denotes the formal completion along the special fiber. The quotient A�/A�0 is a
finite étale group scheme over OK which we also denote by Φ :

0 �� T �� A�0 �� B �� 0

0 �� A�0 �� A� �� Φ �� 0
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Note that B, T has BF , TF as the special fiber, respectively. We denote the
character group of T by M , which is a group scheme over OK étale locally iso-
morphic to Zr, where r is the dimension of T .

In fact, all we need are the �-divisible groups coming from A�, T, B, so intro-
ducing Raynaud groups is not absolutely necessary for our purposes, but it makes
the exposition simpler.

2.2. Tate realizations and monodromy-weight filtration. For any smooth
group scheme X over OK of finite type and any prime number �, define the
profinite (resp. pro-�) group scheme T (X) (resp. T�(X)) by :

T (X) = lim←−
n

X[n], T�(X) = lim←−
n

X[�n]

where X[m] denotes the kernel of the multiplication-by-m map, which is a quasi-
finite group scheme over OK . We use the same notations for group schemes over
K or F .

Coming back to our case, the generic fiber of T�(A 0) is the �-adic Tate module
T�(A) of A (a pro-� group scheme over K). As there is a canonical and functorial
decomposition A 0[m] = A 0[m]f

∐
A 0[m]′ where A 0[m]f is finite flat over OK

and A 0[m]′ has empty special fiber, we define the fixed part T�(A
0)f by:

T�(A
0)f = lim←−

n

A 0[�n]f ⊂ T�(A
0)

Identifying finite groups over OK with its formal completions, we have canonical
isomorphisms :

T�(A
0)f ∼= T�(Â 0) ∼= T�(Â�0) ∼= T�(A

�0)

and it follows that T�(A
0)f is an �-divisible group (Barsotti-Tate group) over OK ,

in particular a smooth �-adic sheaf if � �= p.

Then we define the toric part T�(A 0)t ⊂ T�(A 0)f by the subgroup scheme
corresponding to T�(T ) ⊂ T�(A

�0) by the above isomorphism, and we have a
filtration on T�(A 0) :

W0 = T�(A
0) ⊃W−1 = T�(A

0)f ⊃W−2 = T�(A
0)t ⊃W−3 = 0

with GrW−1
∼= T�(B). Moreover, if we writeM

∨ for the dual ofM , GrW−2 = T�(T ) ∼=
M∨ ⊗ Z�(1).

To describe the remaining GrW0 -part, we introduce the dual abelian variety A
∗

of A, and let T ∗, B∗,M ∗,A ∗, . . . be the corresponding objects for A∗. By duality,
we have :

T�(A)/T�(A)
t ∼= D(T�(A

∗)f), T�(A)/T�(A)
f ∼= D(T�(A

∗)t)

where D denotes the Cartier dual, i.e. T�(A)/T�(A)
t is the generic fiber of the

dual �-divisible group D(T�(A ∗0)f ), and GrW0 T�(A) ∼= M ∗
K ⊗ Z�.
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The corresponding filtration on the generic fiber T (A) of T (A 0), i.e. the
profinite group T (A), is the monodromy-weight filtration (see [2], §10 for the
treatment in the context of 1-motives) :

W0T (A) = T (A) GrW0 T (A)
∼= M ∗

K ⊗ Ẑ

W−1T (A) = T (A)f GrW−1T (A)
∼= T (BK)

W−2T (A) = T (TK) GrW−2T (A)
∼=M∨

K ⊗ Ẑ(1)

(2.1)

where BK , TK is the generic fiber of B, T respectively. Note that the pro-� part
of each graded part GrWi is realized as the generic fiber of the �-divisible group
over OK , and if F is a finite field and � �= p, the special fiber of GrWi has weight
i as an �-adic GF -representation.

3. Galois coinvariant of the Tate module

From this section, the residue field F is always a finite field with q elements.

Now, for arbitrary abelian variety A over K, we want to analyze the Galois
coinvariant of the Galois module obtained by taking the maximal étale quotient
T et(A) of T (A), i.e. T et(A)GK

. We write T (X)G = T et(X)GK
for any X/K, for

simplicity. The goal of this section is the following :

Proposition 3.1. For an abelian variety A over K, T (A)G has the following
strucuture :

0 �� (T (A)G)tor
�� T (A)G ��

Ẑr �� 0

where (T (A)G)tor is a finite group, and r is the F -rank of the special fiber AF of
the Néron model of A.

First we treat the case where A has semistable reduction (3.1,3.2), where we
have the monodromy-weight filtration 2.1. As the functor (−)et taking maximal
étale quotient is exact, and the functor (−)GK

taking coinvariant of the étale part
is right exact, we have an exact sequence of abelian groups :

(W−1T (A))G �� T (A)G �� (GrW0 T (A))G
�� 0

We will treat (W−1T (A))G and (GrW0 T (A))G separately.

3.1. The part W−1. Our proof of the finiteness of (W−1T (A))G relies on the
celebrated theorem on p-divisible groups :

Theorem 3.2 (Tate[9], de Jong[3]). Let G,H be p-divisible groups on OK , and
GK , HK its generic fibers. Then the natural restriction map Hom(G,H) −→
Hom(GK , HK) is bijective.

Proposition 3.3. (W−1T (A))G is finite.
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Proof. We decompose W−1T (A)G into :

T (TK)G �� (W−1T (A))G �� T (BK)G �� 0

and show the finiteness of T (TK)G and T (BK)G. Note that both T (TK) and
T (BK) is a generic fiber of the profinite group scheme on OK , and the finiteness
of both parts follows in exactly the same manner, following the argument of Bloch
[1]. Decompose them into pro-p part and prime-to-p part :

T (X) = T ′(X)× Tp(X), T ′(X) =
∏
��=p

T�(X)

where X is any one of T,B, TK , BK , TF , BF .

First look at T ′(X), which is a product of smooth �-adic sheaves on OK , and
G acts through GF = Gal(F/F ) which is topologically generated by q-th power
Frobenius f . So looking at the special fiber, we have a commutative diagram
with exact rows for X = TF , BF :

X(F )′tor

��

0 �� T ′(X) ��

1−f

��

T ′(X)⊗ Q ��

1−f∼=
��

lim−→
(p,n)=1

X[n] ��

1−f
��

0

0 �� T ′(X) ��

��

T ′(X)⊗ Q �� lim−→
(p,n)=1

X[n] �� 0

T ′(X)G

where X(F )′tor is the prime-to-p part of the torsion subgroup of the group of F -
rational points X(F ) of X. The bijiectivity of the middle vertical arrow follows
from the fact that the eigenvalues of f acting on T ′⊗Q are not equal to 1, because
T ′(TF ), T

′(BF ) has respectively the weight −2,−1. Therefore the snake lemma
gives us the finiteness of T ′(X)G.

Secondly look at Tp(XK) for X = T,B, and suppose Tp(XK)G is not fi-
nite. Because Tp(XK) is a Zp-module, we must have non-trivial homomorphism
Tp(XK)→ Zp, where Zp is the trivial GK-module. By Theorem 3.2, we must have
a non-trivial homomorphism of p-divisible groups Tp(X)→ Zp which necessarily
factors through the maximal étale quotient T et

p (X). This must give a non-trivial
homomorphism T et

p (XF )⊗Q → Qp at the special fiber, but this is a contradiction
because here too the eigenvalue of Frobenius acting on T et

p (XF ) cannot be 1 (For
Tp(BF ), see for example [6]; Tp(TF ) is connected and has no étale quotient!).
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3.2. The part GrW0 . The following proposition completes the proof of Prop. 3.1
in the semistable reduction case (Note that as A and A∗ is isogenous, F -rank of
A∗F is equal to that of AF ) :

Proposition 3.4. (GrW0 T (A))G has the following strucuture :

0 �� ((GrW0 T (A))G)tor
�� (GrW0 T (A))G

��
Ẑr �� 0

where ((GrW0 T (A))G)tor is a finite group, and r is the F -rank of the special fiber
A∗F of the Néron model of A∗.

Proof. By the canonical isomorphism GrW0 T (A)
∼= M ∗

K ⊗ Ẑ (2.1), we have :

(GrW0 T (A))G
∼= (M ∗

K)G ⊗ Ẑ

But for M ∗
K is the generic fiber of the étale group scheme M ∗ over OK which is

the character group of the isotrivial torus T ∗, the action of GK factors through
GF , and (M

∗
K)GK

= (M ∗
F )GF

is a finitely generated Z-module with rank equal to
F -rank of T ∗F .

3.3. Non-semistable case. Now we proceed to the non-semistable case and
finish the proof of Prop. 3.1.

Proof of Proposition 3.1. By the semistable reduction theorem for abelian vari-
eties ([SGA7], Exposé IX, Th. 3.6), there exists a finite Galois extension K ′ of
K over which A acquires a semistable reduction. Put A′ = A ×K Spec(K ′),
and let G′, F ′, T ′, B′,M ′,A ′, . . . be the corresponding objects for A′/K ′. Then
T (A′)G′ = T et(A′)GK′ has the following structure :

0 �� C ′ �� T (A′)G′ �� (M ′∗
K)G′ ⊗ Ẑ �� 0

where C ′ is finite andM ′∗ is the character group of T ′∗. If we put Γ = Gal(K ′/K),
above is an exact sequece of Γ-modules, and by taking Γ-coinvariants we have :

C ′Γ �� T (A)G �� ((M ′∗
K)G′)Γ ⊗ Ẑ �� 0(3.1)

For C ′Γ is finite and (M
′∗
K)G′ is a finitely generated Z-module, it suffices to show

that the rank of T (A)G is equal to the F -rank of A∗F .

This was essentially proven in [8], II-Th. 6.2(1), in the context of treating the
jacobian variety of a curve. We reproduce the argument in a slightly different
way. By looking at the pro-� part of 3.1 for � �= p, it suffices to show that the rank
of T�(A)G is equal to the F -rank of A

∗
F . and use the duality, i.e. the orthogonality

theoem ([SGA7] Exposé IX, Th. 2.4). Fix a prime � �= p, and consider the perfect
duality :

T�(A)× T�(A
∗) −→ Z�(1)

Let I be the inertia subgroup of G, and we have :

T�(A)I × T�(A
∗)I −→ Z�(1)
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where by definition, T�(A
∗)I = W−1T�(A

∗) ∼= T�(A
∗
F ). Moreover, by GF

∼= G/I ,
we have a perfect pairing modulo torsion :

T�(A)G × T�(A
∗
F )

f=q −→ Z�(1)

where f is the Frobenius automorphism and T�(A
∗
F )

f=q is the kernel of f − q · id
in T�(A

∗
F ). Hence the rank of T�(A)G is equal to that of T�(A

∗
F )

f=q.

Now the connected component of A∗F is the extension of an abelian variety B∗F
by a linear algebraic group L∗F , which is itself an extension of a unipotent group
U ∗F by a torus T ∗F . Hence we have an exact sequence :

0 �� T�(T
∗
F )

�� T�(A
∗
F )

�� T�(B
∗
F )

�� 0

and denoting the character group of T ∗F by N∗F , T�(T
∗
F )

∼= N∗∨F ⊗ Z�(1). Taking
the kernel of f − q · id yields the exact sequence:

0 �� (N∗∨F )GF ⊗ Z�(1) �� T�(A
∗
F )

f=q �� T�(B
∗
F )

f=q

We see that the last term is a finite group for T�(B
∗
F ) has weight −1, and the

rank of (N∗∨F )GF is nothing but the F -rank of T ∗F , i.e. F -rank of A
∗
F .

4. Proof of the main theorem

Now we will apply the result of preceding section to the Albanese variety
Alb(X) of a variety X over K. To deduce the theorem 1.1, we need the following
description of πab

1 (XK) :

Lemma 4.1. Let X be a proper smooth geometrically irreducible variety over any
field K which has a K-rational point. Then there is a canonical exact sequence
of GK-modules :

0 �� C �� πab
1 (XK)

�� T et(Alb(X)) �� 0

where C is a finite group, and Alb(X) is the Albanese variety of X over K.

Proof. See [5], III, Lemma 5.

Now we begin the proof of the main theorem :

Theorem 4.2. Let K be a complete discrete valuation field with finite residue
field F , and X a proper smooth geometrically irreducible variety over K. Then
πab

1 (X)
geo has the following strucuture :

0 �� πab
1 (X)

geo
tor

�� πab
1 (X)

geo ��
Ẑr �� 0

where πab
1 (X)

geo
tor is a finite group, and r is the F -rank of the special fiber of the

Néron model of the Albanese variety of X.

First we repeat the argument in [4], Section 3 to prove :
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Lemma 4.3. In the situation of above theorem, πab
1 (X)

geo ∼= πab
1 (XK)GK

.

Proof. The Hochschild-Serre spectral sequece gives an exact sequence :

0 �� H1(GK ,Q/Z) �� H1
et(X,Q/Z)

�� H1
et(XK ,Q/Z)

GK

�� H2(GK ,Q/Z)

But H2(GK ,Q/Z) = 0 by the Tate duality for local fields, and taking the Pontr-
jagin dual gives the exact sequence :

0 �� πab
1 (XK)GK

�� πab
1 (X)

�� Gab
K

�� 0

which shows the isomorphism of the lemma.

Proof of Theorem 4.2. Take a finite Galois extension K ′ of K such that X has a
K ′-rational point. By Lemma 4.1, we have the following exact sequence :

CGK′ �� πab
1 (XK)GK′

�� T et(Alb(X))GK′ �� 0

Now take the coinvariants by Gal(K ′/K) and apply Lemma 4.3 to get the exact
sequence :

CGK
�� πab

1 (X)
geo �� T et(Alb(X))GK

�� 0

As we know that CGK
is finite, the thorem follows by the application of Prop. 3.1

to Alb(X).

5. Application to the class field theory of curves over local

fields

In this section, we give an application to the class field theory of curves over
local fields developed by S. Saito in [8], where the main theorem has been proven
except for the p-primary part in the charK = p > 0 case. By our finiteness result,
we can prove the main theorem also in the remaining case.

For a proper smooth geometrically irreducible curve X over a local field K,
and define the group SK1(X) by :

SK1(X) = Coker

(⊕
x∈P

∂x : K2(K(X)) −→
⊕
x∈P

κ(x)×
)

where P denotes the set of all closed points of X, K(X) is the function field of X,
κ(x) is the residue field at x, and ∂x is the boundary map in algebraic K-theory.
Let V (X) be the kernel of the norm map N : SK1(X) → K×, induced by the
norm map Nκ(x)/K : κ(x)× → K× for each x.

In [8], the reciprocity map :

σ : SK1(X)→ πab
1 (X), τ : V (X)→ πab

1 (X)
geo
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is defined, which makes following diagrams commute :

κ(x)× ��

σx

��

SK1(X)

σ

��
Gal(κ(x)ab/κ(x)) �� πab

1 (X)

V (X) ��

τ

��

SK1(X) ��

σ

��

K×

σK

��
πab

1 (X)
geo �� πab

1 (X)
�� Gal(Kab/K)

(left diagram exists for ∀x ∈ P ) where σx, σK denotes the reciprocity map of local
class field theory. Then the main theorem of the class field theory of X is stated
as follows (cf. [8], Introduction) :

Theorem 5.1. Let D be the maximal divisible subgroup of V (X). Then the
reciprocity map τ induces an isomorphism of finite groups :

V (X)/D
∼= �� πab

1 (X)
geo
tor

Corollary 5.2. Let E be the maximal divisible subgroup of SK1(X). Then the
reciprocity map σ induces an injection :

SK1(X)/E −→ πab
1 (X)

and the quotient of πab
1 (X) by the closure of the image of σ is isomorphic to Ẑr,

where r is the rank of X defined in [8], Section II-2.

The theorem and the corollary is proven in [8] except for the p-primary part
in the charK = p > 0 case.

Proof. The derivation of the corollary from the theorem is carried out in pp. 72-73
of [8], which is valid in our general case also.

For the proof of the theorem. First, note that the rank of X defined in [8],
Section II-2 is equal to the F -rank of the special fiber of the Néron model of
the jacobian variety of X, by [8], II-Th. 6.2(1). By II-Prop. 3.5 of [8] and our
finiteness result Th. 4.2, we know that the reciprocity map τ is a surjection onto
πab

1 (X)
geo
tor．For the determination of Ker τ , proof for the prime-to-charK part

in [8] uses only the finiteness of the image and II-Lemma 5.3 of [8]. But also
for the charK-primary part, Prop. 3 of [4] gives precisely the same result as [8],
II-Lemma 5.3, therefore completing the proof by exactly the same argument.
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