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Abstract. Let k be a function field of one variable over a finite field with the charac-
teristic not equal to two. In this paper, we consider the prehomogeneous representation
of the space of binary quadratic forms over k. We have two main results. The first
result is on the principal part of the global zeta function associated with the prehomo-
geneous vector space. The second result is on a mean value theorem for degree zero
divisor class groups of quadratic extensions over k, which is a consequence of the first
one.

0. Introduction

Let k be a function field of one variable over a finite field and hk be the order of degree
zero divisor class group. We assume that char(k) 6= 2. For a quadratic extension L of
k, we denote by N(DL) the norm of its relative discriminant. In this paper, we will give
a mean value of hL with respect to N(DL).

Our main result is Theorem 6.7. We briefly state our results here. Let q and ζk(s) be
the order of the constant field and the Dedekind zeta function of k. We denote by M

the complete set of places of k, and by qv the absolute norm of v ∈ M. The following
theorem is a special case of Theorem 6.7.

Theorem 0.1.

lim
n→∞

1

q3n

∑

[L:k]=2�
( � L)=q2n

hL = 2hk
hk
q − 1

ζk(2)
∏

v∈ �
(1− q−2

v − q
−3
v + q−4

v ).

Theorems of this kind are called density theorems. Today, many density theorems
are known. Among them, theorems about the asymptotic behavior of the mean value of
the number of equivalence classes of quadratic forms are very classical and studied by
many mathematicians including Gauss, Siegel, and Shintani. The density theorem for
the case of binary quadratic forms is known as Gauss’ conjecture. This was firstly proved
by Lipschitz for imaginary case, and by Siegel for real case. Siegel [11] also proved the
density theorem for integral equivalence classes of quadratic forms in general.

M.Sato and T.Shintani formulated this kind of density problems using the notion of
prehomogeneous vector spaces. In [13], Shintani considered a zeta function associated
with the space of quadratic forms. There, he reproved the Gauss’ conjecture, and im-
proved the error estimate. Shintani [12] also considered the space of binary cubic forms,
and gave the density of the class number of integral binary cubic forms.
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2 TAKASHI TANIGUCHI

Datskovsky and Wright [19], [1], [3], [4] treated the zeta function associated with the
space of binary cubic forms over an arbitrary global field using the adelic language. Then
they obtained the Davenport-Heilbronn [5], [6] density theorem of cubic fields from the
viewpoint of prehomogeneous vector spaces.

Also for the space of binary quadratic forms, Shintani’s global theory was extended to
an arbitrary number field by Yukie [15]. Then Datskovsky [1] carried out the local theory,
and gave an another proof of the Goldfeld-Hoffstein [7] mean value theorem of “class
number times regulator” of quadratic extensions over any fixed number field. However,
the problem for binary quadratic forms over a function field was left unanswered. In
this paper, we will study this case.

For the general process from a prehomogeneous vector space to its density theorem,
see [16] or [17].

This paper is organized as follows. In Section 1, we collect notation we use throughout
this paper. In Section 2, we review structures of the space of binary quadratic forms.
The rational orbit decomposition and the structure of the stabilizers are discussed. In
Sections 3 and 4, we treat the global theory. In Section 3, we define the global zeta
function Z(Φ, s). This is a function of a Schwartz-Bruhat function Φ, and a complex
variable s. The main purpose of this section is to show that it converges if Re(s) is
sufficiently large. In Section 4, we study analytic properties of the global zeta function.
We show its rationality and determine the pole structure. Our main result is Theorem
4.20. The residues at the poles are described by means of some distributions. We later
need its rightmost pole, which is rather simple; it is a constant multiple of Φ̂(0) where

Φ̂ is the Fourier transform of Φ.
In Section 5, we define various invariant measures, and consider local zeta functions.

Then in Section 6, we define certain Dirichlet series and study their analytic properties
by putting together the results we have obtained before. And by using the filtering
process, we obtain a density theorem which is a generalized version of Theorem 0.1.

Our discussion is quite similar to [1], which is the case of number fields. However,
as A.Yukie pointed out at [16], p.12, there is an incomplete argument in his paper.
His choice of the measure on the stabilizer at [1], p.218 is wrong because it does not
satisfy the functorial property, which he implicitly used in [1], p.230. We will correct the
argument in Section 5 following [9]. It is easy to see that our choice can also be applied
to his paper, and the final results of [1] need no modification.

Acknowledgments. The author would like to express his sincere gratitude to his
advisor T.Terasoma for the support and encouragement. The author is also deeply
grateful to A.Yukie, who read the manuscript and gave many helpful suggestions.

1. Notation

Here, we will prepare basic notation. For a finite set X we denote by #X its cardinal-
ity. If f, g are functions on a set Z, and |f(z)| ≤ Cg(z) for some constant C independent
of z ∈ Z, we denote f(z)� g(z). The standard symbols Q,R,C, and Z will denote the
set of rational, real, complex numbers and the rational integers, respectively. If R is any
ring then R× is the group of units of R, and if X is a variety defined over R then XR

denotes its R-points.
Suppose that G is a locally compact group and Γ is a discrete subgroup of G contained

in the maximal unimodular subgroup of G. For any left invariant measure dg on G, we
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choose a left invariant measure dg (we use the same notation, but the meaning will be
clear from the context) on X = G/Γ so that

∫

G

f(g)dg =

∫

X

∑

γ∈Γ

f(gγ)dg.

Throughout this paper, we agree that k denotes any fixed function field of one variable
over a finite field of constants Fq, q 6= 2n. Denote by M the complete set of places of k.
For v ∈M, kv denotes the completion of k at v and | · |v the normalized absolute value
on kv. We denote by Ov, πv and qv, the ring of integers of kv, a fixed uniformizer in Ov,
and the cardinality of Ov/πvOv, respectively.

Returning to k, let g, hk be the genus of k, the order of degree zero divisor class group
of k, respectively. It will be convenient to set

Ck =
hk
q − 1

.

Let ζk(s) denote the Dedekind zeta function
∏

v∈ � (1 − q−1
v )−s of k. It is known that

ζk(s) is a rational function of qs and

lim
s→1

(1− q1−s)ζk(s) = q1− � Ck.

Later, we will consider quadratic extensions of k. For an extension L of k, the symbols
qL, hL,CL and ML are defined in similar way. We will denote by N(DL) the ideal norm
of the relative discriminant of L over k.

Let A,A× be the ring of adeles and the group of ideles of k, respectively. The group
A× is endowed with the idele norm, denoted by |·|� , where |x|� =

∏
v∈ � |xv|v, x =

(xv)v ∈ A×. The field k, identified with a subset of A via the diagonal embedding, forms
a lattice in A. Let A× ⊃ An be the set of elements with idele norm qn. If V is a vector
space over k, let S(V � ),S(Vkv) be the space of Schwartz-Bruhat functions.

We choose a Haar measure dx on A, d×t on A×, dxv on Ov, d
×tv on O×

v , so that
∫

� /k
dx = 1,

∫

� 0/k×
d×t = 1,

∫

Ov

dxv = 1,

∫

O×

v

d×tv = 1,

respectively. We later have to compare the global measure and the product of local
measures. It is well known that

dx = q1− �
∏

v∈ �
dxv and dt = C−1

k

∏

v∈ �
d×tv.(1.1)

Finally, for the sake of convenience , we denote the element G = GL(1) × GL(2) in
the following manner:

n(u) =

(
1,

(
1 0
u 1

))
, d(t, t1) =

(
t,

(
t1 0
0 t1

))
, a(τ) =

(
1,

(
1 0
0 τ

))
.

We note that a(τ)n(u) = n(τu)a(τ).

2. The space of binary quadratic forms

Let V be the 3-dimensional affine space. We define V with the space of binary
quadratic forms via the correspondence:

x = (x0, x1, x2) ∈ V ←→ Fx(z1, z2) = x0z
2
1 + x1z1z2 + x2z

2
2 .
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The group G = GL(1)×GL(2) acts on V from the left, the GL(1)-part acts on V by
the usual scalar multiplication, and the GL(2)-part acts on V by the linear change of
variables. Explicitly, the action of G on V is given by

Fg·x(z1, z2) = tFx(az1 + cz2, bz1 + dz2), g =

(
t,

(
a b
c d

))
∈ G, x ∈ V.

For any field K the space VK is a 3-dimensional vector space over K. The action of
G on V then gives a representation % : G → GL(V ) defined over K. The kernel of % is
a one-dimensional torus T% in the center of G. Let

H = Im(%).

H is a closed reductive subgroup of GL(V ).
For x ∈ V , let P (x) denote the discriminant of Fx:

P (x) = x1
2 − 4x0x2.

For g = (t, ( a bc d )) ∈ G, set χ(g) = t(ad − bc). Since χ(T%) = 1, we can regard χ as a
character on H. It is easy to see that

P (h · x) = (χ(h))2P (x) and det(h) = χ(h)3.

We call a form x non-singular if P (x) 6= 0 and singular otherwise. Let V ′ be the set
of all non-singular forms in V . It is easy to see that two forms in V ′

K are GK-equivalent
if and only if their splitting fields over K are the same. Thus non-singular GK-orbits
in VK are in one-to-one correspondence with the extensions of K of degree less or equal
to two. For x ∈ VK , K(x) denotes the splitting field of x over K. And for x ∈ V ′

K , let
Gx ⊂ G denote the stabilizer subgroup of x, and G◦

x the identity component.

Proposition 2.1. (i) |Gx/G
◦
x| = 2.

(ii) G◦
x =

{
GL(1)×GL(1) K(x) = K,

G◦
x = RK(x)/K(GL(1)) [K(x) : K] = 2.

Proof. Here, we write the summary which will be needed in Section 5. For detail, see
[1].

First for the case K(x) = K. Let Fx(z1, z2) = (pz1 + qz2)(rz1 + sz2), then for g =
(t, ( a bc d )) ∈ G◦

x, ( a bc d ) acts on pz1 + qz2, rz1 + sz2 as scalar multiplications, hence it has
two eigenvectors and they are ( pq ) , ( rs ). Set these eigenvalues α, β, then t = (αβ)−1 and

G◦
x → GL(1)×GL(1) g 7→ (α, β)

gives an isomorphism of groups. Note that g 7→ (β, α) also gives an isomorphism.
Next for the case [K(x) : K] = 2. Let

Fx(z1, z2) = x0z
2
1 + x1z1z2 + x2z

2
2 = x0(z1 + θz2)(z1 + θ′z2),

where θ′ is the Galois conjugate of θ over K. Then for g = (t, ( a bc d )) ∈ G◦
x, ( a bc d ) acts on

z1 + θz2 as scalar multiplication by a+ bθ and t = NK(x)/K(a+ bθ)−1. Now, let

ϕ : G◦
x → GL(1) g 7→ a+ bθ.

Then ϕ is a morphism of linear algebraic groups, defined over K(x), and as an abstract
group, G◦

x(K) ∼= GL(1)K(x). Also note that g 7→ a+ bθ′ gives another isomorphism. �
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3. The global zeta function: definition and convergence

§ 3.1. Definition of the global zeta function. From now on, let k be a function
field of one variable over a finite field of constants Fq such that char(k) 6= 2. Then Hk

becomes a discrete subgroup of H � and Vk a Hk-invariant lattice of V� .

Definition 3.1. Let V ′′
k = {x ∈ V ′

k | [k(x) : k] = 2}. For Φ ∈ S(V� ) and s ∈ C, we

define the global zeta function Z(Φ, s) by

Z(Φ, s) =

∫

H � /Hk

|χ(h)|s�
∑

x∈V ′′

k

Φ(h · x)dh

where dh is a Haar measure on H � that will be normalized in §3.2.

§ 3.2. A Haar measure on H� . Firstly, we describe a Haar measure on G� . Let
G � = KB� be the Iwasawa decomposition, where K is the standard maximal compact
subgroup of G� and B� a Borel subgroup of G � . More precisely, K =

∏
v∈ � Kv,Kv =

GOv , and B = {(t,
(
t1 0
a t2

)
)}.

Every element of B� can be written uniquely as b = d(t, t1)a(τ)n(u), where u ∈
A, t, t1, τ ∈ A×, and it is easy to check that db = |τ |� d×td×t1d

×τdu is a right invariant
measure on B� . We normalize the Haar measure dκ on K by

∫
K
dκ = 1. Then dg = dκdb

gives a normalization of the Haar measure on G� .
Let A(∅) =

∏
v∈ � Ov,A

×(∅) =
∏

v∈ � O
×
v . Note that t, t1, u, τ of the Iwasawa decom-

position g = κd(t, t1)a(τ)n(u) are not unique, but t, t1, τ are unique up to multiplication
by elements of A×(∅) (hence |t(g)|� , |t1(g)|� , and |τ(g)|� are well-defined), and u is
uniquely determined modulo τ−1A(∅).

Recall that H ∼= G/T% where T% = {d(t21, t
−1
1 ) ∈ G}. Define dh on H� by setting

dg = d×t1dh. More explicitly, if we write

h = %(κd(t, 1)a(τ )n(u)),

then
dh = |τ |� dκd×td×τdu.

Let B = %(B) and T = %(T ) where T is the maximal torus in B. In Section 4, we
will compute integrals over H� /Bk and H � /Tk with respect to the measure H� . Such
integrals are explicitly given as follows:

∫

H � /Bk

Ψ(h)dh =

∫

K

dκ

∫

� ×/k×
d×t

∫

� ×/k×
d×τ

∫

� /k
du Ψ(%(κd(t, 1)a(τ )n(u)))|τ |� ,(3.1)

∫

H� /Tk

Ψ(h)dh =

∫

K

dκ

∫

� ×/k×
d×t

∫

� ×/k×
d×τ

∫

�
du Ψ(%(κd(t, 1)a(τ )n(u)))|τ |� ,(3.2)

where Ψ ∈ L1(H� /Bk), L
1(H� /Tk), respectively.

Let T̂k be the subgroup of Hk generated by Tk and ι = %(1, ( 0 1
1 0 )). We will also

consider an integral over H � /T̂k. Note that Tk is a subgroup of T̂k of index 2. In the
same way as [15], p362, we can prove the next lemma.

Lemma 3.2. For u = (uv)v∈ � ∈ A, define

α(u) =
∏

v∈ �
max(1, |uv|v).

Then for g = κd(t, 1)n(u)a(τ ) ∈ G� , |τ(gι)|� = α(u)2|τ(g)|−1
� .
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By this lemma, we can write down the integral over H � /T̂k as follows:

∫

H � /
�

Tk

Ψ(h)dh =

∫

K

dκ

∫

� ×/k×
d×t



∫

� ×/k×
d×τ

|τ |� <α(u)

+
1

2

∫

� ×/k×
d×τ

|τ |� =α(u)



∫

�
du Ψ(%(κd(t, 1)n(u)a(τ ))),

(3.3)

where Ψ ∈ L1(H� /T̂k).

§ 3.3. The convergence of the global zeta function. Firstly, we describe a funda-
mental domain ofH � /Hk. Set Θ2 = {g ∈ GL(2) � ||τ(g)|� < q2 � } and Θ = A××Θ2 ⊂ G � .
Then by a reduction theorem of Harder [8], ΘGk = G� . The set Θ is invariant under
multiplication by elements of Bk on the right. Hence a fundamental domain of Bk in Θ
contains a fundamental domain of Gk in G� . Then

|Z(Φ, s)| �

∫

%(Θ)/Bk

|χ(h)|
Re(s)
�

∑

x∈V ′′

k

|Φ(h · x)|dh.

Let us describe the fundamental domain of %(Θ)/Bk. [2] Lemma 2.2 immediately leads
to the following.

Lemma 3.3. Every element of %(Θ) is right Bk-equivalent to an element of %(S ), where

S =
⋃

u

⋃

t,τ

Kn(u)d(t, 1)a(τ ) ⊂ G � ,

t, τ run over a set of representative of A×/k×, |τ |� ≤ q2 � , and u runs over a finite set

in A.

Next, we will estimate
∑

x∈V ′′

k
Φ(h · x).

Lemma 3.4. There exists an integer N > 0 such that
∑

x∈V ′′

k
|Φ(d(t, 1)a(τ ) · x)| = 0

whenever |t|� > qN .

Proof. Let x = (x0, x1, x2) ∈ V
′′
k . Suppose

%(d(t, 1)a(τ )) · x =
(
tx0, tτx1, tτ

2x2

)
∈ supp(Φ).

Since supp(Φ) is compact, the first coordinate is bounded, that is, there exists an integer
N > 0 such that |tx0|� ≤ qN . On the other hand, x0 6= 0 follows from x ∈ V ′′

k , and
hence |x0|� = 1. This completes the proof.

We recall the following well known fact.

Lemma 3.5. (i) Let Ψ be a Schwartz-Bruhat function on A. Then,
∑

x∈k

|Ψ(tx)| � max(1, |t|−1
� ),

∑

x∈k×

|Ψ(tx)| � |t|−1
� .

(ii) Let Ψ be a Schwartz-Bruhat function on Affn� . Then there exist Schwartz-Bruhat

functions Ψ1, . . . ,Ψn ≥ 0 such that

|Ψ(x1, . . . , xn)| ≤ Ψ1(x1) · · ·Ψn(xn)

for x1, . . . , xn.

We are now ready to prove
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Theorem 3.6. Z(Φ, s) converges absolutely and locally uniformly in the region of Re(s) >
3. In particular, Z(Φ, s) is a holomorphic function of s in the region.

Proof. Let σ = Re(s). We have

Z(Φ, s)�

∫

� ×/k×
d×t

∫

� ×/k×
d×τ

|τ |� ≤q2

|τ |� |tτ |σ�
∑

x∈V ′′

k

∣∣Φ(tx0, tτx1, tτ
2x2)

∣∣ by Lemma 3.3

=

∫

� ×/k×
d×t

|t|� ≤qN

∫

� ×/k×
d×τ

|τ |� ≤q2

|τ |� |tτ |σ�
∑

x∈V ′′

k

∣∣Φ(tx0, tτx1, tτ
2x2)

∣∣ by Lemma 3.4.

For x = (x0, x1, x2) ∈ V
′′
k , both x0 6= 0 and x2 6= 0. Hence,

�

∫

� ×/k×
d×t

|t|� ≤qN

∫

� ×/k×
d×τ

|τ |� ≤q2

|τ |� |tτ |σ|t|−1|tτ 2|−1 max(1, |tτ |−1
� ) by Lemma 3.5

=

∫

� ×/k×
d×t

|t|� ≤qN+2

∫

� ×/k×
d×τ

|τ |� ≤q2

|τ |� |t|σ� |t/τ |−1
� |tτ |

−1
� max(1, |t|−1

� )

�

∫

� ×/k×

|t|� ≤qN+2

|t|σ−3
� d×t ·

∫

� ×/k×

|τ |� ≤q2

|τ |� d×τ.

Hence, we obtain the desired result.

§ 3.4. The definition of Z+(Φ, s) and Z−(Φ, s). For t ∈ A×, set

λ+(t) =





0, |t|� < 1,
1
2
, |t|� = 1,

1, |t|� > 1,
λ−(t) =





1, |t|� < 1,
1
2
, |t|� = 1,

0, |t|� > 1,

and for h ∈ H� , the same symbol λ+, λ− denotes

λ+(h) = λ+(χ(h)) λ−(h) = λ−(χ(h)).

Using these symbols, define

Z+(Φ, s) =

∫

H � /Hk

|χ(h)|s� λ+(h)
∑

x∈V ′′

k

Φ(h · x)dh,

Z−(Φ, s) =

∫

H � /Hk

|χ(h)|s� λ−(h)
∑

x∈V ′′

k

Φ(h · x)dh.

Then we have

Z(Φ, s) = Z+(Φ, s) + Z−(Φ, s).

Moreover, the following proposition holds. We can obtain this just as in [1] Proposition
2.1, and we omit the proof.

Proposition 3.7. Z+(Φ, s) is a polynomial in qs.
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4. The global zeta function: analytic continuation and the principal

part formula

§ 4.1. The principal part I(Φ, s). Let 〈 〉 : A → C× be a fixed non-trivial additive
character on A trivial on k. Let [ , ] be a nondegenerate symmetric bilinear form on V �

given by

[x, y] = x0y2 −
1

2
x1y1 + x2y0,

and we identify V ∗
� with V� via the pairing (x, y) = 〈[x, y]〉. Then, the lattice Vk ⊂ V �

becomes self-dual. For g = (t, ( a bc d )) ∈ G, set g′ = (t−1, 1
ad−bc

( a bc d )). Then the above
form satisfies

[x, y] = [%(g) · x, %(g′) · y].

Set dy = dy0dy1dy2, for y = (y0, y1, y2) ∈ V � . For Φ ∈ S(V� ), we define the Fourier

transform Φ̂ of Φ by

Φ̂(x) =

∫

V�

Φ(y)(x, y)dy.

Then Φ̂ ∈ S(V � ), and
ˆ̂
Φ(x) = Φ(−x). For h = %(g) ∈ H, set Φh(x) = Φ(h · x) and h′ =

%(g′). Then it is easy to see that the Fourier transform of Φ(h· ) is |χ(h)|−3
� Φ̂(h′· ).

Set Sk = Vk \ V
′′
k , and H0

� = {h ∈ H� | |χ(h)|� = 1}. For n ∈ Z and Φ ∈ S(V� ), we
define Φn(x) = Φ(πnx). Let

I0(Φ) =

∫

H0
� /Hk

(∑

x∈Sk

Φ̂(h′ · x)−
∑

x∈Sk

Φ(h · x)

)
dh,(4.1)

I(Φ, s) =
1

2
I0(Φ) +

∑

n≥1

q−nsI0(Φ−n).(4.2)

Then by applying the Poisson summation formula to Z−(Φ, s), we obtain the following.

Proposition 4.1.

Z(Φ, s) = Z+(Φ, s) + Z+(3− s, Φ̂) + I(Φ, s).

From now on, we will study the integral I0(Φ) in §4.2–§4.8 and then compute I(Φ, s)
in §4.9.

§ 4.2. The smoothed Eisenstein series. To compute I0(Φ), it seems natural to di-
vide the index set Sk of the summation into its Hk-orbits and perform integration sep-
arately. However, we cannot put this into practice because the corresponding integrals
diverge. This is the main difficulty when one calculates the global zeta functions of
the prehomogeneous vector spaces. To surmount this problem Shintani [12] introduced
the smoothed Eisenstein series of GL(2). Then he determined the principal part in the
case of the space of binary cubic forms and the space of binary quadratic forms over Q.
Later A.Yukie [17] generalized the theory of Eisenstein series to the groups of products
of GL(n)’s, and determined the principal part in some more cases. In this subsection,
we essentially repeat their argument in our settings.

For g ∈ G� and z ∈ C, we define the Eisenstein series E(z, g) by

E(z, g) =
∑

γ∈Gk/Bk

|τ(gγ)|
− z+1

2
� .
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This is left KZ(G) � -invariant and right Z(G)� Gk-invariant. Since the kernel of % is
contained in the center of G, we can regard E(z, g) as a function of h ∈ H � . That is to
say, we can write

E(z, h) =
∑

γ∈Hk/Bk

|τ(hγ)|
− z+1

2
� .(4.3)

This series converges for Re(z) > 1 and is, in fact, a rational function of qz/2.
Write h = %(κd(t, 1)a(τ )n(u)). Then E(z, h) depends only on τ, u, and does not

on κ, t. Moreover, E(z, h) is right Hk-invariant, hence its value remains unchanged if
we replace u by u + a for a ∈ k. Hence E(z, h) = Eτ (z, u) has the following Fourier
expansion.

Eτ (z, u) = C0(z, τ) +
∑

a∈k×

Ca(z, τ)〈au〉,(4.4)

where

Ca(z, τ) =

∫

� /k
Eτ (z, u)〈−au〉du.

We define

φ(z) = q1− � ζk(z)

ζk(z + 1)
.

Note that φ(z) is a rational function of qz and is holomorphic in the region Re(z) ≥ 1−δ
for some δ > 0 except for a simple pole at z ∈ C satisfying q1−z = 1. The following
lemma about the Fourier coefficients Ca(z, τ) is well known and we omit the proof.

Lemma 4.2. (i) The constant term C0(z, τ) has the following explicit formula.

C0(z, τ) = |τ |
− z+1

2
� + |τ |

z−1
2

� φ(z).

(ii) Let [τ ] =
∑

v∈ � (ordv(τ))v denote the divisor of τ , and c a canonical divisor, as-

sociated with the character 〈·〉. Then, Ca(z, τ) = 0 for all a 6∈ L(c − [τ ]). If

a ∈ L(c− [τ ]), a 6= 0, then

Ca(z, τ) = |τ |
z−1
2

�
Pa(z, τ)

ζk(z + 1)
,

where Pa(z, τ) is a polynomial in q−z. In particular, Ca(z, τ) is a holomorphic

function of z in the half-plane Re(z) > 0.

Note that the number of a ∈ k× such that a ∈ L(c − [τ ]) is finite. From this, we
immediately obtain the following.

Corollary 4.3. The function E(z, τ) is holomorphic in the region Re(z) > 0 with an

exception of a simple pole at z ∈ C satisfying q1−z = 1, and

lim
z→1

(1− q1−z)E(z, τ) = lim
z→1

(1− q1−z)φ(z) =
q2−2 � Ck

ζk(2)
.

We denote the value in the formula of Corollary 4.3 by ρ0. Let ψ be an entire function
such that for any c1, c2 ∈ R and N > 0,

sup
c1<Re(w)<c2

(
1 + |w|N

)
|ψ(w)| <∞.
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Let Re(w) > 1. Following [12], we define the smoothed Eisenstein series E (w, h) by

E (w, h) =
1

2πi

∫

Re(z)=r

E(z, h)

w − z
ψ(z)dz(4.5)

for some 1 < r < Re(w). Note that this integral does not depend on the choice of r.
Similarly as E(z, h), E (w, h) has the Fourier expansion

E (w, h) =
∑

a∈k

Ca(w, τ)〈au〉,

where

Ca(w, τ) =
1

2πi

∫

Re(z)=r

Ca(z, τ)

w − z
ψ(z)dz.

This E (w, h) satisfies the following property.

Lemma 4.4. (i) As a function of w, E (w, h) is holomorphic in the region Re(w) > 1.

(ii) For any w such that Re(w) > 1, E (w, h)� |τ(h)|
(Re(w)−1)/2
� .

(iii) limw→1+0(1− q
1−w)E (w, h) = ρ0ψ(1).

(iv) For any M > 1,

sup
1<Re(w)<M

h∈H�

|(1− q1−w)E (w, h)| <∞.

Since the proof is similar to that of Lemma 3.2 of [2], we omit it. (Note that the
convergence of (iii) is not uniform.) As a result of this, we have the following.

Corollary 4.5. For f ∈ L1(H0
� /Hk),

lim
w→1+0

(1− q1−w)

∫

H0
� /Hk

f(h)E (w, h)dh = ρ0ψ(1)

∫

H0
� /Hk

f(h)dh.

§ 4.3. Decomposition of I0(Φ, w). Set

I0(Φ, w) =

∫

H0
� /Hk

∑

x∈Sk

(
Φ̂(h′ · x)− Φ(h · x)

)
E (w, h)dh.(4.6)

By Corollary 4.5, we have

lim
w→1+0

(1− q1−w)I0(Φ, w) = ρ0ψ(1)I0(Φ).

We have the following lemma on the structure of Sk. This can be easily proved and we
simply state the result here.

Lemma 4.6. Let Sik, i = 0, 1, 2, be the subsets of Vk given by

S0
k = {0}, S1

k = {x ∈ Vk | x 6= 0, P (x) = 0}, S2
k = {x ∈ Vk | k(x) = k, P (x) 6= 0}.

Then Sk = S0
k q S

1
k q S

2
k and moreover,

S1
k = Hk ×Bk

{(0, 0, a)|a ∈ k×}, S2
k = Hk ×

�

Tk
{(0, a, 0)|a ∈ k×}.

Definition 4.7. For i = 0, 1, 2, we define

Ji(Φ, w) =

∫

H0
� /Hk

∑

x∈Si
k

Φ(h · x)E (w, h)dh.
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The next lemma shows that each Ji(Φ, w) converges and is holomorphic in the right
half-plane Re(w) > 1.

Lemma 4.8. The integral
∫

H0
� /Hk

∑

x∈Vk

|Φ(h · x)||E (w, h)|dh

converges absolutely and locally uniformly in the region Re(w) > 1.

Proof. Set Θ0 = {g ∈ Θ||det(%(g))| � = 1}. For |tτ |� = 1 and |τ |� ≤ q2 � , by Lemma 3.5,
∑

x∈Vk

|Φ(%(d(t, 1)a(τ ))x)| =
∑

x∈Vk

|Φ(tx0, tτx1, tτ
2x2)|

� max{1, |t|−1
� }max{1, |tτ |−1

� }max{1, |tτ 2|−1
� } � |τ |

−1
� .

Then, by Lemma 4.4(ii), the integral is bounded by a constant multiple of
∫

K

dκ

∫

� ×/k×
d×t

∫

� ×/k×
d×τ

|tτ |� =1,|τ |� ≤q2

∫

� /k
du |τ |

Re(w)−1
2

� =

∫

� ×/k×

|τ |� ≤q2

|τ |
Re(w)−1

2
� d×τ <∞.

Note that if h ∈ H0
� , h = h′. Then, by Lemma 4.6, we have the following.

Proposition 4.9.

I0(Φ, w) = J0(Φ̂, w)− J0(Φ, w) + J1(Φ̂, w)− J1(Φ, w) + J2(Φ̂, w)− J2(Φ, w).(4.7)

From now on, we will compute J0, J1, J2 in §4.4,4.5,4.7, respectively. For this purpose,
we will introduce some notation. For meromorphic functions f1(w), f2(w), we will use
the notation f1 ∼ f2 if f1 − f2 can be continued meromorphically to a right half plane
Re(w) > 1− σ for some σ > 0 and becomes holomorphic in the region.

§ 4.4. Computation of J0(Φ, w).

Proposition 4.10.

J0(Φ, w) ∼ Φ(0)
ψ(w)

1− q
1−w

2

.

Proof. By the formula of §3.2,(3.1), we have

J0(Φ, w) = Φ(0)

∫

H0
� /Hk


 1

2πi

∫

Re(z)=r

∑
γ∈Hk/Bk

|τ(hγ)|
− z+1

2
�

w − z
ψ(z)dz


 dh

= Φ(0)

∫

H0
� /Bk

(
1

2πi

∫

Re(z)=r

|τ(h)|
− z+1

2
�

w − z
ψ(z)dz

)
dh

= Φ(0)

∫

� ×/k×
d×t

∫

� ×/k×
d×τ

|tτ |� =1

∫

� /k
du

(
1

2πi

∫

Re(z)=r

|τ |
− z+1

2
�

w − z
ψ(z)dz

)
|τ |� .
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By replacing τ by τ/t,

= Φ(0)

∫

� ×/k×
d×t

(
1

2πi

∫

Re(z)=r

|t|
z−1
2

�

w − z
ψ(z)dz

)

= Φ(0)

(∫

� +/k×
d×t+

∫

� −/k×
d×t

)(
1

2πi

∫

Re(z)=r

|t|
z−1
2

�

w − z
ψ(z)dz

)
,

where, A+ = {t ∈ A×||t|� > 1},A− = {t ∈ A×||t|� ≤ 1}. Let r1 < 1. The former
integral is equal to

∫

� +/k×
d×t

1

2πi

∫

Re(z)=r1

|t|
z−1
2

�

w − z
ψ(z)dz =

∞∑

m=1

1

2πi

∫

Re(z)=r1

q
z−1
2
m

w − z
ψ(z)dz

=
1

2πi

∫

Re(z)=r1

(q
1−z
2 − 1)−1

w − z
ψ(z)dz

and is holomorphic for Re(w) > r1. Hence,

J0(Φ, w) ∼ Φ(0)

∫

� −/k×
d×t

1

2πi

∫

Re(z)=r

|t|
z−1
2

�

w − z
ψ(z)dz

= Φ(0)
1

2πi

∫

Re(z)=r

(1− q
1−z
2 )−1

w − z
ψ(z)dz

= Φ(0)
ψ(w)

1− q
1−w

2

+ Φ(0)
1

2πi

∫

Re(z)=r2>Re(w)

(1− q
1−z
2 )−1

w − z
ψ(z)dz

∼ Φ(0)
ψ(w)

1− q
1−w

2

.

We have thus proved the proposition.

§ 4.5. Computation of J1(Φ, w). For Φ ∈ S(V� ), we define MΦ ∈ S(V� ) by

MΦ(x) =

∫

K

Φ(%(κ) · x)dκ.(4.8)

Since Z(Φ, s) = Z(MΦ, s), we assume that Φ = MΦ for the rest of this section.
For Ψ ∈ S(A) and s ∈ C, Tate’s zeta function Σ(Ψ, s) is defined by

Σ(Ψ, s) =

∫

� ×

|t|s� Ψ(t)d×t.(4.9)

It is well known (see [14],[18]) that Σ(Ψ, s) can be written as follows:

Σ(Ψ, s) = P (Ψ, s) +
Ψ̂(0)

1− q1−s
−

Ψ(0)

1− q−s
,(4.10)

where P (Ψ, s) is a polynomial in qs, q−s.
For Φ ∈ S(V� ), define R1Φ ∈ S(A) as R1Φ(t) = Φ(0, 0, t).

Proposition 4.11.

J1(Φ, w) ∼ φ(w)ψ(w)Σ

(
R1Φ,

w + 1

2

)
.
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Proof. By Lemma 4.6 and the formula §3.2,(3.2), we have

J1(Φ, w) =

∫

H0
� /Hk

∑

γ∈Hk/Bk

∑

a∈k×

Φ(hγ · (0, 0, a))E (w, h)dh

=

∫

H0
� /Bk

∑

a∈k×

Φ(h · (0, 0, a))E (w, h)dh

=

∫

K

dκ

∫

� ×/k×
d×t

∫

� ×/k×
d×τ

|tτ |� =1

∫

� /k
du
∑

a∈k×

Φ(%(κ) · (0, 0, atτ 2))E (w, a(τ)n(u))|τ |�

=

∫

� ×

d×t

∫

� ×/k×
d×τ

|tτ |� =1

R1Φ(tτ 2)C0(w, τ)|τ |� .

Here, in the last expression, we replaced E (w, h) by C0(w, τ) by the orthogonality of
characters. By replacing τ by τ/t and afterwards t by τ 2/t, we have

J1(Φ, w) =

∫

� ×

d×t

∫

� ×/k×
d×τ

|τ |� =1

R1Φ(t)C0

(
w,

t

τ

)
|
t

τ
|�

=

∫

� ×

d×t R1Φ(t)
1

2πi

∫

Re(z)=r

|t|
− z−1

2
� + |t|

z+1
2

� φ(z)

w − z
ψ(z)dz.

We now break the above integral into two parts. Let r1 < −1. The first part is equal to

1

2πi

∫

Re(z)=r1

Σ

(
R1Φ,−

z − 1

2

)
ψ(z)

w − z
dz.

By the theory of Tate’s zeta function, Σ
(
R1Φ,−

z−1
2

)
is a holomorphic function in the

region Re(z) < −1. Therefore this part is an entire function of w. Hence,

J1(Φ, w) ∼
1

2πi

∫

Re(z)=r

Σ

(
R1Φ,

z + 1

2

)
φ(z)

w − z
ψ(z)dz

∼ φ(w)ψ(w)Σ

(
R1Φ,

w + 1

2

)
.

§ 4.6. Unstable distributions. Here, we introduce some distributions and consider
its analytic properties, which will be needed later. The results in this subsection are
essentially due to [15] Section 2.
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Definition 4.12. For s, w ∈ C and Ψ ∈ S(Aff2
� ), we define

T (Ψ, s, w) =

∫

� ×

∫

�
|t|s� α(u)−wΨ(t, tu)dud×t,

T+(Ψ, s, w) =

∫

� ×

∫

�
λ+(t)|t|s� α(u)−wΨ(t, tu)dud×t,

T−(Ψ, s, w) =

∫

� ×

∫

�
λ−(t)|t|s� α(u)−wΨ(t, tu)dud×t,

T 0(Ψ, w) =

∫

� 0

∫

�
α(u)−wΨ(t, tu)dud×t,

where α(u) is introduced in §3.2.

Lemma 4.13. (i) T+(Ψ, s, w) converges absolutely and locally uniformly for all s, w ∈
C, and T−(Ψ, s, w) converges absolutely and locally uniformly for all Re(s)+Re(w) >
2,Re(s) > 2. In particular, T 0(Ψ, w) converges absolutely and locally uniformly for

all w ∈ C.

(ii) As a function of s, T+(Φ, s, w) is a polynomial in qs.

Proof. Let σ = Re(s), σ1 = Re(w). Let f, g ≥ 0 be Schwartz-Bruhat functions on A

such that |Ψ(x1, x2)| ≤ f(x1)g(x2) for x1, x2 ∈ A. By changing u to ut−1, we have

T−(Ψ, s, w)�

∫

� ×/k×
d×t

∫

�
du λ−(t)|t|σ−1

�

∑

x∈k×

f(tx)g(u)α(t−1x−1u)−σ1.

Also, the same argument as the proof of Lemma 3.4 shows that there exists an integer
N > 0 such that

T+(Ψ, s, w)�

∫

� ×/k×
d×t

|t|� ≤qN

∫

�
du λ+(t)|t|σ−1

�

∑

x∈k×

f(tx)g(u)α(t−1x−1u)−σ1.

Let C1 = supp f, C2 = supp g. We will give an estimate α(t−1x−1u)−σ1 for t ∈ A×, x ∈
k×, u ∈ A such that tx ∈ C1, u ∈ C2. Since α(·) ≤ 1, we have α(t−1x−1u)−σ1 ≤ 1 if
σ1 ≥ 0. Let σ1 ≤ 0. By the definition of α(·), we have

α(t−1x−1u) =
∏

v∈ �
sup(1, |t−1x−1u|v)

=
∏

v∈ �
|t−1x−1|v sup(|tx|v, |u|v) = |t|−1

�

∏

v∈ �
sup(|tx|v, |u|v).

Since C1, C2 are compact,
∏

v∈ � sup(|tx|v, |u|v) is bounded by a constant. Hence,

α(t−1x−1u)−σ1 � |t|σ1
�

Therefore (i) follows from Lemma 3.5.
Let Ψn(·) = Ψ(πn·). Then we have

T+(Ψ, s, w) =
1

2
T 0(Ψ, w) +

N∑

n=1

qnsT 0(Ψn, w).

This establishes (ii).
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From now on, we will give the explicit formula of T (Ψ, s, w). Since α(u) is a product
of local factors αv(u), we can also define local distributions Tv for Ψv ∈ S(k2

v):

Tv(Ψv, s, w) =

∫

k×v

∫

kv

|tv|
s
vαv(uv)

−wΨv(tv, tvuv) duvd
×tv.

Then by (1.1),

T (Ψ, s, w) = q1− � C−1
k

∏

v∈ �

Tv(Ψv, s, w)

for Ψ =
∏

v∈ � Ψv. We recall Proposition 2.8 and 2.9 of [15].

Lemma 4.14. (i) Tv(Ψv, s, w) converges absolutely and locally uniformly in the region

Re(s) + Re(w) > 1,Re(s) > 0, and is holomorphic in the region.

(ii) If Ψv is the characteristic function of O2
v,

Tv(Ψv, s, w) =
1− q

−(s+w)
v

(1− q−sv )(1− q
−(s+w−1)
v )

.

(iii) For any Ψv, (1− q−sv )(1− q
−(s+w−1)
v )Tv(Ψv, s, w) becomes a polynomial in q±sv , q±wv .

This lemma implies

Lemma 4.15. T (Ψ, s, w) is holomorphic in the region Re(s) + Re(w) > 2,Re(s) > 1,
and moreover, is a rational function of q−s, q−w. More precisely, suppose that Ψ = ⊗Ψv

and that S a finite set of places such that Ψv are the characteristic functions of O2
v for

v 6∈ S, then

T (Ψ, s, w) = TS(Ψ, s, w)
ζk,S(s)ζk,S(s+ w − 1)

ζk,S(s+ w)
,

where TS(Ψ, s, w) = q1− � C−1
k

∏
v∈S Tv(Ψv, s, w) and

ζk,S(s) =
∏

v 6∈S

(1− q−sv )−1

is the truncated Dedekind zeta function.

Let us define the distribution T̃ (Ψ, s) by

T̃ (Ψ, s) =
1

log q

d

dw
T (Ψ, s, w)|w=0.

Also we define T̃+(Ψ, s), T̃−(Ψ, s) in similar way. These are rational functions of qs. For
later purposes, we will state the pole structure of T̃ (Ψ, s). Since

T̃ (Ψ, s) = ζk,S(s−1)
d

dw
TS(Ψ, s, w)|w=0+TS(Ψ, s, 0)

(
ζ ′k,S(s− 1)− ζk,S(s− 1)

ζ ′k,S(s)

ζk,S(s)

)

and hence,

Lemma 4.16. T̃ (Ψ, s) is a rational function of qs, and holomorphic in the region Re(s) >
2. It has at most double pole at s = 2, and (1 − q2−s)2T̃ (Ψ, s) is holomorphic in the

region Re(s) > 1.
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§ 4.7. Computation of J2(Φ, w). For Φ ∈ S(V � ), we defineR2Φ ∈ S(Aff2
� ) byR2Φ(t, u) =

Φ(0, t, u).

Proposition 4.17.

J2(Φ, w) ∼ φ(w)ψ(w)

(
1

1− q
1−w

2

−
1

2

)
T 0

(
R2Φ,

1− w

2

)
.

Proof. By the formula of §3.2,(3.3),

J2(Φ, w) =

∫

H0
� /Hk

∑

γ∈Hk/
�

Tk

∑

a∈k×

Φ(hγ · (0, a, 0))E (w, h)dh

=

∫

H0
� /

�

Tk

∑

a∈k×

Φ(h · (0, a, 0))E (w, h)dh

=

∫

K

dκ

∫

�
du

∫
d×τ

∫

� ×/k×
d×t

|tτ |� =1

∑

a∈k×

Φ(%(κ) · (0, atτ, autτ))E (w, n(u)a(τ))

=

∫

�
du

∫
d×τ

∫

� 0

d×t R2Φ(t, tu)E (w, a(τ)n(
u

τ
)),

where the last transformation can be obtained by changing t to t/τ , and including the
sum

∑
a∈k× into the integration of t. Here, we used the notation

∫
d×τ =

∫

� ×/k×
d×τ

|τ |� <α(u)

+
1

2

∫

� ×/k×
d×τ

|τ |� =α(u)

for simplicity. Now, we show the following claim.

Claim . Set

E
′(w, h) =

∑

a∈k×

Ca(w, τ)〈au〉 = E (w, h)− C0(w, τ).

Then

P1 =

∫

�
du

∫
d×τ

∫

� 0

d×t R2Φ(t, tu)E ′(w, a(τ)n(
u

τ
))

is a holomorphic function of w in the half-plane Re(w) > 0.

Proof of Claim. By the Fourier expansion of the Eisenstein series,

P1 =
∑

a∈k×

∫

�
du

∫
d×τ

∫

� 0

d×t R2Φ(t, tu)Ca(w, τ)〈
ua

τ
〉.

We can see that there are finitely many a’s such that Ca(w, τ) 6= 0 for some τ with
|τ |� < α(u) for the following reason.

(i) For each τ , the number of a’s such that Ca(w, τ) 6= 0 is finite. Moreover, for the
same k×A×(∅)-coset in A× the Fourier coefficients Ca(w, τ) are equal.

(ii) By Lemma 4.2, Ca(w, τ) = 0 for all a ∈ k× when |τ |� < q2−2 � .
(iii) The set {τ ∈ A×/k×A×(∅) | q2−2 � ≤ |τ |� ≤ α(u)} is a finite set.

Therefore, it is enough to prove that each integral in the sum
∑

a∈k× is holomorphic in
the region Re(w) > 0. On the other hand, (ii) implies that the region of integration
with respect to τ is compact. Since Ca(w, τ) is holomorphic in the region Re(w) > 0,
we obtain the claim. �
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Now by the claim above, we have

J2(Φ, w) =

∫

�
du

∫

� 0

d×t

∫
d×τ R2Φ(t, tu)

1

2πi

∫

Re(z)=r

|τ |
− z+1

2
� + |τ |

z−1
2

� φ(z)

w − z
ψ(z)dz.

We break the above integral into two parts. Note that
∫
d×τ |τ |z� =

(
1

1− q−z
−

1

2

)
α(u)z

for Re(z) > 0. Let r1 < −1. Then the first one is equal to
∫

�
du

∫

� 0

d×t R2Φ(t, tu)

∫
d×τ

1

2πi

∫

Re(z)=r1

|τ |
− z+1

2
�

ψ(z)

w − z
dz

=
1

2πi

∫

Re(z)=r1

(
1

1− q
z+1
2

−
1

2

)
T 0

(
R2Φ,

z + 1

2

)
ψ(z)

w − z
dz

and hence, is holomorphic in the region Re(w) > r1. Therefore,

J2(Φ, w) ∼

∫

�
du

∫

� 0

d×t

∫
d×τ R2Φ(t, tu)

1

2πi

∫

Re(z)=r

|τ |
z−1
2

� φ(z)

w − z
ψ(z)dz

= φ(w)ψ(w)

∫

�
du

∫

� 0

d×t R2Φ(t, tu)

∫
d×τ |τ |

w−1
2

�

+

∫

�
du

∫

� 0

d×t

∫
d×τ R2Φ(t, tu)

1

2πi

∫

Re(z)=r2>Re(w)

|τ |
z−1
2

� φ(z)

w − z
ψ(z)dz

= φ(w)ψ(w)

(
1

1− q
1−w

2

−
1

2

)
T 0

(
R2Φ,

1− w

2

)

+

∫

�
du

∫

� 0

d×t

∫
d×τ R2Φ(t, tu)

1

2πi

∫

Re(z)=r2>Re(w)

|τ |
z−1
2

� φ(z)

w − z
ψ(z)dz.

Now, Similarly to P2, we can show that the second part of the last expression is an entire
function of w. Hence we have the proposition. �

§ 4.8. Explicit evaluation of I0(Φ). Now, we turn to I0(Φ). Recall that

lim
w→1+0

(1− q1−w)I0(Φ, w) = ρ0ψ(1)I0(Φ)(4.11)

by Corollary 4.5. We will compute I0(Φ) by using Proposition 4.9 and 4.10, 4.11, 4.17.
Recall that Σ(Ψ1, w) has a simple pole at w = 1, and T 0(Ψ2, w) is holomorphic at
w = 0. We will write their Laurent expansion in q1−w, q−w, respectively, at the values
q1−w = 1, q−w = 1, by

Σ(Ψ1, w) =

∞∑

i=−1

Σ(i)(Ψ1, 1)(1− q1−w)i, T 0(Ψ2, w) =

∞∑

i=0

T 0
(i)(Ψ2, 0)(1− q−w)i.

Obviously, T 0
(0)(Ψ2, 0) = T 0(Φ2, 0), T 0

(1)(Ψ2, 0) = 1
log q

d
dw
T 0(Ψ2, w)|w=0.

Since the limit (4.11) exists, the double poles of the right-hand side of (4.7) at w = 1
cancel out on the whole. Hence we get the following lemma. Note that some straight-
forward calculation also shows the following equality. (See [1].)
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Lemma 4.18.

T 0
(0)(R2Φ̂, 0)− T

0
(0)(R2Φ, 0) = Σ(−1)(R1Φ, 1)− Σ(−1)(R1Φ̂, 1).

Hence, we have

I(Φ, w) ∼
ψ(w)

1− q
1−w

2

(Φ̂(0)− Φ(0))

+ φ(w)ψ(w)

{
Σ(−1)(R1Φ̂, 1)

2
+ Σ(0)(R1Φ̂, 1)−

Σ(−1)(R1Φ, 1)

2
− Σ(0)(R1Φ, 1)

}

− φ(w)ψ(w)
{
T 0

(1)(R2Φ̂, 0)− T
0
(1)(R2Φ, 0)

}
.

Then, together with (4.11), we obtain the following.

Proposition 4.19.

I0(Φ) =
2

ρ0

(Φ̂(0)− Φ(0))

+

{
Σ(−1)(R1Φ̂, 1)

2
+ Σ(0)(R1Φ̂, 1)−

Σ(−1)(R1Φ, 1)

2
− Σ(0)(R1Φ, 1)

}

− T 0
(1)(R2Φ̂, 0) + T 0

(1)(R2Φ, 0).

§ 4.9. The principal part formula.

Theorem 4.20. Suppose that Φ = MΦ. Then Z(Φ, s) is a rational function of qs.
More precisely,

Z(Φ, s) = Z+(Φ, s) + Z+(Φ̂, 3− s) + I(Φ, s),

where Z+(Φ, s) and Z+(Φ̂, 3− s) are polynomials in qs and q−s, respectively, and I(Φ, s)
is given by

2

ρ0

{(
1

2
+

q3−s

1− q3−s

)
Φ̂(0)−

(
1

2
+

q−s

1− q−s

)
Φ(0)

}

+

{(
Σ(−1)(R1Φ̂, 1)

2
+ Σ(0)(R1Φ̂, 1)

)(
1

2
+

q2−s

1− q2−s

)
− Σ(−1)(R1Φ̂, 1)

q2−s

(1− q2−s)2

}

−

{(
Σ(−1)(R1Φ, 1)

2
+ Σ(0)(R1Φ, 1)

)(
1

2
+

q1−s

1− q1−s

)
+ Σ(−1)(R1Φ, 1)

q1−s

(1− q1−s)2

}

− (T̃+(R2Φ̂, 3− s)− T̃
−(R2Φ, s)).

(4.12)

Proof. We will compute I(Φ, s) by (4.2) and Proposition 4.19. Note that Φ̂n(t) =

q−3nΦ̂−n(t). Then we have

Φn(0) = Φ(0), Φ̂n(0) = q−3nΦ̂(0).(4.13)

Also since

Σ(Φn, w) = q−nwΣ(Φ, w), Σ(R1Φ̂n, w) = q−n(3−w)Σ(R1Φ̂, w),
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we have

Σ(−1)(R1Φn, 1) = q−nΣ(−1)(R1Φ, 1),

Σ(0)(R1Φn, 1) = q−nΣ(0)(R1Φ, 1)− nq−nΣ(−1)(R1Φ, 1),

Σ(−1)(R1Φ̂n, 1) = q−2nΣ(−1)(R1Φ̂, 1),

Σ(0)(R1Φ̂n, 1) = q−2nΣ(0)(R1Φ̂, 1) + nq−2nΣ(−1)(R1Φ̂, 1).

(4.14)

Hence, By (4.13) and (4.14), we obtain the first three terms of (4.12). To get the last
term of (4.12), note that simple calculation shows

1

2
T 0(R2Φ, w) +

∑

n≥1

q−nsT 0(R2Φ−n, w) = T−(R2Φ, s, w),

1

2
T 0(R2Φ̂, w) +

∑

n≥1

q−nsT 0(R2Φ̂−n, w) = T+(R2Φ̂, 3− s, w).

(4.15)

On the other hand, by Lemma 4.13, 4.15, T̃+(R2Φ̂, 3− s) and T̃−(R2Φ, s) are rational
functions of qs, and hence Z(Φ, s) is a rational function of qs. This finishes the proof.

We define

R1 =
1

log q

2

ρ0

=
1

log q

2ζk(2)

q2−2 � Ck
.(4.16)

Together with Theorem 4.20 and Lemma 4.16, we obtain the following.

Corollary 4.21. Z(Φ, s) is a rational function of qs, and (1− q3−s)Z(Φ, s) is holomor-

phic in the region Re(s) > 2. Moreover,

Res
s=3

Z(Φ, s) = R1Φ̂(0).

We have the following functional equation for the global zeta function Z(Φ, s).

Corollary 4.22. Let Zad(Φ, s) = Z(Φ, s)− T̃ (R2Φ, s), then Zad(Φ, s) satisfies the func-

tional equation

Zad(Φ, s) = Zad(Φ̂, 3− s).

5. Local theory

§ 5.1. The canonical measure on the stabilizer. For an algebraic group G, Let G◦

denote its identity component. In this subsection, we normalize invariant measures on
Hkv , Hkv/H

◦
xkv
, H◦

xkv
for x ∈ V ′

kv
, and H � /H◦

x � , H◦
x � for x ∈ V ′′

k , following the method of
[9]. We also define a constant bx,v, and compute the volume of H◦

x � /H◦
xk with respect

to this measure (Proposition 5.3).
We define the invariant measure dhv on Hkv similarly as in §3.2. Let Kv = GOv be the

standard maximal compact subgroup ofGkv . For hv ∈ Hkv , let hv = %(κvd(tv, 1)a(τv)n(uv))
be its Iwasawa decomposition. Define an invariant measure dhv on Hkv by dhv =
|τ |vdκvd

×tvd
×τvduv. This normalization is equivalent to

∫
%(Kv)

dhv = 1.

If we write dprh =
∏

v∈ � dhv, then by (1.1) we can see

dh = q1− � C−2
k dprh,(5.1)

where dh is defined in §3.2.
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Next, we choose a left invariant measure dh′x,v on Hkv/H
◦
xkv

for x ∈ V ′
kv

. Let dyv
be the Haar measure on Vkv such that the volume of VOv is one. Note that dyv

|P (yv)|
3/2
v

is a left Hkv -invariant measure on V ′
kv

and Hkv/H
◦
xkv

is a double cover of Hkvx ⊂ V ′
kv

.
Therefore there exists a unique left Hkv -invariant measure dh′x,v on Hkv/H

◦
xkv

such that

for Ψ ∈ L1(Hkvx,
dyv

|P (yv)|
3/2
v

),

∫

Hkvx

Ψ(yv)
dyv

|P (yv)|
3/2
v

=

∫

Hkv/H
◦
xkv

Ψ(h′x,v · x)dh
′
x,v.(5.2)

If hxy ∈ Hkv satisfies y = hxyx and ihxy is the inner automorphism h 7→ h−1
xy hhxy ofHkv ,

then ihxy(H
◦
y kv

) = H◦
xkv

and hence ihxy induces the map ihxy : Hkv/H
◦
y kv
→ Hkv/H

◦
xkv

.
Since the integral on the right hand side of (5.2) depends only on the orbit of x, it follows
that i∗hxy

(dh′x,v) = dh′y,v.

We divide V ′
kv

into three subsets for conveniences. Let

V ′
kv

= V sp
kv
q V ur

kv
q V rm

kv
,

where each subset consists of orbits corresponding to kv, quadratic unramified extension
of kv, and quadratic ramified extension of kv, respectively. Only V rm

kv
has two orbits and

V sp
kv
, V ur

kv
has a single orbit.

If we define

Kx,kv =

{
k×v × k

×
v x ∈ V sp

kv
,

kv(x)
× x ∈ V ur

kv
, V rm

kv
,

then by Proposition 2.1, G◦
xkv

∼= Kx,kv . Let Okv(x) denote the ring of integers of kv(x).
We will normalize the measure dkx,v on Kx,kv so that

∫

O×

v ×O×

v

dkx,v = 1,

∫

O×

kv(x)

dkx,v = 1

for each case. This induces a Haar measure dg′′x,v on G◦
xkv

via the isomorphism G◦
xkv

∼=

Kx,kv . Though there are two isomorphisms ψ
(1)
x,v, ψ

(2)
x,v for each case (see the proof of

Proposition 2.1), since

ψ(1)−1
x,v (O×

v ×O
×
v ) = ψ(2)−1

x,v (O×
v ×O

×
v ) x ∈ V sp

kv
,

ψ(1)−1
x,v (O×

kv(x)) = ψ(2)−1
x,v (O×

kv(x)) x ∈ V ur
kv
, V rm

kv
,

we can define dg′′x,v without ambiguity. Then, define dh′′x,v by setting dh′′x,vd
×t1v = dg′′x,v

via the isomorphism H◦
xkv

∼= G◦
xkv
/Tkv .

The next proposition shows that dh′′x,v satisfies the functorial property. In this sense,
our choice dh′′x,v is canonical.

Proposition 5.1. Suppose that x, y ∈ V ′
kv

and that y = %(gxy)x for some gxy ∈ Gkv .

Let igxy : G◦
y kv
→ G◦

x kv
be the isomorphism given by igxy(g) = g−1

xy ggxy. Then,

dg′′y,v = i∗gxy
(dg′′x,v) and dh′′y,v = i∗%(gxy)(dh

′′
x,v) .(5.3)

Proof. We only consider the case [kv(x) : kv] = 2. We can prove the case kv(x) = kv
similarly. One can easily show that for any gxy, there exist ψx,v, ψy,v such that the
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following diagram is commutative.

G◦
ykv

ψy,v
−−−→ kv(y)

×

gxy

y
∥∥∥

G◦
xkv

ψx,v
−−−→ kv(x)

×

This establishes the first claim and the second claim follows from the observation that
igxy |Tkv

is the identity map. �

Define a constant bx,v > 0 such that dhv = bx,vdh
′
x,vdh

′′
x,v. Then, the following propo-

sition shows that bx,v depends only on the orbit of x.

Proposition 5.2. If x, y ∈ V ′
kv

are in the same Hkv-orbit, then bx,v = by,v.

Proof. Since the group Hkv is unimodular, i∗hx,y
dhv = dhv. Hence,

dhv = by,vdh
′
y,vdh

′′
y,v

= by,vi
∗
hx,y

dh′x,vi
∗
hx,y

dh′′x,v= by,vb
−1
x,vi

∗
hx,y

dhv

= by,vb
−1
x,vdhv .

Therefore bx,v = by,v. �

For x ∈ V ′′
k , Let

dh′x =
∏

v∈ �

bx,vdh
′
x,v, dh′′x =

∏

v∈ �

dh′′x,v

be measures on H� /H◦
x � , H◦

x � , respectively. Then,

dh′xdh
′′
x = dprh.

We will conclude this subsection by computing the volume of H◦
x � /H◦

xk with respect
to the measure dh′′x defined above.

Proposition 5.3. For x ∈ V ′′
k ,
∫

(H◦
x)� /(H◦

x)k

dh′′x = 2
Ck(x)

Ck
.

Proof. Recall that (H◦
x)� /(H◦

x)k
∼= (G◦

x)� /T� (G◦
x)k. One can easily see that the inclusion

(G◦
x)

0
� /T 0

� (G◦
x)k

�

�

//(G◦
x) � /T � (G◦

x)k

has index two, and the sequence

1 −−−→ T 0
� /Tk −−−→ (G◦

x)
0
� /(G◦

x)k −−−→ (G◦
x)

0
� /T 0

� (G◦
x)k −−−→ 1

is exact. Since ∫

T 0
� /Tk

d×t = Ck and

∫

(G◦
x)0� /(G◦

x)k

dg′′x = Ck(x),

we can get ∫

(H◦
x)� /(H◦

x)k

dh′′x = 2

∫

(G◦
x)0� /T

0
� (G◦

x)k

dh′′x = 2
Ck(x)

Ck
.

�
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§ 5.2. Local zeta function. Here, we will define the local zeta function, and compute
the local zeta function and the constant bx,v for some orbital representatives.

Definition 5.4. Let x ∈ V ′
kv

, Φv ∈ S(Vkv), and s ∈ C. We define

Zx,v(Φv, s) = bx,v

∫

Hkv/H
◦
xkv

|χ(h′x,v)|
s
vΦv(h

′
x,vx)dh

′
x,v,

Ωx,v(Φv, s) =

∫

Hkvx

|P (y)|s/2v Φv(y)
dy

|P (y)|
3/2
v

.

The function Ωx,v(Φv, s) is called the local zeta function. By the definition of dh′x,v,

Zx,v(Φv, s) = bx,v

∫

Hkv/H
◦
xkv

|P (h′x,vx)|
s/2
v

|P (x)|
s/2
v

Φv(h
′
x,vx)dh

′
x,v

= bx,v|P (x)|−s/2v Ωx,v(Φv, s).

Since Ωx,v(Φv, s) depends only on the orbit of x, for x, y ∈ V ′
kv

in the same orbit,

Zx,v(Φv, s) =
|P (y)|

s/2
v

|P (x)|
s/2
v

Zy,v(Φv, s).(5.4)

Now, we will express Zx,v and bx,v explicitly for some representative x.

Definition 5.5. We call wv ∈ V
′
kv

a standard orbital representative if

Fwv(z1, z2) =

{
z1z2 wv ∈ V

sp
kv
,

(z1 + θz2)(z1 + θ′z2) wv ∈ V
ur
kv
, V rm

kv
,where Okv(wv) = Ov[θ].

For each orbit in V ′
kv

, we take one of the standard orbital representatives and denote the

fixed set of representatives by SRv.

Note that for a standard orbital representative wv, P (wv) is the discriminant of kv(x)
over kv. Hence,

|P (wv)|v =

{
1 wv ∈ V

sp
kv
, V ur

kv
,

q−1
v wv ∈ V

rm
kv
.

(5.5)

Let Φv,0 be the characteristic function of VOv . Firstly, we will give the explicit formula
of Zwv,v(Φv,0, s). Although our choice of the measure on the stabilizers is different from
that of [1] in general, they coincide for standard orbital representatives. Hence we can use
his result directly. Note that our local zeta functions are bx,v times that of Datskovsky’s.

Proposition 5.6 ([1]Proposition 4.1). For a standard orbital representative wv,

Zwv,v(Φv,0, s) =





1

1− q1−s
wv ∈ V

sp
kv
,

1 + q−s

(1− q−s)(1− q1−s)
wv ∈ V

ur
kv
,

1

(1− q−s)(1− q1−s)
wv ∈ V

rm
kv
.

Secondly, we will give the values of bwv,v. To use Datskovsky’s result, we need some
discussion.
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Lemma 5.7. For a standard orbital representative wv,
∫

%(Kv)∩H◦
wv kv

dh′′wv ,v = 1.

Proof. Here, we only consider the case [kv(wv) : kv] = 2. The case kv(wv) = kv can be
proved similarly. Let N = Nkv(wv)/kv : kv(wv)

× → k×v be the norm map.
Let Fwv(z1, z2) = (z1 + θz2)(z1 + θ′z2). Recall that for g = (t, ( a bc d )) ∈ Gkv , the

condition g ∈ G◦
wvkv

is equivalent to

tN(a+ bθ) = 1, c+ dθ = θ(a+ bθ)

and that the isomorphism ψwv,v : G◦
wvkv

→ kv(wv)
× is defined by g 7→ a + bθ for this g.

This map also gives the isomorphism Tkv
∼= k×v . One can easily see that ψwv ,v(Tkv∩Kv) =

O×
v . We claim that

ψwv,v(G
◦
wvkv
∩ Kv) = Okv(wv)

×.

Let g = (t, ( a bc d )) ∈ G◦
wvkv

∩ Kv. Then N(a + bθ) = t−1 ∈ O×
v and hence we have

a + bθ ∈ Okv(wv)
×. On the other hand, any element of Okv(wv)

× can be written as
γ = a+ bθ with a, b ∈ Ov. For this γ, take t, c, d ∈ kv such that

tN(a+ bθ) = 1, c+ dθ = θ(a+ bθ),

and let g = (t, ( a bc d )) ∈ Gkv . Then, clearly t ∈ O×
v , c, d ∈ Ov, g ∈ G◦

wvkv
, and γ =

ψwv,v(g). Also, P (wv) = P (g · wv) = χ(g)3P (wv) shows χ(g) = t(ad− bc) ∈ O×
v . Hence,

we have g ∈ Kv. This establishes the claim and now by the definition of dh′′wv ,v, we have

∫

%(Kv∩G◦
wv kv

)

dh′′wv ,v =
vol(Okv(wv)

×)

vol(O×
v )

=
1

1
= 1.

�

Proposition 5.8. For a standard orbital representative wv,

bwv,v =
|P (wv)|

3/2
v∫

%(Kv)wv
dxv

.

Proof. Recall that dhv is the measure on Hkv such that vol(%(Kv)) = 1. Hence,

1 =

∫

%(Kv)

dhv = bwv,v

∫

%(Kv)H◦
wv
/H◦

wv

dh′wv ,v

∫

%(G◦
wv

∩Kv)

dh′′wv ,v

= bwv,v

∫

%(Kv)H◦
wv
/H◦

wv

dh′wv ,v

= bwv,v

∫

%(Kv)wv

dxv

|P (xv)|
3/2
v

.

On the other hand, for xv ∈ %(Kv)wv, |P (xv)|v = |P (wv)|v. This finishes the proof. �

Under the above preparation, we can describe bwv ,v. For our purpose, |P (wv)|
3/2
v /bwv,v

(which is equal to
∫
%(Kv)wv

dxv by Proposition 5.8) is more important than bwv,v itself,

and the following proposition gives the desired description.
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Proposition 5.9. For a standard orbital representative wv,

|P (wv)|
3/2
v

bwv ,v
=





1
2
(1− q−2

v ) wv ∈ V
sp
kv
,

1
2
(1− q−1

v )2 wv ∈ V
ur
kv
,

1
2
q−1
v (1− q−1

v )(1− q−2
v ) wv ∈ V

rm
kv
.

This proposition is essentially proved in [1] Proposition 4.2, but he did not give a
detailed account of the argument for determining the volume of each of %(Kv)wv from
the sum for two orbits in V rm

kv
. We can directly determine each volume by following the

argument in [10] Section 4. For the convenience of the reader, we briefly sketch their
argument by indicating the main steps of the proof. Note that the action of Kv = GOv

on VOv induces the action of GOv/
� 2

v
on VOv/

� 2
v
. Let x be one of the standard orbital

representatives in V rm
kv

and denote by x ∈ VOv/
� 2

v
its reduction modulo p2

v.

1. Set D = {y ∈ VOv | y ≡ x(p2
v)}.

2. If y ∈ D, kv(y) = kv(x). Moreover, D ⊂ Kvx.
3. vol(Kvx) = vol(D)#(GOv/

� 2
v
/GOv/

� 2
v,x

).
4. vol(D) = q−6

v , #GOv/
� 2

v
= q6

v(qv − 1)2(q2
v − 1),

5. #GOv/
� 2

v,x
= 2(qv − 1)q4

v .

From this proposition, we can obtain bwv,v easily using (5.5).

6. The mean value theorem

In this section, we will deduce our mean value theorem by putting together the results
we have obtained before. In §6.1, we will see that the global zeta function is approxi-
mately the Dirichlet generating series for the sequence vol(H◦

x � /H◦
xk). If it were exactly

this generating series, the theory of partial fraction would allow us to extract the mean
value of the coefficients from the analytic behavior of this series. However, our global
zeta function contains an additional factor in each term. In §6.2 we will surmount this
difficulty by using the technique called the filtering process, which was formulated by
Datskovsky-Wright [3].

§ 6.1. The adelic synthesis. We will introduce some notation. For the rest of this
paper, we suppose Φ ∈ S(V � ) is of the form Φ = ⊗Φv, where Φv ∈ S(Vkv). For x ∈ V ′′

k ,
define Zx(Φ, s) =

∏
v∈ � Zx,v(Φv, s). For each v ∈M, take wv,x ∈ SRv which lies in the

orbit of x. We write Ξx,v(Φv, s) = Zwv,x,v(Φv, s) and Ξx(Φ, s) =
∏

v∈ � Ξx,v(Φv, s).
Then, as is well known, our global zeta function has the following expansion. (See [9]

Section 6, for example. Note that |Hx/H
◦
x| = 2 for all x ∈ V ′′

k .)

Z(Φ, s) =
g1− �

2C2
k

∑

x∈Hk\V
′′

k

∫

(H◦
x) � /(H◦

x)k

dh′′x

∫

H � /(H◦
x)�

|χ(h′x)|
s
� Φ(h′x · x)dh

′
x

= q1− � C−3
k

∑

x∈Hk\V
′′

k

Ck(x)Zx(Φ, s).

We will consider Zx(Φ, s). By (5.4), we have

Zx(Φ, s) =
∏

v∈ �
Zx,v(Φv, s) =

∏

v∈ �

|P (wv,x)|
s/2
v

|P (x)|
s/2
v

Ξx,v(Φv, s).



MEAN VALUE THEOREM 25

Observe that since P (x) ∈ k×,
∏

v∈ � |P (x)|v = |P (x)|� = 1. Also since P (wv) is the
local discriminant of kv(x) over kv,

∏
v∈ � |P (wv,x)|v = N(Dk(x))

−1. Hence, we obtain
the following:

Z(Φ, s) = q1− � C−3
k

∑

x∈Hk\V
′′

k

Ck(x)

N(Dk(x))s/2
Ξx(Φ, s).(6.1)

Let T be a finite set of places of k, and we denote by SRT the Cartesian product∏
v∈T SRv. We consider T -tuples wT = (wv)v∈T of an element of SRT . We say that

x ∈ V ′′
k is equivalent to wT if x lies in the Hkv -orbit of wv for each v ∈ T and denoted

by x ∼ wT . Let Φ|T =
∏

v∈T Φv, and

ZwT ,T (Φ|T , s) =
∏

v∈T

Zwv,v(Φv, s).(6.2)

Then,

Z(Φ, s) = q1− � C−3
k

∑

wT ∈SRT

ZwT ,T (Φ|T , s)

(∑

x∼wT

Ck(x)

N(Dk(x))s/2

∏

v 6∈T

Ξx,v(Φv, s)

)
.(6.3)

For v 6∈ T , we take Φv as the characteristic function Φv,0 of VOv . Then, for v 6∈ T ,
Ξx,v(Φv,0, s) is given in Proposition 5.6 and hence we have

∏

v 6∈T

Ξx,v(Φv,0, s) =
ζk,T (s− 1)ζ2

k,T (s)

ζk(x),T (s)
,(6.4)

where ζk,T (s) and ζk(x),T (s) are the truncated Dedekind zeta function

ζk,T (s) =
∏

v 6∈T

(1− q−sv )−1, ζk(x),T (s) =
∏

µ∈ � k(x)

µ|v,v 6∈T

(1− q−sµ )−1.

We will denote the function (6.4) by ηk(x),T (s). Note that ηk(x),T (s) is a Dirichlet series.
Set the Dirichlet series ξwT

(s) by

ξwT
(s) =

∑

[k(x):k]=2
x∼wT

Ck(x)

N(Dk(x))s/2
ηk(x),T (s).(6.5)

Then (6.3) becomes

Z(Φ, s) = q1− � C−3
k

∑

wT ∈SRT

ZwT
(Φ|T , s)ξwT

(s).(6.6)

In order to determine the analytic properties of ξwT
(s), we require the following lemma.

This is quite similar to [9] Lemma 6.17, and we omit the proof.

Lemma 6.1. Let v ∈ M, x ∈ V ′
kv

and s0 ∈ C. Then there exists Φv ∈ S(Vkv) such

that the support of Φv is contained in Hkvx, Zx,v(Φv, s) is a polynomial in qsv, q
−s
v and

Zx,v(Φv, s0) 6= 0.

Let

R2 =
2ζk(2)C2

k

log q
.
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Also for wv ∈ SRv and wT = (wv)v∈T ∈ SRT , we define

εv(wv) =
|P (wv)|

3/2
v

bwv

, εT (wT ) =
∏

v∈T

εv(wv).

Now we can prove the following theorem.

Theorem 6.2. For wT = (wv)v∈T , the series ξwT
(s) is a rational function of qs, and is

holomorphic in the region Re(s) > 3. Also (1− q3−s)ξwT
(s) is holomorphic in the region

Re(s) > 2. Moreover,

Res
s=3

ξwT
(s) = R2εT (wT )

Proof. For each v ∈ T , we choose Φv ∈ S(Vkv) such that supp(Φv) ⊂ Hkvwv. Then,
Zwv,v(Φv, s) = 0 unless x ∼ wv. Hence (6.6) becomes

Z(Φ, s) = q1− � C−3
k ZwT

(Φ|T , s)ξwT
(s).(6.7)

Then the first two statements follows from Corollary 4.21 and Lemma 6.1. We will
compute Ress=3 ξwT

(s). By Corollary 4.21, Ress=3 Z(Φ, s) = R1Φ̂(0). We consider

Φ̂(0) =

∫

V�

Φ(x)dx = q3−3 �
∏

v∈ �

∫

Vkv

Φv(xv)dxv.

For v 6∈ T ,
∫
Vkv

Φv(xv)dxv = 1 since Φv = Φv,0 is the characteristic function of VOv . For

v ∈ T ,
∫

Vkv

Φv(xv)dxv =

∫

Hkvwv

Φv(xv)dxv = Ωwv,v(Φv, 3) =
|P (wv)|

3/2
v

bwv

Zwv,v(Φv, 3).

Hence we have

Φ̂(0) = q3−3 � ZwT
(Φ|T , 3)εT (wT ).

Together with (6.6), this yields the residue of ξwT
(s). �

§ 6.2. The filtering process. We fix a finite set T0 of places of k and wT0 = (wv)v∈T0.

Definition 6.3. For each finite subset T ⊃ T0 of M, we define

ξwT0
,T (s) =

∑

x∼wT0

Ck(x)

N(Dk(x))s/2
ηk(x),T (s).

For v ∈M, let

Ev =
∑

wv∈SRv

εv(wv) = 1− q−2
v − q

−3
v + q−4

v ,

and also for any subset T ′ of M, define

ET ′ =
∏

v∈T ′

Ev.

Note that this product always converges to a positive number.

Proposition 6.4. The Dirichlet series ξwT0
,T (s) becomes a rational function of qs and

holomorphic in the region Re(s) > 3. Also (1 − q3−s)ξwT0
,T (s) is holomorphic in the

region Re(s) > 2. The residue of ξwT0
,T (s) at s = 3 is given by

R2εT0(wT0)ET\T0.
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Proof. For yT = (yv)v∈T ∈ SRT , we denote yT |T0 = (yv)v∈T0 ∈ SRT0. Then

ξwT0
,T (s) =

∑

yT |T0
=wT0

ξyT
(s).

Now the proposition immediately follows from Theorem 6.2.

To deduce our mean value theorem, we have to show some properties of ηk(x),T (s).
For two Dirichlet series ϑi(s) =

∑∞
n=0 ri,n/q

ns, i = 1, 2, we will indicate ϑ1(s) � ϑ2(s) or
ϑ2(s) � ϑ1(s) if r1,n ≤ r2,n for all n. Especially, write ϑ(s) =

∑∞
n=0 rn/q

ns � 0 if rn ≥ 0
for all n. The following proposition is easy to prove.

Proposition 6.5. The Dirichlet series ηk(x),T (s) satisfies ηk(x),T (s) � 0, and its first

coefficient is 1. Also, for all k(x),

ηk(x),T (s) � ηT (s) =
ζk,T (s− 1)ζ2

k,T (s)

ζk,T (2s)
.

Moreover, ηT (s) converges in the region Re(s) > 2 and

lim
T↑ �

(ηT (1)− 1) = 0.

Let us define an ≥ 0 by

∑

n≥0

an
qns

=
∑

x∼wT0

Ck(x)

N(Dk(x))s/2
.

Now, we are ready to prove the following theorem.

Theorem 6.6.

lim
n→∞

an
q3n

= log qR2εT0(wT0)E � \T0.

Proof. Since ηk(x),T (s) � 0, we have

ξwT0
,T (s) �

∑

x∼wT0

Ck(x)

N(Dk(x))s/2
=
∑

n≥0

an
qns

.

Hence, if one write ξwT0
,T (s) =

∑
rT,n/q

ns, then rT,n ≥ an. By the theory of partial

fraction, limn→∞ rT,n/q
3n = log qR2εT0(wT0)ET\T0 . Hence,

limn→∞
an
q3n
≤ log qR2εT0(wT0)ET\T0.

By letting T approach to M, we obtain

limn→∞
an
q3n
≤ log qR2εT0(wT0)E � \T0.

This allows us to takeR′ > 0 such that an ≤ q3nR′ for all n. Let ηT (s) =
∑

n≥0 lT,n/q
ns.

Then lT,0 = 1 and

ξwT0
,T (s) �

∑

n≥0

an
qns

ηT0(s) =
∑

n≥0

∑
n1+n2=n

an1lT,n2

qns
.
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Since

∑

n1+n2=n

an1lT,n2 = an +
n∑

n2=1

lT,n2an−n2

≤ an + q3nR′

n∑

n2=1

lT,n2

q3n2
≤ an + q3nR′(ηT (1)− 1),

we have

limn→∞

an
q3n
≥ log qR2εT0(wT0)ET\T0 − R

′(ηT (1)− 1).

Again by letting T approach to M, we obtain

limn→∞

an
q3n
≥ log qR2εT0(wT0)E � \T0.

Together with the estimate for the superior limit, we obtain the result. �

§ 6.3. Main results. Let us rewrite Theorem 6.6 to a mean value theorem for the
degree zero divisor class groups of quadratic extensions. Let Bv be the index set of
extensions of kv of degree not greater than two. By assumption that char(k) 6= 2, the
cardinality of this set is four for all v. We denote by kv,βv an extension corresponding
to βv ∈ Bv. From now on, the letter L always denotes a quadratic extension of k. For
βv ∈ Bv, we write L ∼ βv when the extension of L/k at v is kv,βv/kv. We fix a finite set
T of places of k and βT = (βv)v∈T ∈

∏
v∈T Bv. If L ∼ βv for all v ∈ T then we write

L ∼ βT .
Define bβv and bβT

as follows.

bβv =





1
2
(1− q−2

v ) kv,βv = kv,
1
2
(1− q−1

v )2 kv,βv is quadratic unramified over kv,
1
2
q−1
v (1− q−1

v )(1− q−2
v ) kv,βv is quadratic ramified over kv,

bβT
=
∏

v∈T

bβv .

For all quadratic extensions L except k⊗ � q Fq2, qL = q. Then, we can rewrite Theorem
6.6 as follows.

Theorem 6.7.

lim
n→∞

1

q3n

∑

L∼βS�
( � L)=q2n

hL = 2Ckhkζk(2)bβS

∏

v 6∈S

(1− q−2
v − q

−3
v + q−4

v ).

If we take S = ∅, we will obtain Theorem 0.1 in the introduction.
We conclude this paper with some modification of this formula. The next proposition

about the density of quadratic extensions is well known. We can evaluate this formula
by means of class field theory or an analysis of a slight variation of Tate’s zeta function.
We simply state the result here.

Proposition 6.8. Set

cβS
=
∏

v∈S

cβv , cβv =

{
1
2
(1− q−1

v ) kv,βv is unramified over kv,
1
2
q−1
v (1− q−1

v ) kv,βv is quadratic ramified over kv.
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Then

lim
n→∞

1

q2n

∑

L∼βS�
( � L)=q2n

1 = 2q1− � CkcβS

∏

v 6∈S

(1− q−2
v ).

Therefore, together with Theorem 6.7, we can obtain the following formula:

Corollary 6.9.

lim
n→∞

1

qn

∑
L∼βS ,

�
( � L)=q2n hL∑

L∼βS ,
�

( � L)=q2n 1
= q � −1hkζk(2)dβS

∏

v 6∈S

1 + q−1
v − q

−3
v

1 + q−1
v

,

where, dβS
is given by

dβS
=
∏

v∈S

dβv , dβv =





1 + q−1
v kv,βv = kv,

1− q−1
v kv,βv is quadratic unramified over kv,

1− q−2
v kv,βv is quadratic ramified over kv.

Let gL be the genus of L. To avoid the notational confusion, here we denote the genus
of k by gk. If N(DL) = q2n, gL− 1 = 2gk − 2 + n. Hence the preceding formula can also
be expressed as follows:

Corollary 6.10.

lim
n→∞

1

qn

∑
L∼βS , � L=n hL∑
L∼βS , � L=n 1

=
hkζk(2)

q � k
dβS

∏

v 6∈S

1 + q−1
v − q

−3
v

1 + q−1
v

.
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