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Abstract

We obtain a decomposition formula of a representation of Sp(p; q) and SO�(2n) unitarily
induced from a derived functor module, which enables us to reduce the problem of irreducible
decompositions to the study of derived functor modules. In particular, we show such an
induced representation is decomposed into a direct sum of irreducible unitarily induced
modules from derived functor modules under some regularity condition on the parameters.
In particular, representations of SO�(2n) and Sp(p; q) induced from one-dimensional unitary
representations of their parabolic subgroups are irreducible.

x 0. Introduction

Our object of study is the decomposition of unitarily induced modules of a real reductive Lie

groups from derived functor modules. In [Matumoto 1996], the case of U(m;n) is treated. In

this article, we study the case of Sp(p; q) and SO�(2n). Reducibilities of the the representations

of U(m;n) unitarily induced from derived functor modules is coming from the reducibility of

particular degenerate principal series of U(n; n) found by Kashiwara-Vergne [Kashiwara-Vergne

1979]. In the case of Sp(p; q) and SO�(2n) the situation is quite similar, at least in regular region

of the parameter, the reducibilities also reduce to the Kashiwara-Vergne decomposition.

We are going into more details.

Let G = Sp(p; q) (p > q) or G = SO�(2n). We �x a Cartan involution � as usual. Let

� = (k1; :::; ks) be a �nite sequence of positive integers such that

k1 + � � �+ ks 6

�
q if G = Sp(p; q);
n
2 if G = SO�(2n): :

�Supported in part by NSF-grant DMS-9100367 and Grant-in-aid for Scienti�c Research (No. 50272597) .
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If G = Sp(p; q), put p0 = p � k1 � � � � � ks and q
0 = q � k1 � � � � � ks. If G = SO�(2n), put

r = n� 2(k1� � � �� ks). Then, there is a parabolic subgroup P� of G, whose Levi subgroup M�

is written as

M�
�=
�

GL(k1;H) � � � � �GL(ks;H) � Sp(p0; q0) if G = Sp(p; q)
GL(k1;H) � � � � �GL(ks;H) � SO�(2r) if G = SO�(2n) :

Here, formally, we denote by Sp(0; 0) and SO�(0) the trivial group f1g. Any parabolic subgroup
of G is G-conjugate to some P�. GL(k;H) has some particular irreducible unitary representation

so-called quarternionic Speh representations de�ned as follows. We consider GL(k; C ) as a sub-

group of GL(k;H). For ` 2Zand t 2 p�1R, we de�ne a one-dimensional unitary representation
�`;t of GL(k; C ) as follows.

�`;t(g) =

�
det(g)

j det(g)j
�`
j det(g)jt:

GL(k; C ) is the centerizer in GL(k;H) of the group consisting of scalar matrices with the eigen-

value of the absolute value one. So, there is a �-stable parabolic subalgebra q(k) with a Levi

subgroup GL(k; C ). We choose the nilradical n(k) so that �`;t is good with respect to q(k) for

su�cient large `. Derived functor modules with respect to q(k) is called quarternionic Speh

representations.

For t 2 p�1R, there is a one-dimensional unitary representation ~�t of GL(k;H) whose

restriction to GL(k; C ) is �0;t. We put

Ak(`; t) = (uRgl(k;H)
R C;Sp(k)
q(k);O(k)

)k(k+1)(�`+2k;t) (` 2Z):

We also put

Ak(�1; t) = ~�t:

For ` 2Z,Ak(`; t) is derived functor module in the good (resp. weakly fair) range in the sense of

[Vogan 1988] if and only if ` > 0 (resp. ` > �k). It is more or less known by [Vogan 1986] that

any derived functor module of GL(k;H) is a unitarity parabolic induction from one-dimensional

representations or quarternionic Speh representations. So, it su�ces to consider the following

induced representation.

IndGP�(Ak1(`1; t1)� � � ��Aks(`s; ts)� Z):(~)
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Here, Z is a derived functor module of Sp(p0; q0) or SO�(2r) in the weakly fair range. Moreover,

`i 2 f` 2 Zj ` > �kig [ f�1g, and ti 2
p�1R for 1 6 i 6 s. If we apply well-known Harish-

Chandra's result on unitary induction, we may freely permute Aki(`i; ti)'s. We assume that

`i + 1 2 2Zand ti = 0 for some 1 6 i 6 s. Then, we may assume i = s. Let �0 = (k1; :::; ks�1).

Then from the induction-by-stage, we have

IndGP�(Ak1(`1; t1)� � � �� Aks(`s; ts)� Z)
�= IndGP 0�(Ak1(`1; t1)� � � �� Aks�1(`s�1; ts�1)� Ind

M�

�0

P(ks)
(Aks(`s; 0)� Z)):

Here, M�0 is Sp(p
0 + ks; q

0 + ks) or SO
�(2(r + 2ks)).

Our reducibility result is:

Theorem A (Theorem3.6.5)

Ind
M�0

P(ks)
(Aks(`s; 0)�Z) is decomposed into a direct sum of derived functor modules of M�

�0 in

weakly fair range. We obtain an explicit decomposition formula.

Whenever there is 1 6 i 6 s such that `i + 1 2 2Zand ti = 0, we can apply the above

procedure. Assuming that we understand the reducibility of derived functor modules, we can

reduce the irreducible decomposition of the above induced module to the following.

IndGP�(Ak1(`1; 0)� � � ��Akh(`h; 0)�Akh+1(`h+1; th+1)� � � ��Aks(`s; ts)� Z):(�)

Here, `i is not odd integer if 1 6 i 6 h,
p�1ti > 0 if h < i 6 s, and Z is an irreducible

representation of M�
� whose in�nitesimal character plus the half sum of positive roots is ap-

pearing as some weights of �nite dimensional representation of G. Put � = (k1; :::; kh) and

� 0 = (kh+1; :::; ks). Also put a = k1 + � � �+ kh and b = kh+1 + � � �+ ks. In this setting we have:

Theorem B (Theorem 4.1.2) The following is equivalent.

(1) The above � is irreducible.

(2) The following induced module is irreducible.

Ind
SO�

(4a)
P�

(Ak1(`1; 0)� � � �� Akh(`h; 0)):

Under an adequate regularity condition on `1; :::; `h, we may show the irreducibility of the

induced module in the above (2).

On the above (2), we have a partial answer:

3



Lemma C (Theorem 5.1.1)

If `1; :::; `h are all �1 (namely, if Ak1(`1; 0),..., Akh(`h; 0) are trivial representations,)

Ind
SO�

(4a)
P�

(Ak1(`1; 0)� � � ��Akh(`h; 0)) is irreducible.
As a corollary of this result, we have:

Corollary D (Corollary 5.1.2) Representations of SO�(2n) and Sp(p; q) induced from

one-dimensional unitary representations of their parabolic subgroups are irreducible.

For some of special parabolic subgroups, the irreducibility of the above kind of induced repre-

sentation has been known. If the parabolic subgroup is minimal, the irreducibility of the induced

representation is a special case of a general result in [Kostant 1969] (also see [Helgason 1970]).

Studies of Johnson, Sahi, and Howe-Tan ([Johnson 1990], [Sahi 1993], [Howe-Tan 1993]) also

include the irreducibility of the induced modules from a unitary one-dimensional representations

of some maximal parabolic subgroups.

The remaining problems on the reducibility of the representations of Sp(p; q) and SO�(2n)

unitarily induced from derived functor modules in the weakly fair region are:

(1) Vanishing and irreducibilities of derived functor modules of Sp(p; q) and SO�(2n) in

the weakly fair range.

(2) Irreducibilities of the induced representation of the form:

Ind
SO�(4a)
P�

(Ak1(`1; 0)� � � ��Akh(`h; 0)):

(Here, `i (1 6 i 6 h)) are even integers or �1.)

Regrettably, I do not have a complete answer on the above problem. For a type A group

U(m;n), general theories on translation principle are applicable to the above problem on irre-

duciblilty. Together with Trapa's result [Trapa 2001], we have a complete answer. Unfortunately,

neither Sp(p; q) nor SO�(2n) are of type A. So, situation is more di�cult than the case of U(m;n).

In fact, irreducibility of a derived functor module of Sp(p; q) fails in some bad parameter (Vo-

gan). If the degeneration of the parameter is not so bad, Vogan ([Vogan 1988]) found an idea to

control irreducibilities. Using the idea, he proved irreducibility of discrete series of semisimple

symmetric spaces. This idea works in this case. In fact, using Vogan's idea Kobayashi studied

irreducibilities of derived functor modules of Sp(p; q) in [Kobayashi 1992]. In subsequent article,

I would like to take up this problem.

One of the main ingredient of this article is the change-of-polarization formula (Theorem

2.2.3). It means we may exchange, under some positivity condition, the order of cohomological
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induction and parabolic induction in the Grothendieck group. The change of polarization for

standard module was originated by Vogan ([Vogan 1983]) and completed by Hecht, Mili�ci�c,

Schmid, and Wolf (cf. [Schmid 1988]). Also see [Knapp-Vogan 1995 ] Theorem 11.87. For the

degenerate setting, some case is observed for GL(n) in [Vogan 1986]. We apply this idea in

[Matumoto 1996]. In Theorem 2.2.3, we gave a formulation of the change-of-polarization in the

general setting.

The other ingredient of this article is comparison of the Hecke algebra module structures.

Using this idea, we show the above Theorem B.
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x 1. Preliminaries

1.1 General notations

In this article, we use the following notations.

As usual we denote the Hamilton quarternionic �eld, the complex number �eld, the real

number �eld, the rational number �eld, the ring of integers, and the set of non-negative integers

by H , C , R, Q, Z, and N respectively.

For a complex vector space V , we denote by V � the dual vector space. For a real vector

space V0, we denote by V
0
0 the real dual vector space of V0. We denote by ; the empty set and

denote by A�B the set theoretical di�erence of A from B. For each set A, we denote by cardA

the cardinality of A. For a complex number a (resp. a matrix X over C ), we denote by �a (resp.

X) the complex conjugation. If p > q, we put
Pq

i=p = 0.

Let R be a ring and let M be a left R-module. We denote by AnnR(M) the annihilator of

M in R.

In this article, a character of a Lie group G means a (not necessarily unitary) continuous

homomorphism of G to C� .

For a matrix X = (aij), we denote by
tX , trX , and detX the transpose (aji) of X , the trace

of X , and the determinant of X respectively.

For a positive integer k, we denote by Ik (resp. 0k) the k � k-identity (resp. zero) matrix.

Let n; n1; :::; n` be positive integers such that n = n1 + � � �+ n`. For ni � ni-matrices Xi

(1 6 i 6 `) , we put

diag(X1; :::; X`) =

0
BB@
X1 0 : : : : : : 0
0 X2 0 : : : 0
: : : : : : : : : : : : : : : : : : : : :
0 : : : : : : 0 X`

1
CCA

We denote by S` the `-th symmetric group.

For a complex Lie algebra g, we denote by U(g) its universal enveloping algebra. We denote

by Z(g) the center of U(g).

For a Harish-Chandra module V , we denote by [V ] the corresponding distribution character.

In this article, an irreducible Harish-Chandra module should be non-zero.

1.2 Notations for root systems

Let G be a connected real reductive linear group, and let GC be its complexi�cation.
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We �x a maximal compact subgroup K of G and denote by � the corresponding Cartan

involution. We denote by g0 (resp. k0) the Lie algebras of G (resp. K).

Let H be a �-stable Cartan subgroup of G and let h0 be its Lie algebra.

We denote by g , k, and h the complexi�cation of g0 , k0, and h0, respectively.

We denote by h� the complex dual of h. We denote the induced involution from � on g, h,

h� by the same letter �. We denote by � he complex conjugation on g with respect to g0.

We denote by W (g; h) (resp. �(g; h)) the Weyl group (resp. the root system) with respect

to the pair (g, h). Let h : i be the nondegenerate W (g; h)-invariant bilinear form on h� induced

from the Killing form of g.

A root � 2 �(g; h) is called imaginary (resp. real) if �(�) = � (resp. �(�) = ��). A root

� 2 �(g; h) is called complex if � is neither real nor imaginary. A imaginary root � 2 �(g; h) is

called compact (resp. noncompact) if the root space for � is contained (resp. not contained) in

k.

We denote by P(h) the integral weight lattice in h�. Namely, we put

P(h) =
�
� 2 h�

����2 h�; �ih�; �i 2Z (� 2 �(g; h))

�
:

We also put

PG(h) = f� 2 h�j� appear as a weight of some �nite dimensional representation of G.g :

We denote by Q(h) the root lattice, namely the set of integral linear combination of elements of

�(g; h). We have Q(h) � PG(h) � P(h) � h�.

For � 2 h�, we denote by �� the corresponding Harish-Chandra homomorphism �� : Z(g)!
C .

We �x a �-stable maximally split Cartan subgroup sH of G and denote by sh its complexi�ed

Lie algebra. For simplicity, we write �, W , P , PG, Q for �(g; sh), W (g; sh), P(sh), PG(sh),
Q(sh), respectively.

We choose regular weights � 2 h� and s� 2 sh� such that �� = �s�. Then, there is a unique

isomorphism is�;� : sh� ! h� induced from an inner automorphism of G such that is�;�(s�) = �.

We denote by the same letter is�;� the corresponding isomorphism of W onto W (g; h).

1.3 Cohomological inductions

Next, we �x the notations on the Vogan-Zuckerman cohomological inductions of Harish-Chandra

modules. Here, we adapt the de�nition found in [Knapp-Vogan 1995]. Let G be a real reductive
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linear Lie group which is contained in the complexi�cation GC which is a connected complex

reductive linear group.

De�nition 1.3.1. Assume that a parabolic subalgebra q has a Levi decomposition q = l+u such

that l is stable under � and �. Such a Levi decomposition is called an orderly Levi decomposition.

A �-stable or �-stable parabolic subalgebra has a unique orderly Levi decomposition. In

fact, if q is � (resp. �)-stable, then l = q \ �(q) (resp. l = q \ �(q) ).
Let q be a parabolic subalgebra of g with an orderly Levi decomposition q = l+ u. We �x

a � and �-stable Cartan subalgebra h of l and a Weyl group invariant non-degenerate bilinear

form h ; i. Let L be the corresponding Levi subgroup in G to l.

We denote by uRg;K
q;L\K the right adjoint functor of the forgetful functor of the category of

(g; K)-modules to the category of (q; L \ K)-modules. Introducing trivial u-action, we regard

an (l; L \ K)-module as a (q; L \ K)-module. So, we also regard uRg;K
q;L\K as a functor of the

category of (l; L\K)-modules to the category of (g; K)-modules. We denote by (uRg;K
q;L\K)

i the

i-th right derived functor. (See [Knapp-Vogan 1995] p671)

Next, we review a normalized version. We denote by �(u) a one-dimensional representation

of l de�ned by �(u)(X) = 1
2tr(ad(X)ju). Following [Knapp-Vogan 1995] p720, we de�ne a one-

dimensional representation C 2�(u)0 ofL as follows. Here, we consider slightly more general setting.

Let V be a �nite dimensional semisimple l-module. We denote by �(V ) a one-dimensional repre-

sentation of l de�ned by �(V )(X) = 1
2tr(X jV ). Let V = V1�V2�� � ��Vk be the decomposition

of V into irreducible l-modules. We distinguish between those Vi that are self-conjugate with

respect to � and those are not. We de�ne a one dimensional representation �2�(V )0 of L on a

space C 2�(V )0 by

�2�(V )0(`) =

0
@ Y
i with Vi self-conjugate

j det(`jV=i)j
1
A
0
@ Y
i with Vi not self-conjugate

det(`jV=i)
1
A :

Let L� be the metaplectic double cover of L with respective to C 2�(V )0 . Namely,

L� = f(`; z) 2 L� C� j �2�(V )0(`) = z2g:

We denote by C �(V )0 the one-dimensional L�-module de�ned by the projection to the second

factor of L� � L�C� . Of course, the de�nition of L� depends on V . Hereafter, we consider the

case of V = u (the adjoint action of L on u). Let (K \ L)� be the maximal compact subgroup

of L corresponding to L \K.
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Let Z be a Harish-Chandra (l; (K \ L)�)-module such that Z 
 C �(u) is a Harish-Chandra

(l; K \ L)-module. Introducing the trivial action of u, we also regard Z 
 C �(u)0 as a q-module.

We put

(nRg;K
q;L\K)

i(Z) = (uRg;K
q;L\K)

i(Z 
 C �(u)0 ):

Let � be the in�nitesimal character of Z with respect to h. (It is well-de�ned up to the Weyl

group action of l.) Then (nRg;K
q;L\K)

i(Z) is a Harish-Chandra (g; K)-module of an in�niteimal

character �.

We consider three particular cases.

(1) (Hyperbolic case) If q is stable under the complex conjugation of g with respect to G,

there is a parabolic subgroup Q = LU whose complexi�ed Lie algebra is q and whose nilradical

is U . In this case, we have (nRg;K
q;L\K)

i(Z) = 0 for all i > 0. In fact, (nRg;K
q;L\K)

0(Z) is nothing

but the parabolic induction IndGQ(Z).

We clarify the de�nition of the parabolic induction. First, we remark that L� is just a direct

product L�f�1g in this case and C �(u) can be reduced to a representation of L (say (��(u); C �(u))

) .

IndGQ(Z) (or we also write Ind(Q " G;Z)) is the K-�nite part of

ff 2 C1(G)
H j f(g`n) = �(`�1)f(g) (g 2 G; ` 2 L; n 2 U)g:

Here, (�;H) is any Hilbert globalization of Z 
 C �(u) . If Z is unitarizable, so is Ind(Q " G;Z)
(unitary induction). We also consider the unnormalized parabolic induction as follows.

uInd(Q " G;Z) = Ind(Q " G;Z 
 C �(�u)):

We have the following additive property.

Let Z0, Z1,...,Zk be Harish-Chandra (l; (L\K)�)-modules such that Z0
C �(u) ,...,Zk
C �(u)0
are reduced to Harish-Chandra (l; L \ K)-modules. Let n1,..., nk be integers. If we have a

character identity [Z] =
Pk

i=1 ni[Zi], we have [Ind(Q " G;Z)] =Pk
i=1 nk [Ind(Q " G;Zi)].

(2) (Elliptic case) Assume q is �-stable and put S = dim(u \ k). We call Z weakly good

(or � is in the weakly good range), if Reh�; �i > 0 holds for each root � of h in u. We call Z

integrally good (resp. weakly integrally good ), if h�; �i > 0 (resp. h�; �i > 0) holds for each

root � of h in u such that 2 h�;�ih�;�i 2Z.
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Theorem 1.3.2. ([Vogan 1984] Theorem2.6)

(1) If Z is weakly integrally good, then (nRg;K
q;L\K)

i = 0 for i 6= S.

(2) If Z is irreducible and weakly integrally good, (nRg;K
q;L\K)

S(Z) is irreducible or zero.

(3) If Z is irreducible and integrally good, (nRg;K
q;L\K)

S(Z) is irreducible.

(4) If Z is unitarizable and weakly good, (nRg;K
q;L\K)

S(Z) is unitarizable.

The additivity property of (nRg;K
q;L\K)

S in this case is described as follows. We �x an in-

�nitesimal character � in the integrally weakly good range with respect to q. Let Z0, Z1,...,Zk

be Harish-Chandra (l; (L \ K)�)-modules with in�nitesimal character � and let n1,..., nk be

integers. We also assume Zi 
 C �(u)0 is reduced to a Harish-Chandra (l; L\K)-module for each

0 � i � k. Moreover we assume a character identity [Z] =
Pk

i=1 ni[Zi] holds. Then, we have

[(nRg;K
q;L\K)

S(Z)] =
Pk

i=1 nk [(
nRg;K

q;L\K)
S(Zi)].

1.4 Standard modules

We retain notations in 1.2. Since we assume all the Cartan subgroups are connected, we can

simplify description of some fundamental material on this subject.

A regular character (H;�; �) is a pair satisfying the following conditions (R1)-(R6).

(R1) H is a �-stable Cartan subgroup of G.

(R2) � is a (non-unitary) character of H .

(R3) � is in h�. (Here, h is the complexi�ed Lie algebra of H .)

(R4) � is regular (with respect to �(g; h)).

(R5) h�; �i is real for any imaginary root � in �(g; h).

In order to write down the last condition (R6), we introduce some notations. Let t (resp. a)

the +1 (resp. �1) eigenspace in h with respect to �. We denote by m the centerizer of a in g.

Then �(m; h) is nothing but the set of imaginary roots in �(g; h). Under the above condition

(R4), there is a unique positive system �+
� (m; h) of �(m; h) such that h�; �i > 0. We denote

by ��(m; h) (resp. �
c
�(m; h)) the half sum of positive imaginary roots (resp. compact imaginary

roots) with respect to �+
� (m; h). We put �� = � + ��(m; h)� 2�c�(m; h).

(R6) �� is the di�erential of �.

We �x a regular character  = (H;�; �). We denote byM the centerizer of a in G. Since H is

connected, M is the analytic subgroup of G with respect to m. The above conditions (R1)-(R5)

assure that there is a unique relative discrete series representation � with in�nitesimal character
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� such that the highest weight of the minimal K \M -type of � is ��. Here, a relative discrete

series means a representation whose restriction to semisimple part is in discrete series. We do

not require the unitarizability of � itself. We �x a parabolic subgroup P of G such that M is a

Levi part of P . We de�ne the standard module �G() (We often simply denote by �(), if there

is no confusion.) for a regular character  = (H;�; �) by �G() = IndGP (�). The distribution

character [�G()] is independent of the choice of P .

We may describe �G() in terms of the cohomological induction as follows. First, let b0 be

the Borel subalgebra of m correspoinding to (h;�+
� (m; h)) and let u1 be its nilradical. Then b1 is

�-stable and � �= (uRm;M\K
b1;H

)dimu1\k(� 
 C 2�(u1\k)0). Let n be the nilradical of the complexi�ed

Lie algebra of P . We put b = b1 + n and u = u1 + n. b is a Borel subalgebra of g and u is the

nilradical of b. Using the induction-by-stage formula ([Knapp-Vogan 1995] Corollary 11.86), we

have

�G() �= (uRg;K
b;H)

dimu\k(� 
 C 2�(u1\k)0 
 C �(n))

Ther are various presentations of the standard representation as a cohomological induction

from a character on a Borel subalgebra (cf. [Schmid 1988], [Kanpp-Vogan 1995] XI).

For a regular character  = (H;�; �) and k 2 K, we put k �  = (Ad(k)H; � � Ad(k�1)).
Then, k �  is also a regular character. For two regular characters 1 and 2, [�G(1)] = [�G(2)]

if and only if k � 1 = 2 for some k 2 K.

A standard module �G() has a unique irreducible subquotient (Langlands subquotient)

��G() such that all the minimal K-types of �G() is contained in ��G(). ��G() is independent

of the choice of P . Any irreducible Harish-Chandra (g; K)-module with a regular in�nitesimal

character is isomorphic to some ��G(), and for two regular characters 1 and 2, ��G(1) �= ��G(2)

if and only if k � 1 = 2 for some k 2 K (Langlands classi�cation).

For a �-stable Cartan subgroup H of G and a regular weight � 2 sh�, we denote by RG(H; �)

the set of the regular characters (H;�; �) such that �� = �� . For a regular weight � 2 sh�,

we denote by RG(�), the set of all the regular character  such that �() has an in�nitesimal

character �. Namely, RG(�) is the union of RG(H; �)'s.

We call a �-stable cartan subgroup H of G �-integral if RG(H; �) 6= ;.
A root � 2 � is called real, complex, compact imaginary, noncompact imaginary with respect

to  = (H;�:�) 2 RG(�), if i�;�(�) is real, complex, compact imaginary, noncompact imaginary,
respectively. For  = (H;�:�) 2 RG(�), we put � = i�1�;� � � � i�;�. � acts on �. Obviously, �

11



only depends on the K-conjugacy class of .

1.5 Coherent families

We retain notations in 1.2., and 1.4. In this section, we assume that all the Cartan subgroup of

G is connected, for simplicity. (SO�(2n), Sp(m;n), GL(m;H), and their Levi subgroups satisfy

this condition.) Under this assumption, we may write the regular character (H;�; �)) as (H; �)),

since � is uniquely determined by � We �x a regular weight s� 2 sh�. Put � = s�+ PG.
We denote by Ws� (resp. �s�) the integral Weyl group (resp. the integral root system) for

�. Namely, we put

Ws� = fw 2 W j ws� � s� 2 Qg;

�s� =

�
� 2 � j h�;

s�i
h�; �i 2Z

�
:

We put

�+
s� = f� 2 �s� j h�; s�i > 0g:

Then, �+
s� is a positive system for �s�. We denote by �s� the set of simple roots in �+

s�.

A map � of � to the space of invariant eigendistributions on G is called a coherent family

on � if it satis�es the following conditions.

(C1) For all � 2 �, �(�) is a complex linear combination of the distribution characters of

Harish-Chandra modules with in�nitesimal character �.

(C2) For any �nite dimensional representation E, we have

[E]�(�) =
X
�2PG

[� : E]�(�+ �) (� 2 �):

Here, [� : E] means the multiplicity of the weight � in E.

We denote by C(�) the set of coherent families on �. For w 2 Ws� and � 2 C(�), we de�ne
w � � by (w � �)(�) = �(w�1�). We see C(�) is a Ws�-representation. This representation is

called the coherent continuation representation for �.

For any Harish-Chandra (g; K)-module V with in�nitesimal character s�, there is a unique

coherent family �V such that �V (
s�) = [V ]. For a regular character  = (H;�:�) such that

�� = �s�, we put �G = ��G() and
��G = ���G(). If � 2 � is regular and dominant (with
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respect to �+
s�), then (H; is�;�)) is a regular character and we have �G (�) = [�G(H; is�;�(�))]

and ��G (�) = [��G(H; is�;�(�))]. Put StG(
s�) = f�G j  2 RG(

s�)g and IrrG(
s�) = f��G j  2

RG(
s�)g. We de�ne a bijection �; �� of StG(

s�) onto IrrG(
s�) by ��G = ��G for  2 RG(s�).

StG(
s�) forms a basis of C(�) and so does IrrG(

s�).

We write ��G =
P

�2StG(s�)MG(;�)� and MG(; �) =MG(;��) 2 C .
We also denote � by ��G


.

For  = (H;�:�) 2 RG(s�) and w 2 Ws�, the cross product is de�ned as follows.

w �  = (H; is�;�(w)
�1�):

Then, we have w �  2 RG(s�). Moreover, for any ; 0 2 RG(s�) such that �G = �G0 , we have

�Gw� = �Gw�0 for all w 2 Ws�. So, we put w � �G = �Gw� .

1.6 Cayley transform

We �x the notation for Cayley transforms. We retain the notations in 1,2, etc.

Let H be a �-stable Cartan subgroup of G and let h be its complexi�ed Lie algebra. We

choose a non-compact imaginary root � 2 �(g; h). We denote by �H� the element of h such

that h �H�; Xi = �(X) for all X 2 h. We may choose 0 6= X� 2 g� such that �(X�) = X��

and [X�; X��] = �H�, where � is the complex conjugation with respect to the real form of g

corresponding to G. Hence �H�, X�, and X�� form an sl(2)-triple.

We introduce a standard complexi�ed Cartan involution �0 on sl(2; C ) by �0(X) = �tX . We

denote by �0 the complex conjugation with respect to sl(2:R).

There is a Lie algebra homomorphism �� : sl(2; C ) ! g which satis�es the following proper-

ties.

��

� �
0 i

�i 0

� �
= �H�; ��

�
1

2

�
1 �i
�i �1

� �
= X�; ��

�
1

2

�
1 i

i �1
��

= X��:

�� satis�es ��(�0(X)) = �(��(X)) for all X 2 sl(2; C ) and ��(�0(X)) = �(��(X)) for all

X 2 sl(2; C ). So, it induces a Lie group homomorphism �� : SL(2; C ) ! GC , which maps

SL(2;R) into G. We put c� = ��

�
1p
2

�
1 i
i 1

� �
2 GC . Ad(c�) is called a Cayley transform.

The image Ad(c�)(h) of the complexi�ed Lie algebra h � g under the Cayley transform is also

a �-stable Cartan subgroup of g, which is invariant under the complex conjugation with respect

to the real form of g corresponding to G. Formally, we denote by Ad(c�)(H) the corresponding

�-stable Cartan subgroup of G to Ad(c�)(h).
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Conversely, if � 2 �(g; h) is real, we can de�ne C� 2 GC as follows. We choose �H� 2 h,

X� 2 g�, and X�� 2 g�� similarly to the case of �. Then, there is a Lie algebra homomorphism

�� : sl(2; C ) ! g satisfying:

��
� �

1 0
0 �1

� �
= �H�; ��

� �
0 1
0 0

� �
= X�; ��

� �
0 0
1 0

��
= X��:

�� also satis�es ��(�0(X)) = �(��(X)) for all X 2 sl(2; C ) and ��(�0(X)) = �(��(X)) for all

X 2 sl(2; C ). So, it induces a Lie group homomorphism �� : SL(2; C ) ! GC , which maps

SL(2;R) into G.

We put c� = ��
�

1p
2

�
1 �i
�i 1

� �
2 GC . Ad(c�) is also called a Cayley transform.

Similarly, we de�ne Ad(c�)(H) as the case of �. In this case, � = � �Ad(c�)�1 is a noncompact
imaginary root for Ad(c�)(h) and c� = c�1� .

Next, we consider the Cayley transform of regular characters. Again, we assume that all the

Cartan subgroup ofG is connected. Fix  = (H; �) 2 RG(H; s�), and choose � 2 �s� such that �

is noncompact imaginary with respect to . we put c�() = (Ad(cis�;�(�))(H); ��Ad(cis�;�(�))�1).
Then, we have c�() 2 RG(s�) and � is real with respect to c�(). It is easy to see c�(�G ) =

�G
c�()

is well-de�ned.

Conversely, consider  2 RG(
s�) and � 2 �s� which is real with respect to . We call �

satis�es the parity condition with respect to , if there is some  0 2 RG(
s�) such that � is

noncompact imaginary with respect to 0 and  = c�(0). If � satis�es the parity condition with

respect to , there are just two regular characters in RG(Ad(c
is�;�(�))(H); s�), say c�+() and

c��(), in the preimage of  with respect to c�. Since we assume that all the Cartan subgroups

of G are connected, c��() are not K-conjugate to each other. It is easy to see c��(�G ) = �G
c��()

is well-de�ned.

1.7 Hecke algebra module structure

We retain the notations of 1.2, etc. and �x a regular weight s� 2 sh�. Put � = s� + PG as

before.

First, we recall the de�nition of the Hecke algebra H(Ws�) for Ws�. For w 2 Ws�, we denote

by `(w) the length of w with respect to the simple system �s�. Let q be an indeterminant. The

Hecke algebra H(Ws�) is a C [q]-algebra with a basis fTw j w 2Ws�g, subject to the relations:

Tw1Tw2 = Tw1w2 (wi 2 Ws�; `(w1) + `(w2) = `(w1w2));
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(Ts� + 1)(Ts� � q) = 0 (� 2 �s�):

Put C(�)q = C(�)
C C [q]. We introduce H(Ws�)-module structure on C(�)q as follows.
For each  2 RG(s�) and � 2 �s�, we put

Ts��
G
 = q�G if � is compact imaginary with respect to ,

Ts��
G
 = s� ��G + c�(�

G
 ) if � is noncompact imaginary with respect to ,

Ts��
G
 = s� ��G if � is complex with respect to  and �(�) 2 �+

s�,

Ts��
G
 = q(s� ��G ) + (q � 1)�G if � is complex with respect to  and �(�) 62 �+

s�,

Ts��
G
 = (q � 2)�G + (q � 1)(c�+(�

G
 ) + c��(�

G
 )) if � is real and satis�es the parity condition,

Ts��
G
 = ��G if � is real and does not satisfy the parity condition.

The important thing is that the Hecke algebra module structure is completely determined

by the action of cross product and Cayley transforms on the K-conjugacy classes of regular

characters in RG(
s�).

If we consider the specialization at q = 1 of this Hecke algebra module C(�)q, then we have

a Ws�-representation on C(�). The relation to the coherent continuation representation is given

as follows.

Theorem 1.7.1. ([Vogan (green), 1982])

We have an isomorphism

(Specialization of C(�)q at q = 1) �= (Coherent continuation representation)
 sgn;

where sgn means the signature representation of Ws�. This isomorphism preserves the basis

StG(
s�).

The following result is crucial in our proof.

Theorem 1.7.2. (see [Vogan 1983], [Adams-Barbasch-Vogan 1992] Chapter 16)

For ; � 2 RG(s�), the complex number M(; �) de�ned in 1.5 is computed from a certain al-

gorithm (the Kazhdan-Lusztig type algorithm) which depends only on the Hecke algebra structure

on C(�)q.
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1.8 Cell structure

We retain the notations of 1.2, etc. and �x a regular weight s� 2 sh�. Put � = s� + PG as

before.

A subrepresentation of C(�) is called basal, if it is generated by a subset of IrrG(
s�) as a

C -vector space. For  2 RG(
s�), we denote by Cone() the smallest basal subrepresentation

of C(�) which contains ��G . For ; � 2 RG(
s�), we write  � � (resp.  � �) if Cone() =

Cone(�) (resp. Cone() � Cone(�)). Obviously � is an equivalence relation on RG(s�). For

 2 RG(s�) let s() be the set of regular characters � 2 RG(s�) such that � � � and � 6� �. We

de�ne Cell() = Cone()=
P

�2s()Cone(�). A cell (resp. cone) for C(�) is a subquotient (resp.

subrepresentation) of C(�) of the form Cell() (resp. Cone()) for some  2 RG(s�).
For each cell, we can associate a nilpotent orbit in g as follows. For Cell(), we consider

an irreducible Harish-Chandra (g; K)-module ��(). The annihilator (say I) of ��() in U(g) is

a primitive ideal of U(g) and its associated variety is the closure of a single nilpotent orbit in

g. The nilpotent orbit constructed above is independent of the choice of  and we say it the

associated nilpotent orbit for the cell Cell().

For each cone Cone(), some canonical (up to scalar factor) construction ofW -homomorphism

(say �) of Cone() to the realization as a Goldie rank polynomial representation of the special

W -representation corresponding to the associated nilpotent orbit via the Springer correspon-

dence ([Vogan 1978], [King 1981]). In fact this � factors the cell Cell(). An important fact

is �(��G� ) is nonzero and proportional to the Goldie rank polynomial of the annihilator of

��(�) in U(g) for all � �  ([King 1981], [Joseph 1980]). Hence, the multiplicity in Cell() of

the special W -representation corresponding to the associated nilpotent orbit via the Springer

correspondence is at least one.

1.9 Induction of a coherent family

We retain notations as above. Let P be a parabolic subgroup of G with �-stable Levi part L such

that sH � L. (We remark that all the Cartan subgroups of L are connected.) We �x a regular

character s� 2 sh� as above. Put �L = s�+PL and �G = s�+PG . Then, we easily see �G � �L.

Let � be a coherent family on �L. For �xed � 2 �G, we write �(�) =
Pn

i=1 ai[Vi], where Vi are

certain Harish-Chandra (l; K \ L)-modules with in�nitesimal character � and ai are complex

numbers. We write IndGL(�)(�) =
Pn

i=1 ai[Ind
G
P (Vi)]. The above de�nition is independent of
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the choice of the linear combination, since the parabolic induction is exact. From a property

of induction, the above de�nition depends only on L and does not depend on P . Moreover,

� ; IndGL(�)(�) forms a coherent family on �G, thanks to a version of MacKey's tensor product

theorem ([Speh-Vogan 1980] Lemma 5.8) for induction and the exactness of the induction.

Let H be a �-stable Cartan subgroup of L. Hence H is also a Cartan subgroup of G. Let

 = (H;�:�) be a regular character for L with an in�nitesimal character s�. Then  is also a

regular character for G. We easily see IndGL (�
L
 ) = �G .

1.10 Comparison of Hecke module structures

Let G be any connected real reductive linear Lie group whose Cartan subgroups are all connected.

We de�ne �, K, sH, g, k, sh, etc. as in x 1.

Besides G we also consider another real reductive linear Lie groupG0 whose Cartan subgroups

are all connected. We denote the objects with respect to G0 by attaching the \prime" to the

notations for the corresponding objects for G. For example, we �x a Cartan involution �0 for

G0 and �x a �0-invariant maximally split Cartan subgroup sH0, etc. We �x a regular weights

s� 2 sh� and put � = s�+ PG. Moreover, we assume the following conditions on G and G0.

(C1) There is a linear isomorphism  : sh� ! (sh0)� such that  (�s�) = �0. Here, �0

means the root system with respect to (g0; sh0). Moreover,  (s�) is regular integral with respect

to �0 and  (PG) � PG0 .  induces an isomorphism  ] :Ws� ! W 0. Here, W 0 is the Weyl group

for �0.

(C2) There is a bijection 	 of the K-conjugacy classes of s�-integral �-invariant Cartan

subgroups of G to the K0-conjugacy classes of  (s�)-integral �0-invariant Cartan subgroups of

G0.

(C3) There is a bijection ~	 : StG(s�)! StG0( (
s�)) which is compatible with 	 in (C2).

(C4) For � 2 StG(s�), we have  ��� = �~�� . Hence, for � 2 �s�, we have � is imaginary,

complex, real with respect to � if and only if  (�) is imaginary, complex, real, respectively, with

respect to ~	(�).

(C5) Let � 2 �s� and � 2 StG(s�). If � is imaginary, we have � is compact with respect

to � if and only if  (�) is compact with respect to ~	(�). If � is real, we have � satis�es the

parity condition with respect to � if and only if  (�) satis�es the parity condition with respect

to ~	(�).
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(C6) ~	 is compatible with the cross actions. Namely, for w 2 Ws� and � 2 StG(
s�) we

have  ](w)� ~	(�) = ~	(w � �).

(C7) ~	 is compatible with the Cayley transform. Namely, if � 2 StG(
s�) and if � 2 �s�

is noncompact imaginary with respect to �, then we have ~	(c�(�)) = c (�)(~	(�)). Moreover,

if � 2 StG(
s�) and if � 2 �s� is real and satis�es the parity condition with respect to �, we

have ~	(c��(�)) = c
 (�)
� (~	(�)).

Put �0 =  (s�)+PG0 . Since StG(s�) (resp. StG( (s�))) forms a basis of C(�) (resp. C(�0)),
~	 in (C3) extends to a linear (resp. C [q]-module) isomorphism of C(�) (resp. C(�)q) onto C(�0)
(resp. C(�0)). We denote these isomorphisms of complex vector spaces and C [q]-modules by the

same letter ~	. If we identify Ws� and W
0 via the isomorphism  ] in(C1) above, we can regard

C(�0) (resp. C(�0)q) as a Ws�-representation (resp. a H(Ws�)-module).

Examining the description on the Hecke algebra module structures in 1.6, we easily see

the conditions (C4)-(C7) imply ~	 is H(Ws�)-module isomorphism of C(�)q onto C(�0)q. From
Theorem 1.7.1, we also see ~	 : C(�)! C(�0) is an isomorphism between coherent continuation

representations.

From Theorem 1.7.2 (Kazhdan-Lusztig type algorithm for Harish-Chandra modules), we see

~	(�) = ~	(��) for all � 2 StG(
s�). Here, � ; �� is a bijection of StG(

s�) (resp. StG( (
s�)))

onto IrrG(s�) (resp. IrrG( (s�))) de�ned in 1.5.

Moreover, we have:

Lemma 1.10.1. Under the above setting, we have the followings. Let � 2 � and let � 2
C(�). Assume that there exists an irreducible Harish-Chandra (g0; K 0)-module V 0 such that

~	(�)( (�)) = [V 0].

Then, there is some irreducible Harish-Chandra (g; K)-module V with the in�nitesimal char-

acter � such that �(�) = [V ].

Proof There is some w 2 Ws� such that h�; w�i � 0 for all � 2 �+
s�. We write w� =P

��2IrrG(s�) c��
��: Since ~	(�)( (�)) = ~	(w�)( (w�)), we have [V 0] =

P
��2IrrG(s�) c��

~	(��)( (w�)).

It is known that there is a unique ��0 2 IrrG0(
s�) such that ��0( (w�)) = [V 0] (cf. [Vogan

(green)] Theorem 7.2.7). Put ��0 = ~	�1(��). For any �� 2 IrrG0(
s�) either ��( (w�)) = 0 or

��( (w�)) = [X ] for some irreducible Harish-Chandra module X (cf. [Vogan 1983] Theorem

7.6). Hence, we have c��0
= 1 and if c�� 6= 0 and �� 6= ��0 then ~	(��)( (w�)) = 0. From [Vo-

gan 1983] Theorem 7.6 (also see [Vogan 1983] De�nition 5.3), the above (C1)-(C7) imply that
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~	(��)( (w�)) = 0 if and only if ��(w�) = 0 for all �� 2 IrrG(
s�). Hence, we have ��(w�) = 0 if

c�� 6= 0 and �� 6= ��0. Moreover, there is an irreducible Harish-Chandra (g; K)-module V such

that ��0(w�) = [V ]. Therefore �(�) = (w�)(w�) =
P

��2IrrG(s�) c��
��( (w�)) = ��0(w�) = [V ].

Q.E.D.
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x 2. Change of polarization

2.1 �� pair

We consider here the following setting.

Let G be a real reductive linear Lie group which is contained in the complexi�cation GC .

We �x a maximal compact subgroup K of G and let � be the corresponding Cartan involution.

We denote by g0 (resp. k0 )the Lie algebra of G (resp. K) and denote by g (resp. k) its com-

plexi�cation. We denote also by the same letter � the complexi�ed Cartan involution on g. We

denote by � he complex conjugation on g with respect to g0.

De�nition 2.1.1. A pair (p; q) is called a �� pair of parabolic subalgebras, if it satis�es the

following conditions (S1-2)

(S1) q (resp. p) is a �-stable (resp. �-stable) parabolic subalgebra of g.

(S2) There exists a � and �-stable Cartan subalgebra h of g such that h � p \ q.

Hereafter, we �x a �� pair (p; q). Let h be any � and �-stable Cartan subalgebra of g

contained in p \ q. For � 2 �(g; h)), we denote by g� (resp. s�) the root space (resp. the

reection) corresponding to �. Since h is �-stable, � and � induce actions on �(g; h). We easily

see �� = ��� for any � 2 �(g; h).

For a subspace U in g, we denote by �(U) the set of roots in �(g; h) whose root space is

contained in U . We put

m = h+
X

�2�(p)\(��(p))

g�; n =
X

�2�(p)��(m)

g�; �n =
X

�2�(n)

g��;

l = h+
X

�2�(q)\(��(q))

g�; u =
X

�2�(q)��(l)

g�; �u =
X

�2�(u)

g��:

We immediately see q = l + u (resp. p = m + n) is an orderly Levi decomposition of q (resp.

p) and the nilradical satis�es �(u) = �u (resp. �(n) = �n). Moreover, �u (resp. �n) is the opposite

nilradical to u (resp. n).

We denote by LC , PC , and MC the analytic subgroups of GC with respect to l, p, and m,

respectively. We put L = LC \G, P = PC \ G, M =MC \ G.
We easily have:
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Proposition 2.1.2. Under the above setting, we have the followings.

(S3) l \ p is a parabolic subalgebra of l and L \ P is a parabolic subgroup of L.

(S4) m \ q is a parabolic subalgebra of m.

(S5) l \m is a � and �-stable Levi subalgebra of the both l\ p and m \ q.

For a subspace U in g, we denote by �(U) the set of roots in � whose root space is contained

in U . We also write �(U) = 1
2

P
�2�(U) 2 h�. For a Borel subalgebra b, we write �+

b for �(b).

�+
b is a positive system of �(g; h)

Put ~n = u \ m + n, ~u = n \ l + u, ~p = l \ m + ~n, and ~q = l \ m + ~u. Then ~p (resp. ~q) is a

parabolic subalgebra of g with a Levi part l \m and the nilradical ~n (resp. ~u).

We �x any Borel subalgebra b0 of l \m containing h. We put b1 = b0 + ~n and b2 = b0 + ~u.

Obviously, b1 and b2 are Borel subalgebras of g. Let v, v1, and v2 be the nilradical of b0, b1,

and b2, respectively. Put d = v+ n \ l+ u \ m+ u \ n. Then, we easily see v1 = d � n \ �u and

v2 = d� �n \ u.

Lemma 2.1.3. We have

dim u \ k� dim u \m \ k = dim u \ �n:

Proof Since g = m� �n� n and u is �-stable, we have dim u \ k� dim u \m\ k = dim((u\
�n) � (u \ n)) \ k. Let p : (u \ �n) � (u \ n) ! u \ �n be the projection to the �rst factor. Since

n\ k = 0, the restriction of p to ((u\ �n)� (u\n))\ k is an injection. On the other hand, for any

X 2 u\�n, we have X��X 2 ((u\�n)�(u\n))\k. So, the restriction of p to ((u\�n)�(u\n))\k
is onto. �

Lemma 2.1.4. Put d = dim u \ �n. There exits a sequence of complex roots �1; ::::�d 2 �(g; h)

satisfying the following conditions (1)-(4). For 1 6 k 6 d, we put �+
k = s�k � � �s�1�+

b1
. We also

put �+
0 = �+

b1
.

(1) For 1 6 k 6 d, �k 2 �(n \ �u).

(2) For 1 6 k 6 d, �(d) � �+
k .

(3) For 1 6 k 6 d, �k is simple with respect to �+
k�1.

(4) For 1 6 k 6 d, ��k =2 �+
k�1.

(5) For 1 6 k 6 d, �k 2 �+
k�1 and ���k 2 �+

k�1.

(6) �+
d = �+

b2
.
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Proof (cf. [Knapp-Vogan 1995], Lemma 11.128)

For a positive system�+ of �(g; h), we de�ne ht(�+) = card(�+\�(�n\u)). We immediately

see ht(�+
b1
) = 0 and ht(�+

b2
) = d.

We construct the sequence �1; :::; �d inductively as follows. Let 1 6 k 6 d and assume that

�1; :::; �k�1 are already de�ned so that the conditions in (1)-(5) above hold. First, (1) and (3)

imply ht(�k�1) = k � 1.

We have a disjoint union �(g; h) = �(n \ �u) t �(v2) t ��(d). So, (2) implies �+
k�1 �

�(n\ �u)t�(v2). If there is no simple root for �+
k�1 contained in n\ �u, we have any simple root

for �+
k�1 is contained in �(v2) = �+

b2
. Hence we have �+

k�1 = �+
b2
. However, it contradicts

ht(�+
k�1) = k � 1 < d = �+

b2
. So, there exists some simple root �k for �+

k�1 such that

�k 2 �(n \ �u). Since �(n) = �n and �(�u) = �u, we see �k is complex and ��k 2 �(�n \ �u) �
��(d) � ��+

k�1. Hence, we see �k satis�es the conditions in the above (1)-(5). If �(d) � �+

and ht(�+) = d, then clearly �+ = �b2 . So, we have �
+
d = �b2 , since ht(�

+
d ) = d. Thus, we

have (6). �

We immediately see:

Corollary 2.1.5. The complex roots �1; ::::�d in the above Lemma 1.2.4 are all distinct and we

have �(n \ �u) = f�1; ::::�dg.

CAUTION The above numeration f�1; :::; �dg of �(n \ �u) may depend on the choice of

b0.

2.2 Change of polarization

In this section, we �x a � � � pair (p; q). Let m; l; :::: be as in 1.2.

Let L� (resp. (L\M)�) be the metaplectic double covering of L (resp. L\M) with respect

to �(u) (resp. �(u \ m)).

Lemma 2.2.1. On l\ m, we have

�(u)� �(u \ m) = �(�n\ l) + �(n) + 2�(u \ �n):

Proof Remark that �(�n\ u) = ��(n \ �u), �(�n\ l) = ��(n\ l), etc. So, we have the lemma
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from the computation below.

�(u) + �(n \ l) = �(u \ m) + �(u \ �n) + �(u \ n) + �(n \ l)

= �(u \ m) + 2�(u \ �n) + �(�u \ n) + �(n \ l) + �(u \ n)

= �(u \ m) + 2�(u \ �n) + �(n) �

We de�ne a one dimensional representation �p;q of L \M on a space C p;q by

�p;q(`) = ��(�n\l)(`)��(n)(`)�2�(�n\u)0(`) (` 2 L \M):

From Lemma 1.3.1, we easily see:

Lemma 2.2.2. Assigning (`; z) 2 (L\M)� to (`; z�p:q(`)), we have an embedding of the group

(L \M)� ,! L�.

Let (P \L)� be the parabolic subgroup of L� which is the pull-back of P \L to L�. Under

the identi�cation by the embedding in Lemma 2.2.2, we can regard (L\M)� as a Levi subgroup

of (P \ L)�.

Following is the main result of the section.

Theorem 2.2.3. (1) Let Z be a Harish-Chandra (l \ m; L \ M \ K)-module with an in-

�nitesimal character � 2 h�. assume h� � �(u \ m) � �(n); �i > 0 for all � 2 �(u) such that

2 h���(u\m)��(n);�ih�;�i 2Z.
Then, we have

[uIndGP ((
uRm;M\K

q\m;L\M\K)
dimu\m\k(Z))] = [(uRg;K

q;L\K)
dimu\k(uIndLP\L(Z 
 C 2�(u\�n)0))](�)

(2) Let Z be a Harish-Chandra (l\m; L\M \K)-module with an in�nitesimal character

� 2 h�. We assume h� � �(u \ m); �i > 0 for all � 2 �(u) such that 2
h���(u\m);�i

h�;�i 2 Z. Then,
we have

[IndGP ((
uRm;M\K

q\m;L\M\K)
dimu\m\k(Z))] = [(uRg;K

q;L\K)
dimu\k(IndLP\L(Z 
 C p;q))](��)

(3) Let ~Z be a Harish-Chandra (l\m; (L\M\K)�)-module with an in�nitesimal character

� 2 h� such that Z = ~Z 
 C �(u\m)0 is reduced to a Harish-Chandra (l \ m; L \M \K)-module.

We assume h�; �i > 0 for all � 2 �(u) such that 2 h�;�ih�;�i 2Z. Then,

[IndGP ((
nRm;M\K

q\m;L\M\K)
dimu\m\k( ~Z))] = [(nRg;K

q;L\K)
dimu\k(IndL

�

(P\L)�( ~Z))](� � �)
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Proof

(2),(3) are rephrasements of (1). We remark that characters of standard modules form a

basis of the Grothendieck group of the category of Harish-Chandra modules. Taking account

of additivity of cohomological inductions, it su�ces to show (�) in the case of Z is a standard

module.

As in 1.2, we �x a � and � stable Cartan subalgebra h of l \ m and a Borel subalgebra b0

of l \ m containing h. We denote by v the nilradical of b0. Let HC be the analytic subgroup

of GC and put H = HC \ G. Let Y be a one-dimensional H-representation whose di�erential

is just �. We consider the case of Z = (Rl\m;L\M\K
b;T )dimv\k(Y ). Put b1 = b + u \ m + n and

b2 = b + n \ l + u. Then, b1 and b2 areBorelsubalgebra of g. From [Knapp-Vogan] Corollary

11.86 (Induction-by-stage formula), we have

uIndGP ((
uRm;M\K

q\m;L\M\K)
dimu\m\k((Rl\m;L\M\K

b;T
)dimv\k(Y ))) �= ((uRg;K

b1;T
)dimu\m\k+dimv\k(Y );

(uRg;K
q;L\K)

dimu\k(uIndLP\L((Rl\m;L\M\K
b;T )dimv\k(Y )
 C 2�(u\�n)0)) �= (uRg;K

b2;T
)dimu\k+dimv\k(Y 
 C 2�(u\�n)0):

So, we have only to show

((uRg;K
b1;T

)dimu\m\k+dimv\k(Y ) �= (uRg;K
b2;T

)dimu\k+dimv\k(Y 
 C 2�(u\�n)0):(�)

However, we have Lemma 1.2.3 and 1.2.4. So, (�) can be obtained by the successive application

of the transfer theorem ([Knapp-Vogan] Theorem 11.87). �

We also give a variation of Theorem 2.2.3. Proof is just the same.

Theorem 2.2.4. (1) Let Z be a Harish-Chandra (l\m; L\M \K)-module with an in�nites-

imal character � 2 h�. assume h� � �(u \ m) � �(n); �i > 0 for all � 2 �(�n \ u) such that

2 h���(u\m)��(n);�ih�;�i 2Z. Moreover, we assume that

uRm;M\K
q\m;L\M\K)

i(Z)) = 0 for all i 6= dim u \m \ k

(uRg;K
q;L\K)

i(uIndLP\L(Z 
 C 2�(u\�n)0)) = 0 for all i 6= dim u \ k

Then, we have

[uIndGP ((
uRm;M\K

q\m;L\M\K)
dimu\m\k(Z))] = [(uRg;K

q;L\K)
dimu\k(uIndLP\L(Z 
 C 2�(u\�n)0))](�)
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(2) Let Z be a Harish-Chandra (l\m; L\M \K)-module with an in�nitesimal character

� 2 h�. We assume h� � �(u \ m); �i > 0 for all � 2 �(�n \ u) such that 2 h���(u\m);�ih�;�i 2 Z.
Moreover, we assume that

uRm;M\K
q\m;L\M\K)

i(Z)) = 0 for all i 6= dim u \ m \ k

(uRg;K
q;L\K)

i(IndLP\L(Z 
 C p;q)) = 0 for all i 6= dim u \ k

Then, we have

[IndGP ((
uRm;M\K

q\m;L\M\K)
dimu\m\k(Z))] = [(uRg;K

q;L\K)
dimu\k(IndLP\L(Z 
 C p;q))](��)

(3) Let ~Z be a Harish-Chandra (l\m; (L\M\K)�)-module with an in�nitesimal character

� 2 h� such that Z = ~Z 
 C �(u\m)0 is reduced to a Harish-Chandra (l \ m; L \M \K)-module.

We assume h�; �i > 0 for all � 2 �(�n \ u) such that 2
h�;�i
h�;�i 2Z. Moreover, we assume that

nRm;M\K
q\m;L\M\K)

i( ~Z) = 0 for all i 6= dim u \m \ k

(nRg;K
q;L\K)

i(IndL
�

(P\L)�( ~Z)) = 0 for all i 6= dim u \ k

Then,

[IndGP ((
nRm;M\K

q\m;L\M\K)
dimu\m\k( ~Z))] = [(nRg;K

q;L\K)
dimu\k(IndL

�

(P\L)�( ~Z))](� � �)

2.3 Derived functor modules; complex case

For complex connected reductive groups, irreducible unitary representations with regular inte-

gral in�nitesimal character is a parabolic induction from a one-dimensional unitary represen-

tation ([Enright]). Moreover, Enright proved they have non-trivial (g; K)-cohomologies. On

the other hands, for general reductive Lie groups, Vogan-Zuckerman proved that if irreducible

unitary representation with regular integral in�nitesimal characters and with non-trivial (g; K)-

cohomologies are nothing but derived functor modules. Here, we give an explanation of such

phenomenon in viewpoint of the change of polarization.

Let G be a complex connected reductive Lie group and we �x a Cartan involution �. Here,

we denote by g0 the real Lie algebra of G. Then the complexi�cation of g0 can be identi�ed

with g0 � g0. Let p0 be any parabolic subalgebra of g0 with a Levi decomposition p0 = m0 + n0

such that m0 is � stable. If we choose the identi�cation adequately, then the complexi�cation

p of p0 can be identi�ed with p0 � p0 � g0 � g0. On the other hand, if we put q = p0 � �p0,
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q is a �-stable parabolic algebra. Here, �p0 means the opposite parabolic subalgebra to p0. We

immediately see (p; q) is a ��-pair and p and q have a common Levi part m0�m0. Applying the

Theorem 1.3.3, we see that, for complex connected reductive groups, derived functor modules

are actually certain irreducible degenerate principal series representations.

2.4 Derived functor modules; general case

For G = GL(n;R), derived functor modules are parabolic induction from the external tensor

product of some copies of distinguished derived functor modules so-called Speh representations

and possibly a one-dimensional representation. ([Speh])

We examine such phenomenon in viewpoint of the change of polarization. Here, we use no-

tations as in 1.2, such as G, GC , K, KC , g, g0, �, �, etc. Let q be a �-stable parabolic subalgebra

with an orderly Levi decomposition q = l + u. Let L be the Levi subgroup corresponding to l

de�ned as in 1.1.

Let a be the �1-eigenspace with respect to � in the center of l. We call q pure imaginary if

a is contained the center of g.

Let m be the centerizer of a in g. Then m is a Levi subalgebra of a �-stable parabolic

subgroup p. Obviously (p; q) is a ��-pair and l � m. q is imaginary if and only if m = g holds.

Conversely, we assume that there is a �-stable parabolic subalgebra p of g such that (p; q) is

a ��-pair and there is an orderly Levi decomposition p = m+ n such that l � m 6= g. Then, we

have q is not pure imaginary since the �1-eigenspace with respect to � in the center of m also

centerize l.

From Theorem 2.2.3, we have:

Proposition 2.4.1. Let q be a �-stable parabolic subalgebra with an orderly Levi decomposition

q = l + u. Assume that q is not pure imaginary. Then, there is a �-stable parabolic subalgebra

p of g with an orderly Levi decomposition p = m+ n such that the derived functor modules of g

with respect to q is isomorphic to the parabolic induction of a derived functor module of m.

Obviously, if G has a compact Cartan subgroup, any �-stable parabolic subalgbra is pure

imaginary.

We interpret Speh's result as follows. So, for a while, we put G = GL(nR) We �x a Cartan

involution �(g) = tg�1 of G. So, we put K = O(n) here. For a positive integer k, we put
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Jk =

�
0 �Ik
Ik 0

�
. First, we assume n is even and write n = 2k, Put

l(k) =

��
A �B
B A

�
2 gl(2k; C )

���� A;B 2Mk(C )

�
;

u(k) =

��p�1S S
S �p�1S

�
2 gl(2k; C )

���� S 2Mk(C )

�
;

q(k) = l(k) + u(k):

Then, q(k) is a �-stable parabolic subalgebra of gl(2k; C ) and q(k) = l(k) + u(k) is a Levi

decomposition such that l(k) is a � and �-stable Levi part. The derived functor module with

respect to q(k) is a Speh representations of GL(2k; C ). Actually, we have:

Proposition 2.4.2. If n is odd, there is no proper pure imaginary �-stable parabolic subalgebra.

If n is even, any proper pure imaginary �-stable parabolic subalgebra is SO(n)-conjugate to

q(n2 ).

Next, we consider general �-stable parabolic subalgebras. For a sequence of positive integers

~n = (n1; :::; n`) such that 0 6 n� 2n1 + � � �+ 2n`, we put q = n� 2n1 + � � �+ 2n`

t(~n) = fdiag(t1Jn1 ; :::; t`Jn` ; 0q) 2 gl(n; C )jt1 ; :::; t` 2 C g

. We denote by l(~n) the centerizer of t(~n) in gl(n; C ).

Then we have

l(~n) = fdiag(A1; :::; A`; D) 2 gl(n; C )jAi ;2 l(ni) (1 6 i 6 `); D 2 gl(q; C )g:

and l0(~n) = l(~n)\ gl(n;R) is a real form of l(~n) and

l0(~n) �= gl(n1; C ) � � � � � gl(n`; C ) � gl(q;R):

Put

m(~n) = fdiag(A1; ::::; A`; D) 2 gl(n; C )jAi 2 GL(2ni; C ) (1 6 i 6 `); D 2 gl(q; C )g:

There a �-stable parabolic subalgebra q(~n) such that

m(~n) \ q(~n) = fdiag(A1; :::; A`; D) 2 gl(n; C )jAi ;2 q(ni) (1 6 i 6 `); D 2 gl(q; C )g:
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Any �-stable parabolic subalgebra in gl(n; C ) is O(n; C )-conjugate to some q(~n). Let n be the

Lie algebra of the upper triangular matrices in gl(n; C ) and put p(~n) = m(~n) + n. We denote

by n(~n) the nilradical of p(~n). Then, (p(~n); q(~n)) is a ��-pair. If we apply Theorem 2.2.3 to the

��-pair, we get Speh's result.

Next, we consider the case of G = GL(k;H). Write H = C + jC . This case we put

K = Sp(n) = fg 2 GL(k;H)jt�gg = Ikg. Then we regard gl(k; C ) as a real Lie subalgebra of

gl(k;H). For ` 2 Zand t 2 p�1R, we de�ne a one-dimensional unitary representation �`;t of

GL(k; C ) as follows.

�`;t(g) =

�
det(g)

j det(g)j
�`
j det(g)jt:

Let q(k) be a �-stable parabolic subalgebra with an orderly Levi decomposition q(k) = l(k)+u(k).

We choose the nilradical n(k) so that �`;t is good with respect to q(k) for su�cient large `. Derived

functor modules with respect to q(k) is called quarternionic Speh representations.

For t 2 p�1R, there is a one-dimensional unitary representation ~�t of GL(k;H) whose

restriction to GL(k; C ) is �(0; t).

We put

De�nition 2.4.3.

Ak(`; t) = (uRgl(k;H)
R C;Sp(k)
q(k);O(k)

)k(k+1)(�`+2k;t) (` 2Z):(�)

We also put

Ak(�1; t) = ~�t

For ` 2 Z, Ak(`; t) is derived functor module in the good (resp. weakly fair) range in the

sense of [Vogan 1988] if and only if ` > 0 (resp. ` > �k).
We immediately see:

Ak(`; t) �= Ak(`; 0)
 ~�t:

We easily have:

Proposition 2.4.4. Any proper pure imaginary �-stable parabolic subalgebra is Sp(k)-conjugate

to q(k).
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As in the case of GL(k;R), any derived functor modules of GL(k;H) is a parabolic induction

from the external tensor product of some copies of quartrnionic Speh representations and possibly

a one-dimensional representation. (cf. [Vogan 1986])

Next, we consider the case of G = SO0(2p+ 1; 2q+ 1). This case, a Levi part of a non-pure

imaginary �-stable parabolic subalgebra q is isomorphic to so(1; 1) � u(p1; q1) � � � �u(pk ; qk).
Here, p1 + � � �+ pk = p and q1 + � � �+ qk = q.

Let p be amaximal cuspidal parabolic subalgebra whose Levi part is isomorphic to so(2p; 2p)�
so(1; 1). The derived functor module with respect to the above q is a parabolic induction with

respect to p from a derived funcctor module of so(2p; 2q) with respect to a �-stable parabolic

subalgebra whose Levi part is isomorphic to u(p1; q1)� � � �u(pk; qk).
Among the exceptional real simple Lie algebras, only E I and E IV have non pure imaginary

�-stable parabolic subalgebras.
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x 3. Application of change-of-polarization to SO�(2n) and Sp(p; q)

Throughout this section, we assume G is either SO�(2n) or Sp(n � q; q). Put p = n � q. For

G = SO�(2n), we put q =
�
n
2

�
. So, in the both cases G = Sp(p; q) and G = SO�(2n), q is the

real rank of G.

3.1 Root systems

We �x a maximal compact subgroup K of SO�(2n) (resp. Sp(p; q)), which is isomorphic to U(n)

(resp. Sp(p)�Sp(q)). We denote by GC the complexi�cation of G as in 1.2. So, GC is isomorphic

to SO(2n; C ) or Sp(n; C ). We denote by � the Cartan involution corresponding to K as in 1.2.

We �x a �-stable maximally split Cartan subgroup sH of G. We remark that all the Cartan

subgroup of G is connected. We stress that we use notations introduced in x 1.
First, we consider the root system �(g; sh) for G = SO�(2n). Then we can choose an

orthonormal basis e1; :::; en of
sh� such that

�(g; sh) = f�ei � ej j 1 6 i < j 6 ng:

If n is even, we write n = 2m. In this case, we choose the above e1; :::; en so that �(e2i�1) = �e2i
and �(e2i) = �e2i�1 for all 1 6 i 6 m. If n is odd, we write n = 2m + 1. In this case, we

choose the above e1; :::; en so that �(e2i�1) = �e2i and �(e2i) = �e2i�1 for all 1 6 i 6 m and

�(e2m+1) = e2m+1.

We immediately see that �(e2i�1 � e2i) (resp. �(e2i�1 + e2i)) (1 6 i 6 m) are compact

imaginary (resp. real) and all other roots are complex.

If G = Sp(n� q; q), put p = n� q and choose e1; :::en such that

�(g; sh) = f�ei � ej j 1 6 i < j 6 ng [ f�2ei j 1 6 i 6 ng;

and

�(e2i�1) = �e2i; �(e2i) = �e2i�1 (1 6 i 6 q);

�(ei) = ei (2q < i 6 n):

We �x an simple system for �(g; sh) as follows. If G = SO�(2n), then put � = fe1 �
e2; :::; en�1� en; en�1 + eng. If G = Sp(p; q), then put � = fe1 � e2; :::; en�1� en; 2eng.

We denote by �+ the corresponding positive system of �(g; sh). Let E1; ::::; En be the dual

basis of sh to e1; ::::; en.
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3.2 Square Quadruplets

One of a famous realizations of Sp(p; q) is the automorphism group of an inde�nite Hermitian

form on a H -vector space. Namely,

Sp(p; q) =
�
g 2 GL(p+ q;H)jt�gIp;qg = Ip;q

	
:(F)

Here, Ip;q =

�
Ip 0
0 �Iq

�
. Similarly, we consider complex inde�nite unitary group.

U(p; q) =
�
g 2 GL(p+ q; C )jt�gIp;qg = Ip;q

	
:

U(p; q) is regarded as a subgroup of Sp(p; q) in the obvious way. We �x a maximal compact

subgroup of Sp(p+ q) as follows.

K = Sp(p)� Sp(q) =

��
A 0
0 B

�����A 2 Sp(p); B 2 Sp(q)

�
:

We denote by � the corresponding Cartan involution.

For the case of p = q, we also consider another realization:

Sp(k; k) =
�
g 2 GL(2m;H)jt�gJkg = Jk

	
:

We put n = 2k. Here, Jk =

�
0 Ik
Ik 0

�
. Then, identifying GL(k;H) with the following group, we

regard GL(k;H) as a subgroup of Sp(k; k):��
A 0
0 t �A

�����A 2 GL(k;H)

�
:

We consider U(k; k)\ GL(k;H) as a subgroup of Sp(k; k). This group is��
A 0
0 t �A

�����A 2 GL(k; C )

�
:

We identify it with GL(k; C ) and obtain the following \square quadruplet."

GL(k;H) � Sp(k; k)
[ j [ j

GL(k; C ) � U(k; k)
(A)

We easily see U(k; k), GL(k;H), and GL(k; C ) are the centralizers of their centers in Sp(k; k).

Since GL(k; C ) has the same rank and the same real rank as Sp(k; k), we can choose �-stable

maximally split Cartan subgroup sH of Sp(k; k). We denote by sh the complexi�ed Lie algebra

of sH . We may apply the notations on the root system for �(g; sh)
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First, we choose the standard Borel subalgebra b1(k) of g = sp(n; C ) corresponding to �+

in 3.1. We de�ne a subset S(k) = fei � ei+1 j 1 6 i 6 ng of �. We denote by ~p(k) the

standard parabolic subalgebra corresponding to S(k), namely b1(k) � ~p(k) and �(~p(k); sh) =

�+ [ (ZS(k)\�(g; sh)) Then, we easily see GL(k;H) is the �-stable Levi subgroup for ~p(k).

Next, we consider another simple system �u of �(g;
sh) as follows.

�u = fei � ei+2 j 1 6 i 6 n � 2g [ fen�1 + eng [ f�2e2g:

We also put Su(k) = �u � f�2e2g. We we choose the standard Borel subalgebra b2(k) of g =

sp(n; C ) corresponding to �u and denote by ~q(k) the parabolic subalgbra of g containing b2(k)

and corresponding to Su(k). Since, �(Su(k)) = �Su(k) and �(�2e2) � �2e2 ( mod ZSu(k)),

~q(k) is �-stable. We easily see U(k; k) is a Levi subgroup for ~q(k). U(k; k), GL(k;H), and

GL(k; C ) are the centralizers of their centers in Sp(k; k). In fact, the Lie algebra of the center of

U(k; k) (resp. GL(k;H)) is spanned by
Pk

i=1(E2i�1 � E2i) (resp. E1 + � � �+ En). Here, n = 2k

and we follows the notations in 3.1. The center of U(k; k) (resp. GL(k;H)) is compact (resp.

real split) and �-stable, and U(k; k) (resp. GL(k;H)) is a Levi subgroup for a maximal �-stable

(resp. �-stable) parabolic subalgebra (say ~q(k) (resp. ~q(k))) of sp(2k; C ) = sp(k; k)
RC .
Since sh � ~p(k) \ ~q(k), we see (~p(k); ~q(k)) forms a ��-pair. Put p(k) = ~p(k)\ (u(k; k)
RC )

and q(k) = ~q(k)\ (gl(k;H) 
RC ).
Similarily, GL(k; C ) is the centerizer of the split (resp. compact) part of its center in U(k; k)

(resp. GL(k;H)). GL(k; C ) is a Levi subgroup for a maximal �-stable (resp. �-stable) parabolic

subalgebra p(k) (resp. q(k)) of gl(2k; C ) = u(k; k)
RC (resp. gl(2k; C ) = gl(k;H) 
RC ).
p(k) is usually called a Siegel parabolic subalgebra and q(k) is the one de�ned in 3.2, the

unique (up to Sp(k)-conjugacy) pure imaginary �-stable parabolic subalgebra. We denote by

P (k) the Siegel parabolic subgroup of G corresponding to p(k). For ` 2 Zand t 2 p�1R, we
de�ne a one-dimensional unitary representation �`;t of GL(n; C ) as follows.

�`;t(g) =

�
det(g)

j det(g)j
�`
j det(g)jt:

We de�ne the degenerate unitary principal series with respect to P (k) as follows:

Ik(`; t) = Ind
U(k;k)
P (k) (�`;t) (k 2Z; t 2 p�1R)(y)

In (A), each inclusion gives a symmetric pair. Moreover, except GL(k; C ) � GL(k;H), they

give symmetric pairs of G=K"-type ([Oshima-Sekiguchi 1980]).
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We introduce similar structure for SO�(4k) as follows.

GL(k;H) � SO�(4k)
[ j [ j

GL(k; C ) � U(k; k)
(B)

In fact, as in the case of Sp(k; k), U(k; k) (resp. GL(k;H)) above is the centerilzer ofPk
i=1(E2i�1 � E2i) (resp. E1 + � � � + En) in SO�(4k). (Here, n = 2k.) GL(k; C ) is the in-

tersection of U(k; k) and GL(k;H). For k > 2, we de�ne

�u = fei � ei+2 j 1 6 i 6 n � 2g [ fen�1 + eng [ f�e2 � e4g;

Su(k) = �u � f�e2 � e4g:

If k = 1, put �u = fe1 + e2; e1 � e2g and Su(1) = fe1 + e2g. We de�ne ~p(k) and ~q(k) in a

similar manner to the case of G = Sp(k; k). In this case, situation is quite similar to the case of

Sp(k; k).

3.3 Maximal parabolic subgroups

Let k be a positive integer such that k � q. If G = Sp(p; q), put p0 = p� k and q0 = q � k. If

G = SO�(2n), put r = n � 2k�s .

We put

A =
kX
j=1

Ej:

Then we have �(A) = �A . We denote by a(k) the one-dimensional Lie subalgebra of sh

spanned by A.

We de�ne a subset S(k) of � as follows. If G = Sp(p; q), we de�ne

S(k) =

�
�� fe2k � e2k+1g if p0 > 0;
�� f2eng if p0 = 0

:

If G = SO�(2n), we de�ne

S(�) =

�
�� fe2k � e2k+1g if r > 0;
�� fen�1 + eng if r = 0

:

We denote by M(k) (resp. m(k)) the standard maximal Levi subgroup (resp. subalgebra) of

G (resp. g) corresponding to S(k). Namely M(k) is the centerizer of a(k) in G.
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We denote by P(k) the parabolic subgroup of G whose �-invariant Levi part is M(k). We

choose P(k) so that the roots in � whose root spaces are contained in the complexi�ed Lie

algebra of the nilradical of P(k) are all in �+. We denote by N(k) the nilradical of P(k).

Formally, we denote by Sp(0; 0) and SO�(0) the trivial group f1g. Then, we have

M(k)
�=
�

GL(k;H) � Sp(p0; q0) if G = Sp(p; q)
GL(k;H) � SO�(2r) if G = SO�(2n) :

Often, we identify GL(k;H), Sp(p0; q0), SO�(2r) with subgroups of M(k) in obvious ways. We

call such identi�cations the standard identi�cations. The Cartan involution � induces Cartan

involutions on M(k), GL(k;H), Sp(p
0; q0), and SO�(2r) and we denote them by the same letter

�. We put M�
(k) = Sp(p0; q0) if G = Sp(p; q) and put M�

(k) = SO�(2r) if G = SO�(2n).

We denote by p(k), m(k), m
�
� and n� the complexi�ed Lie algebra of P�, M�, M

�
� , and N�,

respectively.

Later, we treat various Sp(p; q)'s and SO�(2n)'s at the same time. So, sometimes we write

P(k)(p; q) (resp. P
�
(k)(2n)) for P(k) if G = Sp(p; q) (resp. G = SO�(2n)).

We de�ne a basis �
(k)
u of �(g; sh) as follows. If 2k = n, then we put �

(k)
u = �u, where �u is

de�ned in 3.2. If 2k < n, then we put

�(k)
u = fei � ei+2 j 1 6 i 6 2k � 2g [ fe2k�1 + e2k;�e2 � e2k+1g [ f 2 � j (Ei) = 0(1 6 i 6 2k)g:

Here, � is the basis of �(g; sh) de�ned in 3.1. We denote by b(k) the standard Borel subaalgebra

of g Put S
(k)
u = �

(k)
u � f�e2 � e2k+1g. Let q(k) be the parabolic subalgebra of g containing b(k)

corresponding to S
(k)
u . Since, �(ZS

(k)
u ) =ZS

(k)
u and �(�e2�e2k+1) � �e2�e2k+1 ( mod ZS

(k)
u ),

q(k) is �-stable. We easily see that U(k; k)�M�
(k) is a Levi subgroup (say L(k))for q(k). We denote

by l(k) the complexifed Lie algebra of L(k).

Since sh � p(k) \ q(k), (p(k); q(k)) is a ��-pair.

We denote by G(k) the centerizer of fEi j 2k < i 6 ng in G. (If 2k = n, we put G(k) = G.)

Then, we have

G(k)
�=
�

Sp(k; k) if G = Sp(p; q)
SO�(4k) if G = SO�(2n) :

Let G(k)M
�
(k) be the subgroup of G generated by G(k) and M

�
(k). Since G

1
(k) commutes with

M�
(k), we have G(k)M

�
(k)

�= G(k) �M�
(k).

We have the following diagram:
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M(k) � G(k)M
�
(k)

[ j [ j
M(k) \ L(k) � L(k)

(C)

Taking intersection of G(k) and each term of (C), we have a square quadruplet in the sense

of 3.2:

GL(k;H) � G(k)

[ j [ j
GL(k; C ) � U(k; k)

(D)

We have :

�(u(k) \ m(k)) = fe2i�1 � e2j j 1 6 i; j 6 kg;
�(n(k) \ l(k)) = fe2i�1 + e2j j 1 6 i; j 6 kg:

If G = SO�(2n), we have

�(n(k) \ u(k)) = fe2i�1 + e2j�1 j 1 6 i; j 6 k; i 6= jg [ fe2i�1 � ej j 1 6 i;6 k; 2k < j 6 ng;
�(n(k) \ �u(k)) = fe2i + e2j j 1 6 i; j 6 k; i 6= jg [ fe2i � ej j 1 6 i;6 k; 2k < j 6 ng:

If G = Sp(p; q), we have

�(n(k) \ u(k)) = fe2i�1 + e2j�1 j 1 6 i; j 6 kg [ fe2i�1 � ej j 1 6 i;6 k; 2k < j 6 ng:
�(n(k) \ �u(k)) = fe2i + e2j j 1 6 i; j 6 kg [ fe2i � ej j 1 6 i;6 k; 2k < j 6 ng:

Put aG = 1 (resp. aG = �1), if G = Sp(p; q) (resp. G = SO�(2n)). For 1 6 i 6 n, we have

�(u(k) \m(k))(Ei) =

�
(�1)i+1 k2 if 1 6 i 6 2k,
0 otherwise

;

2�(�u(k) \ n(k))(Ei) =

�
3k � 2n� aG if i 2 2Z; 16 i 6 2k,
0 otherwise

;

�(�n(k) \ l(k))(Ei) =

� �k
2 if 1 6 i 6 2k;

0 otherwise
;

�(n(k))(Ei) =

� �2n�2k+aG
2 if 1 6 i 6 2k

0 otherwise
:

Hence, we have:
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Lemma 3.3.1. De�ne �p(k);q(k) as in 2.2. For 1 6 i 6 n, we have:

�p(k);q(k)(Ei) =

�
(�1)i+1 2n�3k+aG2 if 1 6 i 6 2k
0 otherwise

:

We denote by sh(k) (resp.
sh(k)) the C -linear span of fEi j 2k < i 6 ng (resp. fEi j 1 6 i 6 2kg

). Using the direct sum docomposition sh = sh(k) � sh(k), we have
sh� = (sh(k))� � sh�(k).

Let � be an irreducible unitary representation of M�
(k). Since sh(k) =

sh \ m�
(k),

sh(k) is a

Cartan subalgebra of m�
(k). Let �� 2 sh�(k) be the in�nitesimal character of �. (�� is determined

up to the Weyl group action.)

For ` 2 Zand t 2 p�1R, we conder the one-dimensional representation �`;t of GL(k; C )

de�ned in 3.2. We consider the representation �`;t � � of GL(k; C ) �M�
(k). Let �`;t;� be the

in�nitesimal character of �`;t � �. Then we have:

�`;t;�(E2i�1) =
k � 1 + `+ t

2
� i+ 1 (1 6 i 6 k);

�`;t;�(E2i) =
k � 1� `+ t

2
� i+ 1 (1 6 i 6 k);

�`;t;� jsh(k) = ��

We de�ne:

c`;t;� = max

�
f0g [

�
j��(Ei)j

����n� 2k < i 6 n;

�
��(Ei)� `+ t � 1

2

�
\Z 6= ;

��
:

Applying Theorem 2.2.3 (2) to the ��-pair (p(k); q(k)), we have:

Proposition 3.3.2. Let � be an irreducible unitary representation of M�
(k). Let ` 2 N and

t 2 p�1R. We assume ` > 2c`;t;� � 1. Put S = k(n � 2k + 1) (resp. S = k(2n � 3k)), if

G = Sp(p; q) (resp. if G = SO�(2n)).

Then,

IndGP(k)(Ak(`; t)� �)
�= (Rg;K

q(k);K\L(k))
S(Ik(`+ 2n� k + aG; t)� �):

Here, Ak(`; t) (resp. Ik(`; t)) is a quarternionic Speh representation (resp. a degenerate principal

series representatiion) de�ned in 2.4 (�) (resp. 3.2 (y)).

3.4 �-stable parabolic subalgebras

We retain the notations in 3.1 and 3.3. The classi�cations of K-conjugate class of �-stable

parabolic subalgebras with respect to real classical groups are more or less well-known. Here, we
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review the classi�cation for G = U(p; q); Sp(p; q); SO�(2n). First, we discuss �-stable parabolic

subalgebras with respect to U(p; q) (cf. [Vogan 1996] Example 4.5).

Let ` be a positive integer. Put

P`(p; q) =

(
((p1; :::; p`); (q1; :::; q`)) 2 N` � N` j

X̀
i=1

pi = p;
X̀
i=1

qi = q; pj + qj > 0 for all 1 � j � `

)
;

We also put

P(p; q) =
[
`>0

P`(p; q);

P(0; 0) = P0(0; 0) = f((;); (;))g:

If (p;q) 2 P(p; q) satis�es (p;q) 2 P`(p; q), we call ` the length of (p;q). For (p;q) 2 P(p; q),
we de�ne

I(p;q) = diag(Ip1;q1 ; :::; Ip`;q`)

Then we have

U(p; q) =
n
g 2 GL(p+ q; C )jt�gI(p;q)g = I(p;q)

o
:

Let � be the Cartan involution given by the conjugation by I(p;q). In this realization, we denote

by q(p;q) the block-upper-triangular parabolic subalgebra of gl(p + q; C ) = u(p; q)
RC with

blocks of zizes p1 + q1; ::::; p` + q` along the diagonal. Then, q(p;q) is a �-stable parabolic

subalgebra. The corresponding Levi subgroup U(p;q) consists of diagonal blocks.

U(p;q) �= U(p1; q1)� � � � �U(p`; q`):

We denote by u(p;q) the Lie algebra of U(p;q). Via the above construction of q(p;q), K-

conjugate class of �-stable parabolic subalgebras with respect to U(p; q) is classi�ed by P(p; q).

For G = Sp(p; q); SO�(2n), we put

PG =

8<
:
S
p06p
q06q

P(p0; q0) if G = Sp(p; q),S
p0+q06nP(p

0; q0) if G = SO�(2n)
;

K-conjugate class of �-stable parabolic subalgebras with respect to G is classi�ed by PG. We

give a construction of �-stable parabolic subalgebra ~q(p;q) for (p;q) 2 PG.
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First, we assume G = Sp(p; q) , (p;q) 2 P`(p0; q0), 0 6 p0 6 p, and 0 6 q0 6 q. Put p0 = p�p0

and q0 = q�q0. Then we have a symmetric pair (Sp(p; q); Sp(p0; q0)�Sp(p0; q0)). Taking account
of the realization of Sp(p0; q0) as the automorphism group of an inde�nite Hermitian form on a

H -vector space (3.2 (F)), we see that U(p0; q0) � Sp(p0; q0). Hence we have U(p0; q0)�Sp(p0; q0) �
Sp(p; q). Put L(p0;q0)(p; q) = U(p0; q0)� Sp(p0; q0) Since the centerizer in Sp(p; q) of the center of

U(p0; q0) is L(p0;q0)(p; q),L(p0;q0)(p; q) is a Levi subgroup of a �-stable maximal parabolic subalgebra

~q(p0;q0)(p; q) of sp(p + q; C ). We denote by ~u(p0;q0)(p; q) the nilradical of ~q(p0;q0)(p; q). In fact

there are two possibilities of the choices of ~u(p0;q0)(p; q). Our choice should be compatible with

the construction in 3.4. Namely, we should choose ~u(p0;q0)(p; q) so that ~q(p0;q0)(p; q) = ~q(k) , if

p0 = q0 = k. Such a choice is determined as follows. For ` 2 Z, we de�ne a character �` of

U(p0; q0) by

�`(g) = det(g)` (g 2 U(p0; q0)):

Let � be any irreducible unitary representation of Sp(p0; q0). Then, we choose ~u(p0;q0)(p; q) so

that �` � � is good with respect to ~q(p0;q0)(p; q) for a su�ciently large `.

We denote by l(p0;q0)(p; q) the complex�ed Lie algebra of L(p0;q0)(p; q). Let q(p;q)(p; q) be the

�-stable parabolic subgroup of u(p0; q0) 
RC de�ned as above. Since L(p0;q0)(p; q) = U(p0; q0) �
Sp(p0; q0), q(p;q)� sp(p0 + q0; C ) is a �-stable parabolic subalgebra of l(p0;q0). De�ne

~q(p;q)(p; q) = (q(p;q)� sp(p0 + q0; C )) + ~u(p0;q0)(p; q):

Then ~p(p;q)(p; q) is a �-stable parabolic subalgebra of sp(p + q; C ). The corresponding Levi

subgroup is L(p;q)(p; q) = U(p;q)� Sp(p0; q0).

Next, we consider the case G = SO�(2n). Assume (p;q) 2 P`(p0; q0), p0 + q0 6 n. Put

n0 = p0 + q0 and n0 = n� n0. Then we have a symmetric pair (SO�(2n); SO�(2n0)� SO�(2n0)).

There is a symmetric pair (U(p0; q0); SO�(2n0)). This is of G=K"-type except for p
0q0 + 1 2 2Z.

(cf. [Oshima-Sekiguchi 1984]) Put L�(p0;q0)(2n) = U(p0; q0) � SO�(2n0). Since the centerizer in

SO�(2n) of the center of U(p0; q0) is L�(p0;q0)(2n), L
�
(p0;q0)(2n) is a Levi subgroup of a �-stable

maximal parabolic subalgebra ~q�(p0;q0)(2n) of so(2n; C ). Now that we can construct a �-stable

parabolic subalgebra ~p�(p;q)(2n) of so(2n; C ) in the same way as the case of G = Sp(p; q). In

this case the Levi subgroup L�(p;q)(2n) is isomorphic to U(p;q)� SO�(2n0).
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3.5 A rearrangement formula

First, we consider the case of G = Sp(p; q). Let p0 and q0 be non-negative integers such that

p0 + q0 > 0. Moreover, we assume that p0 6 p and q0 6 q. Put p0 = p� p0 and q0 = q � q0. We

consider �-stable maximal parabolic subalgebra ~q(p0;q0)(p; q) de�ned in 3.4.

Let h(p0; q0) (resp. h(p0;q0)) be a � and �-stable compact Cartan subalgebra for Sp(p0; q0)

(resp. U(p0; q0)).

Taking account of L(p0;q0)(p; q) = U(p0; q0)� Sp(p0; q0), we put

h(p; q) = h(p0;q0) � h(p0; q0) � l(p0;q0)(p; q) � sp(p+ q; C ):

Then, h(p; q) is a � and �-stable compact Cartan subalgebra for Sp(p; q). Using the above direct

sum decomposition, we regard h�(p0;q0) and h(p0; q0)
� as a subspace of h(p; q)�. We introduce an

orthonormal basis ff1; :::; fp0+q0g (resp. ffp0+q0+1; :::; fp+qg) of h�(p0;q0) (resp. h(p0; q0)� ) such that

�(sp(p+ q; C ); h(p; q)) = f�fi � fj j 1 6 i < j 6 p+ qg [ f�2fi j 1 6 i 6 p+ qg;
�(u(p0; q0)
RC ; h(p0;q0)) = ffifj j 1 6 i; j 6 p0 + q0; i 6= jg;

�(sp(p0 + q0; C ); h(p0; q0)) = f�fi � fj j p0 + q0 < i < j 6 p+ qg [ f�2fi j p0 + q0 < i 6 p+ qg;
�(~u(p0;q0)(p; q); h(p; q)) = ffi � fj j 1 6 i 6 p0 + q0 < j 6 p+ qg [ ffi + fj j 1 6 i 6 j 6 p0 + q0g;

We denote by F1; :::; Fp+q the basis of h(p; q) dual to f1; :::; fp+q. We have

�(~u(p0;q0)(p; q))(Fi) =

�
2p+2q�p0�q0+1

2 if 1 6 i 6 p0 + q0,
0 otherwise

For ` 2 Z, we consider the one-dimensional unitary representation �` of U(p
0; q0) de�ned in

3.5.

Let Z be any Harish-Chandra module for Sp(p0; q0) with an in�nitesimal character � 2
h(p0; q0)

� � h(p; q)�. � is unique up to the Weyl group action. Put jj�jj = max(f0g [ fj�(Fi)j j
p0+ q0 < i 6 p+ q; �(Fi) 2Z)g). jj�jj is invariant under the Weyl group action on �, so we write

jjZjj = jj�jj.
�` � Z has an in�nitesimal character [`; �] 2 h(p; q)� such that

[`; �](Fi) =

�
`+ p0+q0+1

2 � i if 1 6 i 6 p0 + q0,
�(Fi) if p0 + q0 < i 6 p+ q

We denote by H(Sp(p; q))� the category of Harish-Chandra modules for Sp(p; q) with an in-

�nitesimal character �.
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De�nition 3.5.1. For ` 2Zand Z 2 H(Sp(p0; q0))�, put

Rp;q
p0 ;q0

(`)(Z) =
�
Rsp(p+q;C);K

~q(p0 ;q0)(p;q);L(p0;q0)(p;q)\K
�S

((�` � Z)
 C 2�(~u(p0 ;q0)(p;q)));

where S =
p0(4p�3p0+1)+q0(4q�3q0+1)

2 . If ` > jj�jj�(p0+q0), then the above cohomological induction

is in good range and we have an exact functor

Rp;q
p0;q0(`) : H(Sp(p0; q0))� ! H(Sp(p; q))[`;�]+�(~u(p0;q0)(p;q))

Next, we consider the following setting. Let k be a positive integer such that k 6 p and

k 6 q. Let p0 and q0 be non-negative integers such that p0 + q0 > 0. Moreover, we assume that

p0 + k 6 p and q0 + k 6 q. We consider �-stable parabolic subalgebra ~q(p0;q0)(p � k; q � k) of

m�
(k) = Sp(p� k; q � k) de�ned in 3.5.

So, the Levi subgroup L(p0;q0)(p�k; q�k) of ~q(p0;q0)(p�k; q�k) is written as U(p0; q0)�Sp(p�
p0�k; q�q0�k). Put sH(k) = exp(sh(k))\G. Then sH(k) is a maximally split Cartan subgroup

of GL(k;H). (Here, we consider the decomposition M(k) = GL(k;H)�M�
(k).) We �x a compact

Cartan subgroup uH(k;p0;q0) of L(p0;q0)(p� k; q� k) and put H(k; p0; q0) = sH(k) � uH(k;p0;q0). We

denote by h(k; p0; q0) the complexi�ed Cartan subalgebra of H(k; p0; q0). We denote by L0(k;p0;q0)
the centerizer of the center of U(p0; q0) in G. Then, we have L0(k; p0; q0) �= U(p0; q0) � Sp(p �
p0; q � q0). Let ~q0(k; p0; q0) be a �-stable parabolic subalgebra of Sp(p; q) with the Levi subgroup

L0(k;p0;q0). Let � be any irreducible unitary representation of LF(k;p0;q0). We choose ~q0(k; p0; q0) so

that �` � � is good with respect to ~q0(k; p0; q0) for su�ciently large `. ~q0(k; p0; q0) is K-conjugate

to ~q(p0;q0)(p; q) de�ned in 3.4.

Since h(k; p0; q0) � ~q0(k; p0; q0)\ p(k)(p; q), (p(k)(p; q); ~q
0(k; p0; q0)) is a ��-pair.

Since sh(k) � sh has a basis E1; :::; E2k, for any � 2 (sh(k))�, we de�ne

jj�jj = max(f0g [ fj�(Ei)j j 1 6 i 6 2k; j�(Ei)j 2Zg):

For any Harish-Chandra module V with an in�nitesimal character � 2 (sh(k))�, we put jjV jj =
jj�jj. This is well-de�ned, since jj�jj is invariant under the Weyl group action. For example, we

easily have:

Lemma 3.5.2.

(1) If � is a one-dimensional unitary representation of GL(k;H), then jj�jj = 0.

(2) For ` 2Zand t 2 p�1R, we have

jjAk(`; t)jj =
�

2k+`�1
2 if ` is odd and t = 0,

0 otherwise

40



Applying Theorem 2.2.3 to the ��-pair (p(k)(p; q); ~q
0(k; p0; q0)), we have:

Theorem 3.5.3. (a rearrangement formula for Sp(p; q))

Let k be a positive integer such that k 6 p and k 6 q. Let p0 and q0 be non-negative

integers such that p0 + q0 > 0. Moreover, we assume that p0 + k 6 p and q0 + k 6 q. Let

V (resp. Z) be a Harish-Chandra module with an in�nitesimal character for GL(k;H) (resp.

Sp(p�p0�k; q�q0�k)). Let ` be an integer such that ` > maxfjjV jj; jjZjjg�(p�p0�k)�(q�q0�k).
Then we have

h
Ind

Sp(p;q)
P(k)(p;q)

�
V �Rp�k;q�k

p0;q0 (`)(Z)
�i

=
h
Rp;q
p0;q0(`� 2k)

�
Ind

Sp(p�p0;q�q0)
P(k)(p�p0;q�q0)(V � Z)

�i
:

The above cohomological inductions are in the good region.

Next, we consider the case of SO�(2n).

Put n0 = n� p0� q0. We consider �-stable maximal parabolic subalgebra ~q�(p0;q0)(2n) de�ned

in 3.5.

Let h(2n0) (resp. h(p0;q0)) be a � and �-stable compact Cartan subalgebra for SO
�(2n0) (resp.

U(p0; q0)).

Taking account of L�(p0;q0)(2n) = U(p0; q0)� SO�(2n0), we put

h(2n) = h(p0;q0) � h(2n0) � l�(p0;q0)(2n) � so(2n; C ):

Then, h(2n) is a � and �-stable compact Cartan subalgebra for SO�(2n). Using the above direct

sum decomposition, we regard h�(p0;q0) and h(2n0)� as a subspace of h(2n)�. We introduce an

orthonormal basis ff1; :::; fp0+q0g (resp. ffp0+q0+1; :::; f2ng) of h�(p0;q0) (resp. h(2n0)� ) such that

�(so(2n; C ); h(2n)) = f�fi � fj j 1 6 i < j 6 p+ qg;
�(u(p0; q0)
RC ; h(p0 ;q0)) = ffifj j 1 6 i; j 6 p0 + q0; i 6= jg;

�(so(2n0; C ); h(2n0)) = f�fi � fj j p0 + q0 < i < j 6 p+ qg;
�(~u�(p0;q0)(2n); h(2n)) = ffi � fj j 1 6 i 6 p0 + q0 < j 6 p+ qg [ ffi + fj j 1 6 i < j 6 p0 + q0g;

We denote by F1; :::; Fp+q the basis of h(2n) dual to f1; :::; f2n.

We have

�(~u�(p0;q0)(2n))(Fi) =
�

2n�p0�q0�1
2 if 1 6 i 6 p0 + q0,

0 otherwise

41



Let Z be any Harish-Chandra module for SO�(2n0) with an in�nitesimal character � 2
h(2n0)

� � h(2n)�. � is unique up to the Weyl group action. Put jj�jj = max(f0g [ fj�(Fi)j j
p0 + q0 < i 6 2n; �(Fi) 2 Z)g). jj�jj is invariant under the Weyl group action on �, so we write

jjZjj = jj�jj.
�` � Z has an in�nitesimal character [`; �] 2 h(2n)� such that

[`; �](Fi) =

�
`+ p0+q0+1

2 � i if 1 6 i 6 p0 + q0,
�(Fi) if p0 + q0 < i 6 p+ q

We denote by H(SO�(2n))� the category of Harish-Chandra modules for SO�(2n) with an in-

�nitesimal character �.

De�nition 3.5.4. For ` 2Zand Z 2 H(SO�(2n0))�, put

R2n
p0;q0(`)(Z) =

�
Rso(2n;C);K

~q�
(p0 ;q0)

(2n);L�
(p0;q0)

(2n)\K

�S
((�` � Z)
 C 2�(~u�

(p0 ;q0)
(2n)));

where S = (p0+q0)(n�p0�q0)+p0q0. If ` > jj�jj�n0+1, then the above cohomological induction

is in good range and we have an exact functor

R2n
p0;q0(`) : H(SO�(2n0))�! H(SO�(2n))[`;�]+�(~u�

(p0;q0)
(2n))

In the similar way to the case of Sp(p; q), we have:

Theorem 3.5.5. (a rearrangement formula for SO�(2n))

Let k be a positive integer such that k 6 p and k 6 q. Let p0 and q0 be non-negative integers

such that p0 + q0 > 0. Moreover, we assume that p0 + q0 + 2k 6 n. Let V (resp. Z) be a Harish-

Chandra module with an in�nitesimal character for GL(k;H) (resp. SO�(2(n� p0 � q0 � 2k))).

Let ` be an integer such that ` > maxfjjV jj; jjZjjg� (n� p0 � q0 � 2k)� 1. Then we have�
Ind

SO�
(2n)

P �
(k)

(2n)

�
V �R2(n�2k)

p0;q0 (`)(Z)
��

=

�
R2n
p0;q0(`� 2k)

�
Ind

SO�
(2(n�p0�q0))

P �
(k)

(2(n�p0�q0)) (V � Z)
��

:

The above cohomological inductions are in the good region.

3.6 Decomposition formulas

We de�ne:

De�nition 3.6.1. Let k be a positive inter and ` be an integer such that ` + k 2 2Z. Let i be

an integer such that 0 6 i 6 k. We de�ne the following derived functor module for U(k; k).

B
(i)
k (`) =

�
uRu(k;k)
R C;U(k)�U(k)

q((i;k�i);(k�i;i));U(i)�U(k�i)�U(k�i)�U(i)

�2i(k�i)
(� `+k

2
� � `�k

2
):
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B
(i)
k (`) is not in the good region. In fact, it is an irreducible unitary representation located

at the end of the weakly fair region in the sense of [Vogan 1988].

We quote the following reducibility result of the degenerate principal series.

Theorem 3.6.2. (Kashiwara-Vergne, Johnson,...)

Let ` 2Zand t 2 p�1R.
(1) If `+ k 2 2Z, then

Ik(`; 0) =
kM
i=0

B
(i)
k (`)

(2) If t 6= 0 or `+ k + 1 2 2Z, then Ik(`; t) is irreducible.

Some remarks are in order. The reducibilty of Ik(`; 0) is established by [Kashiwara-Vergne,

1979]. The irreducibilty result is due to [Johnson 1990]. Identifying irreducible components in

(1) as derived functor modules is easy conclusion from [Barbasch-Vogan 1983] and it has been

more or less known by experts. For example, a proof is given in [Matumoto 1996] 3.4.

Combining Theorem 3.6.2 and Proposition 3.3.2, we have:

Proposition 3.6.3.

(1) Let p; q be positive integers such that q 6 p. Let G = Sp(p; q) and let k be a positive

integer such that k � q. Let V be an irreducible unitary representation of Sp(p� k; q � k). Let

m be an integer such that m > jjV jj+ k � 1. Then we have

Ind
Sp(p;q)
P(k)(p;q)

(Ak(2m+ 1; 0)� V ) �=
kM
i=0

Rp;q
i;k�i(m� n+ k)

�
Rp�i;q�k+i
k�i;i (m� n + 2k)(V )

�
:

(2) Let n be a positive integer. Let G = SO�(2n) and let k be a positive integer such that

2k � n. Let V be an irreducible unitary representation of SO�(2(n� 2k)). Let m be an integer

such that m > jjV jj+ k � 1. Then we have

Ind
SO�

(2n)
P �
(k)

(2n) (Ak(2m+ 1; 0)� V ) �=
kM
i=0

R2n
i;k�i(m� n+ k + 1)

�
R2(n�k)
k�i;i (m� n+ 2k + 1)(V )

�
:

We introduce notations for derived functor modules.

First, we assume G = Sp(p; q) , (p;q) 2 Pm(p
0; q0), 0 6 p0 6 p, and 0 6 q0 6 q. Put

p0 = p�p0 and q0 = q�q0. We consider the derived functor modules with respect to ~p(p;q)(p; q).
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For 1 6 i 6 m, we put p�i = p1+ � � �+ pi and q
�
i = q1 + � � �+ qi. Let `; :::; `m be integers and put

Ap;q(p;q)(`1; ::::; `m) =

Rp;q
p1;q1

(`1)
�
Rp�p1;q�q1
p2;q2

(`2)
�
� � �
�
Rp�p�i�1;q�q�i�1
pi;qi (`i)

�
� � �Rp0+pm;q0+qm

pm;qm (`m)(1Sp(p0;q0))
�
� � �
�
� � �
��

:

Here, 1Sp(p0;q0) is the trivial representation of Sp(p0; q0). In this setting, we de�ne as follows.

�i = p+ q � p�i � q�i �
pi + qi � 1

2
(1 6 i 6 m);

~̀
i = `i + �i (1 6 i 6 m):

Then, Ap;q(p;q)(`1; ::::; `m) is in good (resp. weakly fair) region if and only if `1 > `2 > � � � >
`m > 0 (resp. ~̀1 > ~̀

2 > � � �> ~̀
m > 0).

Next, we assume G = SO�(2n) , (p;q) 2 Pm(p0; q0), 0 6 p0 + q0 6 n. Put n0 = n � p0 � q0.

We consider the derived functor modules with respect to ~p�(p;q)(2n). For 1 6 i 6 m, we put

p�i = p1 + � � �+ pi and q
�
i = q1 + � � �+ qi. Let `; :::; `m be integers and put

A2n
(p;q)(`1; ::::; `m) =

R2n
p1;q1

(`1)
�
R2n�p1�q1
p2;q2

(`2)
�
� � �
�
R2n�p�i�1�q�i�1
pi ;qi (`i)

�
� � �Rn0+pm+qm

pm;qm (`m)(1SO�
(2n0)

)
�
� � �
�
� � �
��

:

Here, 1SO�
(2n0)

is the trivial representation of SO�(2n0). In this setting, we de�ne as follows.

�i = p+ q � p�i � q�i �
pi + qi � 1

2
� 1 (1 6 i 6 m);

~̀
i = `i + �i (1 6 i 6 m):

Then, A2n
(p;q)(`1; ::::; `m) is in good (resp. weakly fair) region if and only if `1 > `2 > � � � >

`m > 0 (resp. ~̀1 > ~̀
2 > � � �> ~̀

m > 0).

Combining Theorem 3.5.3, Theorem 3.5.5, and Proposition 3.6.3 , we have:

Theorem 3.6.4.

(1) Let p; q be positive integers such that q 6 p. We consider the setting of G = Sp(p; q).

We assume (p;q) 2 Pm(p0; q0), 0 6 p0 6 p, and 0 6 q0 6 q. Let k be a positive integer. Put

n = p+ q and put n0j = (pj + qj) + � � �+ (pm + qm) + 2k for 1 6 i 6 m. Let s be a non-negative

integer.

Let `1; :::; `m be integers such that `1 > `2 > � � � > `m > 0. Moreover, we assume there is

some 1 6 j 6 m such that `j�1 > s � n0j + 3k and s � n0j + 2k > `j. (Here, we put, formally,
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`0 = +1.) Put p0
i
= (p1; :::; pj�1; i; k� i; pj:::; pm) and q

0
i
= (q1; :::; qj�1; k � i; i; qj; :::; qm) for

1 6 i 6 k. Then we have

(A) Ind
Sp(p+k;q+k)
P(k)(p+k;q+k)

(Ak(2s+ 1)� Ap;q(p;q)(`1; ::::; `m))

�=
kM

1=0

Ap+k;q+k(p0
i
;q0

i
) (`1 � 2k; :::; `j�1� 2k; s� n0j + k; s� n0j + 2k; `j; :::; `1):

(2) Let n be positive integer and we consider the setting of G = SO�(2n). We assume

(p;q) 2 Pm(p0; q0), 0 6 p0 + q0 6 n. Let k be a positive integer. Put n0j = (pj + qj) + � � �+ (pm+

qm) + 2k for 1 6 i 6 m. Let s be a non-negative integer.

Let `1; :::; `m be integers such that `1 > `2 > � � � > `m > 0. Moreover, we assume there is

some 1 6 j 6 m such that `j�1 > s�n0j+3k+1 and s�n0j+2k+1 > `j. (Here, we put, formally,

`0 = +1.) Put p0
i
= (p1; :::; pj�1; i; k� i; pj:::; pm) and q

0
i
= (q1; :::; qj�1; k � i; i; qj; :::; qm) for

1 6 i 6 k. Then we have

(A0) Ind
SO�

(2(n+2k))
P �(k)(2(n+2k))

(Ak(2s+ 1)�A2n
(p;q)(`1; ::::; `m))

�=
kM

1=0

A
2(n+2k)
(p0

i
;q0

i
) (`1 � 2k; :::; `j�1� 2k; s� n0j + k + 1; s� n0j + 2k + 1; `j; :::; `1):

(3) The derived functor modules in the right hand side of (A) and (A0) are all non-zero

and irreducible. (Actually, they are good-range cohomological induction form non-zero irreducible

modules.)

Here, we apply the translation principle in weakly fair range in [Vogan 1988] to the above

result and obtain the following.

Theorem 3.6.5.

(1) Let p; q be positive integers such that q 6 p. We consider the setting of G = Sp(p; q).

We assume (p;q) 2 Pm(p0; q0), 0 6 p0 6 p, and 0 6 q0 6 q. Let k be a positive integer. Put

n = p + q and put n0j = (pj + qj) + � � �+ (pm + qm) + 2k for 1 6 i 6 m. Let s be an integer

such that 2s + 1 > �k. Let `1; :::; `m be integers such that ~̀1 > ~̀
2 > � � � > ~̀

m > 0. We choose

any 1 6 j 6 m such that ~̀
j�1 > s + k+1

2 > ~̀
j . (Here, we put, formally, `0 = +1.) Put

p0
i
= (p1; :::; pj�1; i; k� i; pj:::; pm) and q

0
i
= (q1; :::; qj�1; k � i; i; qj; :::; qm) for 1 6 i 6 k. Then
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we have

(B) Ind
Sp(p+k;q+k)
P(k)(2(p+k;q+k)

(Ak(2s+ 1)� Ap;q(p;q)(`1; ::::; `m))

�=
kM

1=0

Ap+k;q+k(p0
i
;q0

i
)
(`1 � 2k; :::; `j�1� 2k; s� n0j + k; s� n0j + 2k; `j; :::; `1):

(2) Let n be positive integer and we consider the setting of G = SO�(2n). We assume

(p;q) 2 Pm(p0; q0), 0 6 p0 + q0 6 n. Let k be a positive integer. Put n0j = (pj + qj) + � � �+ (pm+

qm) + 2k for 1 6 i 6 m.

Let s be an integer such that 2s+1 > �k. Let `1; :::; `m be integers such that ~̀1 > ~̀
2 > � � �>

~̀
m > 0. We choose any 1 6 j 6 m such that ~̀j�1 > s + k+1

2 > ~̀
j. (Here, we put, formally,

`0 = +1.) Put p0
i
= (p1; :::; pj�1; i; k� i; pj:::; pm) and q

0
i
= (q1; :::; qj�1; k � i; i; qj; :::; qm) for

1 6 i 6 k. Then we have

(B0) Ind
SO�

(2(n+2k))
P �(k)(2(n+2k))

(Ak(2s+ 1)� A2n
(p;q)(`1; ::::; `m))

�=
kM

1=0

A
2(n+2k)
(p0

i
;q0

i
)
(`1 � 2k; :::; `j�1� 2k; s� n0j + k + 1; s� n0j + 2k + 1; `j; :::; `1):

Proof The proof is similar to the arguments in [Matumoto 1996] 3.3. We consider the case

of G = Sp(p; q). (The case of G = SO�(2n) is similar.) For an integer a, we denote by �a one

dimensional representation of GL(h; C ) de�ned by

�a(g) = det(g)a

Let a1; :::; am and b be non-negative integers and consider a one dimensional representation

� = �a1 � � � �� �aj�1 � �b� �b� �aj � � �� �am � 1Sp(p0+q0;C) of GL(p1+ q1; C ) � � � ��GL(pj�1+

qj�1; C ) � GL(k; C ) � GL(k; C ) � GL(pj + qj ; C ) � � � � � GL(pm + qm; C ) � Sp(p0 + q0; C ). If

�1 > � � � > aj�1 > b > aj > � � � > am, then there is an irreducible �nite dimemensional

representation V of GC which contains � as the highest weight space . If we choose a1 > a2 >

� � � > aj�1 � b� aj > � � �> am suitably, we have s0 = s+ b, `0r = `r+ ar (1 6 r 6 m) satisfy

the regularity assumption in Theorem 3.6.4. So, we have:

(C) Ind
Sp(p+k;q+k)
P(k)(p+k;q+k)

(Ak(2s
0 + 1)�Ap;q(p;q)(`

0
1; ::::; `

0
m))

�=
kM

1=0

Ap+k;q+k(p0
i
;q0

i
) (`

0
1 � 2k; :::; `0j�1� 2k; s0 � n0j + k; s0 � n0j + 2k; `0j; :::; `

0
1):
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Let T the translation functor from the in�nitesimal character of the modules in (C) to that

of (B). If we apply T to the both sides of C, we obtain (B) above. The argument is the same as

[Matumoto 1996] Lemma3.3.3. The main ingredient is [Vogan 1988] Proposition 4.7 . (We may

apply similar argument to non-elliptic cohomological induction by [Vogan (green)] Lemma 7.2.9

(b).)

Q.E.D.

Remark In Theorem3.6.5, a choice of j need not be unique. So, depending on the choices

of j, we have apparently di�erent formulas. Their compatibility is assured by [Matumoto 1996]

Theorem 3.3.4, which is an easy conclusion of [Barbasch-Vogan 1983] Theorem 4.2. The derived

functor modules in the right hand side of (B) and (B0)are all in the weakly fair region.
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x 4. Reduction of irreducibilities

4.1 Standard parabolic subgroups

In this section, Let G be either Sp(n� q; q) with 2q 6 n or SO�(2n). Fix �, sH , etc. as in 3.1.

We also �x some particular orthonormal basis e1; :::; en of sh�, as in 3.1. We �x a simple

system � of �(g; sh) as in 3.1.

Let � = (k1; :::; ks) be a �nite sequence of positive integers such that

k1 + � � �+ ks 6

�
q if G = Sp(p; q);
n
2 if G = SO�(2n): :

We put k�i = k1+ � � �ki for 1 6 i 6 s and k�0 = 0. If G = Sp(p; q), put p0 = p�k�s and q0 = q�k�s .
If G = SO�(2n), put r = n� 2k�s .

We put

Ai =

2kiX
j=1

Ek�
i�1+j

(1 6 i 6 s));

Then we have �(Ai) = �Ai for 1 6 i 6 s. We denote by a� the Lie subalgebra of
sh spanned

by fAi j 1 6 i 6 sg.
We de�ne a subset S(�) of � as follows. If G = Sp(p; q), we de�ne

S(�) =

�
�� fe2k�i � e2k�i+1j1 6 i 6 sg if p0 > 0;

�� (fe2k�i � e2k�i+1j1 6 i 6 s� 1g [ f2eng) if p0 = 0
:

If G = SO�(2n), we de�ne

S(�) =

�
�� fe2k�

i
� e2k�

i
+1j1 6 i 6 sg if r > 0;

�� (fe2k�
i
� e2k�

i
+1j1 6 i 6 s� 1g [ fen�1 + eng) if r = 0

:

We denote by M� (resp. m�) the standard Levi subgroup (resp. subalgebra) of G (resp. g)

corresponding to S(�). Namely M� is the centerizer of a� in G.

We denote by P� the parabolic subgroup of G whose �-invariant Levi part is M�. We choose

P� so that the roots in � whose root spaces are contained in the complexi�ed Lie algebra of the

nilradical of P� are all in �+. We denote by N� the nilradical of P�.

Formally, we denote by Sp(0; 0) and SO�(0) the trivial group f1g and we denote by GL(�;H)
a product group GL(k1;H) � � � � � GL(ks;H). Then, we have

M�
�=
�

GL(�;H) � Sp(p0; q0) if G = Sp(p; q)
GL(�;H) � SO�(2r) if G = SO�(2n) :
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Often, we identify GL(�;H), Sp(p0; q0), SO�(2r) with subgroups of M� in obvious ways. We

call such identi�cations the standard identi�cations. The Cartan involution � induces Cartan

involutions on M�, GL(�;H), Sp(p
0; q0), and SO�(2r) and we denote them by the same letter �.

We put M�
� = Sp(p0; q0) if G = Sp(p; q) and put M�

� = SO�(2r) if G = SO�(2n).

We denote by p�, m�, m
�
� and n� the complexi�ed Lie algebra of P�, M�, M

�
� , and N�,

respectively.

For � 2 Ss and � = (k1; :::; ks), we de�ne �
� = (k�(1); :::; k�(s)).

Let � be an irreducible unitary representation ofM�. � can be written as � = �1�� � ���s��0,
where for 1 6 i 6 s (resp. for i = 0) �i is an irreducible unitary representation of GL(ki;H)

(resp. M�
�). For � 2 Ss, we denote by �

� an irreducible unitary representation of L�� , ��(1) �

� � �� ��(s) � �0. The following is well-known.

Lemma 4.1.1. (Harish-Chandra)

Let � = (k1; :::; ks) and � 2 Ss be as above. Let � be an irreducible unitary representation of

M�. Then we have

IndGP�(�)
�= IndGP�� (�

�)

Sometimes, we treat various Sp(p; q)'s and SO�(2n)'s at the same time. So, we write some-

times P�(p; q) (resp. P
�
� (2n))for P� if G = Sp(p; q) (resp. G = SO�(2n)).

Let Ak(`; t) (` 2 f`0 2 Zj `0 > �kg [ f�1g) be the representation of GL(nH ) de�ned in

De�nition 2.4.3. If ` > �k, Ak(`; t) is a quarternionic Speh representation in the weakly fair

range. Ak(�1; t) is a unitary one-dimensional representation.

Any derived functor module is a parabolic induction from an external tensor product of

some Ak(`; t)'s. So, the unitarily induced module from a derived functor module (in weakly fair

range) can be written as:

IndGP�(Ak1(`1; t1)� � � ��Aks(`s; ts)� Z):(~)

Here, Z is a derived functor module of M�
� in the weakly fair range. Moreover, `i 2 f` 2Zj

` > �kig [ f�1g, and ti 2
p�1R for 1 6 i 6 s. Using well-known Harish-Chandra's result,we

may assume
p�1ti > 0 for all 1 6 i 6 s.

We assume that `i + 1 2 2Zand ti = 0 for some 1 6 i 6 s. Then, using Lemma 4.1.1, we

49



may assume i = s. Let �0 = (k1; :::; ks�1). Then from the induction-by-stage, we have

IndGP�(Ak1(`1; t1)� � � �� Aks(`s; ts)� Z)
�= IndGP 0�(Ak1(`1; t1)� � � �� Aks�1(`s�1; ts�1)� Ind

M�

�0

P(ks)
(Aks(`s; 0)� Z)):

Applying the decomposition formula Theorem 3.7.5, we see that the above induced module

is a direct sum of the induced modules of the form like

IndGP 0�(Ak1(`1; t1)� � � ��Aks�1(`s�1; ts�1)� Z
0)):

Here, Z0 is a derived functor module ofM�
�0 in the weakly fair range. Assume that we understand

the reducibility of Z0's. Then, applying the above argument, we can reduce the irreducible

decomposition of the above ~ to the following.

IndGP�(Ak1(`1; 0)� � � ��Akh(`h; 0)�Akh+1(`h+1; th+1)� � � ��Aks(`s; ts)� Z):(�)

Here, `i is not odd integer if 1 6 i 6 h,
p�1ti > 0 if h < i 6 s, and Z is an irreducible

representation of M�
� whose in�nitesimal character is in PM�

�
. Put � = (k1; :::; kh) and � 0 =

(kh+1; :::; ks). Also put a = k1 + � � �+ kh and b = kh+1 + � � �+ ks.

We state the main result of x4.

Theorem 4.1.2. The following is equivalent.

(1) The above � is irreducible.

(2) The following induced module > is irreducible.

Ind
SO�

(4a)
P�

(Ak1(`1; 0)� � � �� Akh(`h; 0)):(>)

Remark Under an adequate regularity condition on `1; :::; `h, we may apply Proposition

3.3.2 to > successively, and we obtain that > is a good-range elliptic cohomological induction

from an irreducible module like Ik1(`
0
1; 0) � � � � � Ikh(`

0
h; 0). Hence > is irreducible for such

parameters.

In x5, we show > is irreducible if `1; :::; `h are all �1.

4.2 Proof of Theorem 4.1.2

We denote by sh� (resp. sh�) the C -linear span of E1; :::; E2k�s (resp. E2k�s+1; :::; En. Then, we can

regard sh� (resp. sh�) as the complexi�ed Lie algebra of a �-invariant maximally split Cartan
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subgroup of GL(�;H) (resp. Sp(p0; q0) or SO�(2r)) via the standard identi�cation. We have a

direct sum decomposition sh = sh�� sh� and it induces sh� = sh��� (sh�)�. Namely, we identify
sh�� (resp. sh�r ) the C -linear span of e1; :::; e2k�s (resp. e2k�s+1; :::; en).

We denote by � the half sum of the positive roots in �+. Let � 2 sh� be the in�nitesimal

character of Ak1(`1; 0)� � � ��Akh(`h; 0)�Akh+1(`h+1; th+1)� � � ��Aks(`s; ts)�Z. We may (and

do) assume <� is in the closed Weyl chamber with respect to �+ \�(m�;
sh).

We �x a su�ciently large integer N and we put s� = 2N� + � and � = s� + PG. Then, we
have � 2 �. Hence, �� = �s�. Moreover, we have s� is regular and �+

s� = �+ \�s�.

We construct a surgroup G0 ofM� as follows. As a Lie group G0 is a product group SO�(4a)�
GL(b;H)�M�

� . The embedding ofM� = GL(�;H)�GL(� 0;H)�M�
� into G0 is induced from the

inclusions GL(�;H) � SO�(4a) and GL(� 0;H) � GL(b;H). Easily see that we may �x a Cartan

involution whose restriction to M� is �. We denote such a Cartan involution on G0 by the same

letter � and denote by K0 the corresponding maximal compact subgroup. Since M� is a Levi

subgroup of both G and G0, sH is a �-stable maximally split Cartan subgroup of G0 as well as

G.

We denote by g0 the complexi�ed Lie algebra of G0 and denote by �0 the root system for

(g0; sh). From the construction of G0, we have the integral root system �s� coincides with �0
s�.

We want to apply Lemma 1.10.1 to G, G0, and s� above. In our setting, we put sH0 = sH

and sh0 = sh and put  in (C1) to be the identity map. Hereafter, we denote by G] any of G

and G0. Similarly, we write K], etc.

In order to de�ne 	 and ~	, we describe conjugacy classes of Cartan subgroups in G and G0.

First, we remark that there is one to one correspondence between G]-conjugacy classes of

Cartan subgroups in G] and K]-conjugacy classes of �-stable Cartan subgroups in G] ([Matsuki

1979]). Second, a G-conjugacy class of Cartan subgroups of G is determined by the dimension

of the split part and GL(k;H) has a unique G-conjugacy class of Cartan subgroups (cf. [Sugiura

1959]). Hence, we see a K-conjugacy class (resp. a K0-conjugacy class) of �-stable (resp. �0-

stable) Cartan subgroups of G (resp. G0) is determined by the dimension of the split part. We

also see the same statement holds for M�.

Since there is obvious one to one correspondence between the conjugacy classes of Cartan

subgroups and the conjugacy classes of the Cartan subgroups which is stable with respect to the

complex conjugation, hereafter we consider Cartan subalgebras rather than Cartan subgroups.
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In order to understand the Cayley transforms on Cartan subalgebras, we examine some particular

Cartan subalgebras as follows. Let m be the greatest positive integer which is equal to or less

than h
2 . For 1 � i � m, we put �i = e2i�1 + e2i. Then, f�1; ::::; �mg is the entire collection of

real roots in �+. We de�ne c�i 2 GC as in 1.6. Since �1; :::; �m are mutually orthogonal, we

may regard �i as a real root for Ad(c
�j)(sh). So, we can regard Ad(c�i)(Ad(c�j)(sh) as a result

of successive applications of Cayley transforms to sh. Because of the orthogonality of �i and �j ,

we see Ad(c�i)(Ad(c�j)(sh)) = Ad(c�j)(Ad(c�
i
)(sh)).

Let J = f�r1 ; ::::; �rkg � f�1; :::; �mg. (We assume ri 6= rj for i 6= j. Similarly as above. we

can de�ne successive applications of Cayley transforms as follows.

hJ = Ad(c�rk )(Ad(c�rk�1 )(� � �(Ad(c�r1 )(sh) � � �):

hJ only depends on J and it is � and complex conjugacy invariant. We denote by HJ the

corresponding Cartan subgroup of G to hJ .

Put J0 = f�k�s+1; ::::; �mg. If J � J0, then HJ � M� and HJ is a �-stable Cartan subgroup

of M�.

Since a K]-conjugacy (resp. K \M�-conjugacy) class of �-stable Cartan subgroups of G]

(resp. M�) is determined by the dimension of the split part, for J1; J2 � J0, the followings are

equivalent.

(1) HJ1 is K-conjugate to HJ2 .

(2) HJ1 is K
0-conjugate to HJ2 .

(3) HJ1 is K \M�-conjugate to HJ2 .

(4) cardJ1 = cardJ2.

If J � J0, HJ is s�-integral with respect to both G and G0. Conversely, it is easy to check

any s�-integral �-stable Cartan subgroup of G] is K]-conjugate to HJ for some J � J0. (For

example, using a criterion for the parity condition ([Vogan (green)]), we may check �i satis�es

the parity condition with respect to s� if and only if �i 2 J0. The statement is deduced from this

fact.) We also remark that any �-stable Cartan subgroup ofM� is K\M�-conjugate to someHJ

with J � J0. Hence, there is a bijection � (resp. �0) of the set of the K \M�-conjugacy classes

of �-stable Cartan subgroups of M� to the set of K-conjugacy (resp. K0-conjugacy) classes of
s�-integrable �-stable Cartan subgroups of G (resp. G0). In fact � (resp. �0) is de�ned such

that the image of the K-conjugacy class of HJ under 	 is the K0-conjugacy class of HJ for any

J � J0. We put 	 = �0 � ��1. 	 is a bijection of the set of the K-stable conjugacy classes of
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s�-integral �-stable Cartan subgroups of G to the set of the K0-conjugacy classes of s�-integral

�0-stable Cartan subgroups of G0. 	 is compatible with Cayley transforms on (conjugacy classes

of) Cartan subgroups, since � and �0 are.

Next, we consider the lift of 	 to the standard coherent families.

We put J(i) = f�m; �m�1; :::; �m�i+1g for 1 � i � m� k�s and J(0) = ;. Put Hi = HJ(i) for

0 � i � m � k�s . Then, we easily see H1; ::::; Hm�k�s form a complete system of representatives

of the K]-conjugacy (resp. K \M�-conjugacy) classes of �-stable Cartan subgroups of G
] (resp.

M�). We denote by hi the complexi�ed Lie algebra of Hi and by W (g]; hi) the Weyl group for

(g]; hi). We denote by W (G];Hi) the subgroup of W (g]; hi) consisting the elements of W (g]; hi)

whose representatives can be chosen in G]. We collect some of the useful facts:

Lemma 4.2.1. For 1 � i � m� k�s , we have

(1) W (m�; hi) � W (g0; hi) � W (g; hi),

(2) W (G0;Hi) = W (g0; hi) \W (G;Hi),

(3) RM�(Hi;
s�) � RG0 (Hi;

s�) � RG(Hi;
s�).

(1) is easy to see from our construction of G0. (2) is easily checked using [Vogan 1982]

Proposition 4.16. (3) follows from (1).

We de�ne ~
 : StG0(
s�)! StG(

s�) by ~
(�G
0

 ) = �G for  2 RG0(Hi;
s�) for 1 � i � m� k�s .

We have remarked in section 1 that for 1 = (Hi; �1); 2 = (Hi; �2) 2 RG](Hi;
s�), the

followings are equivalent:

(a) 1 and 2 are K
]-conjugate.

(b) There is some w 2 W (G];Hi) such that �1 = w�2.

(c) �G
]

1
= �G

]

2
.

Hence, from (2) and (3) of lemma 4.2.1, we see ~
 is well-de�ned.

We have:

Lemma 4.2.2. ~
 is bijective.

Proof From lemma 4.2.1 (2) and the above remark, we see that the regularity of s� implies

the injectivity of ~
. So, we show the surjectivity.

First, we �x some 1 � i � m� k�s . Then Ad(c�k�s+i) �Ad(c�k�s+i�1) � � � � �Ad(c�k�s+1) induces
an linear isomorphism of h onto hi. So, we also have an isomorphism h� �= h�i . We denote by
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�e1; :::; �en 2 h�i the image of e1; :::; en 2 h� under this isomorphism. Then the Cartan involution

acts on �e1; :::; �en as follows.

�(�e2i�1) = ��e2i; �(�e2i) = ��e2i�1 (1 � i � m� i);

�(�ei) = �ei (2(m� i) < i � n):

We also denote by � 2 h�i the image of
s� under this isomorphism. Write � =

Pn
j=1 `j�ej . Let

w 2 W (g; hi) and write � =
Pn

j=1
�̀
j�ej . Then �̀

1; :::; �̀n is made from `1; :::; `n by a permutation

of their indices and sign ips. We assume that w = (Hi; w�) 2 RG(s�). Then, it should satisfy

the condition (R5) in 1.4. So, we easily see:

(d1) �̀
j 2Z (2(m� i) < j � n),

(d2) �̀
2j�1 � �̀

2j 2Z (1 < j � m� i).

We write
Pn

k=1 ai�ei 2 h�i by (a1; :::; an).

From [Vogan 1982] Proposition 4.86, we easily see the following elements in W (g; hi) are

contained in W (G;Hi).

wj(a1; ::::; an) = (a1; ::; a2j�2;�a2j�1;�a2j ; a2j+2; :::; an) (1 � j � m� i);

wb;c(a1; :::; an) = (a1; :::; a2b�2; a2c�1; a2c; a2b+1; :::; a2c�2; a2b�1; a2b; a2c+1; :::; an) (1 � b < c � m� i):

If we choose the product w� of suitable wj 's and wb;c's above, we may have w�� = (d1; :::; dn)

satis�es:

(e1) dj 2Zfor all k�s < j 6 n.

(e2) dj 62 R for all k�h < j 6 k�s .

(e3) dj � 1
2 2Zfor all 1 6 j 6 k�h.

This means that 0 = (Hi; w
�w�) 2 RG0(s�) and �Gw = �G0 . Hence

~
 is surjective. 2

We de�ne ~	 : StG0(
s�) ! StG(s�) by the inverse of ~
. From the above constructions, we

easily see:

Lemma 4.2.3.  , 	, and ~	 de�ned above satisfy (C1)-(C7) in 3.1.

Now, we �nish the proof of Theorem 4.2.1. If  2 RM�(
s�), then, taking account of  2

RG](s�), we easily see the followings:
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(f1) �G
0

 = IndG
0

M�
(�M�

 ),

(f2) �G = IndGM�
(�M�

 ),

(f3) ~	(�G ) = �G
0

 .

Taking account of the additivity of induction, we see that for all �� 2 IrrM�(
s�) we have

~	(IndGM�
(��)) = IndG

0

M�
(��). It is easy to see that there is some �� 2 IrrM�(

s�) such that ��(�) =

[Ak1(`1; 0)� � � �� Akh(`h; 0)� Akh+1 (`h+1; th+1) � � � �� Aks(`s; ts) � Z]. Hence, lemma 1.10.1

implies that the irreducibility of � is reduced to the irreducibility of a Harish-Chandra module

which is the external product of the followings:

(g1) Z, which is an irreducible Harish-Chandra module for M�
� ,

(g2) Ind
SO�(4a)
P�

(Ak1(`1; 0)� � � �� Akh(`h; 0)),
(g3) Harish-Chandra modules for GL(b;H) induced from irreducible unitary representations

of their parabolic subgroups.

The irreducibilities of (g3) is found in [Vogan 1986] p502. Q.E.D.
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x 5. Irreducibility representations SO�(2n) and Sp(p; q) paarabol-
ically induced from one-diemsional unitary representations

5.1 Some induced representations of SO�(4m)

In this section we retain the notations in 3.1. and 4.1, and consider the case of G = SO�(2n).

Moreover, we assume n is even. So, we write n = 2m.

Since the universal covering group of GC is a double cover, PG (cf. 1.2) is a subgroup of P
of index two. Put � = P � PG (set theoretical di�erence). � is the other PG coset in P than

PG itself. We �x a regular weight s� 2 � as follows

s� =
nX
i=1

2n� 2i+ 1

2
ei:

Hereafter, we simply write W = W (g; sh) and � = �(g; sh). We have W = Ws�, � = �s�, and

�s� = fe1 � e2; e2 � e3; ::::; en�1� en; en�1 + eng:

Let b be the Borel subalgebra of g such that sh � b and the nilradical of b is the sum of the root

spaces corresponding to the roots in �+
s�. We denote by � the half sum of the positive roots in

�+
s�.

We consider a partition � = (p1; :::; pk) of a positive integer m (p1; :::; pk) such that 0 < p1 �
p2 � � � � � pk and p1 + p2 + � � �+ pk = m. Let PT (m) be the set of partitions of m. As in 4.1,

we consider the standard parabolic subgroup P�and its Levi subgroup M� of G corresponding

to �.

Let (��� ; C
�
� ) be a one dimensional unitary representation of M� (or m�) such that the

restriction to sh of the di�erential of ��� is � 2 sh�.

We denote by �� the half sum of all the positive roots whose root space is in m�. We put

�� = �� �� . The in�nitesimal character of Ind
G
P�
(C ��) is �� + �.

It is easy to construct a nondegenerate g-invariant pairing between IndGP�(C
�
�) and a gener-

alized Verma module Mp� (�) = U(g)
U(p�) C ������ .
We are going to show the following our main result.

Lemma 5.1.1. Let � be any partition of m. Then, IndGP�(C
�
0 ) is irreducible.

We prove this lemma in 5.3.

Combining Lemma 5.1.1 and Theorem 4.1.2, we have:
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Corollary 5.1.2. Representations of SO�(2n) and Sp(p; q) induced from one-dimensional uni-

tary representations of thier parabolic subgroups are irreducible.

5.2 Coherent continuation representation for SO�(4m) with respect to �

We retain the notations in 5.1.

For a partition � = (p1; :::; pk) 2 PT (m) of m, put p�i =
Pi

j=1 pj for 1 � i � k and de�ne a

subset S� of � = �s� as follows. (P� is the sstandard parabolic subgroup corresponding to S�.)

S� = �� (fe2p�
i
� e2p�

i
+1)j1 � i � k � 1g [ fe2m�1 + e2mg:

For � 2 PT (m), we denote by �� the MacDonald representation (cf. [Carter 1985] p368) of

W with respect to S� � �. From [Lusztig-Spaltenstein 1979], �� is a special representation

([Lusztig 1979, 1982] also see [Carter 1985] p374), which corresponds to the Richardson orbit in

g with respect to the parabolic subalgebra p� via the Springer correspondence.

There is another description of ��. Since W is the Weyl group of type D2m, it is embedded

into the Weyl group W 0 of type B2m. It is well known that the irreducible representations of W
0

is parameterized by the pairs of partitions (�; !) such that � 2 PT (k) and ! 2 PT (2m� k) for
some 0 � k � 2m. Here, we regard PT (0) consists of the empty partition ;. If � 6= !, then the

restriction of the representation corresponding to (�; !) is irreducible. However, the restriction

of the irreducible W 0-representation corresponding to (�; �) (� 2 PT (m)) to W is decomposed

into two irreducible W -representation, which are equidimensional. From [Carter 1985] p423 line

11-33, �� is one of the irreducible constituent.

For each partition � 2 PT (k), we denote by dim(�) the dimension of the irreducible rep-

resentation of Sk corresponding to �. It is well-known that the dimension of the irreducible

W 0-representation corresponding to (�; !) (� 2 PT (k) and ! 2 PT (2m�k)) is (2m)! dim(�) dim(!)
k!(2m�k)! .

(For example, see [Kerber 1971/75].) So, we have :

Lemma 5.2.1. For � 2 PT (m),

dim(��) =
(2m)! dim(�)2

2(m!)2
:

We shall show:

Theorem 5.2.2. As a W -module the coherent continuation representation C(�) is decomposed
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as follows.

C(�) �=
M

�2PT (m)

��

First, we prove:

Lemma 5.2.3. For each � 2 PT (m), the multiplicity of �� in C(�) is at least one.

Proof We have only to show that there is an irreducible Harish-Chandra (g; K)-module

V such that the in�nitesimal character of V is in � and the character polynomial of V ([King

1981]) generates a W -representation isomorphic to ��. First, we remark that IndGP� (C
�
s����)

has a nondegenerate pairing with an irreducible generalized Verma module Mp�(�s�� �� ) with
the in�nitesimal character �s�. Easily see that there is at least one irreducible constituent V

of IndGP�(C
�
s����) whose annihilator I in U(g) is the dual of the annihilator of the generalized

Verma module. So the associated variety of I is the closure of the Richardson orbit (say O�)
corresponding to p�. The character polynomial with respect to V is proportional to the Goldie

rank polynomial of I ([King 1981]) and the W -representation generated by the Goldie rank

polynomial is O�. So, we the lemma. Q.E.D.

Proof of Theorem 5.2.2 From Lemma 5.2.3, it su�ces to show that

dim C(�) =
X

�2PT (m)

dim(��):

From Lemma 5.2.1, the right hand side is
P

�2PT (m)
(2m)!(dim(�)2

2(m!)2 = (2m)!
2�m! , since we have

X
�2PT (m)

(dim(�))2 = cardSm = m!:

So, we have to show dim C(�) = (2m)!
2�m! .

dim C(�) is clearly, the number of K-conjugacy classes in the regular characters in RG(s�).

Since only maximally split Cartan subgroups are s�-integral, eachK-conjugacy class has a repre-

sentative in RG(
sH; s�). We denote by W (G; sH) the subgroup of W consisting the elements w

ofW such that some representative of w in GC is in G (or equivalently in K) and normalizes sH.

Examining elements in K which preserves sH, we easily see dim C(�) = card(W=W (G; sH)).

From [Knapp (1975)] (also see [Vogan (1982)], Proposition 4.16), W (G; sH) is generated by the

following elements in W :
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(1) se2i�1�e2i (1 � i � m) : reections with respect to compact imaginary roots in

� = �(g; sh).

(2) se2i�1+e2i (1 � i � m) : reections with respect to real roots in �.

(3) se2i�1�e2j�1se2i�e2j (1 � i < j � m)

So, we can easily see W (G; sH) is isomorphic to Sm � ((Z=2Z)m� (Z=2Z)m).

So, we have dim C(�) = cardW
cardW (G;sH)

= (2m)!�22m�1

m!�2m�2m = (2m)!
2�m! as desired. Q.E.D.

We can interpret in terms of cell structure of the coherent continuation representation C(�).
In our particular setting, the proof of Lemma 2.3.3 tells us for each � 2 PT (m) there is at least

one cell whose associated nilpotent orbit is O� . From Theorem 5.2.2, we have:

Corollary 5.2.4.

(1) There is an one to one correspondence between the set of cells for C(�) and PT (m)

induced from the above association of nilpotent orbits to cells.

(2) Any cells for C(�) is irreducible and isomorphic to the special representation corre-

sponding to the associated nilpotent orbit via the Springer correspondence.

From Corollary 5.2.4, we have:

Corollary 5.2.5. Let � 2 � and let Vi (i = 1; 2) be irreducible Harish-Chandra (g; K)-modules

with an in�nitesimal character �. Assume that the annihilator of V1 in U(g) coincides with that

of V2. Then, V1 is isomorphic to V2.

Proof We may assume that h�; �i � 0 for all � 2 �+
s�. It is known that for each i = 1; 2

there is unique coherent family ��Gi 2 IrrG(s�) such that [Vi] = ��Gi(�). We show ��G1 =
��G2 .

First, we remark that the Goldie rank polynomial and the associated variety of the annihilator

of Vi in U(g) coincide with those of ��(i) for each i. Hence, we have 1 � 2 since there is at most

one cell whose associated nilpotent orbit is the unique dense orbit in the associated variety of

Vi. We consider the homomorphism �1(= �2) mentioned in 1.8. Since �1(
��Gi) is nonzero and

proportional to the Goldie rank polynomial of the annihilator of Vi in U(g) for each i = 1; 2, ��G1

is proportional to ��G2 modulo the kernel of �1 . Since the cell Cell(1) = Cell(2) is irreducible,

�1 induces an isomorphism of the cell Cell(1) to the corresponding Goldie rank polynomial

representation. This means that ��G1 is proportional to ��G2 modulo the subspace of Cone(1)

generated as a C -vector space by ��G� such that � � 1 and � 6� 1. Since IrrG(s�) is a basis of

C(�), we have ��G1 =
��G2 as desired. Q.E.D.
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5.3 Proof of Lemma 5.1.1

We need:

Lemma 5.3.1. The annihilator of IndGP� (C
�
0 ) in U(g) is a maximal ideal for all � 2 PT (m).

Remark In fact, a more general result holds. So, we consider more general setting tempo-

rally. Let G be any connected real semisimple Lie group and P be any parabolic subgroup of G.

We denote by M a Levi subgroup of P . We denote by g, m, and p the complexi�ed Lie algebras

of G, M , and P , respectively. We denote by 1M the trivial representation of M .

Lemma 5.3.2. The annihilator of IndGP (1M) in U(g) is a maximal ideal. We denote by n the

nilradical of p

As far as I know, such a result has not been published but is known by experts (at least

including D. A. Vogan). For the combinience for the readers, we give a proof here.

Proof We denote by C��P a one-dimensional representation of p de�ned by p 3 X  

�1
2tr(ad(X)jn). From the existence of nondegenerate pairing, it su�ces to show that the anni-

hilator of a generalized Verma module Mp(0) = U(g)
U(p) C��P is maximal. We denote by I

the annihilator of Mp(0) in U(g). We de�ne

L(Mp(0);Mp(0)) = f� 2 EndC (Mp(0)) j dim ad(U(g))� <1g:

L(Mp(0);Mp(0)) has a obvious U(g)-bimodule structure. Then, L(Mp(0);Mp(0)) is isomorphic

to a Harish-Chandra module of an induced representation of GC from a unitary one-dimensional

representation of PC . Hence, L(Mp(0);Mp(0)) is completely reducible as a U(g)-bimodule.

Considering the action of U(g) on Mp(0), we have an embedding of a U(g)-bimodule U(g)=I ,!
L(Mp(0);Mp(0)). Hence, U(g)=I is also completely reducible as a U(g)-bimodule. We consider

the unit element 1 of U(g)=I . Then, C 1 is the unique trivial ad(U(g))-type in U(g)=I . So, the

unit 1 must contained in some irreducible component of U(g)=I Since U(g)=I is generated by 1

as a U(g)-bimodule, U(g)=I is irreducible as a U(g)-bimodule. This means that I is maximal.

Q.E.D.

Proof of Lemma 5.1.1 From Corollary 5.2.5 and Lemma 5.3.1, we see that all the irreducible

constituent of IndGP� (C
�
0 ) is isomorphic to each other. However, the multiplicity of the trivial

K-representation in IndGP� (C
�
0 ) is just one. Hence IndGP�(C

�
0 ) is irreducible as we desired.

Q.E.D.
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