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1 Introduction and main result

In 1974 S. Lang [La74] conjectured that an algebraic variety V de�ned over an arbitrarily �xed

number �eld K carries only �nitely many K-rational points (here referred as the arithmetic

�niteness property, while it was termed to be \Mordellic" in [La86]) if the complex space VC
with some embedding K ,! C is hyperbolic in the sense of Kobayashi [Ko70]. The conjecture

was established for curves [Fa83] and for subvarieties of Abelian varieties [Fa91]. The analogue

over function �elds was proved by [No85] and [No92].

S. Kobayashi conjectured in 1970 that generic hypersurfaces of the complex projective space

P
n(C) of high degree are hyperbolic ([Ko70]). In [MN96] the existence of hyperbolic projective

hypersurfaces M was proved for all n = 2 in a constructive way. Hence, it is interesting to

study the arithmetic property of such M . In [No97] it was proved that those M satisfy the

analogue of the arithmetic �niteness property over function �elds, and have only �nitely many

S-unit points over number �elds. Moreover, it was observed that \abc � � � -Conjecture" ([No96a],

[No96b], [Vo98]) would imply the arithmetic �niteness property ofM . Cf. also Sarnak and Wang

[SW95] for another arithmetic property of M . So far to the author's knowledge there had been

no example, nor existence theorem of a projective hypersurface of dimension > 1 that carries

the arithmetic �niteness property.

In 1998 Shirosaki [Sh98] found a simpler method to construct hyperbolic hypersurfaces X of

degree dn with some d > 12 by an idea using a unicity polynomial, which is di�erent to that of

[MN96]. The purpose of this paper is to prove the arithmetic �niteness property of Shirosaki's

X.

To state the result, we take co-prime positive integers d; e 2N such that

d > 2e+ 8;(1.1)

and set

P (w0; w1) = wd
0 + wd

1 + we
0w

d�e
1

:(1.2)
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Following to [Sh98], we de�ne inductively

P1(w0; w1) = P (w0; w1);(1.3)

Pn(w0; w1; : : : ; wn) = Pn�1(P (w0; w1); : : : ; P (wn�1; wn)); n = 2; 3; : : : :

Then, Pn is homogeneous and of degree dn. Set

X = fPn(w0; w1; : : : ; wn) = 0g � P
n
Q:(1.4)

By Shirosaki [Sh98] XC is hyperbolic for e > 2.

Main Theorem Assume that e > 2. Then X de�ned by (1.4) satis�es the arithmetic

�niteness property; that is, for an arbitrary number �eld K, the set X(K) of K-rational points

of X is �nite.

It is interesting to observe that there is an analogy not only in the result, but also in the way

of the proof; similar analogues were found in [No97] and [NW99]. For general references on the

present subject, cf. [La86], [La91], [No89], [Ko98], [Vo87].

2 Lemmas

We keep the notation in x1.

Lemma 2.1 For every 0 5 k 5 n there is a number �(n; k) 2 N such that

Pn(0; : : : ; 0; wk; 0; : : : ; 0) = �(n; k)wdn

k :

Proof. Note �rst that for wj 2 N; 0 5 j 5 n,

P (w0; : : : ; wn) 2N:(2.2)

By de�nition we have

Pn(0; : : : ; 0; wk; 0; : : : ; 0) = Pn�1(0; : : : ; 0; w
d
k ; w

d
k; 0; : : : ; 0):

Inductively, we have

Pn(0; : : : ; 0; wk; 0; : : : ; 0) = Pn�l(�(l; 0)w
dl

k ; : : : ; �(l; n� l)wdl

k );

where maxfk; n� kg < l < n and �(l; j) 2 N. Set �(n; k) = Pn�l(�(l; 0); : : : ; �(l; n� l)). Then

by (2.2) we have that �(n; k) 2 N and

Pn(0; : : : ; 0; wk; 0; : : : ; 0) = �(n; k)wdn

k :

Q.E.D.

Lemma 2.3 Let Fj ; 1 5 j 5 m, be holomorphic functions on C, and let dj 2 N. Assume the

following:
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(i)
Pm

j=1 Fj = 0;

(ii) the order of every zero of Fj is at least dj;

(iii) the functions Fj ; 1 5 j 5 m� 1, have no common zero and are linearly independent over

C.

Then we have
mX

j=1

1

dj
=

1

m� 2
:

This is due to Cartan [Ca33] (cf., [MN96] for an application to the hyperbolicity problem).

The next lemma is a slight modi�cation of [Sh98], Theorem 4.2.

Lemma 2.4 Let �; � 2 C and � 6= 0. Then the curve C�;� � P
2(C) de�ned by

C�;� = f(w0;w1;w2) 2 P
2(C);P (w0; w1) = �P (�w1; w2)g

is hyperbolic for (i) � 6= 0; e > 2, and for (ii) � = 0; e > 3.

Proof. When � = 1, the lemma was proved by [Sh98], Theorem 4.2. If � 6= 0, then

P (�w1; w2) = �dP (w1; �
�1w2). Thus it is reduced to the case of � = 1.

Let � = 0, and assume that C�;0 is not hyperbolic. Then there is a non-constant holomorphic

mapping f : C! C�;0 � P
2(C). Let f = (f0; f1; f2) be reduced representation of f . Then one

has

fd0 + fd1 � �fd2 + f e0f
d�e
1

= 0:(2.5)

If one of ffjg
2

j=0 vanishes identically, it follows from (2.5) that other fj must be proportional;

hence the mapping f is constant. This contradicts the hypothesis. Thus none of ffjg
2

j=0 vanishes

identically. If fdj ; 0 5 j 5 2, are linearly dependent, there is a non-trivial relation,

c0f
d
0 + c1f

d
1 + c2f

d
2 = 0; cj 2 C:(2.6)

If one of fcjg
2

j=0, is zero, it follows from (2.6) and (2.5) that f is constant. This is absurd, and

so c0c1c2 6= 0. By Lemma 2.3, 3=d = 1; this contradicts d > 16. Therefore fdj ; 0 5 j 5 2, must

be linearly independent. Then, Lemma 2.3 and (2.5) yields

3

d
+

1

e
=

1

2
:

It follows from (1.1) and e > 3 that

3

d
+

1

e
�

1

2
<

3

2e+ 8
+

1

e
�

1

2

=
�e2 + e+ 8

2(e + 4)e

< 0:

This is again a contradiction. Q.E.D.

By Faltings' Theorem [Fa83] and Lemma 2.4 we have
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Lemma 2.7 Let K be an arbitrary number �eld, and let �; � 2 K with � 6= 0. Assume that

� 6= 0 and e > 2, or that � = 0 and e > 3. Then the set C�;�(K) is �nite.

The following is an analogue of [Sh98], Theorem 4.3.

Lemma 2.8 Let e > 2, n = 2, and let (p0; : : : ; pn�1) 2 P
n�1(K) be a point such that at least two

of fpjg
n�1
j=0 are di�erent to zero. Then there are only �nitely many points (w0; : : : ;wn) 2 P

n(K)

such that

(P (w0; w1); : : : ;P (wn�1; wn)) = (p0; : : : ; pn�1):

Proof. We use the induction on n. If n = 2, there is a number � 2 K� = K n f0g such that

P (w0; w1) = �P (w1; w2). There are only �nitely many such (w0;w1;w2) by Lemma 2.7.

Assume that the statement holds up to n � 1. We consider the case of n > 2, and let

(w0; : : : ;wn) 2 P
n(K) be such points. If P (wn�1; wn) = 0, the induction hypothesis implies

the �niteness of the number of points (w0; : : : ;wn�1). If wn�1 = 0, then wn = 0; if wn�1 6= 0,

then wn 6= 0 and the number of ratio wn=wn�1 is at most d. Therefore the number of points

(w0; : : : ;wn) is �nite.

Assume that P (wn�1; wn) 6= 0. Then there is a number k < n such that

P (wj�1; wj) = 0; k < j 5 n� 1;(2.9)

P (wk�1; wk) 6= 0:

There is a number � 2 K� such that

P (wk�1; wk) = �P (wn�1; wn):(2.10)

If wn�1 = 0, then wj = 0 for every k 5 j 5 n� 1. Then (2.10) yields

wd
k�1 = �wd

n 6= 0:

Hence the number of points

(wk�1; : : : ;wn) = (wk�1; 0; : : : ; 0;wn)

is �nite. If wn�1 6= 0, then wj 6= 0 for k 5 j 5 n� 1 by (2.9). Moreover, the number of ratios

wj�1=wj ; k + 1 5 j 5 n � 1, is �nite. Hence there are only �nitely many � 2 K� such that

wn�1 = �wk. It follows from (2.10) that

P (wk�1; wk) = �P (�wk; wn); �� 6= 0:

By Lemma 2.7 the number of points (wk�1;wk;wn) is �nite. Hence the number of points

(wk�1; : : : ;wn) is �nite. If there is a number 1 5 j < k with P (wj�1; wj) 6= 0, the induction

hypothesis implies the �niteness of the number of points (w0; : : : ;wn�1). In all, there are only

�nitely many such points (w0; : : : ;wn).

Assume that P (wj�1; wj) = 0 for all 1 5 j < k. Then either wj = 0 for all 1 5 j < k, or

wj 6= 0 for all 1 5 j < k and the number of ratios wj�1=wj is at most d for every 1 5 j < k.

Henceforth there are only �nitely many points (w0; : : : ;wn). Q.E.D.
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3 Proof of the main theorem

We use the induction on n = 2. The case of n = 2 is done by Lemma 2.7. Assume the case of

n� 1 to be true. For n we recall the de�nition of X:

Pn(w0; : : : ; wn) = Pn�1(P (w0; w1); : : : ; P (wn�1; wn)) = 0:

It follows from Lemma 2.1 that either all P (wj�1; wj) = 0; 1 5 j 5 n, or at least two of

P (wj�1; wj) are di�erent to zero. In the �rst case, the �niteness of such points (w0; : : : ;wn)

is clear. In the latter case the induction hypothesis and Lemma 2.8 imply that there are only

�nitely many those points (w0; : : : ;wn). Therefore, X(K) is a �nite set.

This completes the proof of the Main Theorem.
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