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Abstract

In this paper, we develop the theory of cosheaves which is based on J.P. Schnei-
ders’ work. We define a complex of cosheaves for the Whitney holomorphic functions
which is an analogy of tempered holomorphic functions by Kashiwara-Schapira. As
one of applications, we obtain a representation of the Laplace transforms on the
category of cosheaves.
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1 Introduction

In algebraic analysis, we use various algebraic tools such as the sheaf theory and the
localization of categories. J. P. Schneiders [10] introduced the theory of cosheaves by
using the concept of a pro-object which is based on Grothendieck’s work [9] and applied
to Borel-Moore homology. However, it seems that there are no examples of applications
to algebraic analysis. In this paper, we develop his theory of cosheaves and apply it to
the Laplace transforms by Kashiwara-Schapira [5].

The Laplace transforms is as follows. Let E be an n-dimensional C-vector space, and
let j be the inclusion map from E to its projective compactification P . E∗ denotes the
dual space of E. If F is a R-constructible and R+-conic sheaf on E, then they set for
short :

THom(F,OE) := RΓ(P ;THom (j!F,OP )),

F
W⊗OE := RΓ(P ; j!F

w⊗OP )

and gave the Laplace isomorphisms

L : F
W⊗OE

∼→F ∧[n]
W⊗OE∗ . (1.1)

tL : THom(F,OE) ∼←THom(F ∧[n],OE∗). (1.2)

A conic sheaf Ot
E is defined as the associated sheaf of the presheaf

U �→ THom(CU ,OE)

for any open subanalytic cone U ⊂ E. The morphism (1.2) induces

(Ot
E)

∧
[n] 	 Ot

E∗ . (1.3)

We consider an analogy of (1.3) for Whitney holomorphic functions. We define a com-
plex Ocw

E of cosheaves which is the dual of Ot
E, and we prove that the Laplace isomorphism

(1.1) induces an isomorphism

(Ocw
E )∧[n] 	 Ocw

E∗. (1.4)

We remark the definition of cosheaves. Let X be a topological space, and let Op(X)
be the set of open subsets of X. Suppose that k is a commutative ring with unit. We
denote by Mod(k) the category of k-modules. Since a sheaf is a certain functor from
Op(X)op to Mod(k), it seems naturally that we define a cosheaf as a certain functor from
Op(X)op to Mod(k)op. However, if we select this definition, then we cannot expect good
properties, because projective limits on Mod(k) is not always exact. So, we introduce the
category of promodule, denoted by Pro(k), and we regard a cosheaf as a certain functor
from Op(X)op to Pro(k)op. Mod(k) is a full subcategory of Pro(k), and projective limits
on Pro(k) are always exact.

Now let us briefly explain the content of each section.
Section 2 is a preparation for defining the category of cosheaves. This preparation

consists of four parts. First, we introduce the category of promodules and its properties.
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Secondly, we recall the definition of sheaves with values in a k-abelian category C, denoted
by Sh(kX , C). Thirdly, we mention several functors such as the direct image and the inverse
image. Finally, we study two new functors ⊗ and Chom . Although we do not assume
that Sh(kX , C) is Tannakian, we have few difficulty because of these functors.

In Section 3, we define precosheaves and cosheaves by using the preceding preparation.
A cosheaf is a sheaf with value in Pro(k)op. We remark that this definition is the same as
Schneiders’ one essentially. After that, we study the proper direct image and its properties
on the category of cosheaves.

In Section 4, we first introduce the new concept of “c-injective”, and we prove that
the category of cosheaves has enough c-injective objects. Next, we mention the derived
category of cosheaves, and we define several derived functors. Particularly, we show that
the functor Chom is right derivable by using “c-injective”. Finally, we give an analogy of
Poincaré-Verdier duality theorem and sevral formulas.

In Section 5, we first discuss the cosheafication. After that, we define a new functor
c. If B is a sheaf, then

U �→ Γc(U ;B)

is a precosheaf. We write the associated cosheaf by c(B). Moreover, we prove that this
functor c is left derivable under a certain condition.

In final section, we give the isomorphism (1.4) as the main theorem after we review
the Laplace transforms by Kashiwara-Schapira [5]. In order to get (1.4), we first mention
the cosheaf version of Fourier-Sato transformations. Next, we define the conic cosheaf
C∞cw
E and study its behavior. Finally, we define the complex Ocw

E of cosheaves by using
the conic cosheaf C∞cw

E and prove that the Laplace isomorphism (1.1) induces (1.4)

2 Preliminaries

2.1 Promodules

Let k be a commutative ring with unit. Mod(k) will denote the category of k-modules.
We first establish the concept of a k-promodule. Let C be a k-abelian category and let
C∨ denote the category of k-additive functors from C to Mod(k). If I is a filtrant set and
α : Iop → C is a functor, then an object “ lim←− ”

i∈I
α(i) of C∨ is defined by

“ lim←− ”
i∈I

α(i) : C → Mod(k),

A �→ lim−→
i∈I

HomC(α(i), A).

We say that X ∈ C∨ is a pro-object of C if there exists a filtrant set I and a functor
α : Iop → C such that X is isomorphic to “ lim←− ”

i∈I
α(i). We denote by Pro(C) the full sub-

category of C∨ consisting of pro-objects. Note that morphisms of Pro(C) are represented
as follows :

HomPro(C)(“ lim←− ”
i∈I

α(i), “ lim←− ”
j∈J

β(j)) 	 lim←−
j∈J

lim−→
i∈I

HomC(α(i), β(j)).
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Since Mod(k) is a k-abelian category, by putting C := Mod(k), we get a category
Pro(Mod(k)). We write Pro(k) instead of Pro(Mod(k)).

Definition 2.1.1. We call each object of Pro(k) a k-promodule, and call each morphism
of Pro(k) a k-promodule map.

In this section, we simply write Homk( · , · ) instead of HomPro(k)( · , · ). The basic

properties of Pro(k) are as follows.

Theorem 2.1.2 (Grothendieck [9]). (i) Pro(k) is a k-abelian category.

(ii) The natural functor Mod(k)→ Pro(k) is fully faithful and exact.

(iii) Pro(k) admits exact small filtrant projective limits.

(iv) Pro(k) admits direct sums and inductive limits.

“ lim←− ” denotes the usual projective limit in Pro(k).

Next, we shall consider ring action on k-promodules. Let R be a k-algebra with unit
and let Mod(R) denote the category of left R-modules. For any k-abelian category C,
Kashiwara-Schapira [3] defined a category Mod(R, C) as follows :

Ob(Mod(R, C)) := {(X, ξX);X ∈ C, ξX : R→ End C(X) is a morphism of k-algebras},
HomMod(R,C)((X, ξX), (Y, ξY )) := {f : X → Y ; f ◦ ξX(r) = ξY (r) ◦ f for all r ∈ R}.

By putting C := Pro(k), we obtain a category Mod(R,Pro(k)).

Definition 2.1.3. We call each object of Mod(R,Pro(k)) a left R-promodule, and call
each morphism of Mod(R,Pro(k)) a left R-promodule map.

We shall mention the relation between Mod(R) and Mod(R,Pro(k)). Take a R-
promodule (X, ξX ) ∈ Mod(R,Pro(k)). If X ∈ Mod(k), then ξX defines the structure of a
left R-modules in X. Conversely, if X is a left R-module, then the R-module structure
induces the map ξX : R → EndMod(k)(X). Moreover, a k-module map f is a morphism

in Mod(R,Pro(k)) if and only if f is a morphism of R-modules. Hence Mod(R) is a full
subcategory of Mod(R,Pro(k)).

Theorem 2.1.4 (Kashiwara-Schapira [3]).

(i) Mod(R,Pro(k)) is a k-abelian category.

(ii) The forgetful functor Mod(R,Pro(k))→ Pro(k) is faithful and exact.

(iii) The natural functor Mod(R)→ Mod(R,Pro(k)) is fully faithful and exact.

Remark 2.1.5. We have another approach of ring action on prolinear spaces; that is to
say, we can consider Pro(Mod(R)). However, Pro(Mod(R)) is not always equivalent to
Mod(R,Pro(k)). We will not use Pro(Mod(R)) in this paper since we do not need it later.

Finally, we discuss some results to prove Theorem 4.1.7.
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Definition 2.1.6. P ∈ Pro(k) is called a quasi-projective module if the functor

Homk(P, · ) : Mod(k)→ Mod(k)

is exact.

Theorem 2.1.7 (Kashiwara-Schapira [3]). The category Pro(k) has enough quasi-
projective objects.

Theorem 2.1.8 (Schneiders [10]). There exists a unique functor

· ⊗k · : Pro(k)×Mod(k)→ Pro(k) (2.1.1)

with the following property. For any X, Y ∈ Pro(k) and A ∈ Mod(k), we have an
isomorphism

Homk(A,Homk(X,Y )) 	 Hom(X ⊗k A, Y ).
Proof. We first assume that A is a free k-module. Then, by taking a basis of A, there is
an isomorphism A 	 ⊕

i∈I
k(i), where I is an index set and each k(i) is a copy of k. So, we

have

Homk(A,Homk(X,Y )) 	 Homk(⊕
i∈I
k(i),Homk(X,Y ))

	 Π
i∈I

Homk(X,Y )(i)

	 Homk(⊕
i∈I
X(i), Y ).

Therefore X ⊗k A is represented as ⊕
i∈I
X(i).

Next, we assume that A is a general k-module. Take a resolution B2 → B1 → A→ 0
such that both B1 and B2 are free k-modules. Then, X ⊗k A is defined by the following
exact sequence

X ⊗k B2 → X ⊗k B1 → X ⊗k A→ 0.

q.e.d.

Remark 2.1.9. The functor (2.1.1) is compatible with the usual tenser product of k-
module.

Definition 2.1.10. We say that k satisfies the condition A if for any quasi-projective
object P ∈ Pro(k) and for any injective object I ∈ Mod(k), Homk(P, I) is also injective
in Mod(k).

For example, when k is a Dedekind domain, k satisfies the condition A.

Conjecture 2.1.11. This condition A seems to be satisfied even if k is more general
commutative ring. However, I do not know whether the conjecture is true for the present.

Theorem 2.1.12. Suppose that k satisfies the condition A. If P ∈ Pro(k) is a quasi-
projective object, then the functor P ⊗k · is exact.
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Proof. Let A′ → A → A′′ be an exact sequence in Mod(k). Take an injective object
I ∈ Mod(k). Then, Homk(P, I) is also injective by the hypothesis, so the sequence

Homk(A
′′,Homk(P, I))→ Homk(A,Homk(P, I))→ Homk(A

′,Homk(P, I))

is exact. This sequence can be rewritten as

Homk(P ⊗k A′′, I)→ Homk(P ⊗k A, I)→ Homk(P ⊗k A′, I).

Since this sequence is exact for any injective object I ∈ Mod(k), the following sequence
is also exact :

P ⊗k A′ → P ⊗k A→ P ⊗k A′′.

Therefore, P ⊗k · is an exact functor. q.e.d.

2.2 Generalized sheaves

Let k be a commutative ring with unit and let C be a k-abelian category. Suppose that
X is a topological space. We denote by Op(X) the set of open subsets of X. We regard
Op(X) as the directed set. In this section, we recall the definition of C-valued presheaves
and sheaves without proof. This theory is well known for the specialists. Detailed proof
can be found on Kashiwara-Schapira [3].

Remark 2.2.1. We denote by PSh(kX) (resp. Sh(kX)) the category of ordinary presheaves
(resp. sheaves) on X.

Remark 2.2.2. We assume that C satisfies the following conditions.

(i) C admits small direct sums and small direct products.

(ii) Small filtrant inductive limits in C are exact.

(iii) If {I(j)}j∈J is a family of small filtrant categories indexed by a set J , and if
{Xi,j}i∈I(j) is an inductive system in C, then the natural morphism

lim−→
ϕ∈A

∏
j∈J
Xϕ(j),j →

∏
j∈J

lim−→
i∈I(j)

Xi,j

is an isomorphism, where A := {ϕ : J → ⊔
j∈J
I(j)|ϕ(j) ∈ I(j)}.

Definition 2.2.3. A C-valued presheaf F on X is a functor F : Op(X)op → C, that is,
the data of

(i) An assignment to each open set U ⊂ X of a object F (U) ∈ C,
(ii) A collection of morphisms in C,

ρV U : F (U)→ F (V ) (2.2.1)

for each pair of open sets U and V with V ⊂ U ,
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these data satisfying

(i) ρUU = idF (U ),

(ii) For any open inclusions W ⊂ V ⊂ U , we have ρWV ◦ ρV U = ρWU .

Definition 2.2.4. Let F and G be two C-valued presheaves on X. A morphism ϕ : F →
G of presheaves is a morphism of functors. In other words, for each open subset U of X,
we have a morphism

ϕU : F (U)→ G(U), (2.2.2)

and the collection {ϕU}U⊂X of the morphisms satisfy the following commutative diagram

F (U)
ϕV−−−−→ G(U)�ρUV

�ρUV

F (V )
ϕU−−−−→ G(V ), V ⊂ U ⊂ X.

(2.2.3)

We denote by PSh(kX , C) the category of C-valued presheaves on X.

Remark 2.2.5. If C is the category of k-modules, then PSh(kX , C) is the category con-
sisting of ordinary presheaves.

Remark 2.2.6. We sometimes write Γ(U ;F ) instead of F (U). So, we have a functor

Γ(U ; · ) : PSh(kX , C)→ C,
and a morphism of functors

ρV U : Γ(U ; · )→ Γ(V ; · )
for any open sets U , V with V ⊂ U .

The category PSh(kX , C) admits finite direct sums. If F and G are two C-valued
presheaf on X, then the direct sum of F and G is represented as

(F ⊕G)(U) = F (U)⊕G(U). (2.2.4)

Moreover, PSh(kX , C) admits kernels and cokernels. The kernel and cokernel of a mor-
phism ϕ : F → G are represented as follows :

(kerϕ)(U) = ker(ϕU : F (U)→ G(U)), (2.2.5)

(cokerϕ)(U) = coker(ϕU : F (U)→ G(U)). (2.2.6)

As a result, we know that PSh(kX , C) is a k-abelian category.
Let F be a presheaf on X. Suppose that U is an open subset of X and that {Ui}i∈I

is a family of open sets with U = ∪i∈IUi. A collection of morphisms {ρUi U}i∈I gives rise
to the following morphism

d : F (U)→ Π
i∈I
F (Ui).
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Next, consider the natural projections εi : Π
i∈I
F (Ui) → F (Ui) and put djk := ρ(Uj∩Uk)Uj

◦
εj − ρ(Uj∩Uk)Uk

◦ εk. the collection of morphisms {djk}jk∈I induces the morphism

d′ : Π
i∈I
F (Ui)→ Π

j,k∈I
F (Uj ∩ Uk).

As a result, we obtain the following complex :

0→ F (U)
d−→ Π

i∈I
F (Ui)

d′−→ Π
j,k∈I

F (Uj ∩ Uk). (2.2.7)

Definition 2.2.7. A presheaf F ∈ PSh(kX , C) is called a sheaf if (2.2.7) is exact for any
open set U ⊂ X and any open covering {Ui}i∈I of U .

Morphisms of sheaves are defined simply as morphisms of the underlying presheaves.
So, the category of C-valued sheaves on X, denoted by Sh(kX , C), is clearly the full
subcategory of PSh(kX , C). Moreover, Sh(kX , C) is a k-additive category because the
direct sum (2.2.4) of two sheaves F and G is a sheaf.

Theorem 2.2.8. The forgetful functor

ι : Sh(kX , C)→ PSh(kX , C)

has a left adjoint functor.

We write the left adjoint functor of the forgetful functor ι as ( · )a. Then, we have

HomPSh(kX ,C)(F, ιG) 	 HomSh(kX ,C)(F
a, G).

F a is called the sheafication of F or is called the associated sheaf of F .
As a result of Theorem 2.2.8, we obtain the following corollary.

Corollary 2.2.9. Sh(kX , C) is a k-abelian category.
Remark 2.2.10. If C is the category of k-modules, then Sh(kX , C) is the category of
ordinary sheaves.

Remark 2.2.11. Let ϕ : F → G be a morphism in Sh(kX , C). Then, the kernel of ϕ on
Sh(kX , C) is represented as (2.2.5). However, (2.2.6) is not always a sheaf. The cokernel
of ϕ on Sh(kX , C) is the sheafication of (2.2.6). Therefore, we know that the functor

Γ(U ; · ) : Sh(kX , C)→ C (2.2.8)

is left exact for any open set U ⊂ X.

Definition 2.2.12. Let F be a C-valued sheaf on X and let U be an open set of X.
Then, a sheaf F |U on U is obtained by putting F |U(V ) := F (V ) for each open subset
V ⊂ U , and we call F |U the restriction of F on U .
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Definition 2.2.13. Let F and G ∈ Sh(kX , C). Then, the presheaf

U �→ HomSh(kU ,C)(F |U , G|U ) (2.2.9)

is a sheaf on X. We denote this sheaf by Hom kX
(F,G).

As a result, we obtain a left exact bifunctor

Hom kX
( · , · ) : Sh(kX , C)op × Sh(kX , C)→ Sh(kX).

Let R be a sheaf of (not necessarily commutative) k-algebra on X.

Definition 2.2.14. Let M ∈ Sh(kX , C) and let νM be a morphism of kX -algebra from R
to HomkX

(M,M). Then, we call (M, νM ) a C-valued sheaf with left R-action.

Definition 2.2.15. Let (M, νM ) and (N, νN ) be a C-valued sheaves with left R-action.
Then, a morphism from (M, νM ) to (N, νN ) is a morphism ϕ ∈ HomkX

(M,N) which
satisfies the following commutative diagram

R νM−−−−→ Hom kX
(M,M)�νN

�Hom (M,ϕ)

HomkX
(N,N)

Hom (ϕ,N )

−−−−−→ HomkX
(M,N).

We denote by Sh(R, C) the category of C-valued R-sheaves with left R-action. Note
that Sh(R, C) is a k-abelian category and that the forgetful functor Sh(R, C)→ Sh(kX , C)
is exact and faithful.

We have a left exact bifunctor

HomSh(R,C)( · , · ) : Sh(R, C)op × Sh(R, C)→Mod(k),

and an exact sequence

0→ HomSh(R,C)(M,N) → HomSh(kX ,C)(M,N)
e−→ HomSh(kX)(R,Hom kX

(M,N)), (2.2.10)

where e(ϕ) := HomkX
(M,ϕ) ◦ νM −Hom kX

(ϕ,N) ◦ νN .
Definition 2.2.16. Let M and N ∈ Sh(R, C). Then, we define a sheaf HomR(M,N) as

U �→ HomSh(R|U ,C)(M |U , N |U ).

By the definition above, we have a left exact bifunctor

HomR( · , · ) : Sh(R, C)op × Sh(R, C)→ Sh(kX),

and an exact sequence

0→ HomR(M,N)→ HomkX
(M,N)

e−→ HomkX
(R,Hom kX

(M,N)).
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2.3 Direct and inverse image

Let X and Y be two topological spaces and let f be a continuous map from Y to X.
If G is a C-valued sheaf on Y , then the presheaf

U �→ G(f−1(U)) (2.3.1)

is a C-valued sheaf on X.

Definition 2.3.1. Let G be a C-valued sheaf on Y . Then, we denote the sheaf (2.3.1) on
X by f∗G, and we call it the direct image of G by f .

By the definition above, there is a left exact functor

f∗ : Sh(kY , C)→ Sh(kX , C).
Let F be a C-valued sheaf on X. Then, we define a presheaf on Y as

U �→ lim−→
f(U )⊂V

F (V ). (2.3.2)

However, this presheaf is not always a sheaf.

Definition 2.3.2. Let F be a C-valued sheaf on X. Then, we denote the associated sheaf
of (2.3.2) by f−1F , and we call it the inverse image of F by f .

There is an exact functor

f−1 : Sh(kX , C)→ Sh(kY , C).
Remark 2.3.3. Let F ∈ Sh(kX , C). Then, we write the presheaf (2.3.2) as f∧F . Since
f−1F is the associated sheaf of f∧F , there exists a natural morphism

f∧F → f−1F,

and this morphism is a monomorphism.

Theorem 2.3.4. f∗ is a right adjoint to f−1. More precisely, if F ∈ Sh(kX , C) and
G ∈ Sh(kY , C), then we have the following isomorphisms :

HomSh(kY ,C)(f
−1F,G) 	 HomSh(kX ,C)(F, f∗G).

f∗Hom kY
(f−1F,G) 	 Hom kX

(F, f∗G).

Proposition 2.3.5. Let X and Y be two topological spaces and let f : Y → X be a
continuous map. Then,

(i) We have the following functors :

f∗ : Sh(f−1R, C)→ Sh(R, C),
f−1 : Sh(R, C)→ Sh(f−1R, C).
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(ii) f∗ is a right adjoint to f−1. In other words, for anyM ∈ Sh(R) and N ∈ Sh(f−1R),
we have the following isomorphisms

HomSh(f−1R,C)(f
−1M,N) 	 HomSh(R,C)(M, f∗N),

f∗Hom f−1R(f
−1M,N) 	 HomR(M, f∗N).

Let G ∈ Sh(R, C). Then, for any locally closed set Z of X, we shall define a sheaf
ΓZF as follows. First, we assume that Z is an open set U and that i : U → X is the
inclusion map, then we put ΓUG := i∗i−1G. Next, we suppose that Z is a closed set S.
Then, there is a natural morphism G → ΓX−SG, so we put ΓSG := ker(G → ΓX−SG).
Finally, we consider the case that Z is a general locally closed. Select an open set U and
a closed set S with Z = U ∩ S. Then, we define ΓZG as ΓU ◦ ΓSG. Remark that ΓZG is
depend only upon Z. Consequently, there is a left exact functor

ΓZ( · ) : Sh(R, C)→ Sh(R, C).
Moreover, when F ∈ Sh(R, C), we also define a sheaf FZ as follows. If Z is a closed

set and if i : S → X is the inclusion map, then we put FS := iS∗i
−1
S F . Next, if U is a

open set, then there is a natural morphism F → FX−U , so we put FU := ker(F → FX−U).
Finally, assume Z is a locally closed set. Then, we chose an open set U and a closed set
S, and we put FZ := (GU )S. Consequently, we have an exact functor

( · )Z : Sh(R, C)→ Sh(R, C).
The functor ΓZ( · ) is right adjoint to the functor ( · )Z , and we have

HomR(FZ , G) 	 HomR(F,ΓZG) 	 ΓZHomR(F,G). (2.3.3)

2.4 Chom and ⊗
We define two new bifunctors Chom and ⊗ , and we study the properties. We shall recall
the classical result below.

Proposition 2.4.1. Let A be a sheaf on X. Then, there exists a family {Ui}i∈I of open
sets of X and an epimorphism ⊕

i∈I
kUi → A of sheaves.

Theorem 2.4.2. Let A ∈ Sh(kX) and let F , G ∈ Sh(kX , C). Then, there exists two
C-valued sheaves ChomkX

(A, F ) and A⊗kX
G which satisfy the following isomorphisms

HomSh(kX)(A,HomkX
(G,F )) 	 HomSh(kX ,C)(G, Chom kX

(A, F ))

	 HomSh(kX ,C)(A⊗kX
G,F ).

Proof. (a) First, we assume that U is an open set and that A = kU . Then, by (2.3.3),
we get

HomSh(kX)(A,HomkX
(G,F )) = HomSh(kX)(kU ,HomkX

(G,F ))

	 Γ(X; ΓUHom kX
(G,F ))

	 Γ(X;Hom kX
(G,ΓUF ))

= HomSh(kX ,C)(G,ΓUF )).
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Hence, Chom kX
(A, F ) is represented as ΓUF . Similarly,

HomSh(kX)(A,HomkX
(G,F )) 	 Γ(X; ΓUHomkX

(G,F ))

	 Γ(X;Hom kX
(GU , F ))

= HomSh(kX ,C)(GU , F )),

so A⊗kX
G is represented as GU .

(b) Next, we suppose that A = ⊕
i∈I
Ai and that ChomkX

(Ai, F ) and Ai ⊗kX
G are well-

defined for i ∈ I . Then, we have

HomSh(kX)(A,HomkX
(G,F )) = HomSh(kX)(⊕

i∈I
Ai,Hom kX

(G,F ))

= Π
i∈I

HomSh(kX)(Ai,Hom kX
(G,F ))

	 Π
i∈I

HomSh(kX ,C)(G, ChomkX
(Ai, F ))

= HomSh(kX ,C)(G, Π
i∈I
ChomkX

(Ai, F ))

and

HomSh(kX)(A,HomkX
(G,F )) = Π

i∈I
HomSh(kX)(Ai,HomkX

(G,F ))

	 Π
i∈I

HomSh(kX ,C)(Ai ⊗kX
G,F )

= HomSh(kX ,C)(⊕
i∈I

(Ai ⊗kX
G), F ).

Therefore, we get ChomkX
(A, F ) 	 Π

i∈I
Chom kX

(Ai, F ) and A⊗kX
G 	 ⊕

i∈I
(Ai⊗kX

G).

(c) Finally, we assume that A is a general sheaf on X. By applying Proposition 2.4.1,
there exists an exact sequence A2 → A1 → A → 0 such that ChomkX

(Ai, F ) and
Ai⊗kX

G are well-defined for i = 1, 2. Hence, we define ChomkX
(A, F ) and A⊗kX

G
by the exact sequence

0→ ChomkX
(A, F )→ ChomkX

(A1, F )→ Chom kX
(A2, F ),

A2 ⊗kX
G→ A1 ⊗kX

G→ A⊗kX
G→ 0.

It is easy to prove that ChomkX
(A, F ) and A⊗kX

G depend only upon A.

q.e.d.

We obtain a left exact bifunctor

ChomkX
( · , · ) : Sh(kX)op × Sh(kX , C)→ Sh(kX , C),

and a right exact bifunctor

· ⊗kX
· : Sh(kX)× Sh(kX , C)→ Sh(kX , C).
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Theorem 2.4.3. Let Z be a locally closed subset of X. If A ∈ Sh(kX) and F ∈ Sh(kX , C),
then we have

ΓZChom kX
(A, F ) 	 Chom kX

(AZ , F ) 	 Chom kX
(A,ΓZ(F )).

Proof. Let G ∈ Sh(kX , C). By (2.3.3), we get

HomSh(kX ,C)(G,ΓZChomkX
(A, F )) 	 HomSh(kX ,C)(GZ , ChomkX

(A, F ))

	 HomSh(kX)(A,HomkX
(GZ , F )),

HomSh(kX)(A,HomkX
(GZ , F )) 	 HomSh(kX)(A,ΓZHom kX

(G,F ))

	 HomSh(kX)(AZ ,HomkX
(G,F ))

	 HomSh(kX ,C)(G, Chom kX
(AZ , F )),

and

HomSh(kX )(A,HomkX
(GZ , F )) 	 HomSh(kX)(A,HomkX

(G,ΓZF ))

	 HomSh(kX ,C)(G, Chom kX
(A,ΓZF )).

Since these are true for any G, the proof follows. q.e.d.

Remark 2.4.4. Let Z be a locally closed subset of X. If A ∈ Sh(kX) and G ∈ Sh(kX , C),
then we have

(A⊗kX
G)Z 	 AZ ⊗kX

G 	 A⊗kX
GZ .

This proof is similar to the proof of Theorem 2.4.3.

Theorem 2.4.5. Under the hypothesis of Theorem 2.4.2, we have an isomorphism

Hom kX
(A,HomkX

(G,F )) 	 Hom (G, ChomkX
(A, F ))

	 Hom kX
(A⊗kX

G,F ).

Proof. By Theorem 2.4.3, for any open set U ⊂ X, we have

Γ(U ;Hom kX
(A,HomkX

(G,F ))) = HomSh(kU )(A|U ,Hom kX
(G,F )|U)

	 HomSh(kX)(AU ,HomkX
(G,F ))

	 HomSh(kX ,C)(G, ChomkX
(AU , F ))

	 HomSh(kX ,C)(G,ΓUChomkX
(A, F ))

	 HomSh(kU ,C)(G|U , ChomkX
(A, F )|U)

= Γ(U ;Hom kX
(G, ChomkX

(A, F ))).

Similarly, by Remark 2.4.4, we also have

Γ(U ;Hom kX
(A,HomkX

(G,F )) = HomSh(kU )(A|U ,Hom kX
(G,F )|U)

	 HomSh(kX)(A,ΓUHom kX
(G,F ))

	 HomSh(kX)(A,HomkX
(G,ΓUF ))

	 HomSh(kX ,C)(A⊗kX
G,ΓUF )

	 HomSh(kU ,C)((A⊗kX
G)|U , F |U)

= Γ(U ;Hom kX
(A⊗kX

G,F )).
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q.e.d.

Theorem 2.4.6. Let A,B ∈ Sh(kX) and let F ∈ Sh(kX , C). Then, we have

ChomkX
(B, ChomkX

(A, F )) 	 ChomkX
(A⊗kX

B,F )

	 ChomkX
(A, ChomkX

(B,F )).

Proof. We prove the first isomorphism. Let G ∈ Sh(kX , C). By Theorem 2.4.5, we have

HomSh(kX ,C)(G, Chom kX
(B, ChomkX

(A, F )))

	 HomSh(kX)(B,HomkX
(G, Chom kX

(A, F )))

	 HomSh(kX)(B,HomkX
(A,HomkX

(G,F )))

	 HomSh(kX)(A⊗kX
B,HomkX

(G,F ))

	 HomSh(kX ,C)(G, Chom kX
(A⊗kX

B,F )).

Since this is true for any G, the first isomorphism follows. The second isomorphism is
similar. q.e.d.

Remark 2.4.7. If A,B ∈ Sh(kX) and G ∈ Sh(kX , C), then we have an isomorphism

(A⊗kX
B)⊗kX

G 	 A⊗kX
(B ⊗kX

G).

This proof is similar to the proof of Theorem 2.4.6.

Theorem 2.4.8. Let X and Y be two topological spaces and let f : Y → X be a contin-
uous map. If A ∈ Sh(kX) and F ∈ Sh(kY , C), then we have

f∗ChomkY
(f−1A, F ) 	 ChomkX

(A, f∗F ).

Proof. Let G ∈ Sh(kX , C). By Theorem 2.3.4, we have

HomSh(kX ,C)(G, f∗Chom kY
(f−1A, F )) 	 HomSh(kY ,C)(f

−1G, Chom kY
(f−1A, F ))

	 HomSh(kY )(f
−1A,HomkY

(f−1G,F ))

	 HomSh(kX)(A, f∗Hom kY
(f−1G,F ))

	 HomSh(kX)(A,HomkX
(G, f∗F ))

	 HomSh(kX ,C)(G, Chom kX
(A, f∗F )).

Since this is true for any G, the proof follows. q.e.d.

Remark 2.4.9. Let X and Y be two topological spaces and let f : Y → X be a contin-
uous map. If A ∈ Sh(kX) and G ∈ Sh(kX , C), then we have

f−1A⊗kY
f−1G 	 f−1(A⊗kY

G).

This proof is similar to the proof of Theorem 2.4.8.
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Remark 2.4.10. LetM ∈ Sh(R, C). Then, by Theorem 2.4.2, the ring action νM : R→
Hom kX

(M,M) induces two morphisms

λM : M → Chom kX
(R,M),

µM : R⊗M →M.

If M ∈ Sh(Rop, C), then we use the notations λop
M and µop

M similarly.

Definition 2.4.11. Let A ∈ Sh(R) and N ∈ Sh(R, C). Then we put

ChomR(A,N) := ker(ChomkX
(A,N)

d−→ ChomkX
(R⊗A,N)),

where d = ChomkX
(µA, N)− ChomkX

(A, λN).

There exists a left exact bifunctor

ChomR( · , · ) : Sh(R)op × Sh(R, C)→ Sh(kX , C).

Remark 2.4.12. Suppose that F ∈ Sh(kX , C), A ∈ Sh(R) and N ∈ Sh(R, C). Then, by
Theorem 2.4.2 and Definition 2.4.11, we have the following isomorphisms

HomSh(R)(A,HomkX
(F,N)) 	 HomSh(kX ,C)(F, ChomR(A,N))

	 HomSh(R,C)(A⊗kX
F,N).

Theorem 2.4.13. Suppose that A ∈ Sh(kX), B ∈ Sh(R) and N ∈ Sh(R, C). Then, we
have isomorphisms

ChomR(B, ChomkX
(A,N)) 	 ChomR(A⊗kX

B,N)

	 ChomkX
(A, ChomR(B,N)).

Proof. We prove the first isomorphism. Let F ∈ Sh(kX , C). By Remark 2.4.12, we get

HomSh(kX ,C)(F, ChomR(B, ChomkX
(A,N)))

	 HomSh(R)(B,HomkX
(F, ChomkX

(A,N)))

	 HomSh(R)(B,HomkX
(A,HomkX

(F,N)))

	 HomSh(R)(A⊗kX
B,HomkX

(F,N))

	 HomSh(kX ,C)(F, ChomR(A⊗kX
B,N)).

Since this is true for any F , the first isomorphism follows. The second isomorphism is
also similar. q.e.d.

Theorem 2.4.14. Let X and Y be two topological spaces and let f : Y → X be a
continuous map. If A ∈ Sh(R) and N ∈ Sh(f−1R, C), then we have

f∗Chomf−1R(f
−1A,N) 	 ChomR(A, f∗N).
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Proof. Let F ∈ Sh(kX , C). Then, by Remark 2.4.12, we get

HomSh(kX ,C)(F, f∗Chom f−1R(f
−1A,N))

	 HomSh(kY ,C)(f
−1F, Chomf−1R(f

−1A,N))

	 HomSh(f−1R)(f
−1A,HomkY

(f−1F,N))

	 HomSh(R)(A, f∗HomkY
(f−1F,N))

	 HomSh(R)(A,HomkX
(F, f∗N))

	 HomSh(kX ,C)(F, ChomR(A, f∗N)).

Since this is true for any F , the proof follows. q.e.d.

Remark 2.4.15. Let Z be a locally closed set of X. If A ∈ Sh(R) and N ∈ Sh(R, C),
then we have isomorphisms

ΓZChomR(A,N) 	 ChomR(AZ , N) 	 ChomR(A,ΓZN).

Definition 2.4.16. Let A ∈ Sh(Rop) and M ∈ Sh(R, C). Then we put

A⊗R M := coker(A ⊗kX
R⊗kX

M
d−→ A⊗kX

M),

where d = µop
A ⊗kX

M − A⊗kX
µM .

There is a right exact bifunctor

· ⊗R · : Sh(Rop)× Sh(R, C)→ Sh(kX , C).
Remark 2.4.17. Suppose that M ∈ Sh(R, C), A ∈ Sh(Rop) and G ∈ Sh(kX , C). Then,
by Theorem 2.4.2 and Definition 2.4.16, we have the following isomorphisms

HomSh(Rop)(A,HomkX
(M,G)) 	 HomSh(R,C)(M, Chom kX

(A,G))

	 HomSh(kX ,C)(A⊗RM,G).

If B ∈ Sh(X), then

B ⊗kX
(A⊗RM) 	 (B ⊗kX

A)⊗RM.

Suppose that f : Y → X be a continuous map. Then, we have

f−1A⊗f−1R f
−1M 	 f−1(A⊗RM).

If Z is a locally closed set of X, then we have

(A⊗RM)Z 	 AZ ⊗R M 	 A⊗RMZ .

Remark 2.4.18. We have another tensor product

· ⊗R · : Sh(Rop, C) × Sh(R)→ Sh(kX , C)
which satisfies

HomCsh(kX)(N ⊗R B,G) 	 HomSh(R)(B,Hom (N,G))

for any N ∈ Sh(Rop, C), B ∈ Sh(R) and G ∈ Sh(kX , C). Although we do not explain this
functor in detail, we will use it later.
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3 Category of cosheaves

3.1 Precosheaves and cosheaves

Let X be a topological space and let k be a commutative ring with unit. We redefine the
category of cosheaves by Schneiders [10]. Although his notation is different from our one,
his definition is the same as ours essentially. If we put C := Pro(k)op, then C satisfies the
conditions of Remark 2.2.2.

Definition 3.1.1. We set

PCsh(kX) := PSh(kX ,Pro(k)
op),

Csh(kX) := Sh(kX ,Pro(k)
op).

We call an object of PCsh(kX) a precosheaf on X. Similarly, we call an object of Csh(kX)
a cosheaf on X.

By the previous section, we get several functors; f∗, f−1, ΓZ , ( · )Z , Chom and ⊗.
Note that Schneiders already gave these functors in [10].

Definition 3.1.2. Let F be a precosheaf onX. For any T ∈ Mod(k), we define a presheaf
〈F, T 〉 on X by

U �→ HomPro(k)(F (U)
op, T ).

We obtain a left exact bifunctor

〈 · , · 〉 : PCsh(kX)×Mod(k)→ PSh(kX).

The next proposition is a convenient tool to construct morphisms of precosheaves.

Proposition 3.1.3 (See [10]). Let F and G be two precosheaf on X. We suppose that
a presheaf morphism γT : 〈F, T 〉 → 〈G,T 〉 is assigned to each T ∈ Mod(k) and that the
collection {γT}T∈Mod(k) satisfies the following condition. For any k-module map a : S →
T , the diagram below commutes :

〈F, S〉 γS−−−−→ 〈G,S〉�〈F,a〉
�〈G,a〉

〈F, T 〉 γT−−−−→ 〈G,T 〉 .
Then, there exists a unique morphism ϕ : F → G of precosheaf such that for any T ∈
Mod(k), we have 〈ϕ, T 〉 = γT .
Proof. Let U be an open subset of X. Then, for any T ∈ Mod(k), we have a morphism

γT (U) : HomPro(k)(F (U)
op, T )→ HomPro(k)(G(U)

op, T ).

By the definition of k-promodules, there is a unique morphism

ϕU : F (U)→ G(U)

such that HomPro(k)(ϕ
op
U , T ) = γT (U). This collection {ϕU}U⊂X defines a morphism ϕ :

F → G of precosheaves. q.e.d.
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Remark 3.1.4. Let F be a precosheaf on X. F is a cosheaf if and only if 〈F, T 〉 is a
sheaf for any T ∈ Mod(k).

Remark 3.1.5. Let F ′ → F → F ′′ be a sequence of cosheaves on X. This sequence is
exact if and only if

〈F ′, T 〉 → 〈F, T 〉 → 〈F ′′, T 〉

is exact for any injective k-module T .

Let R be a sheaf of (not necessarily commutative ) k-algebra. Then, by putting

Csh(R) := Sh(R,Pro(k)op),

we get the category of cosheaves with R-action. If M ∈ Csh(R) and T ∈ Mod(k), then
〈M,T 〉 is a R-module, namely, a sheaf with R-action.

Remark 3.1.6. There is a left exact functor

〈 · , · 〉 : Csh(R)×Mod(k)→ Sh(R).

Let F ∈ Csh(R) and let Z be a locally closed subset of X. Then, we have isomorphisms

〈ΓZF, T 〉 	 ΓZ 〈F, T 〉 ,
〈FZ , T 〉 	 〈F, T 〉Z .

For any A ∈ Sh(R) and B ∈ Sh(Rop), there are the following isomorphisms

〈ChomR(A, F ), T〉 	 HomR(A, 〈F, T 〉),
〈B ⊗R F, T 〉 	 B ⊗R 〈F, T 〉 .

If f : Y → X is a continuous map and G ∈ Csh(f−1R), then we have

〈f∗G,T 〉 	 f∗ 〈G,T 〉 ,〈
f−1F, T

〉 	 f−1 〈F, T 〉 .

The above isomorphisms can also be found in [10].

Remark 3.1.7. The category Csh(R) is depend on the choice of k. More precisely, if
k′ is another commutative ring with unit and we have a ring morphism k′ → k, then
the natural functor Sh(R,Pro(k)op) → Sh(R,Pro(k′)op) is not always an equivalence of
categories (See Remark 2.1.5). Since we fix a commutative ring k from now on, there will
be no risk of confusion.
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3.2 Proper direct image

We will consider the proper direct image on cosheaves. Let X and Y be two locally
compact and Housdorff spaces and let f : Y → X be a continuous map.

Definition 3.2.1. Suppose that G is a cosheaf on Y . Then, we define a cosheaf f!G on
X as follows :

Γ(U ; f!G) := lim−→
L

Γ(f−1(U); ΓLG),

where L ranges through the family of sets satisfying the following conditions :

(i) L is a closed set of f−1(U),

(ii) f : L→ U is a proper map.

We have a left exact functor

f! : Csh(kY )→ Csh(kX).

Now let R be a sheaf of k-algebra on X. If N ∈ Csh(f−1R), then f!N is a cosheaf with
left R-action. This action is defined by using the composition of the following morphisms

R→ f∗Hom kY
(N,N)→ Hom kX

(f!N, f!N).

Consequently, there is a left exact functor

f! : Csh(f
−1R)→ Csh(R).

For any T ∈ Mod(k), we have the following isomorphism

〈f!N, T 〉 	 f! 〈N,T 〉 .
Remark 3.2.2. There is a monomorphism of functors

f! → f∗.

Proposition 3.2.3. Let N ∈ Csh(f−1Rop) and A ∈ Sh(R). Then, we have a natural
morphism

f!N ⊗R A→ f!(N ⊗f−1R f
−1A). (3.2.1)

Moreover, if A is flat , then (3.2.1) is an isomorphism.

Proof. There is a sequence of natural morphisms

f!N ⊗R A→ f∗N ⊗R A→ f∗(N ⊗f−1R f
−1A).

For any T ∈ Mod(k), we have a unique morphism γT with the following commutative
diagram

f! 〈N,T 〉 ⊗R A
γT−−−−→ f!(〈N, T 〉 ⊗f−1R f

−1A)�
�

f∗ 〈N,T 〉 ⊗R A −−−−→ f∗(〈N,T 〉 ⊗f−1R f
−1A).

The family {γT}T∈Mod(k) induces a morphism (3.2.1) by Proposition 3.1.3.
If A is R-flat, it is well-known that γT is an isomorphism for any T ∈ Mod(k).

Therefore, (3.2.1) must be an isomorphism. q.e.d.
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Definition 3.2.4. M ∈ Csh(R) is R-flat if the functor · ⊗RM is exact.

Remark 3.2.5. M ∈ Csh(R) is R-flat if and only if 〈M,T 〉 is R-flat for any injective
k-module T .

Remark 3.2.6. Let B ∈ Sh(f−1Rop) and M ∈ Csh(R). Then, we have a natural mor-
phism

f!B ⊗RM → f!(B ⊗f−1R f
−1M).

Moreover, if M is R-flat, then this morphism is an isomorphism. We can prove this fact
by the same way as Proposition 3.2.3.

4 Cohomological algebra of cosheaves

4.1 c-injective objects

Let k be a commutative ring with the condition A (See Definition 2.1.10). We assume
that X is a topological space, but X is not necessarily locally compact and Housdorff.

We have the notion of an injective cosheaf. We say that a cosheaf I ∈ Csh(kX) is
injective if the functor HomCsh(kX)( · , I) is exact. However, we use another notion of
“c-injective”.

Remark 4.1.1. Let A ∈ Sh(kX) and F ∈ Csh(kX). Then, we put

CHomkX
(A, F ) := Γ(X; ChomkX

(A, F )).

This gives a left exact functor

CHomkX
( · , · ) : Sh(kX)op × Csh(kX)→ Pro(k)op.

CHomR is also similar.

Remark 4.1.2. We sometimes omit kX , for example, we write Chom instead of ChomkX
.

Definition 4.1.3. We say that I ∈ Csh(kX) is c-injective if CHom( · , I) is an exact
functor.

we denote by CInj(kX) the full subcategory of Csh(kX) consisting of c-injective objects.

Remark 4.1.4. I ∈ Csh(kX) is c-injective if and only if 〈I, T 〉 is an injective sheaf for
any injective object T ∈ Mod(k). As a result, for any A ∈ Sh(kX), the category CInj(kX)
is CHom(A, · )-injective.
Proposition 4.1.5. Assume that I ∈ Csh(kX) is c-injective.

(i) If U ⊂ X is an open set, then I |U ∈ Csh(kU ) is c-injective.

(ii) If W is a topological space and g : X → W is a continuous map, then g∗I is a
c-injective cosheaf on W .
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(iii) For any locally closed set Z ⊂ X, a cosheaf ΓZI is c-injective.
Proof. We prove (i). We write by i : U → X the embedding map. If A ∈ Sh(U), then we
have

CHom(A, I |U)) 	 Γ(U ; Chom ((i∗A)|U , I |U))
	 Γ(X; Chom ((i∗A)U , I))
= CHom((i∗A)U , I).

Since the functor A �→ (i∗A)U is exact, CHom( · , I |U) is also exact, thus I |U is c-injective.
(ii) and (iii) follow from Theorem 2.4.8 and Theorem 2.4.3 respectively. q.e.d.

Corollary 4.1.6. If I ∈ Csh(kX) is c-injective, then Chom ( · , I) is exact.
Theorem 4.1.7. The category CInj(kX) is cogenerating in Csh(kX). Namely, for every
G ∈ Csh(kX), there exists a c-injective object I and a monomorphism G→ I.

Proof. (a) We first assume that X is one point set {pt}. Let G ∈ Csh({pt}). Ap-
plying Theorem 2.1.7, there is a quasi-project P ∈ Pro(k) and an epimorphism
P �G({pt})op in Pro(k). Defining I ∈ Csh({pt}) by I({pt}) := P op, we get a
monomorphism G� I of cosheaves, so it is sufficient to show that I is c-injective.
By Theorem 2.1.8 and the definition of Chom , we have an isomorphism

CHom( · , I) 	 (I({pt})op ⊗k · ({pt}))op.
in Pro(k)op. Hence, the exactness of CHom( · , I) follows from Theorem 2.1.12.

(b) Next, we suppose that X is a general topological space. We write by X̂ the space X
endowed with the discrete topology and by h the natural continuous map from X̂
to X. Let G ∈ Csh(kX). Then, applying Remark 2.3.3, we obtain a monomorphism

G 	 h∗h∧G� h∗h−1G.

Since X̂ has the discrete topology, by (a) we can take a c-injective object I ∈
Csh(kX̂ ) and a monomorphism h−1G� I . Therefore, the composition

G� h∗h−1G� h∗I

is also a monomorphism, and h∗I must be c-injective by Proposition 4.1.5.

q.e.d.

Definition 4.1.8. We say that L ∈ Csh(kX) is flabby if ρUX : L(X) → L(U) is an
epimorphism for any open set U ⊂ X.

Remark 4.1.9. L ∈ Csh(kX) is flabby if and only if 〈L, T 〉 is a flabby sheaf for any
injective object T ∈ Mod(k). So, the category of flabby cosheaves is Γ(X; · )-injective.
Proposition 4.1.10. Let I be a c-injective cosheaf on X. Then, for any A ∈ Sh(kX),
Chom (A, I) is flabby. Moreover, if A is flat, then Chom (A, I) is c-injective.
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Proof. First assume that A is a general sheaf. Consider the exact sequence 0→ AU → A.
Then, by applying the functor CHom( · I), we get the exact sequence

Γ(X; Chom (A, I))→ Γ(U ; Chom (A, I))→ 0.

Hence, Chom (A, I) is flabby. Next, we assume that A is flat. Then, by Theorem 2.4.6,
CHom( · , Chom (A, I)) is an exact functor. Therefore, Chom (A, I) is c-injective. q.e.d.

Let R be a k-algebra on X. We denote by CInj(R) the full subcategory of Csh(R)
consisting of the objects isomorphic to Chom kX

(R, I) for some I ∈ CInj(kX).

Theorem 4.1.11. (i) The category CInj(R) is cogenerating in Csh(R).

(ii) For a monomorphism Chom (R, I ′)�M of left R-modules with M ∈ Csh(R) and
I ′ ∈ CInj(kX), there exists an exact sequence 0 → I ′ → I → I ′′ → 0 in Csh(kX)
such that the morphism Chom (R, I ′)→ Chom (R, I) factors through M in Csh(R).

Proof. (i) Let M ∈ Csh(R). Applying Theorem 4.1.7, we select a c-injective object
I ∈ CInj(kX) and a monomorphism ϕ : M� I . Then, we obtain a sequence of
morphisms

M
λM−→ Chom (R,M)

Chom (R,ϕ)

−−−−−→ Chom (R, I),
and this composition is a monomorphism.

(ii) Since R is k-algebra, the natural morphism kX → R induce a morphism

Chom (R, I ′)→ I ′.

Let N be the fiber coproduct of I ′ and M over Chom (R, I ′) ;
Chom (R, I ′) −−−−→ M� �

�
I ′ −−−−→ N.

Then, I ′ → N is a monomorphism in Csh(kX). By Theorem 4.1.7, we can take a
c-injective cosheaf I and a monomorphism N � I . The cokernel I ′′ of the monomor-
phism I ′ → I belongs to CInj(kX). The morphism Chom (R, I ′) → Chom (R, I)
factors through M in Csh(R) as follows :

Chom (R, I ′)�M
λM−→ Chom (R,M)→ Chom (R, N)→ Chom (R, I).

q.e.d.

Remark 4.1.12. Assume thatX is a locally compact and Housdorff space. We can define
c-soft cosheaves by the same way as sheaf theory. F ∈ Csh(kX) is c-soft if Γ(X;F ) →
Γ(K;F |K) is surjective for any compact set K ⊂ X. Note that F ∈ Csh(kX) is a c-soft
cosheaf if and only if 〈F, T 〉 is a c-soft sheaf for any injective object T ∈ Mod(k). Hence,
if X is countable at infinity, then c-soft cosheaves are Γ(X; · )-acyclic.
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4.2 Derived category of cosheaves

Let X be a topological space and let k be a commutative ring with the condition A.
Suppose thatR is a (not necessarily commutative) kX -algebra. If C is an abelian category,
then we denote by C(C) the abelian category of complexes in C. By regarding morphisms
in C(C) which are homotopic to 0 as the zero morphism, we obtain the triangulated
categoryK(C). The derived category D(C) is the localization ofK(C) by the multiplicative
system of quasi-isomorphisms. We denotes as usual by D∗(C) (∗ = +, − or b) the full
triangulated category of D(C) consisting of complexes bounded from below, from above,
or bounded.

By Remark 3.1.5, we obtain a right derived functor

R〈 · , · 〉 : D+(Csh(R))× D+(Mod(k))→ D+(Sh(R)).

Although the following proposition is not difficult, it is very important.

Proposition 4.2.1. Let F ∈ D+(Csh(R)) and let T be an injective k-module. Then,
Hk(R〈F, T 〉) 	 〈

Hk(F ), T
〉
.

Proof. Since the functor 〈 · , T 〉 is exact, the proof is obvious. q.e.d.

Corollary 4.2.2. Let F ∈ D+(Csh(R)). Then, F is quasi-isomorphic to 0 if and only if
R〈F, T 〉 	 0 for any injective k-module T .

Since CInj(kX) is Γ(X; · )-injective, we obtain a right derived functor

RΓ(X; · ) : D+(Csh(kX))→ D+(Pro(k)op).

Suppose that Z is a locally closed set of X. Since CInj(R) is ΓZ -injective, we get a functor

RΓZ : D+(Csh(R))→ D+(Csh(R)).

Moreover, since ( · )Z is an exact functor, we have a functor

( · )Z : D∗(Csh(R))→ D∗(Csh(R)).

Theorem 4.2.3. If M and N ∈ D+(Csh(R)), then there exists an isomorphism

HomD+(Csh(R))(MZ , N) 	 HomD+(Csh(R))(M,RΓZN).

Proof. By (2.3.3), we get

HomD+(Csh(R))(MZ , N) 	 lim−→
M ′

qis

→M

HomD+(Csh(R))(M
′
Z , N)

	 lim−→
M ′

qis

→M

lim−→
N

qis

→N ′

HomK+(Csh(R))(M
′
Z , N

′)

	 lim−→
M ′

qis

→M

lim−→
N

qis

→N ′

HomK+(Csh(R))(M
′,ΓZN ′)

	 lim−→
N

qis

→N ′

HomD+(Csh(R))(M,ΓZN
′)

	 HomD+(Csh(R))(M,RΓZN).

q.e.d.
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Let Y be another topological space and let f : Y → X be a continuous map. Since
f−1 is an exact functor, we have a functor

f−1 : D∗(Csh(R))→ D∗(Csh(f−1R)).

Similarly, the right derived functor

Rf ∗ : D
+(Csh(f−1R))→ D+(Csh(R))

is well-defined.

Theorem 4.2.4. Let M ∈ D+(Csh(R)) and let N ∈ D+(Csh(f−1R)). Then we have an
isomorphism

HomD+(Csh(f−1R))(f
−1M,N) 	 HomD+(Csh(R))(M,Rf ∗N).

Proof. By Proposition 2.3.5, we get

HomD+(Csh(f−1R))(f
−1M,N)

	 lim−→
M ′

qis

→M

HomD+(Csh(f−1R))(f
−1M ′, N)

	 lim−→
M ′

qis

→M

lim−→
N

qis

→N ′

HomK+(Csh(f−1R))(f
−1M ′, N ′)

	 lim−→
M ′

qis

→M

lim−→
N

qis

→N ′

HomK+(Csh(R))(M
′, f∗N ′)

	 lim−→
N

qis

→N ′

HomD+(Csh(R))(M, f∗N
′)

	 HomD+(Csh(R))(M,Rf ∗N).

q.e.d.

By Theorem 4.1.11, the functor ChomR is right derivable, so we obtain a bifunctor

RChomR( · , · ) : D−(Sh(R))op × D+(Csh(R))→ D+(Csh(kX)).

Similarly, the functor RCHomR is defined.

Remark 4.2.5. Recall that the category Csh(R) depends on the choice of the commuta-
tive ring k (see Remark 3.1.7). If k satisfies the condition A and if R is kX -algebra, then
we can define RChomR on the derived category of Sh(R,Pro(k)op). Now we put k as the
integer ring Z, which satisfies the condition A. Then, for any ring sheaf R, we can define
RChomR on the derived category of Sh(R,Pro(Z)op), because R is always ZX -algebra.

If A ∈ Sh(Rop) is flat over R, then the functor

A⊗R · : Csh(R)→ Csh(kX)
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is exact, so we get the derived functor

· ⊗L
R · : D−(Sh(Rop))× D−(Csh(R))→ D−(Csh(kX)).

In particular, if R has finite weak global dimension, then we also get

· ⊗L
R · : D∗(Sh(Rop))× D∗(Csh(R))→ D∗(Csh(kX)).

From now on, we suppose that R has finite weak global dimension.

Theorem 4.2.6. Let A ∈ D−(Sh(Rop)), M ∈ D−(Csh(R)) and G ∈ D+(Csh(kX)).
Then, we have

HomD+(Csh(kX))(A⊗L
RM,G) 	 HomD+(Csh(R))(M,RChom (A,G)).

Proof. By Remark 2.4.17, we get

HomD+(Csh(kX))(A⊗L
RM,G)

	 lim−→
A′

qis

→A

lim−→
M ′

qis

→M

HomD+(Csh(kX))(A
′ ⊗RM

′, G)

	 lim−→
A′

qis

→A

lim−→
M ′

qis

→M

lim−→
G

qis

→G′

HomK+(Csh(kX))(A
′ ⊗RM

′, G′)

	 lim−→
A′

qis

→A

lim−→
M ′

qis

→M

lim−→
G

qis

→G′

HomK+(Csh(R))(M
′, Chom (A′, G′))

	 lim−→
A′

qis

→A

lim−→
G

qis

→G′

HomD+(Csh(R))(M, Chom (A′, G′))

	 HomD+(Csh(R))(M,RChom (A,G)).

q.e.d.

Remark 4.2.7. Let A ∈ D−(Sh(R)), F ∈ D−(Csh(kX)) and N ∈ D+(Csh(R)). Then,
we have

HomD+(Csh(R))(A⊗L
kX
F,N) 	 HomD+(Csh(kX))(F,RChomR(A,N)).

This follows from Remark 2.4.12.

Theorem 4.2.8. If A ∈ D−(Sh(kX)), B ∈ D−(Sh(R)) and M ∈ D+(Csh(R)), then we
have isomorphisms

RChomR(B,RChom (A,M)) 	 RChomR(A⊗L
kX
B,M)

	 RChom (A,RChomR(B,M)).

Proof. By Proposition 4.1.10, if A is flat andM ∈ CInj(R), then Chom (A,M) ∈ CInj(R).
Hence, RChomR(B,RChom (A,M)) 	 ChomR(B, Chom (A,M)) and RChomR(A ⊗L

B,M) 	 ChomR(A ⊗ B,M). Therefore, the first isomorphism follows from Theorem
2.4.13. In order to prove the second isomorphism, we also assume that the complex A
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satisfies the following condition; each Aj is isomorphic to a direct sum of kU (See Propo-
sition 2.4.1). By Proposition 4.1.10, ChomR(B,M) is flabby. Consequently, we have

RChom (A,RChomR(B,M)) 	 Chom (A, ChomR(B,M))

	 ChomR(A⊗B,M)

	 RChomR(A⊗L
kX
B,M).

q.e.d.

Theorem 4.2.9. Let A ∈ D−(Sh(R)) and let M ∈ D+(Csh(f−1R)). Then we have an
isomorphism

Rf ∗RChom f−1R(f
−1A,M) 	 RChomR(A,Rf∗M).

Proof. Suppose that M ∈ CInj(f−1R). Then, f∗M ∈ CInj(R). By Proposition 4.1.10,
Chomf−1R(f

−1A,M) is flabby. Hence, we have

Rf ∗RChom f−1R(f
−1A,M) 	 f∗Chomf−1R(f

−1A,M)

	 ChomR(A, f∗M)

	 RChomR(A,Rf∗M).

q.e.d.

Remark 4.2.10. If A ∈ D−(Sh(R)) and M ∈ D+(Csh(R)), then we have isomorphisms

RΓZRChomR(A,M) 	 RChomR(AZ ,M) 	 RChomR(A,RΓZ(M)).

This proof follows from Remark 2.4.15.

We assume that X and Y are locally compact and Hausdorff. Then, we get

Rf ! : D
+(Csh(f−1R))→ D+(Csh(R)).

Theorem 4.2.11. Let N ∈ D+(Csh(f−1Rop)) and let A ∈ D+(Sh(R)). Then, we have

Rf !N ⊗L
R A

∼→Rf !(N ⊗L
f−1R f

−1A). (4.2.1)

Proof. Since R has finite weak global dimension, we may assume that A is a complex
bounded from below consisting ofR-flat sheaves. IfN is c-soft, then we haveRf !N⊗L

RA 	
f!N ⊗R A and Rf !(N ⊗L

f−1R f
−1A) 	 f!(N ⊗f−1R f

−1A). Therefore, (4.2.1) follows from

Proposition 3.2.3. q.e.d.

Remark 4.2.12. Let F ∈ D+(Csh(R)) and let Z be a locally closed subset of X. Then,
we have

R〈RΓZF, T 〉 	 RΓZR〈F, T 〉 ,
R〈FZ , T 〉 	 R〈F, T 〉Z .
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For any A ∈ D+(Sh(R)) and B ∈ D+(Sh(Rop)), there are two isomorphisms

R〈RChomR(A, F ), T〉 	 RHomR(A,R〈F, T 〉),
R

〈
B ⊗L

R F, T
〉 	 B ⊗L

R R〈F, T 〉 .
If f : Y → X is a continuous map and G ∈ D+(Csh(f−1R)), then we have

R〈Rf ∗G,T 〉 	 Rf ∗R〈G,T 〉 ,
R

〈
f−1F, T

〉 	 f−1R〈F, T 〉 ,
R〈Rf !G,T 〉 	 Rf !R〈G,T 〉 .

These proofs are easy.

4.3 Poincaré-Verdier duality

We prove the Poincaré-Verdier duality on the category of cosheaves. We note that Schnei-
der did not give this Poincaré-Verdier duality in [10]. We assume that k is a field. Let X
and Y be two locally compact and Hausdorff topological spaces and let f : Y → X be a
continuous map. Moreover, we suppose that Y has finite c-soft dimension.

If S is a c-soft sheaf on Y and F is a cosheaf on X, then we define a precosheaf f !
SF

on Y as

U �→ Γ(U ; f !
SF ) := CHom(f!(SU ), F ).

Lemma 4.3.1. f !
SF is a cosheaf on Y .

Proof. Let U be an open subset of X and let {Ui}i∈I be an open covering of U . Then, we
have an exact sequence

⊕
i,j∈I

SUi∩Uj → ⊕
i∈I
SUi → SU → 0.

Since S is c-soft, by applying the functor CHom(f!( · ), F ), we get the exact sequence

0→ CHom(f!(SU), F )→ Π
i∈I

CHom(f!(SUi), F )→ Π
i,j∈I

CHom(f!(SUi∩Uj), F ).

q.e.d.

Remark 4.3.2. For any T ∈ Mod(k), we have an isomorphism

〈
f !
SF, T

〉 	 f !
S 〈F, T 〉 ,

where f !
S of the right hand side is defined in Kashiwara-Schapira [2], p.141. Hence, if F

is c-injective, then f !
SF is also c-injective.

Lemma 4.3.3. Let G ∈ Csh(kY ). Then, we have the following isomorphism

HomCsh(kX)(f!(S ⊗G), F ) 	 HomCsh(kY )(G, f
!
SF ).
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Proof. Let T ∈ Mod(k). Then, by Lemma 3.1.3 of [2], we have

HomSh(kX)(f!(S ⊗〈G,T 〉), 〈F, T 〉) 	 HomSh(kY )(〈G,T 〉 , f !
S 〈F, T 〉).

Since this is true for any T ∈ Mod(k), our lemma follows. q.e.d.

Theorem 4.3.4. There exists a functor

f ! : D+(Csh(kX))→ D+(Csh(kY ))

such that for any G ∈ Db(Csh(kY )) and F ∈ D+(Csh(kX)), we have an isomorphism

HomD+(Csh(kX))(Rf !G,F ) 	 HomD+(Csh(kY ))(G, f
!F ).

Proof. There exists a complex of c-soft sheaves S ∈ Kb(Sh(kY )) quasi-isomorphic to the
constant sheaf kY . So, we get

HomD+(Csh(kX))(Rf !G,F ) 	 lim−→
G′

qis

→G

HomD+(Csh(kX))(f!(S ⊗G′), F )

	 lim−→
G′

qis

→G

lim−→
F

qis

→F ′

HomK+(Csh(kX))(f!(S ⊗G′), F ′)

	 lim−→
G′

qis

→G

lim−→
F

qis

→F ′

HomK+(Csh(kY ))(G
′, f !

SF
′)

	 lim−→
F

qis
→F ′

HomD+(Csh(kY ))(G, f
!
SF

′)

	 HomD+(Csh(kY ))(G, “ lim−→ ”

F
qis

→F ′

f !
SF

′)

Since CInj(kX) is f
!
S-injective, “ lim−→ ”

F
qis

→F ′

f !
SF

′ belongs to D+(Csh(kY )). q.e.d.

Lemma 4.3.5. For any K ∈ Csh(kX), we have an isomorphism

f !
SHom (K,F ) 	 Hom (f−1K, f !

SF ),

Proof. For any open set U ⊂ Y , we get

Γ(U ; f !
SHom (K,F )) 	 HomSh(kX)(f!(SU ),Hom (K,F ))

	 HomCsh(kX)(K, Chom (f!(SU), F )),

and

Γ(U ;Hom (f−1K, f !
SF )) = HomCsh(kU )((f

−1K)|U , (f !
SF )|U)

	 HomCsh(kX)(K, f∗ΓU (f
!
SF ))
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Hence, it is sufficient to show Chom (f!(SU), F ) 	 f∗ΓU (f !
SF ). This follows from

Γ(V ; f∗ΓU (f !
SF )) 	 Γ(f−1(V ) ∩ U ; f !

SF )

= Γ(X; Chom (f!(Sf−1(V )∩U ), F ))

	 Γ(X; Chom ((f!(SU ))V , F ))

	 Γ(V ; Chom (f!(SU ), F )).

q.e.d.

Lemma 4.3.6. Let A ∈ Sh(kY ). Then, we have an isomorphism

Chom (f!(A⊗S), F ) 	 f∗Chom (A, f !
SF ). (4.3.1)

Proof. For any K ∈ Csh(kX), we get

HomCsh(kX)(K, Chom (f!(A⊗S), F )) 	 HomSh(kX)(f!(A⊗S),Hom (K,F ))

	 HomSh(kY )(A, f
!
SHom (K,F ))

	 HomSh(kY )(A,Hom (f−1K, f !
SF ))

	 HomCsh(kY )(f
−1K, Chom (A, f !

SF ))

	 HomCsh(kX )(K, f∗Chom (A, f !
SF )).

Since this is true for any K, the proof follows. q.e.d.

Theorem 4.3.7. Let A ∈ Db(Sh(kY )) and F ∈ D+(Csh(kX)). Then, we have an iso-
morphism

RChom (Rf !A, F ) 	 Rf ∗RChom (A, f !F ).

Proof. We may assume that F is injective. If we take a complex of c-soft sheaves S ∈
Kb(Sh(kY )) quasi-isomorphic to the constant sheaf kY , then Rf !A is represented as f!(A⊗
S). Hence, by Lemma 4.3.6, we obtain

RChom (Rf !A, F ) 	 Chom (f!(A⊗S), F )
	 f∗Chom (A, f !

SF )

	 Rf ∗RChom (A, f !F ).

q.e.d.

Theorem 4.3.8. Let R be a kX -algebra. If B ∈ D+(Sh(f−1Rop)) and M ∈ D+(Sh(R)),
then there is an isomorphism

Rf !B ⊗L
RM 	 Rf !(B ⊗L

f−1R f
−1M). (4.3.2)
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Proof. Let G ∈ D+(Csh(kX)). Then, by Theorem 4.2.4, Theorem 4.2.6 and Theorem
4.3.7, we have

HomD+(Csh(kX))(Rf !B ⊗L
RM,G) 	 HomD+(Csh(R))(M,RChom (Rf !B,G))

	 HomD+(Csh(R))(M,Rf ∗RChom (B, f !G))

	 HomD+(Csh(f−1R))(f
−1M,RChom (B, f !G))

	 HomD+(Csh(kY ))(B ⊗L
f−1R f

−1M, f !G)

	 HomD+(Csh(kX))(Rf !(B ⊗L
f−1R f

−1M), G).

q.e.d.

Theorem 4.3.9. Let A ∈ Db(Sh(kX)) and let F ∈ D+(Csh(kX)). Then, we have

f !RChom (A, F ) 	 RChom (f−1A, f !F ).

Proof. Let G ∈ D+(Csh(kY )). Then, Theorem 4.2.11 and Theorem 4.3.7 we have

HomD+(Csh(kY ))(G, f
!RChom (A, F )) 	 HomD+(Csh(kX))(Rf !G,RChom (A, F ))

	 HomD+(Csh(kX))(A⊗Rf !G,F )

	 HomD+(Csh(kX))(Rf !(f
−1A⊗G), F )

	 HomD+(Csh(kY ))(f
−1A⊗G, f !F )

	 HomD+(Csh(kY ))(G,RChom (f−1A, f !F ))

q.e.d.

Remark 4.3.10. Let F ∈ Db(Csh(kX)) and let T ∈ Db(Mod(k)). Then, we get a
morphism R

〈
f !F, T

〉 	 f !R〈F, T 〉. This follows from Remark 4.3.2.

Theorem 4.3.11. Let A ∈ Db(Sh(kX)) and let F ∈ Db(Csh(kX)). Then, the morphism
Rf !f

!A⊗F → A⊗F induces a morphism

f !A⊗ f−1F → f !(A⊗F ). (4.3.3)

Moreover, if A 	 kX and f is a topological submersion with finite fiber dimension, then
this morphism is an isomorphism.

Proof. We show that (4.3.3) is an isomorphism. Let T be an injective k-module. Then,
by Proposition 4.2.1, we have〈

Hk(f !kX ⊗ f−1F ), T
〉 	 Hk(R

〈
f !kX ⊗ f−1F, T

〉
)

	 Hk(f !kX ⊗ f−1R〈F, T 〉)
	 Hk(f !(kX ⊗R〈F, T 〉))
	 Hk(R

〈
f !(kX ⊗F ), T

〉
)

	 〈
Hk(f !F ), T

〉
,

where the third isomorphism follows from Proposition 3.3.2 of [2]. Finally, applying
Corollary 4.2.2, we have

Hk(f !kX ⊗ f−1F ) 	 Hk(f !F ).

q.e.d.
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5 Construction of cosheaves

5.1 Associated cosheaf

Let X be a locally compact and Hausdorff space. Assume that k is a commutative ring
with the condition A. (See Definition 2.1.10). We consider an open base τ of X, and we
suppose that τ satisfies the following condition. For any open set U ⊂ X and any element
x ∈ U , there exists U ′ ∈ τ such that x ∈ U ′ ⊂⊂ U . We may regard τ as a directed set
by the natural inclusion relation of τ . We call a functor A : τ op →Mod(k) a presheaf on
τ . We denote by PSh(τ) the category of presheaves on τ . Then, we have the forgetful
functor Sh(kX)→ PSh(τ). We shall recall the following basic result.

Proposition 5.1.1. The forgetful functor Sh(kX)→ PSh(τ) has a left adjoint functor.

Since this proposition is important for us, we will give the proof.
Let A be a presheaf on τ . We define a presheaf A′ on X as

A′(U) := lim←−
U ′∈I(U )

A(U ′),

where I(U) := {U ′ ∈ τ : U ′ ⊂⊂ U}. Moreover, we have a natural morphism a : A → A′

on PSh(τ). We need the following lemma.

Lemma 5.1.2. For any B ∈ Sh(kX) and any morphism b : A → B on PSh(τ), there
exists a unique morphism c : A′ → B such that c ◦ a = b.
Proof. We prove the uniqueness of c. Let U be an open set of X. A element s ∈ A′(U)
is a collection {sU ′}U ′∈I(U ) with sU ′ ∈ A(U ′) and the collection satisfies the following
condition. For any U ′

1, U
′
2 ∈ I(U), U ′

1 ⊂ U ′
2 implies sU ′

2
|U ′

1
= sU ′

1
. Take an element

U ′ ∈ I(U). Then, we get s|U ′ = {sU ′|U ′′}U ′′∈I(U ′), and

cU(s)|U ′ = cU ′(s|U ′) = cU ′ ◦ aU ′(sU ′) = bU ′(sU ′).

Since B is a sheaf, there is an element t ∈ B(U) such that t|U ′ = bU ′(sU ′) for any
U ′ ∈ I(U). Hence, we obtain cU(s) = t, and this means the uniqueness of c.

Conversely, the existence of c follows from putting cU(s) = t. q.e.d.

The proof of Proposition 5.1.1 is as follows. Let A′′ be the associated sheaf of A′.
Then, by the previous lemma, the functor A �→ A′′ is just a left adjoint functor of the
forgetful functor Sh(kX)→ PSh(τ).

Proposition 5.1.3. We suppose that τ and A satisfy the following conditions.

(i) U ′, U ′′ ∈ τ implies U ′ ∪ U ′′, U ′ ∩ U ′′, U ′ \ U ′′ ∈ τ .
(ii) for any U ′, U ′′ ∈ τ , the sequence

0→ A(U ′ ∪ U ′′)→ A(U ′)⊕A(U ′′)→ A(U ′ ∩ U ′′)

is exact.
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Then, A′ is a sheaf on X. Moreover, we also assume that

(iii) for any U ′ and U ′′ ∈ τ with U ′′ ⊂ U ′, the sequence A(U ′)→ A(U ′′)→ 0 is exact.

Then, A′ is a c-soft sheaf on X.

Proof. First, we assume (i) and (ii). Let U ∈ Op(X) and let {Uj}j∈J be an open covering
of U . By the assumption (i), for any V ∈ I(U), there exists a collection {Vq}q∈Q with the
three conditions

(a) Q is a finite set,

(b)
⋃
q∈Q
Vq = V ,

(c) ∀q ∈ Q, ∃j ∈ J ; Vq ∈ I(Uj).
Moreover, by the condition (ii), we get the following exact sequence

0→ A(V )→
∏
q∈Q
A(Vq)→

∏
r,s∈Q

A(Vr ∩ Vs).

The sequence induces the fact that A′ is a sheaf.
Next, we also assume (iii). Take a compact set K ⊂ X. Then, for any V ∈ I(X) with

K ⊂ V , there is an set V1 ∈ I(V ) such that K ⊂ V1. By (iii), we have an epimorphism

A(V )�A(V \ V1).

Hence, we know that A′ is a c-soft sheaf. q.e.d.

Definition 5.1.4. We call a functor F : τ op → Pro(k)op a precosheaf on τ . We denote
by PCsh(τ) the category of precosheaf on τ .

Theorem 5.1.5. The forgetful functor

Csh(kX)→ PCsh(τ)

has a left adjoint functor.

Proof. Let F ∈ PCsh(τ). We define a precosheaf on X as

F ′(U) := lim←−
U ′∈I(U )

F (U), (5.1.1)

and there is a natural morphism a : F → F ′. Now we take a cosheaf G on X and a
morphism b : F → G. Applying Lemma 5.1.2, for any T ∈ Mod(k), there exists a unique
morphism 〈F ′, T 〉 → 〈G,T 〉 such that the diagram below commutes :

〈F, T 〉 〈b,T 〉−−−−→ 〈G,T 〉�〈a,T 〉
�id

〈F ′, T 〉 −−−−→ 〈G,T 〉 .
Hence, we also have a morphism F ′ → G. Finally, apply Theorem 2.2.8. q.e.d.
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Remark 5.1.6. Let F ∈ PCsh(τ). We suppose the following conditions :

(i) U ′, U ′′ ∈ τ implies U ′ ∪ U ′′, U ′ ∩ U ′′, U ′ \ U ′′ ∈ τ .
(ii) for any U ′, U ′′ ∈ τ , the sequence

0→ F (U ′ ∪ U ′′)→ F (U ′)⊕F (U ′′)→ F (U ′ ∩ U ′′)

is exact.

Then, F ′ is a cosheaf on X. Moreover, if we also assume that

(iii) for any U ′, U ′′ ∈ τ with U ′′ ⊂ U ′, the sequence F (U ′)→ F (U ′′)→ 0 is exact,

Then, F ′ is a c-soft cosheaf on X
This proof follows from Proposition 5.1.3.

5.2 The functor c

We suppose that k is a field and that X is a locally compact and Hausdorff topological
space. We study the functor c and its properties. We remark that this functor can also
be found in Schneiders [10], and he gave an application to the Borel-Moore homology. We
will give another application later.

Definition 5.2.1. Let B be a sheaf on X. Consider Mod(k)op ↪→ Pro(k)op. Then,

U �→ Γc(U ;B)
op

is a precosheaf on X. We denote the associated cosheaf by cB.

We obtain a right exact functor

c : Sh(Rop)op → Csh(R).

Proposition 5.2.2. Let B ∈ Sh(Rop). If Z is a locally closed subset of X, then we have
an isomorphism

c(BZ) 	 ΓZcB.

Proof. If U is an open subset ofX, then we have an isomorphism Γc(V ;BU ) 	 Γc(V ∩U ;B)
for each open subset V ⊂ X. Hence, we obtain c(BU) 	 ΓUcB. If S is a closed subset of
X, by using the exact sequence BX−S → B → BS → 0, we get c(BS) 	 ΓScB. In case
Z = S ∩ U , we have

c(BZ) = c((BU)S) 	 ΓUΓScB = ΓZcB.

q.e.d.

Theorem 5.2.3. Let A ∈ Sh(R) and B ∈ Sh(Rop). Then, we have a natural isomor-
phism

ChomR(A, cB) 	 c(B ⊗R A).
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We use the following basic result to prove the proposition above.

Proposition 5.2.4. For any A ∈ Sh(R), there exists a family {Ui}i∈I of open sets and
an epimorphism ⊕

i∈I
RUi �A.

We begin the proof of Theorem 5.2.3.

Proof. By Proposition 5.2.4, we may assume that A is isomorphic to RU , where U is an
open set of X. Then, we get

ChomR(A, cB) = ChomR(RU , cB)
	 ΓUcB
	 c(BU)
	 c(B ⊗R RU )
= c(B ⊗R A).

q.e.d.

Proposition 5.2.5. Let f : Y → X be a continuous map. If B ∈ Sh(f−1Rop), then we
have an isomorphism

cf!B 	 f∗cB.
Proof. The proof follows from an isomorphism Γc(U ; f!B) 	 Γc(f

−1(U);B) for each open
set U ⊂ X. q.e.d.

Theorem 5.2.6. Let S be a c-soft sheaf on X. Then the precosheaf

U �→ Γc(U ;S)
op (5.2.1)

is a flabby cosheaf on X.(See Definition 4.1.8).

Proof. (i) We will check that (5.2.1) is a sheaf. Let {Ui}i∈I be an open covering of U .
We first prove that

⊕
i∈I

Γc(Ui;S)
d−→ Γc(U ;S) (5.2.2)

is surjective. Take s ∈ Γc(U ;S) and set K := supp s. Since K is compact, we may
assume that I is a finite set. Moreover, by induction, we may assume that I = {1, 2}.
Since S is c-soft, there exists t ∈ Γc(U2;S) and open set W such that U2 \ U1 ⊂
W ⊂ U2 and t|W = s|W . Set L := supp t. Then supp(s− t) ⊂ (K ∪ L) \W ⊂ U1.

Next, we prove that the following sequence :

⊕
i,j∈I

Γc(Ui ∩ Uj ;S) d′−→ ⊕
i∈I

Γc(Ui;S)
d−→ Γc(U ;S) (5.2.3)

is exact. We may assume that I := {1, · · · , n}. Let us show (5.2.3) by induction on
n. Take a collection {s1, · · · , sn : si ∈ Γc(Ui;S)} with the condition

∑n
i=1 si = 0. If

we put s′ :=
∑n−1

i=1 si, then s
′ + sn = 0, so we get supp sn ⊂ Un ∩ (U1 ∪ · · · ∪ Un−1).
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Applying (5.2.2), we can select a collection {t1, · · · , tn−1 : ti ∈ Γc(Ui∩Un;F )} which
satisfies sn =

∑n−1
i=1 ti. Then, for any i = 1, · · · , n − 1, we have supp(si + ti) ⊂ Ui.

We also have
∑n−1

i=1 (si + ti) = 0. By the hypothesis of induction, there exists a
collection {sij : sij ∈ Γc(Ui∩Uj;S)}1≤i,j≤n−1 such that

∑n−1
j=1 sij−

∑n−1
j=1 sji = si+ ti

for 1 ≤ i ≤ n − 1. Moreover, we set sni := ti, sin = 0 and snn = 0, where
1 ≤ i ≤ n− 1. Then, we have

∑n
j=1 sij −

∑n
j=1 sji = si for 1 ≤ i ≤ n.

(ii) The flabbiness is obvious.

q.e.d.

Proposition 5.2.7. Let 0→ B ′ → B → B ′′ → 0 be an exact sequence of sheaves on X.
If B ′′ is c-soft, then the sequence

0→ cB ′′ → cB → cB ′ → 0

is also exact.

Proof. Since B ′′ is c-soft, for any open set U ⊂ X, the sequence

0→ Γc(U ;B
′)→ Γc(U ;B)→ Γc(U ;B

′′)→ 0,

is exact. Hence, the proof follows. q.e.d.

By Proposition 5.2.7, we get the following corollary.

Corollary 5.2.8. There exists a derived functor of the functor c

Lc : D+(Sh(Rop))op → D−(Csh(R)).

In particular, if X has finite c-soft dimension, then we have

Lc : Db(Sh(Rop))op → Db(Csh(R)).

From now on, we assume that X has finite c-soft dimension.

Theorem 5.2.9. Let Y be a locally compact and Hausdorff space with finite c-soft di-
mension, and let f : Y → X be a continuous map. If B ∈ Db(Sh(f−1Rop)), then we
have

Lc(Rf !B) 	 Rf ∗Lc(B).

Proof. We may assume that B is c-soft. Then, applying Proposition 5.2.5, we get

Lc(Rf !B) 	 c(f!B)
	 f∗c(B)
	 Rf∗Lc(B).

q.e.d.
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Remark 5.2.10. Let B ∈ Db(Sh(Rop)). If Z is a locally closed set, then

Lc(BZ) 	 RΓZLc(B).

If R has finite weak global dimension and A ∈ Db(Sh(R)), then

RChomR(A,Lc(B)) 	 Lc(B ⊗L
R A).

This proof is similar to the proof of Theorem 5.2.9. Apply Proposition 5.2.2 and Theorem
5.2.3.

Theorem 5.2.11. Let B ∈ Db(Sh(kX)). If f : Y → X is a continuous map, then

f !Lc(B) 	 Lc(f−1B).

Proof. Let A ∈ Db(Sh(kX)). Then, by applying Theorem 4.2.11, Theorem 4.3.7, Theorem
5.2.9 and Remark 5.2.10, we have

RCHom(A, f !Lc(B)) 	 RCHom(f!A,Lc(B))

	 RΓ(X; Lc(B ⊗ f!A))
	 RΓ(X; Lc(f!(f

−1B ⊗A)))
	 RΓ(X; f∗Lc(f−1B ⊗A))
	 RΓ(Y ; Lc(f−1B ⊗A))
	 RCHom(A,Lc(f−1B)).

Since this is true for any A, the proof follows. q.e.d.

Let us define conic cosheaves. Let R+ denote the multiplicative group of strictly
positive numbers, and suppose that X has an action of R+. In other words we have a
continuous map :

µ : X × R
+ → X,

which satisfies for each x ∈ X, t1, t2 ∈ R+ :

µ(x, t1, t2) = µ(µ(x, t1), t2), µ(x, 1) = x.

Consider the maps:

X
j−→ X × R

+ p−→ X,

where j(x) = (x, 1), and p is the projection. We have

µ−1F ← p−1p∗µ−1F → p−1p∗j∗j−1µ−1F 	 p−1F.

Definition 5.2.12. (i) We denote by CshR+(kX) the full subcategory of Csh(kX) con-
sisting of cosheaves F such that µ−1F ∼← p−1p∗µ−1F ∼→ p−1F .
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(ii) We denote by Db
R+(Csh(kX)) the full subcategory of Db(Csh(kX)) consisting of

objects F such that for all j ∈ Z, Hj(F ) ∈ CshR+(kX).

(iii) We call an object of CshR+(kX) a conic cosheaf.

Remark 5.2.13. Let F ∈ Db(Csh(kX)). Then, the following statements are equivalent.

(i) F ∈ Db
R+(Csh(kX)).

(ii) µ−1F 	 p−1F .

(iii) µ!F 	 p!F .
The proof follows from Proposition 3.7.2 of [2] and Corollary 4.2.2.

Theorem 5.2.14. The following functor is well-defined.

Lc : Db
R+(Sh(kX))

op → Db
R+(Csh(kX)).

Proof. Let B ∈ Db
R+(Sh(kX)). Then, by Theorem 5.2.11, we get

µ!Lc(B) 	 Lc(µ−1B) 	 Lc(p−1B) 	 p!Lc(B).

Applying Remark 5.2.13, the proof follows. q.e.d.

6 Applications

6.1 Review of Laplace transforms

From now on, the base field k is C. Let X be a real analytic manifold and let Db
R−c(Sh(X))

be the full triangulated subcategory of Db(Sh(X)) consisting of objects whose cohomology
groups are R-constructible sheaves. We denote by DbX (resp. C∞X ) the sheaf of Schwartz’s
distributions (resp. C∞-class functions), and by DX the sheaf of finite-order differential
operators with coefficients in analytic functions. Recall the functor

THom ( · ,DbX) : Db
R−c(Sh(X))op → Db(Sh(DX))

by Kashiwara [6] and the functor

· w⊗ C∞X : Db
R−c(Sh(X))→ Db(Sh(DX)).

by Kashiwara-Schapira [4].
Let X be a complex manifold, XR the real analytic underlying manifold and X the

complex conjugate manifold. If there is no risk of confusion, we write X instead of XR.
We denote by OX the sheaf of holomorphic functions and by DX the sheaf of differential
operators with holomorphic coefficients. The functors

THom ( · ,OX) : Db
R−c(Sh(X))op → Db(Sh(DX )),

· w⊗OX : Db
R−c(Sh(X)) → Db(Sh(DX )).
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are defined as

THom (F,OX) := RHomDX
(OX, THom (F,DbXR )),

F
w⊗OX := RHomDX

(OX, F
w⊗ C∞XR ).

An OX-module F is called quasi-good if any compact subset of X has a neighborhood
U such that F|U is a union of an increasing countable family of coherentOX|U -submodule.
A DX -module M is quasi-good if it is quasi-good as an OX-module.

Let E be an n-dimensional complex vector space. Let j : E → P denote the projective
compactification of E. We regard E as complex algebraic variety. Let Db

R+,R−c(Sh(E)) be

the full triangulated subcategory of Db(Sh(E)) consisting of objects whose cohomology
groups are R+-conic and R-constructible sheaves.

Let E∗ be the dual space of E and let 〈 · , · 〉 : E × E∗ → C be the pairing map
between E and E∗. We denote by ϕ the function ϕ(z, w) := −〈z, w〉 on E × E∗. We set

A := {(z, w) ∈ E × E∗ :  ϕ(z, w) ≥ 0},
A′ := {(z, w) ∈ E × E∗ :  ϕ(z, w) ≤ 0}.

Consider the diagram

E
p1←− E × E∗ p2−→ E∗.

Let F ∈ Db
R+,R−c(Sh(E)) and let G ∈ Db

R+,R−c(Sh(E
∗)). Its Fourier-Sato transformation

and inverse Fourier-Sato transformation are defined by

F ∧ := Rp2!(p
−1
1 F )A′,

G∨ := Rp1!(p
!
2G)A.

Further information can be found in Kashiwara-Schapira [2].
We denote by D(E) the Weyl algebra on E, and by O(E) the polynomial ring on E.
We denote by ( · )∧ the Fourier isomorphism :

( · )∧ : D(E) ∼→D(E∗).

If (z1, · · · , zn) is a system of linear coordinates on E and (w1, · · · , wn) the dual coordinate
system on E∗, then ( · )∧ is given by :

(zj)
∧ = − ∂

∂wj
,

(
∂

∂zj

)∧
= wj .

Let ( · )∨ : D(E∗) ∼→D(E) be the inverse of ( · )∧. For a D(E)-module N , the ring
isomorphism ( · )∧ : D(E) ∼→D(E∗) makes N a D(E∗)-module, which we denote by N∧.
Thus it gives an equivalence of categories ( · )∧ : Db

q−good(D(E∗)) → Db
q−good(D(E)), and

similarly ( · )∨ : Db
q−good(D(E)) → Db

q−good(D(E∗)). For any F ∈ Db
R+,R−c(Sh(E)), we

put

THom(F,OE) := RΓ(P ;THom (j!F,OP )),

F
W⊗OE := RΓc(P ; j!F

w⊗OP )).
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Let N ∈ Db
q−good(D(E∗)). Then, Kashiwara-Schapira [5] defined the Laplace morphism

RHomD(E)(N
∧, F

W⊗OE)
L−→ RHomD(E∗)(N,F

∧[n]
W⊗OE∗), (6.1.1)

THom(F ∧[n],ΩE∗)⊗L
D(E∗)

N
tL−→ THom(F,ΩE)⊗L

D(E)
N∧, (6.1.2)

where ΩE is the sheaf of n-forms. These Laplace morphisms are isomorphisms.
Finally, we recall the definition of Ot. Let F ∈ Db

R+,R−c(Sh(E)). Then, we put

THom(F,DbE) := RΓ(P ;THom (j!F,DbP )).

If U is a subanalytic cone in E, then the complex THom(CU ,DbE) is concentrated in
degree 0. Hence, by Proposition 5.1.1, the conic sheaf DbtE is defined as the associated
sheaf to the conic presheaf

U �→ THom(CU ,DbE).

We put

Ot
E := RHomD(E)(O(E),DbtE),

where E is the complex conjugate of E. This sheaf is called one of sheaves of tempered
holomorphic functions, and (6.1.1) induces the following formula.

Theorem 6.1.1 (Kashiwara-Schapira [5]). There is an isomorphism

(Ot
E)

∧
[n] 	 Ot

E∗.

This isomorphism can also be found in Olivier Berni [1].

6.2 Main theorem

We define a cosheaf of the Whitney holomorphic functions, and we prove an analogy of
Theorem 6.1.1 by using (6.1.2).

We first discuss the Fourier-Sato transformations on cosheaves.

Definition 6.2.1. We define the functors

( · )∧ : Db
R+(Csh(E∗)) → Db

R+(Csh(E)),
( · )∨ : Db

R+(Csh(E)) → Db
R+(Csh(E∗)),

as follows :

F ∧ := Rp1∗RΓAp
−1
2 F,

G∨ := Rp2∗RΓA′p!1G.

Remark 6.2.2. The functors of Definition 6.2.1 induce the equivalences of Db
R+(Csh(E))

and Db
R+(Csh(E∗)). The proof follows from Theorem 3.7.9 of [2] and Corollary 4.2.2.
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Theorem 6.2.3. Let F ∈ Db
R+(Sh(E)) and G ∈ Db

R+(Sh(E∗)). Then, we have

Lc(F ∧) 	 Lc(F )∨,

Lc(G∨) 	 Lc(G)∧.

Proof. Applying Theorem 5.2.9, Remark 5.2.10 and Theorem 5.2.11, we have

Lc(F ∧) 	 Lc(Rp2!(p
−1
1 F )A′) 	 Rp2∗RΓA′p!1Lc(F ) 	 Lc(F )∨.

Hence, the first isomorphism holds. The second isomorphism follows from the first iso-
morphism. q.e.d.

Let F ∈ Db
R+,R−c(Sh(E)). Then, by putting

CWHom(F, C∞E ) := RΓ(P ; Lc(j!F
w⊗ C∞P )),

we get the following functor

CWHom( · , C∞E ) : Db
R+,R−c(Sh(E))→ Db(Csh(D(E)op)).

If U is a subanalytic cone in E, then the complex CWHom(CU , C∞E ) is concentrated in

degree 0. There is a natural isomorphism CWHom(CU , C∞E ) 	 Γc(P ; j!CU

w⊗ C∞E )op.

Definition 6.2.4. We define the conic cosheaf C∞cw
E as the associated cosheaf to the

precosheaf

U �→ CWHom(CU , C∞E ).

Proposition 6.2.5. Let U be a conic open cone on E and let U ′ range the collection of
open subanalytic cones. Then, we have

(i) Γ(U ; C∞cw
E ) = lim←−

U ′⊂⊂U
CWHom(CU ′, C∞E ).

(ii) For any j "= 0, RjΓ(U ; C∞cw
E ) = 0.

(iii) RΓ(E; C∞cw
E ) 	 CWHom(CE, C∞E ).

(iv) RΓ{0}(E; C∞cw
E ) 	 CWHom(C{0}, C∞E ).

(v) C∞cw
E is a conically soft cosheaf.

Proof. By the theorem of Lojaciewicz [7] (see Malgrange [8]), for any two open subanalytic
cones U , V of E, there is an exact sequence

0→ CWHom(CU∪V , C∞E )→ CWHom(CU ⊕CV , C∞E )→ CWHom(CU∩V , C∞E )→ 0.

Hence, by Theorem 5.1.6, the proof follows. q.e.d.

Definition 6.2.6. We set

CWHom(F,OE) := CWHom(F, C∞E )⊗L
D(E)

O(E),

Ocw
E := C∞cw

E ⊗L
D(E)

O(E).
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Our main theorem is as follows.

Theorem 6.2.7.

(i) The Fourier-Sato transfromation (Ocw
E )∧ is concentrated in degree 0.

(ii) The Laplace transform induces an isomorphism (Ocw
E )∧[n] 	 Ocw

E∗ of D(E∗)-linear.

To prove the above theorem, we need some results.

Lemma 6.2.8. We have

RΓ(E;Ocw
E ) 	 CWHom(CE ,OE),

RΓ{0}(E;Ocw
E ) 	 CWHom(C{0},OE).

Proof. Take a Spencer resolution M•(E)
qis

→ O(E), where M•(E) is a complex of finite
free D(E)-modules. Then, applying Proposition 6.2.5, we have

RΓ(E;Ocw
E ) = RΓ(E; C∞cw

E ⊗L
D(E)

O(E))

	 Γ(E; C∞cw
E ⊗D(E) M

•(E))
	 Γ(E; C∞cw

E )⊗D(E) M
•(E)

	 CWHom(CE , C∞E )⊗D(E) M
•(E)

	 CWHom(CE , C∞E )⊗L
D(E)

O(E)

= CWHom(CE ,OE).

The second isomorphism is similar. q.e.d.

Lemma 6.2.9. Let U ′
1 ⊂⊂ U1 ⊂⊂ U ′

2 ⊂⊂ U2 be open cones with U
′
1 and U

′
2 subanalytic.

Then, there is a canonical commutative diagram :

RΓ(U2;Ocw
E ) −→ CWHom(CU ′

2
,OE)� ↙

�
RΓ(U1;Ocw

E ) −→ CWHom(CU ′
1
,OE).

Proof. This follows from the commutative diagram

Γ(U2; C∞cw
E ) −→ CWHom(CU ′

2
, C∞E )� ↙

�
Γ(U1; C∞cw

E ) −→ CWHom(CU ′
1
, C∞E ).

q.e.d.

Remark 6.2.10. Let Z2 ⊂ Z ′
2 ⊂ Z1 ⊂ Z ′

1 be closed cones in E with Z ′
1 and Z ′

2 subana-
lytic and E \Z ′

1 ⊂⊂ E \Z1 ⊂⊂ E \Z ′
2 ⊂⊂ E \Z2. Then there is a canonical commutative

diagram:

RΓZ2(E;Ocw
E ) −→ CWHom(CZ′

2
,OE)� ↙

�
RΓZ1(E;Ocw

E ) −→ CWHom(CZ′
1
,OE).

The proof is similar to Lemma 6.2.9.
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Lemma 6.2.11. Let U be an open convex subanalytic cone in E and Z := U◦. Then,
there is an isomorphism

CWHom(CU ,OE∗)[−n] ∼→ CWHom(CZ ,OE),

and both sides are concentrated in degree 0.

Proof. In (6.1.1), by putting F := CZ , we get

L : CZ
W⊗OE

∼→CU
W⊗OE∗[n].

So, the desired results follows. (See also (6.1.5) of [5]). q.e.d.

Lemma 6.2.12. (i) The conic object Ocw
E is concentrated in degree −n.

(ii) The conic cosheaf H−n(Ocw
E ) is the conic cosheaf associated to the precosheaf

U �→ H−nCWHom(CU ,OE).

Proof. By Lemma 6.2.8 and Lemma 6.2.9, it is enough to prove this assertion at each
point of E \ {0}. Applying Lemma 6.2.11, CWHom(CU ,OE) is concentrated in degree
−n for any open subanalytic cone U , so the proof follows. q.e.d.

We shall begin to prove the Theorem 6.2.7.

Proof. Choose open convex cones U1 ⊂⊂ U2 ⊂⊂ U3 with U2 subalalytic, and put Z2 :=
U◦

2 . By Remark 6.2.10, we have

RΓ(U3; (Ocw
E )∧)→ CWHom(CZ2,OE)→ RΓ(U1; (Ocw

E )∧)

and

RΓ(E; (Ocw
E )∧) 	 RΓ{0}(E;Ocw

E ) 	 CWHom(C{0},OE).

Applying Lemma 6.2.11, (Ocw
E )∧ is isomorphic to the conic cosheaf associated with the

precosheaf U �→ H−nCWHom(CU ,OE∗) for an open subanalytic convex cone U . It is
obvious that (Ocw

E )
∧
is concentrated in degree 0. q.e.d.
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Math. 260, 270, 305 (1972/73)

[10] J.P. Schneiders, Cosheaf homology, Bull. Soc. Math. Belgique 39 (1987), pp 1-31.

Yuichi SUGIKI
Department of Mathematical Sciences, the University of Tokyo,
3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, JAPAN
sugiki@ms.u-tokyo.ac.jp



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2001–22 Yasuyuki Kawahigashi: Generalized Longo-Rehren subfactors and α-induction.

2001–23 Takeshi Katsura: The ideal structures of crossed products of Cuntz algebras by
quasi-free actions of abelian groups.

2001–24 Noguchi, junjiro: Some results in view of Nevanlinna theory.

2001–25 Fabien Trihan: Image directe supérieure et unipotence.

2001–26 Takeshi Saito: Weight spectral sequences and independence of �.

2001–27 Takeshi Saito: Log smooth extension of family of curves and semi-stable reduc-
tion.

2001–28 Takeshi Katsura: AF-embeddability of crossed products of Cuntz algebras.

2001–29 Toshio Oshima: Annihilators of generalized Verma modules of the scalar type
for classical Lie algebras.

2001–30 Kim Sungwhan and Masahiro Yamamoto: Uniqueness in identification of the
support of a source term in an elliptic equation.

2001–31 Tetsuhiro Moriyama: The mapping class group action on the homology of the
configuration spaces of surfaces.

2001–32 Takeshi Katsura: On crossed products of the Cuntz algebra O∞ by quasi-free
actions of abelian groups.

2001–33 Yuichi Sugiki: The category of cosheaves and Laplace transforms.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


