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Summary: For a variety over a local field, we show that the alternating sum of
the trace of the composition of the actions of an element of the Weil group and an
algebraic correspondence on the ¢-adic etale cohomology is independent of /. We prove
the independence by establishing basic properties of weight spectral sequences [14].
We derive them from a new formal construction of weight spectral sequences using the
machinary of perverse sheaves.

Let K be a complete discrete valuation field with finite residue field F' of order
g. We call such a field a local field. The geometric Frobenius Frg is the inverse of
the map a — a? in the absolute Galois group Gr = Gal(F/F). The Weil group Wx
is defined as the inverse image of the subgroup (Frr) C Gp by the canonical map

Theorem 0.1 Let Xx be a proper smooth scheme of dimension n over a local field K ,
o € Wk be an element of the Weil group and I' € CH"( Xk Xk Xk) be an algebraic
correspondence on Xg. Then, for a prime £ different from the characteristic of F, the
alternating sum

2n

Tr([" oo, : H*(Xg, Q) = Y (—1)'Tr(I" o0, : H'(Xg, Qr))

r=0
is in Z[1/q] and is independent of €.

In the case I' is the diagonal A, it is proved in [15]. If o is in the wild ramification
group P C Wk, it is proved in [12]. If X is an abelian variety, individual Tr(I'* o o, :
H"(Xg,Qy)) is known to be independent of ¢ [7].

Corollary 0.2 Assume further n = dim Xg < 2. Then, for 0 <r < 2n, the trace
Tr(I™ oo, : H (Xg, Q)

is in Z[1/q] and is independent of €.



As an application of Theorem 0.1, we prove some cases of the following conjecture.
For o € Wk, let n(o) be the integer such that the image of 0 by Gx — Gp is FTZ(U).
Conjecture 0.3 (cf. [17] C4 and C5) Let Xg be a proper smooth scheme over a local
field K, r > 0 be an integer and ¢ be a prime number invertible in F.

1. For o € Wi with n(o) > 0, the eigenpolynomial
det(1 — 0.7 : H' (Xg, Q)

is in Z[T]| and independent of (.
2. The eigenpolynomial

det(1 — Fr.T: H (Xg, Q)"
is in Z[T] and independent of (.

If » <1, it is proved in [7]. If char K > 0, it is proved in [18]. As an application of
Theorem 0.1, we prove the following.

Corollary 0.4 If dim X < 2, Conjecture 0.3 is true.

To state more results on Conjecture 0.3, we recall the monodromy filtration and the
weight monodromy conjecture. Let I C G be the inertia subgroup and ¢, : [ — Z,(1)
be the canonical map sending o € I to (o(x'/*")/7¥/*"), € Zy(1). By the monodromy
theorem of Grothendieck [16] Appendix, there exist a nilpotent endomorphism N €
End(H"(Xg,Q¢))(—1) and an open subgroup J C I such that, for ¢ € J, the action
of 0 on H" (X, Q) is given by exp(ti(c)N). Let M, be the increasing filtration on
H"(Xg, Q) characterized by the conditions

(1) My = H" (X%, Q) and M_,_; = 0 for a sufficiently large integer s.

(2) For s € Z, the map N sends M, to M,_5(1).

(3) For s > 0, the induced map N* : GrM — Gr™ (s) is an isomorphism.

The filtration M, is called the monodromy filtration. The following weight monodromy
conjecture asserts that the monodromy filtration gives the weight filtration.

Conjecture 0.5 [3] Let Xk be a proper smooth scheme over a local field K and let
r >0 and s be integers. Let o € Wi be an element of the Weil group and n(o) be the
integer such that the image of o by Gx — Gp is FTZ(U). Then, the eigenvalues of the
action of ¢ on GrM H" (X, Qq) are algebraic numbers and the complex absolute values

of their conjugates are ¢l +™@)/2,
Conjecture 0.5 is proved if r < 2, [14] Satz 2.13, or char K > 0, [5], [11] [18].

Corollary 0.6 Let r > 0 be an integer.

1. Assume there exists an algebraic correspondence I € CH™( Xk x Xg)q such
that I't on H*(X g, Qu) is the identity if s =r and 0 if s # r. Then, Conjecture 0.3.1
18 true.

2. Assume further that H"(Xg,Qe) satisfies the weight monodromy conjecture,
Congecture 0.5. Then Conjecture 0.5.2 is true.
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Theorem 1 is derived rathar directly from basic properties of weight spectral se-
quences [14] for a semi-stable scheme over the integer ring using alteration [2]. In the
first part of this paper, we establish the necessary basic properties, Propositions 1.14,
1.16, 1.18, 1.19 etc. of weight spectral sequences such as functoriality, compatibility
with the duality, push-forward and chern classes etc. We prove them using a new
construction of weight spectral sequences. The construction is a consequence of the
identification, Proposition 1.11, of the graded pieces of the monodromy filtration on
the perverse sheaf of nearby cycles. We deduce the identification from the facts Propo-
sition 1.5 that the sheaves of nearby cycles are tame and that the Rf'A is a dualizing
sheaf for a semi-stable scheme, using some elementary linear algebra.

We expect that the same argument using the weight spectral sequence of Mokrane
[13] shows the equality

Tr(I oo, : H(Xg, Qu)) =Tr(I™ ooy : Dy H (X%, Q).

We plan to work this out in a forthcoming paper.

The new construction of the weight spectral sequence came out of inspiring discus-
sion with Luc Illusie. The author expresses sincere gratitude to him for the discussion
and encouragement. A large part of this work was done during a stay of the au-
thor at Université de Paris-Sud in May and June 2001. He thanks the invitation and
the hospitality. He also likes to thank K. Consani for discussions on weight spectral
sequences.

1. Weight spectral sequence.

1.1 Monodromy filtrations.

Let C' be an abelian category, A be an object of C' and n < 0 be an integer. Let
F, be an increasing filtration on A satisfying F'.1A = 0 and F,,A = A and G*® be
a decreasing filtration on A satisfying G'A = A and G""'A = 0. We put M, A =
Zp_q:T F,ANG7A. The increasing filtration M, satisfies M, A = A and M_, 1A = 0.
We consider the filtrations on Gr™ A = M,.A/M,_1 A induced by F and G. They are
defined by F,GrM A = Im(F,AN M,A — GrM A) and GIGrM A = Im(G?AN M, A —
Gr}' A). Similarly, we consider the filtration G/Gr]A = Im(G?AN F,A — GrF A) on
Gri A= F,A/F, 1A induced by G.

Lemma 1.1 1. For integers p,q and r satisfying p — q = r, there is a canonical
1somorphism GrfGrﬂ”A — GrgGrgA induced by the natural maps F,AN GIA —
GriGrM A and F,ANGIA — Gri,Gr] A.

2. The filtrations F and G on GrMA are r-opposite to each other. Namely,
Grg;GrgGryA = 0 for p—q # r. There is a canonical isomorphism GrMA —
D, . GriGrlA.

Proof. 1. The kernel of the surjection F,AN GIA — Gr{GriAis (F,.1ANGIA) +
(F, AN G7A). We show that the map F,A N GIA — GrfGrﬂ”A is surjective and
its kernel K is equal to (Fp—1A N GIA) + (F,A N GI™A). We show F,AN M,A =
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D qrp<p Fr AN G7A. Since M, A C D gmrp<p L AN G7A) + GA, we have
F,ANM,A C Zp/_q/:w/@(Fp/AﬂGq/A) + (F,ANGYA). The other inclusion is obvious.
It follows immediately from this equality that the map F,AN GYA — Grg GrMAis a
surjection. We show that the kernel K = (F,ANGIANM,_1A)+(F,ANGIANF,_1AN
M, A) is equal to (F,_1ANGIA) + (F,AN GI™A). Since M, 1A C F, 1A+ GIT A,
we have K C (F,ANG1A) N (F,_1A+ G A) = F,AN ((F,-1ANG1A) + GiT1A) =
(Fpm1ANGIA) + (F,AN GT 1 A). The other inclusion is obvious. Thus the required
isomorphism Grf GrM A — Gr,Gr] A is defined.

2. By 1, we have GrgGrgGryA =0 for p — ¢’ # r and the filtrations F' and G on
GrM A = M, A/M,_, A are r-opposite to each other. By [4] Proposition (1.2.5), we have
a canonical isomorphism GrM A — D, - GréGrg GrM A. Hence we have a canonical
isomorphism Gr A — @, _ _ GrGry A.

Let N be a nilpotent endomorphism of A and n > 0 be an integer satisfying N"™! =
0. Then there exists a unique increasing filtration filtration M, on A characterized by
the following properties (1)-(3).

(1) MyA=Aand M_,, 1A =0.

(2) N: A— Asends M, A into M,_A for r € Z.

(3) If r > 0, the induced map N" : GrM A — Gr™ A is an isomorphism.

The filtration M, is called the monodromy filtration defined by N. We define an
increasing filtration F, by F,A = Ker(N?™ : A — A) and a decreasing filtration G*
by GIA = Im(N? : A — A). We have FyA = Ker(N : A — A) and G°A = A. We
call F, the kernel filtration and G* the image filtration. The monodromy filtration is
described by the kernel filtration and the image filtration as follows.

Proposition 1.2 Let N be a nilpotent endomorphism of A and let M,, Fy and G*®
be the monodromy, kernel and the image filtrations on A. Then we have M,A =
> g FpANGIA).

Proof. We put MJA = 3% _ (F,ANG7A4) and show that the filtration M, satisfies
the conditions (1)-(3) above. Let n > 0 be an integer satisfying N"™' = 0. Since
FoA= A F 1 A=0and GOA = A,Gpi1A =0, we have M'A = A and M, A =0
and the condition (1) is satisfied. Since NF,A C F,_1A and NGYA C G9™ A, we have
NM/A C M]_,A and the condition (2) is satisfied.

We show that the induced map N” : GrM'A — GrM'A is an isomorphism to
complete the proof. As in Lemma 1.1, we identify GrM' A = @p—q:r,pzo,qzo Grg;GrgA
and GrM' A = D, s prs0.qtr50 Gri"Grl_ A, Tt is sufficient to show that the map
N™ : GriGrF A — GrE"GrE_ A is an isomorphism for p > r > 0 and ¢ > 0. We
deduce it from the following Lemma.

Lemma 1.3 For p,q > 0, the induced map N9 : Gr£+qA — GrgA s an injection. Its
immage 1s equal to GqGrgA.



We complete the proof of Proposition 1.2 admitting Lemma 1.3. By Lemma 1.3,

the maps N : Gr}, A/NGr}, . A — GriGri' A and N7 : Gr} A/NGr}, A —
Grg;“LTGrg_TA are isomorphisms. Hence the assertion follows.
Proof of Lemma. By the definition of the kernel filtration, we have (N9)"'F, ;1A =
Fpiq+1A for p,g > 0. Hence, the induced map N7 : Gr£+qA — GrgA is injective.
Similarly, we have GuANF,A = Im(N? : F,; ;A — F,A). Hence we obtain G'Gr} A =
Im(GIANF,A — Gri A) = Im(N: Gr} A — Grl'A).

We give a characterization of the kernel filtration under a certain hypothesis.

Lemma 1.4 Let A be an object of an abelian category C, N be an endomorphism of
A andn > 0 be an integer. Let F be an increasing filtration of A satisfying F' {A =10
and F! A = A.

1. If the following condition (1) is satisfied, we have N"*1 = 0.

(1) For p > 0, the map N sends FyA to FyA and the induced endomorphism
N : Grg/A — Grg/A s the 0-map.

2. Assume the condition (1) is satisfied and let F,A = Ker(NP™ : A — A) be the
kernel filtration. Further if the following conditions (2) and (3) are satisfied, we have
FyA=FA forp>0.

(2) FoA = FJA.

(8) For p > 0, there is no non-0 map from a subobject of Coker(N : GrgjrlA —
Grg/A) to Grg/A forp >p+1.

Proof. 1. The condition (1) means NFJA C F_;A. Hence NP*'FJA = 0 and the
assertion follows.

2. Since NP*'FJA = 0, we have F,A D F}A. We show F,A = F}A by induction
on p > 0. By (2), it holds for p = 0. We assume F,A = Fj,A for p’ < p and show
P, A= F, A We show F,, A/F) ;A = 0. By the induction hypothesis, we have
GrgA = Grg/A. Since the map N : Gr£+1A — GrgA is injective, it induces an
injection Fj, 1 A/F) A = Gr£+1A/Gr£J;1A — Coker(N : GrgjrlA — Grg/A). By the
assumption (3), there is no non-zero map F, 1A/ F) ;A — Grg/A for p’ > p+1. Hence
the injection Fy, 1 A/F) A — AJF) A= F,A/F, A is the 0O-map and the assertion

follows.

1.2 Nearby cycles on semi-stable schemes.

Let K be a henselian discrete valuation field with residue field F'. The spectrum
of the integer ring Ok will be denoted by S. We say a scheme X locally of finite
presentation over S is strictly semi-stable of relative dimension n if it is, Zariski locally
on X, etale over Spec Ok [Ty, ... ,T,]/(To - - - T, —m) for a prime element 7 of K. If the
residue field F' is perfect, a scheme X locally of finite presentation over S is strictly
semi-stable if and only if the following conditions (1)-(3) are satisfied.

(1) X is regular and flat over S.

(2) The generic fiber Xy is smooth.

(3) The closed fiber X is a divisor of X with simple normal crossings.
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In the rest of the paper, X denotes a strictly semi-stable scheme over O of relative
dimension n and Y = Xy denotes the closed fiber of X. Let K be a separable closure of
K and K" be the maximum unramified extension of K in K. Let F be the residue field
of K", Tt is a separable closure of F. Let I = Gal(K/K"") C Gy = Gal(K/K) be the
inertia subgroup. It is the kernel of the canonical surjection Gx — Gr = Gal(F'/F).
For a prime number ¢ invertible in F', let ¢, : I — Zy(1) be the canonical surjection
defined by o ~ (o(z'/*")/71/*"), for a prime element 7 of K. Let S denote the
spectrum of the integer ring Ogwr. Let i:Y = Xp — X,j: X — X, : Yp — Xgur
and j : Xz — Xgur be the canonical maps.

Let ¢ be a prime number invertible in O and let A denote either of Z /{™Z, Z, and
Q. For p >0, let RPYA = i*RPj, A denote the sheaf of nearby cycles. It is a sheaf on
Y with an action of Gk compatible with the action of the quotient Gp = G /I on
Yp. Similarly RyA = i*Rj, A is defined as a object of the derived category on Yz with
an action of G.

In this subsection, we recall an explicit computation, Corollary 1.6 below, of the
sheaves RPYA (cf. [14]). We deduce it from the following Proposition. We identify a
sheaf on Y with its pull-back on Yz with the G g-action.

Proposition 1.5 Let f : X — S = Spec Ok be a strictly semi-stable scheme of
relative dimension n. Then

1. ([10] Theorem 1.2, [14] Korollar 2.25) The action of the inertia subgroup I on
RPYA is trivial for p > 0.

2. ([10] Theorem 1.4) The map A — Rf'A(—n)[—2n] sending 1 to the canonical
class [ X| is an isomorphism.

We introduce some notation to state the computation of RPYA. Let Dq,..., Dy,
be the irreducible components of Y = Xp. For a non-empty subset I C {1,...,m},
we put Y; = ﬂiel D; and let ar : Y7 — Y be the immersion. The scheme Y7 is smooth
of dimension n — p over F if Card I = p + 1. For an integer p > 0, we put Y® =
]_[IC{17.“7m}’Card I=pt1 Yr and let a), : Y® — Y be the natural map. We put a_; = udy.
We identify the exterior power APag A with ag_1)A. Let 6 : A — i*R'j,A(1) be the
map defined by the class [r] € H'(K, A(1)) of a prime element 7 of K. It is independent
of the choice of 7. Let 0 also denote the map *RP~'j,A — *RPj,A(1) induced by 6
by the cup-product.

Corollary 1.6 1. Let p > 0 be an integer. The canonical map 1*RPj, A — RPYA

is surjective. The map 0 = "R j,A — i"RPj.A(1) induces a map 0 BP-1gA —
i*RPj.A(1). The sequences

0 —— RPN —" s #RPjA(L) —— RPPA(L) —— 0,

0 0

0 —— RPyYA —2 #RPHj A1)

are exact.

i*R"j,A(n —p) —— 0



2. (cf. [10] Remarks 1.5 (c), [14] Satz 2.8) The map ap.A — i*R'j.A(1) sending 1
on an irreducible component D; to the class of a uniformizer of D; is an isomorphism.
For p > 0, the cup-product induces an isomorphism a-1) A — i*RPj, A(p).

To deduce Corollary 1.6 from Proposition 1.5, we apply the following Lemma.

Lemma 1.7 Let T' be an element in the inertia I such that t,(T) is a generator of
Z,(1). Then,
1. The isomorphism 1*Rj,A — RI'(I, RYA) induces a quasi-isomorphism with the
mapping fiber
i*Rj,A — Fiber|[RYA ——> RyAl.
2. ([14] Lemma 1.2) Let 0 : i*Rj. A — i*Rj.A(1)[1] be the map defined by the class
(7] € HY(K,A(1)) = Hom(A, A(1)[1]) of a prime element © of K. Then the diagram

T-1

#Ri.A —— [0 —  RyA =L RyA]

0l lmw’)

FRIAMD] —— [RYAQL) L9 RyA(L) —— 0]

18 commutative, where the horizontal maps are the isomorphism in 1.

Proof of Lemma. 1. By Proposition 1.5.1, the natural map RyYA” — RiyA is an
isomorphism. Hence, the isomorphism i*Rj.,A — RI'(I, RiA) induces an isomorphism
i*Rj.A — RIU(I/P, RyA). Since I/P is a cyclic group generated by T', the assertion
follows.
Proof of Corollary 1.6. 1. By Proposition 1.5.1 and Lemma 1.7.1, we obtain an exact
sequence 0 — RPTIyPA 29, i*RPj. N — RPYA — 0 where 9 : RP-YM)A — i*RPjA is
the boundary map. We show that the composition i*RP~1j,A — RP-1pA > i*RPjA
tensored with the map A — A(1) sending 1 to ¢,(T") is equal to the cup-product with
(7] € H'(K,A(1)). We may assume that the residue field is separably closed. Then the
class [r] € H' (K, A(1)) is identified with the class of t, € Hom(I, A(1)) = H' (K, A(1)).
By Lemma 1.7.2; the twisted composition i* RF~!j,A — i*RFj,A(1) is the same as the
map 60 : *RP~1j, A — *RPj,A(1). Thus the assertions except the last exact sequence
are proved. The last exact sequence is deduced from the first one inductively.

2. More precisely, we prove the following Lemma. Let i®®) =i o ap : Y® — X for
p > 0 be the canonical map. The map i) : Y® — X is the disjoint sum of regular
immersions of codimension p + 1.

Lemma 1.8 Let p > 0 and consider the diagram

FRPI G A(p+ 1) —— aps

| |

RPEA(p+1) —— a, RPY%HPA(p+ 1)
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with the arrows defined as follows. The top horizontal is defined by the cup product of
the map agA — i*R'j.A(1) in Corollary 1.6.2. The left vertical is the boudary map.
The bottom horizontal is induced by the dual of the quasi-isomorphism Ay — [ag A —

- = ap N — - — an ], The right vertical is the map sending 1 to the canonical
class [YP)]. Then the arrows are isomorphisms and the diagram is commutative.

Proof. First we show that the three arrows except the top horizontal one are isomor-
phisms. It is clear for the left vertical arrow. We show that the right vertical arrow is
an isomorphism. Let ig : s — S be the immersion of the closed point and, for p > 0,
let f® . Y® — Spec F be the canonical map. The map f® is smooth of relative
dimension n — p. Identifying Ri®'Rf'A = Rf®'Ri\A, we consider a commutative
diagram

A(n —p)[2(n —p)] — iP*RfA(—p)[—2p]
| | (1)
Rf®'A —— RfP'RiI{A(1)[2] = Ri®P'RfA(1)[2].

The maps are induced by those sending 1 to the canonical classes. The top horizontal
arrow is an isomorphism by Proposition 1.5.2, the left vertical is an isomorphism since
f®) is smooth of relative dimension n —p and the bottom horizontal is an isomorphism
since O is a discrete valuation ring. Hence the right vertical arrow is an isomorphism.
By Proposition 1.5.2, it implies that the right vertical arrow in the diagram of Lemma
1.8 is an isomorphism.

We show that the bottom horizontal arrow is an isomorphism. We have Ri'A =
RHomy, (i,A,Ax) and Ri®'A = RHomy, (iip)A,AX). By the quasi-isomorphism
Ay — [agA — -+ = apA — -+ — ayA], we obtain a spectral sequence EP'? =
RIiP'A = RPT4'A. By the isomorphism A — Ri®'A(p + 1)[2(p + 2)], we have
EP?P — Ay (—(p+1)) and EY? =0 for g # 2p. Thus the spectral sequence degener-
ates at F; and we obtain an isomorphism RPi'A — R2Pi®'A. The bottom horizontal
arrow is induced by this isomorphism with p replaced by p + 1 and is an isomorphism.

To complete the proof, we show that the diagram is commutative. Shrinking X,
we may assume Y = Dy U---U D, and Y® = Dyn--- N D,. We have Rj.A =
RHomy, (51A, Ax). From the exact sequence 0 — jA — Ax — Ay — 0, we obtain a
quasi-isomorphism jiA — Fiber(Ax — Ay). The map i*Rj.A — Ri'A[1] is the dual of
the map Ay[—1] — 7iA defined by the commutative diagram

Ay[—l} m— Fiber(AX — Ay)

! H

j;A m— Fiber(AX — Ay)

Hence the composition i* Rj,A — Ri'A[1] — Ri®®'A[p-+1] is the dual of the composition

of the natural map Ay [—(p+1)] — [Ax — iOA 5 o iip)A] with the inverse



of the quasi-isomorphism jA — [Ax — iON & S z’ip)A]. For 0 < i < p, let
i;: D; — X,i, : D; = Y and j; : X — D; — X be the immersions. By the commutative
diagram
. P
®€:0]z’!A . ®L¢:0[AX - ADi]

| !

A —— [Ax = iOA - iPA),

we obtain a commutative diagram

Lol N —— ®€:0 lei*A(l) - ®?:0R2i;/\(1)

1=0 "2%

! | |

AN —— RPTA(p+1) —— REPFUMA(p +1).

Since the canonical class is defined as the product, the assertion follows.

1.3 Construction of weight spectral sequences.

Let X be a strictly semi-stable scheme of relative dimension n over S = Spec Ok as
in the previous section. Let C' be the abelian category of perverse A-sheaveson Y = Xp
[1]. In the terminology of perverse sheaves, Corollary 1.6 implies the following.

Lemma 1.9 1. The complex A = Ry A[n| is a perverse sheaf.

2. The shifted canonical filtration F)A = 1<, nA = (1<, RY\)[n] is a filtration of a
perverse sheaf A = RipAln| by sub perverse sheaves.

3. Let p > 0 be an integer. Then, the graded piece Grg/A = RPYA[n — p| is
quasi-isomorphic to the complex

[i*RPLA(L) — o 2

i*R"j.A(n — p)]
where i*R"j.A(n — p) is put on degree 0. The truncation

0 0

iR A (g + 1) i*R"j.A(n — p)]

defines a filtration G’qGrg/A of Grg/A by sub perverse sheaves.

Proof. Since Y is smooth of dimension n —p and a,, : Y® — Y is finite, the complex
ap«A[n —p] is a perverse sheaf. By the isomorphism ag,_1),A — i*RPj,A(p) in Corollary
1.6.2, the complex *RPj,A(p)[n — (p + 1)] is a perverse sheaf. The assertions follow
from this and Corollary 1.6.1 immediately.

Corollary 1.10 There is a canonical isomorphism
GréGry A —— g A(=p)ln — (p+ q)]

of perverse sheaves.



Proof. By definition of the filtration G’, we have a canonical isomorphism GrgGrg A —
RPN (g + 1)[n — (p + ¢)]. Tt is sufficient to compose it with the inverse of the
shifted and twisted of the isomorphism a(yqgA — RPTI 5, A(p + ¢ + 1) in Corollary
1.6.2.

In the case p = 0, the canonical isomorphism GriGr{" A — agA[n — q] is defined
by the canonical quasi-isomorphism A — [agA — -+ — apA — -+ — ayA]. In fact,
since the map 0 : A — i*R'j,A(1) is equal to the composition A — ag.A — i*R'j,A(1)
of the canonical maps, the diagram

A — ageA — - — ap A — e — A\

| ! l l

RPN —— PRUGAD) o i B A (p+ 1) o SR A+ 1)

is commutative (cf. [14] Satz 2.9). Hence the assertion follows.

Proposition 1.11 Let X be a strictly semi-stable scheme of relative dimension n over
S = Spec Ok. Let T be an element of the inertia group I such that t,(T') is a generator

Of Zg(l)

1. The operator v =T — 1 on A = Ry A[n] satisfies v™.

2. Let M, be the monodromy filtration on A defined by v. Then there exists a
canonical isomorphism

Gri'A— P aprgA(=p)n—(p+q)).
p—q=r
The filtration M and the canonical isomorphism are independent of the choice of T.
If A = Q, the nilpotent monodromy operator N defines a monodromy filtration

on A. It is the same as the filtration in Proposition 1.11.2. We also call the induced
filtration M, on RYpA = A[—n] the monodromy filtration.

Corollary 1.12 ([14] Satz 2.10) Assume further X is proper over Og. Then the
monodromy filtration M, on RyA induces a spectral sequence
B = @ HTERYE RpA(-i) = H( X, A).
i>max(0,—p)

The spectral sequence in Corollary 1.12 is called the weight spectral sequence. The
induced increasing filtration W, on the limit H" (X%, A) is called the weight filtration.
Proof of Corollary 1.12. The monodromy filtration M, on Ry A induces a spectral
sequence EP! = HPY(Ye, GrM RipA) = HPTU(Yp, RYA) = HPT (X, A). By Proposi-
tion 1.11, the Ej-term ET'? is canonically isomorphic to

(Ve @ aponA=Dl-p+20) = @ HTHVE A=),

i>max(0,—p) i>max(0,—p)
We deduce Proposition 1.11 from the following Lemma.
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Lemma 1.13 1. v"*' =0 and the kernel filtration F,A = Ker(vP™! : A — A) is equal
to the shifted canonical filtration FyA = 7<), nA = (T<p RA)[n].

2. For p,q > 0, the image Im(v? : Grlﬂ/rqA — Grg/A) is equal to the filtration
G’qGrg/A defined in Lemma 1.9.5.

3. Let p,q > 0. For the canonical isomorphism in Corollary 1.10, the diagram

GTgGT;I;LA —— Gpti4qN(—(p+1))[n — (p+ 1+ q)]

Vl lmw’)

Grgt'Grl' A ——  agignA(=p)n— (p+ ¢+ 1))
15 commutative.

Proof of Proposition 1.11. We prove Proposition 1.11 admitting Lemma 1.13. We have
a canonical isomorphism GrM A — D, - GriGrE A by Proposition 1.2 and Lemma

1.1. By Lemmas 1.3 and 1.13.2, we have Gr&Grf'A = Grg;/Grf/A. By Corollary 1.10,
we have a canonical isomorphism GrZ,Gri" A — a(,y . A(=p)[n — (p + q)].

We show that the monodromy filtration M, is independent of T'. Let 7" be another

element of I such that ¢;(T") = ut;(T) for u € Z;. Then the induced map GrM A —
GrM,A by T' — 1 is uv. Hence M, is independent of T. The choice of T does not
appear in the definition of the canonical isomorphism.
Proof of Lemma 1.13. 1. We show that v and F] satisfy the conditions (1)-(3) in
Lemma 1.4. Tt is clear that v = T"— 1 maps F A to F)A. By Proposition 1.5.1, the
induced map v on Gr} 'A = RPy)A[n — p] is the O-map. Hence the condition (1) is
satisfied and we have 1" = (.

We show the condition (2) is satisfied. Namely we show that FjA = A[n] = R%A[n]
is equal to FpA = Ker(T'—1: A — A). By Lemma 1.9.1, the complex FJA =
A[n] is a perverse sheaf on Y. By Lemma 1.8, we have an isomorphism RP*2i'A —
apA(—(p+1)). Hence the complex Ri'A[n+2] is a perverse sheaf. By the distinguished
triangle Ri'A — i*A — i*Rj,A —, we have PHO(i* Rj.A[n]) = An], PH'(i* Rj.A[n]) =
Ri'A[n + 2] and PHY(i* Rj.A[n]) = 0 for ¢ # 0, 1. Hence by Lemma 1.7.1, we obtain an
exact sequence

T-1

0 —— Aln] A A Ri*tAln +2] —— 0

of perverse sheaves. Therefore the canonical map A[n] = R°WA[n] — Ker(T —1: A —
A) is an isomorphism and the condition (2) is satisfied.

We show the condition (3) is satisfied. First, we show that the cokernel of the
map v : GrgjrlA = RFYWAR — (p+1)] — Grg/A = RPiypA[n — p| is isomorphic to
iR j,A[n — p|. By Lemma 1.7.1, the bottom arrow of the commutative diagram

RwA — COHG[O — RwA]

T—ll lCone(O,id)

RN —— Cone[i,Rj. A — RiyA]

T-1
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is a quasi-isomorphism. Hence we have a commutative diagram

RFYAn — (p+1)] == [0 — R

| l g

RpAn—p]  —— (LR A— RFIGA]

where the bottom horizontal arrow is a quasi-isomorphism and RPT¢A in the right
column are put on degree p+ 1—n. Hence the cokernel is isomorphic to i, RFj,Aln —
pl = apA(=(p +1))[n — pl.

We show that there is no non-0 map from a sub perverse sheaf of Coker(v :
R Al — (p+1)] — R9A[n—p]) = apeA(—(p+1))ln—p] to Gr A = R'ypAn—p)
for o’ > p+ 1. By Corollary 1.10, the perverse sheaf RPt)A[n — p/] is isomorphic
to a successive extension of a(yiqA(—(p + ¢+ 1))[n — (p' + ¢)] for ¢ > 0. Hence,
there is no non-0 map from a sub perverse sheaf of Coker(v : RPFF1)A[n — (p+1)] —
RPpAIn —p]) =~ apA(—(p+1))[n — p] to Grg/A if " > p. Thus the condition (3) is
also satisfied. By applying Lemma 1.4, we obtain F,A = F A for p > 0.

2. By induction on ¢, we deduce a commutative diagram

Rr g Afn—(p + q)] > 0—  LRFHAL) S D LR — (p+ )]

Vql ltz(T)@’q

RPPAn = pl— [i R GA(L) — - — G R A (g 1) — - — iR A(n — p)]
6

from the commutative diagram (2) and the proof of Corollary 1.6. The horizontal
arrows are quasi-isomorphisms and ¢, R"j,A(n — p) and i.R"j,A(n — (p + ¢)) in the
right column are put on degree 0. Hence the assertion follows.

3. It follows from the commutative diagram above and the definition of the canonical
isomorphism.

1.4 Properties of weight spectral sequences I, functorialty and duality.

In this subsection, we establish the functoriality and the compatiblity with the
Poincaré duality for weight spectral sequences. In the next subsection, using these
properties, we establish the compatiblity with push-forward, chern classes etc.

We begin with the functoriality. Let X and X’ be strictly semi-stable schemes over S
and f : X — X’ be a morphism over S. To formulate the functoriality of weight spectral
sequences, we introduce some notations. Let Dy, ..., D,, be the irreducible components
of Y = Xp and Dj,..., D!, be the irreducible components of Y’ = X}.. We define
y'(®) = UIC{l,..‘,m/},Card I=pt1 Y/ and a; Y Ly = X} for p > 0 similarly as for X.
For p > 0, we define maps fP* : fra, A — ap A and f) . Hq(Ylg(p),A) — Hq(YFEp),A).
Since X7, f*D), = S.™, D; as divisors, there exists a unique i’ € {1,... ,m’} such
that f(D;) C D) for each i € {1,...,m}. We define a map ¢ : {1,... ,m} —
{1,...,m'} by requiring f(D;) C D’ )- Renumbering if necessary, we assume that the

o(i
map ¢ is increasing. For a subset I C {1,...,m'} and an integer p’ > p = Card I — 1,

12



we put Zpy = {I C {1,... ,m}| Card I = p’ + 1 and ¢ induces a surjection I — I'}.
For I € Iy p, the map f induces a map fry: Yr = ey Di — Y] = ey D)y and the

maps ff; : f*ap A — ap,Aand fr;  HY(Y, g, A) — HY(Y; g, A) are defined. They are
independent of the choice of numbering. We define maps f®* : frap A — ap A and

Fo Hq(y};(P)7A) _ Hq(YFEp)7A) to be the sum ZI/C{l,..‘,m/},Card Iepi1 ZIGII/J, i

Proposition 1.14 Let X and X' be strictly semi-stable schemes over S of relative
dimension n and n' respectively and f : X — X' be a morphism over S. Then,
1. The inverse image f*A'[n—n'| and f*M,A'[n —n'] are perverse sheaves on'Y =
Xp. The inverse image f*M,A'[n —n'] gives the monodromy filtration on f*A'ln —n'].
2. The natural map f*: f*A'ln —n'| — A sends the filtration f*M,A'[n — 1] into
M,.A. We have a commutative diagram

f G Aln —n'] —— @, -, [Tl A=p)n = (p+ )]
Gri”f*l l@f(p-&-q)*
Gr)' A — D, WA (=) [n — (p + )]

where the horizontal arrows are the canonical map in Proposition 1.11. The left vertical
arrow is the map induced by f* : f*A'ln —n'] — A and the right vertical arrow is the
direct sum of fPTO*.

Corollary 1.15 Assume further X and X' are proper over S. Then we have a map
of weight spectral sequences

—92; 24 .
Eip,q = @iZmax(O,—P) Ho (Y]f:‘(p+ )’ A(_Z))é Hre (X;_(’ A)
o f<p+zz->*l f3

E?q = @izmax(o,—p) Hq—?i(YI;P‘f‘Qi)’ A(_Z)) = HP* (XR'7 A)

Proof of Proposition 1.14. 1. By the isomorphism GrM A’ — @p_q:,r a’(p+q)*A(—p) [n'—
(p + ¢)] in Proposition 1.11, it is sufficient to show that f*a;, A[n — p| is a per-
verse sheaf. Hence, it is sufficient to show that f*ap.Aln — p| is a perverse sheaf
for I' c{1,... ,m'} and Card I' =p+1. Weput Zp,y = {I C {1,... ,m}| Card [ =
p' + 1 and ¢ induces a surjection I — I’} as above. Then the inverse image f~'(Y},)
is equal to the union UIGII/ Y;. Hence, we have an exact sequence f*a}, A —
5P

@IGII/J, ap N — - — @IGII/,n/ arA. Thus f*a’, Aln — p] is a perverse sheaf and
the assertion is proved.

2. By the definition of the canonical isomorphism Gr&,Grl A — a(pyqA(—p)[n —
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(p+ q)], it is sufficient to show that the diagrams
frGriGry Aln —n'] —— fH" RPN+ 1)n — (p+ q)]

| s

GreGriA  —— R A+ D~ (p+ ),
[ RPIANp) —— frag, 1A
f*l lf@)*
i*RPj.A(p) EE— a(p—1)/A

are commutative. The commutativity of the first square is clear from the construction.
We show the commutativity of the second diagram. By Proposition 1.5.2, it is reduced
to the case where p = 1. In the case p = 1, it follows from f*[D}] = >, -1 [Di.

Next, we establish compatibility with the Poincaré duality. Let f : X — S be a
strictly semi-stable scheme over S of relative dimension n. We define a perverse sheaf
A by A" = RYRf'A[-n] = A® Rf'A[-2n]. Let fy : Y — Spec F be the closed
fiber of f and let f® = fy o ap : Y® — Spec F be the canonical map for p > 0.
The map f® is smooth of relative dimension n — p. Let Dy and Dy denote the
functors RHom( , Rfj,A) and RHom( , Rf®'A). We define a commutative diagram
of isomorphisms

G?}MA' —_— @q_p:,,. a(p+q)*DY(P+Q)A(p) [_(n - (p + q))]

| | 3

DyGrMA —— @, Dy (apy-A)(p)[~(n— (p+9))]

The left verticall arrow is induced by the canonical isomorphism A’ — Dy A =
RHom(A, Rfi,\) [9] 4.3. We recall the definition of A’ — Dy A. The product de-
fines a pairing A x A’ — Ry Rf'A. Let Rty denote the nearby cycle functor for S
itself. We have a base change map RYRf'A — Rf; RioA = Rf}, A loc.cit 4.3.b). The
composite pairing A x A’ — Rf} A induces the required map. By [9] Théoréme 4.2,
the canonical map A" — Dy A is an isomorphism. The bottom horizontal arrow in the
diagram (3) is the dual of the canonical isomorphism in Proposition 1.11. The right
vertical arrow is defined by the canonical isomorphism a,q)« Dy oo A — Dy (@ (pyq)N).
The top horizontal arrow is defined by the commutativity of the diagram.

Proposition 1.16 Let f : X — S be a strictly semi-stable scheme over S of relative
dimension n. Then we have a commutative diagram of isomorphisms

GrYA(n) —— @p—q:fr Aprq)«A(n —p)[n — (p+q)]

| !

G’l”iwAl E— @q—p:r a(p+q)*DY(p+q)A(p)[_(n - (p + q))]

14



where the top horizontal arrow is the twist of the canonical map in Proposition 1.11 and
the bottom horizontal arrow is the top horizontal arrow in the diagram (3) above. The
left vertical arrow is induced by the canonical map A(n)[2n] — Rf'A. The right vertical
arrow s the direct sum of (—1)?-times that induced by the canonical isomorphisms
An—(p+q)2n— (p+q)] — RfPYD'A — Dy oA sending the (p, q)-components
to the (q,p)-components.

Corollary 1.17 Assume further X is proper and A = ¥, or Q,. Then, we have an
isomorphism of the weight spectral sequence with its dual

BY" = @ismasiop VAR =) = HPR(X g, An)

| |

E{p’q _ @izmax(o,—p) H2(n—(p+2i))—(q—2i)(Yb_gp+2z')7 A=(p+ z’))*=>H2”‘(p+‘I) (Xg, A)*.

The superscript * denotes the linear dual. The right vertical arrow is induced by the
pairing H?*(Xg, A(n)) x H*=0+0( X A) — A. The left vertical arrow is the di-
rect sum of the (—1)P™"-times that induced by the pairing Hq_%(YI;EpHZ),A(n — 1)) X
HP=20)=(a=20) (Y PH2 A ((p 4 ) — A

Proof of Corollary. The canonical isomorphism A(n) — Rf'A[—2n] induces an isomor-
phism of spectral sequences

EPT = HPH(Yp, Grl A(n)[-n])=  H"*(Xg, A(n))

| !

EYY = HP(YVp, Grlt A'[n]) = HPH7(Xg, DxA).

The assertion follows form Proposition 1.16 and the Poincaré duality H?(V, Dy A) ~
H~9(V, A)* for a proper smooth scheme V' over a separably closed field.

Proof of Proposition. By the definition of the canonical isomorphisms, it is sufficient
to show that the diagram

GriGrEA(n) ——  aprgeA(n —p)in — (p+q)]

| | (W

DyGTgGrgA — Dy (a(p+q)*A) (Q)[_<n - (p + C]))]

is commutative. The horizontal arrows are the twist and the dual of the canonical
isomorphism in Corollary 1.10. The left vertical arrow is induced by the composition
A — A'(n) — Dy A. The right vertical arrow is induced by (—1)%times the canonical
isomorphism A(n — (p + ¢))[2(n — (p + q))] — RfPTO'A.

First we prove the case ¢ = 0. In this case, we have Gr{ A = A[n] and the compo-
sition via the lower left is the same as the composition of isomorphisms

GraGriA(n) —— GriGr& A’ —— Grl'Dy(A[n]) —— Dy(apAln — p)).
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The middle arrow is induced by the base change map A’ = Ry Rf'A[—n] — Dy (A[n]) =
Rf'RiyA[—n]. The last arrow is induced by the dual of the quasi-isomorphism A —
l[agsA — -+ — ap A — - -+ — a,.A] since the diagram

A — ageA  — - — ap A — e — A\

| | ! !

RN —— P RGA1) o S B Ap+ ) o i R A 1)

is commutative.

We compute the right vertical arrow in the diagram (4) in the case ¢ = 0. We
identify Dy (apA) = ap*Ra;ngfA. Let ig : Spec F' — S,jo : Spec K — S and
i® =jo ap : Y® — X for p > 0 be the canonical maps. Then by the commutative
diagram (1) in the proof of Lemma 1.8, the right vertical arrow in the diagram (4) is
induced by the composition of the isomorphisms

A(n —p)[2(n — p)] = i""RFA=p)[-2p] = Ri""RFA(1)[2] — Ra, R} A.

The maps are induced by the canonical isomorphisms A(n)[2n] — Rf'A, A(—(p +
D)[-2(p +1)] — Ri™'A and A(—1)[-2] — Ri\A. Thus the case ¢ = 0 is reduced to
the commutativity of the diagram of isomorphisms

GrOGITRURS'N —— apd P RFA(~p)[~p] ——  apRIP'RFAD)p +2)

| |

The top left arrow is induced by the canonical map in Corollary 1.10, the top right is
induced by the canonical map A(—(p + 1))[-2(p + 1)] — Ri®'A, the right vertical is
induced by the isomorphism Ri®®'Rf' — Ra;R fi-Ril), the left vertical is induced by
RYRf'A — Rf'A = DyA, the bottom left is induced by the quasi-isomorphism A —
l[agsA — -+ — ap A — -+ — ay ] and the bottom right is induced by the canonical
isomorphism A — RigA(1)[2] with the identifycation Dy (apA) = apRa,Rf3 A.

Since the diagram

RYRf'A —— RiRfA1)[1]] —— Ri'Rf'A(1)[2]

Rfy RUA —— RfLiiRjoA(1)[1]] —— Rf} RibA(1)[2]

is commutative, we obtain a commutative diagram of isomorphisms

GreRPYR™" f'A —— *RPHLj R f1A(1)

| |

Rp—an}!/ROwOA Rp+2i!R_2nf!A(1) ap*R2p+2Z'(p)!R—2nf!A(1)

| |

RN —— RELRNN() —— ay B2 fONRA(L),
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The left bottom arrow is induced by A — R%*}A(1) sending 1 to the canonical class
[s] of the closed point s € S. The right horizontal arrows are induced by the dual of
the quasi-isomorphism A — [agA — -+ — apA — -+ — a,,A]. Hence, if ¢ = 0, the
commutativity of the diagram (4) follows from Lemma 1.8.

We reduce the general case to the case ¢ = 0. Since the adjoint of T on A’ is T~!
on Aand 7' — 1= —-T7YT — 1) induces —v on Gr¢,Gr} A, the diagram

Gro.GrE, A(n) —2— GriGrE A(n)

| |

DyGrf;“qGrgA DyGrgGrfA

(—-1)ava
is commutative. Hence the assertion follows from Lemma 1.13.3.

1.5 Properties of weight spectral sequences I, push-forward, chern classes
etc.

Let X and X’ be proper and strictly semi-stable schemes over S of relative di-
mension n and n —r and let f : X — X’ be a morphism over S. For p > 0, we
define the push-forward map f% Hq(YI;Ep),A) — Hq_2T(Y1;(p),A(—r)) to be the sum

Zl/c{l,..‘,m/},Card I'=p+1 ZIEII/J, f]/]* Similarly as f(p)*
Proposition 1.18 Let X and X' be proper and strictly semi-stable schemes over S of

relative dimension n and n’ = n —r and let f : X — X' be a morphism over S. Let
AN =F, or Qu. Then, we have a map of spectral sequence

E{)’q = @izmax(o,—p) Hq—2i(Y£‘P+2i)7 A(_Z)) = Hr+a (XI_O A)

EBf»EerQi) l lf*

Eip,q—?r _ @Z‘Zmax(o,_p) Hq—2r—2i(YI;(P+2i)7A(_i _ 7")):>Hp+q_2T(X}?7A(—T)).

The mght vertical map fy 1s the push-forward map and the left vertical map is the direct
sum of fs (p+20)

Proof. For a morphism f : V' — V' of proper smooth schemes of dimV = d,dim V' =
d’ — r over a separably closed field, we have a commutative diagram

HY(V,A) — H*=9(V, A(d))*

| i

H2(V A(=r)) —— H?*9(V, A(d))*.
The horizontal arrows are the isomorphisms of Poincaré duality and the right vertical
arrow is the dual of the pull back f*. Hence the required map is obtained as the

composition of the dual of the map in Proposition 1.14 with the maps in Proposition
1.16 for X and for X’.
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Proposition 1.19 Let X be a proper and strictly semi-stable scheme over S of relative
dimension n and &€ be a locally free Ox-module of rank r. Then, for 0 < k < r, the
chern class ci(E) induces a map of spectral sequences

E?q = @izmax(o,—p) Hq—?i(YI;P“‘Qi)’ A(_Z)) = HPt (XR'7 A)

ckw)ul lck(s)u

E?q = @iZmax(O,—p) Hq_2i+2k(Y]§‘p+2i)> A(_Z + k)):>Hp+q+2k (XI_(’ A(k))

Proof. First we prove the case where k = r. Let m : E = Specp,S*E — X be the
vector bundle over X associated to £ and ¢ : X — E be the 0-section. We consider the
isomorphism Ax — Ri'Ag(r)[2r] sending 1 to the canonical class [X]. The induced
map A — A(r)[2r] is the top chern class ¢, (£). Since the monodromy filtration M, Ag of
Ap = Ry A[n+r] is equal to m¥ M, Ax[r], it induces an isomorphism of filtered complexes
RYAx — Ri'RYAg(r)[2r] = RYAx ® Ri‘Ag(r)[2r]. By adjunction i,Ri' — id and
by pull-back ¢*, it induces a map of filtered complexes Ri)Ax — RyAx(r)[2r]. The
induced maps on the graded pieces are induced by Ayw) — Ril, Apy .y (1) [2r] where
i Y®) — E xx Y® denotes the immersion. Hence the assertion follows.

There is an alternative proof when A = F, or Q. Let P = P(£ & O) be the
P” O E-bundle associated to £ ® O and ¢ : X — P be the 0-section. Then the map
¢ (€) is equal to the composition i* o i,. Hence the assertion in this case follows form
Propositions 1.14 and 1.18.

Since ¢1(€) = 1 (L) for L = A"E, the case k = 1 is proved.

We prove the general case. Let P = P(&) be the P"~!-bundle associated to &
and m : P — X be the projection. Let h = ¢;(O(1)) be the first chern class of the
tautological invertible sheaf. Then we have a commutative diagram

HP (X, A) 28, @yl ek (X A(k))

H [P
HP(Xg, A) ——  HPP(Pg,A(r))

h”om*
and the right vertical arrow is an isomorphism. Thus the assertion follows from Propo-
sition 1.14 and the case k = 1.

We generalize Proposition 1.19 for an element in K-groups. We briefly recall the
terminology. For a scheme X, let K(X) be the Grothendieck group of the category
of locally free Ox-modules of finite rank. It is the quotient of the free abelian group
generated by the isomorphism classes [£] of locally free Ox-modules of finite rank by the
relations [€] = [E'] + [€”] for exact sequences 0 — & — & — £ — 0. The ~-filtration
F"K(X) on K(X) is defined as follows. Let A\, : K(X) — 1+tK(X)][[t]] € K(X)[[t]]*
be the canonical map sending the class [£] of a locally free Ox-module & to 3 [AZE]¢1.
For z € K(X), we put %(z) = A () = 1+ > ,.7"(2)t". Forn = 1, FK(X)
is defined to be the kernel of the map K(X) — Z™X) sending [£] to rank £. For
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n > 1, F"K(X) is defined as the subgroup generated by the elements of the form
" (z1) -+ - 4" (x,) where z; € F'K(X) and Y., n; > n. We put F'K(X) = K(X).

Let X be a strictly semi-stable scheme over S. The map ch : K(X) — CH*(Xk)q
sending the class [£] of a locally free Ox-module £ to its chern character (ch;(€)); is
a ring homomorphism. It is compatible with the ~-filtration and induces a homomor-
phism ch : Gri, K(X) — CH*(Xk)q of graded rings.

Lemma 1.20 The map ch: GriK(X)q — CH*(Xk)q is surjective.

Proof. Since X is regular, the map K(X) — K(Xg) is surjective by [8] Corollary
2.2.7.1. Hence the map GryK(X) — GripK(Xk) is surjective. Let CH*(Xk)q —
Gri. K(Xk)q be the natural map sending the class [F'] of an integeral closed subscheme
F to the class of [Op]. Then, by Riemann-Roch [6] Corollary 18.3.2, it is the inverse
of ch : GT}K(XK)Q — OH*(XK) .

Proposition 1.21 Let X be a proper and strictly semi-stable scheme over S and k > 0
be an integer. Let a € FFK(X) be an element of the k-th y-filtration. Let A = Qq.
Then, the chern character chi(a) induces a map of spectral sequences

EP = @i asop HHVE A=) = HPP(Xg, A)

chy, (a)Ul lchk(a)u

E?q = @iZmax(O,—p) Hq_2i+2k(Y1’§‘p+2i)> A(_Z + k)):>Hp+q+2k (XI_(’ A(k))

Proof. By the definition of the v-filtration, we may assume a = Y*([£] — rank &)
for a locally free Ox-module €. Then chi(a) = ¢(€) and the assertion follows from
Proposition 1.19.

Finally, we establish the functoriality for an algebraic correspondence. As a pre-
liminary, we construct a resolution of the product of strictly semi-stable schemes.

Lemma 1.22 Let X and X' be strictly semi-stable schemes over S. Let D1, ... ,D,, be
the irreducible components of Y = Xp and Z; = O(—D;) C Ox be the ideal defining D;
fori=1,... ,m. Similarly, let Dy,...,D. , be the irreducible components of Y' = X},
andZ] = O(—D}) C Ox be the ideal defining D} fori =1,... ,m'. Weput A" = AxA’
where A = {1,... ,m}, A ={1,... ,m'} and regard A" as a partially ordered set with
the product order. Then,

1. The blow-up X" of X xg X' by the ideal H(m/)eA/,(H] i+ H 1 pr5L) s
strictly semi-stable over S.

2. The closed fiber Y" = XY is the sum of the proper transforms D., of D; xp D,
for (i,i") € A". For (i,i'),(j,7') € A", if the intersection D}, N D}, is not empty, we
have either (i,17") < (4,75") or (3,7") < (z i').
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Proof. The question is local on X and on X’. We may assume X and X’ are etale over
Xo = Spec Ok|[Ty, ..., T,|/(To--- T, — ) and X = Spec O[Ty, ..., T.1/(Ty---T), —
) respectively. Further, we may assume X = Xy, X' = X|,m =n+1and m' =n'+1.
We describe the blow-up X” — X xg X’ using a cone decomposition. Let X be
the set of totally ordered subsets of A” and call an element ¢ € ¥ a face of A”.
Let M = N™ +nx N™ be the amalgamate sum of N — N™ : 1 +— (1,...,1) and
N - N™:1w (1,...,1). Fori € A and i’ € A/, let ¢; and e; € M be the images
of the standard bases. Let N = Hom(M,N) be the dual monoid. For (i,i") € A", we
define f; € N by fi(e;) = fir(el) =1 and fiz'/(ej) = fm’/((f;v) =0forj#i,j5 #i. B
identifying (i,4") with fi;, we regard A” as a subset of N. The monoid N is generated
by A”.

Lemma 1.23 For a face 0 € ¥, let N, C N be the submonoid generated by f; v for
(1,7) € 0 and M, be the submonoid {x € M®P|f(x) > 0 for f € N,} of the associated
group M = {za'~ 'z, ' € M} ~ Z™™ =1 Then the family (Ny)sex is a reqular
proper subdivision of N. Namely the following conditions (1)-(6) are satisfied.

(1) Foro € ¥, NoNA" = 0.

(2) Forve A", {v} e X.

(3) For o € ¥ and x € M,, the subset o, = {f € o|f(z) =0} C 0 is in X.

(4) For o, € ¥, there ezists x € M, such that N, N N; = N,, .

(5) N = UaeE N,

(6) For o € 3, the monoid N, is isomorphic to N” for some r > 0.

Proof of Lemma. We use multiplicative notation to denote the operation in M. The
condition (2) is clear from the definition. Let s : N — N be the map f — f(][", e;) =
f(HZZ/ L€). Then A” = {f € N|s(f) = 1} and the condition (1) follows. It also follows
from this that, for o € X, the map N7 — N, sending the standard basis e(; ;) to fix
is an isomorphism. Hence the condition (6) follows. The condition (3) follows easily
from (6). To show the conditions (4) and (5) are satisfied, we define a map

mtm/—1 glaxqy and glarx (2} are increasing,
Ax{1}ITA" x {2

Y — U g: _)x{% }1 é{ ; | the image of ¢ contains {1,...,r} as

r=1 T a subset and g(m,1) = g(m’,2) =r

by sending o € ¥ to the map g, : A x {1} T A" x {2} — {0,1,...,Card o} defined
by ¢,(i,1) = Card {(¢,7) € o|i’ < i} and ¢,(i',2) = Card {(i,j') € olj’ < }. It
is a bijection since the inverse is given by sending a map ¢g : A x {1} IT A" x {2}
{0,1,...,7} to the face o0, C A” defined by o, = {(ming;1)>; 7, ming2)>; 7')[1 <
j <r}. The dual monoid N is identified with the monoid {(a1,... ,am,b1,... ,by) €
)-

N ST = Y0 by} by the map f o (f(er), ..., flem), f€))... , f(ehy)
We have

_ Z] 1f(63) <Z/  flel) if go(i, 1) < g,(7',2) and
_{f€N| Z/ 1f( )<Z] L fleg) if go(7',2) < go(i, 1) }
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For f € N, we put & = {Z;Zl f(ej), Z;//:l fe5)1 <i<m,1 <7 <m'} and define a
map g: A x {1}ITA" x {2} — {0,1,...,7} by g(i,1) = Card {c € ®|c < 30_, f(e))}
and g(i’,2) = Card {c € ®|c < Z;//:l f(€})}. Then we have f € N,, and the condition
(5) is satified. It is easy to deduce N, N N; = Ny, from the description of N, above.
The condition (4) follows from this and (6).

We return to the proof of Lemma 1.22. Let Py — Spec Z[M] be the blow-up of
the spectrum of the monoid algebra Z[M] by the ideal H(m/)eA/,(H;:l e, H;//:l el).
We show that the scheme P is obtained by naturally patching Z[M,]| for o € X.
It is obtained by patching U. = Spec Z[M][(T],<; €;/ 1<y €,)°"), (i,i) € A”] for
e : A" — {£1}. For a map ¢ : A” — {£1}, we have U. = Spec Z[M,] where M, is
the submonoid M + (([T;<; €;/ [T <y €j)""), (i,i') € A") C M#P. For a face o € %,
we have M, = M + ([[;<;€;/ITj<y €5, 90, 1) = g(&,2); [ 1< €/ TLi<i €5, 900 1) <
g(i’,2)). Hence, if we put o. = {(i,7) € A”|fiw(z) > 0if v € M} for e : A" — {£1},
we have M, = M,_. Therefore Py is obtained by patching Z[M,| for o € X.

We show that X" is identified with (X Xg X') Xgpec zm) Po. We define a map
X xg X" — Spec Z[M] by e; — T;_; and e}, — T}, ;. Since the blow-up X" is obtained
by patching X XSX/[(ngz‘ tj/Hj/gi/ t;'/)e(i’j)> (4,5) € A" = (X x5 X') X spec z[M] Ue for
€ : A" — {£1}, it is identified with the fiber product (X xg X') X spec z(M] Ps-

We show 1. It is sufficient to show that (X xg X') Xgpee zn) Spec Z[M,] =
Spec Ok [M,]/(e1--- e, — ) is strictly semi-stable for ¢ € ¥. For r = Card o, the
monoid M, is isomorphic to N" x Zmtm =1=r and the composition of N — M — M,
with the projection M, — N" sends 1 to (1,...,1). Hence Ox[M,]/(e1---€m — ) is
isomorphic to Og[Si, ..., Sy, Ulil, . 7U$—1i-m/—1—r]/(sl -+ S, — ). Thus the assertion
follows.

We show 2. For (i,i') € A", the proper transform D7, is the closed subscheme
of X" corresponding to the face {(i,i)} € X. Hence D;y is a divisor of X" and
we have Xy = 3. can Div. For (i,4'),(4,5) € A", if either of (i,7) < (j,j) and
(7,7") < (4,4) is not satisfied, there is no face o € ¥ such that (i,4'), (j,j') € 0. Hence
for such (i,4'), (,7), the intersection D,y N D,j is empty.

For integers p, k > 0, we define a map ch,(f) L FRR(X") — CHFP(Y'®P) x p YP))q.
Let p1 : X" — X and po : X” — X’ be the compositions of X" — X xg X’ with the
projections. For subsets I C A and I’ C A’ with Card I = Card I, let I AN I' C A"
be the graph of the increasing bijection I — I'. It is a face of A”. Let fiap : Y]\, =
Nuinernr Diy — Y1 xp Yy denote the restriction of f. If Card I = Card I’ = p + 1,
we have dim(Y; xpY)) = n+n' —2p and dimY/,;, = n+n’ —p. We define a map
ch? : FEK(X") — CHFP(Y®) x YP) g by

chif’(a) = > Frnwe(chu(alyy,,))
I'CAI'CA’,Card I=Card I'=p+1

Proposition 1.24 Let X and X' be proper and strictly semi-stable schemes over S
of relative dimension n and n'. Let X" — X xg X' be the normalization of the blow-
up as in Lemma 1.22. Let a € FFK(X") be an element in the k-th ~y-filtration. Let

21



I = chi(a) be the image of a by chy : FFK(X") — CH*( Xk x ¢ Xy)q and, forp >0,
let T'?P) = ch,(fp)(a) € CH*P(Y®) xp Y'P)q be the element defined above. Let A = Q.
Then, we have a map of weight spectral sequences

EP = @y HTE VT A=) = HP+i(Xp, A)
@f(p+2i)*l lr\*
BV = @ HoERE (I N (=it k- n)=HPRE (X Ak — ).
i>max(0,—p)

Proof. The map I'* : H" (X, A) — H™ 2% (X, A(k —n)) is the composition of

HY (X5, A) 2 HY (X x g X', A) 2

H (X xx X g, A(K))
s HR (X Ak — n))

and, for p > 0, the map T'®)* : HT(Y}Q@),A) — HT+2(’“_“)(YFEP),A(I§ —n)) is the compo-
sition of

H(Y® Ay 2 gy @y Dw)?

F F

Hr+2k(YI;’(P) : A(k))

e, gk (v P A (K — ).
Hence the assertion follows from Propositions 1.14, 1.18 and 1.21.

2. Independence of /.

Let Xx be a proper smooth scheme of dimension n over a field K, ¢ € Gk,
I'e CH"(Xk Xk Xk) and ¢ be a prime number different from the characterstic of K.
Recall that the map I'" : H"(Xg, Qi) — H" (X, Q) is defined as the composition

HY(Xje, Qo) ™ HY (X i X)jey Q) = HYP20 (X e X) e, Qulm) ™ H' (X, Qo)
where [['] € H*((Xkx Xx Xk)i,Qe(n)) denotes the image by the cycle map. We
compute the alternating sum Tr (I'* o 0, : H*(Xg,Qe)) using an alteration. Let
L be a finite normal extension K, W be a proper and smooth scheme over L and
f: Wr — Xk be a proper, surjective and generically finite morphism over K. We fix
an embedding Ly — K of the separable closure Ly of K in L and let o also denote
the extension to L of the restriction of ¢ to Ly. Let pro : W, = Wy xp L — L
be the base change by o and f, denote the composition f o pry : W, — X. Let
'y € CH"(Wp, x1, W, 1) be the pull-back (f x f,)*I' of I" by f X fo : Wi, xp Wop —
Xk Xg Xg. It induces a homomorphism I’} : H*(W, 7, Q) — H*(Wz, Q). The
isomorphism ¢* = 1 x 0" : W, — Wp = W X L also induces an isomorphism
0 = (0" H (W, Q) — H* (W, 1, Qu).

Lemma 2.1 We have an equality

(Wr: Xp)Tr (I oo : H'(Xg, Q) =Tr (I, oo : H (W, Qu)).
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Proof. We prove the equality by showing the commutativity of the diagram.

ox ” rs *
H*(WZ,Qg) — H (Wcr,[_nQé) — H (W[_nQé)

| ] o

H*(XR'>Q€) U—*) H*(XR'>Q€) T) H*(XR'>Q€)

We show the commutativity. By the functoriality of the cycle map, the pull-back of
the class [[] € H*(Xg x Xg,Qu(d)) by f x f, is [[y] € H*(Wz x W, 1,Qu(d)).
Therefore, by the definition of the map I'" : H*(Xg, Q/) — H*(Xg, Q) and of '} :
H* (W, :,Q¢) — H*(Wg,Qy), the right square is commutative. The left square is
commutative by the transport of structure.

We show the equality. Since f.of* is the multiplication by the degree [Wp, : X ], the
map f*: H*(Xg, Qv) — H*(Wz, Q) is injective. By the commutative diagram above,
the image Im I'} oo, is a subspace of Im f*. Hence the trace Tr (I'; oo, : H*(WE, Qu))
is equal to the trace of the restriction on Im f*. Thus we obtain

Tr (F; OO0« : H*(WZ>Q€)) =Tr (F* ©0x0 f* o f* : H*(XR'>Q€))
=[Wr: X.]Tr (T" oo, : H (X, Qu)).

To prove Theorem 0.1, we apply the following theorem on alteration.

Lemma 2.2 ([2] Theorem 5.9) Let K be a local field and Xk be a proper scheme
over K. Then there exist a finite normal extension L of K, a strictly semi-stable and
projective scheme W over the integer ring O, and a proper, surjective and generically
finite morphism f : W — Xg over K.

Proof of Theorem 0.1. Since Tr (I o0, : H*(Xg, Qy)) is in Zy, it is sufficient to show
that Tr (I o0, : H*(Xg, Qe)) is a rational number independent of £. First we prove
the case n(o) > 0, where n(o) is the integer such that the image of o by Gx — Gp is
F T;(U).

Let L,W — Spec Oy, and f : W, — Xk be as in Lemma 2.2. Let W, = W x¢, O,
fo :Wor — Xand I'y = (f x f,)'T' € CH" (W, x1, W, 1) be as in Lemma 2.1. By
Lemma 2.1, it is sufficient to show that Tr (I'; oo, : H*(W}, Qy)) is a rational number
independent of /. Let E be the residue field of L and V' = Wg be the closed fiber. We
identify the closed fiber V; = W, i with the base change V x g E by themapo : £ — E
induced by ¢. By numbering the irreducible components of V' and V;, we define the
blow-up W” — W xo, W, as in Lemma 1.22. By Lemma 1.20, there exists an element
a € F"K(W")q such that ch,(a) =T, € CH"(W, X W,1)q. For p > 0, we define
Y = chﬁlp)(a) € CH" P(VP) xp VC—,(p)) as in Proposition 1.24. Then by Proposition
1.24, we have a map of weight spectral sequences

iy 2i :
Eip’q = @iZmax(O,—P) Ho (Vc‘r(pE+ )7 Qé(_z))éHerq(WUaZ’ Qé)

@fgp-‘r%)*l ll";

EP" = @,y HH (VT Qul(—i)) = HPH (W, Q).
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By transport of structure, we have an isomorphism of spectral sequences
—92 21 .
EP = D5 maxo,—py H 2 (VI Qu(—i)) = HP (W, Q)

@+ l lf’*

P! = @izmasto. ) 12 (V™ Q=) = HP (Wi 1, Q).

For p > 0, let o é’éém : Vﬁ(p Ez — VEEP ) denote the composition /™ o g*®) where ¢ denote
the absolute Frobenius and ¢ = p/ is the order of the residue field F'. It is a morphism

of schemes over E. Since the action of the absolute Frobenius on HY (VEEP ), Q) is the
identity, we obtain an endomorphism of spectral sequences

Y 2 .
E?q = @iZmax(O,—P) H (VE£p+ )7 QE(_Z)):> Hp+q(WZ> QE)
ST P20 o120 l ll“c*, 7
E?q = @iZmax(O,—p) Hq_2i(VE£p+2i)> QE(_Z‘)):>HP+(I(WZ> QE)
Hence we have an equality

Te(y 00w H\(Wi, Q) = Y (—1PTe(T8 0 020 o (VP Qu(—i)))

geoms*
i>max(0,—p)

= (1P (p+ VT(TP 00 HA (VY Qy)).
p=0

LetT ) €CH ”_p(Vﬁ(’% X VEEP )) be the class of the graph of agé?)m and let 'T ) €

geom * ) geom

CH"P (VEEP ) % V&(%) be its transpose. By Lefschetz Trace formula, we have

Tr (0 00 - H (VY Qo) = (N, 'T ) ).
The right hand side is the intersection number in VEEP 20 V&(;g ) and is a rational
integer independent of ¢. Thus the proof of the case n(¢) > 0 is completed.
The case n(o) < 0 is reduced to the case n(c) > 0 by the following Lemma.

Lemma 2.3 Let L and L' be a field of characteristic 0. Let Ay and By (resp. Ax
and By) be endomorphisms of L-vector spaces Vi (resp. of Vi) of finite dimensions
commutative to each other and let Ay and B (resp. A} and Bj) be endomorphisms
of L'-vector spaces Vy (resp. of V{) of finite dimensions commutative to each other.
Assume that Tr(AJ'Bj)—Tr(AT'BY) and Tr(A§"Bi*) —Tr(AT BY") are rational numbers
and
TH(A7 BY) — Tr(A7BY) = Te(APBY) — Te(A7BY)

for integers n,m > 0. If By, By, B, and B, are invertible, then Tr(AoBy ') —Tr(A; By )
and Tr(A)B,™Y) — Tr(Ay B are rational numbers and

Tr(AoBy ') — Tr(A1 By ') = Tr(A Byt — Tr(A,B).
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Proof. Since

det(1 — (B1 — AiT)S) > (Tr(By — AgT)" — Tr(By — A,T)™)
det(1 — (By — A,T)S) P 2. n

n=1

STL
we have

det(l — (Bl — AlT)S) . det(l — (Bi — AllT)S)

det(1 — (By — A¢T)S)  det(1 — (B) — ALT)S)
in Q(7,5)*. If we put

det(1 — (Br — AiT)S)  (itvng o .
det(1 — (By — AoT)S) (=57) ;fns

in Q(T)((S™1))* where ng = dim V5 — dim V3, we have fy = det(B; — AT/ det(By —
AoT) € Q(T)*. Hence we have

det(31 — AlT) . det(B{ — AllT)

det(By — AgT)  det(Bly — AyT)

in Q(T). If we put det(By — A1T)/det(By — AgT) = > oo e T™ € Q[[T]]*, we have
Tr(AgBy ') — Tr(A1 By ') = ¢1/co. Hence the assertion follows.

Proof of Corollary 0.2. Since H® and H* are the duals of H! and H? if n = 2, it is a
consequence of Theorem 0.1 and Lemma 2.4(1) below.

Lemma 2.4 Let K, Xg,n,r,0,I' and € be as in Theorem 0.1. If one of the following
conditions (1)-(3) is satisfied, the trace Tr(I'™* o o, : H"(Xg, Qu)) is in Z[1/q] and is
independent of (.

(1) r <1.

(2) X is an abelian variety.

(3) There exists an algebraic correspondence I', € CH™( Xk x Xk)q such that I';
on H*(Xg, Qu) is the identity if s =1 and 0 if s # r.

Proof. Since the trace Tr(I'* oo, : H"(Xg, Qy)) is in Zy, it is sufficient to show that it
is in Q and is independent of ¢. If the condition (3) is satisfied, it is sufficient to apply
Theorem 0.1 to the composition I',I". If Xk is an abelian variety, the condition (3) is
satisfied and the case (2) is reduced to the case (3). We reduce the case (1) to the case
(2). Since the case r = 0 is clear, we may assume r = 1.

We assume r = 1 and reduced it to the case where X is an abelian variety. We may
assume X is connected. Let L = I'( Xk, O) be the constant field of Xg. It is a finite
separable extension of K. Let Ay be the Albanese variety of the variety X over L and
let A% = Resy kAL be the Weil restriction. We identify H*(Xz, Q) with H'(Az, Q)
and H'(Xg, Q) = IndgX HY(X 1, Q) with H'(A%, Q) = IndGX H'(Af, Q). We will
define an endomorphism f of an abelian variety Ax such that the endomorphism I'* of
H' (X, Q) is identified with the endomorphism f* on H'(Ag, Q). Applying Lemma
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2.2 to a closed subscheme of Xx X X, we may assume that there exists a proper
smooth scheme Wy of dimension n and morphisms p;,ps @ Wx — Xk such that
I = pr.ops. Let M D L be the constant field of Wg. Replacing K by a purely
inseparable extension of K, we may assume M is a separable extension of K. Let By,
be the Albanese variety of the variety Wy over M and B}, = Resy;/x By be the Weil
restriction. By the functoriality, the map ps : W — Xk induces po, : Byr — Ap®p M.
We define py. : By — Ax to be the composition B}, = Resy/x By — Resa/x(Ar @1
Nuyyr

M) =" RespxAr = A. The map p; : H'( Xz, Qo) — H' (Wg, Qq) is identified with
g HY Ay, Qo) — H'(By, Qo).

Let A7 and Bj, be the Picard varieties of X over L and of Wx over M respec-
tively. They are identified with the dual abelian varieties of Ay and of Bjy;. The
Weil restrictions A% = Resy g A} and By = Resy g B}, are identified with the dual
of A} and of Bj respectively. The push-forward of invertible sheaves defines a map
p1e : By — Aj} @1 M of abelian varieties over M. We identify H'(Xz, Q,(1)) and
H" (W7, Qe(1)) with the Tate modules T;A ® Q; and TyB}; ® Q. Then the map
Pt H'(Wir, Qu(1)) — HY (X7, Qu(1)) is identified with the map (p1.)« : T¢Bi, @ Qr —
T A7 @ Q. Let (p1y)* : Ay — By be the dual of the composition By = Resy /By, —

N
Resa i (A5 @, M) X" Resy xA; = A% Then the map pr. : H'(Wy, Qu(1)) —

H'(X7,Q(1)) is the same as the pull-back by the map (p1.)* : Ay — Bj. Therefore
the composition T* = py, o ps on H' (X, Q) is the pull-back f* by the endomorphism
f = paco (pr)*: Ay — Al Hence the case r = 1 is reduced to the case where X is
an abelian variety. Thus Lemma is proved.

We prove Corollary 0.6 by comparing the monodromy filtration with the weight
filtration.

Lemma 2.5 Let X be a proper and strictly semi-stable scheme over the integer ring
of a local field K and let v > 0 be an integer. Let Wy be the weight filtration on
H" (XR'7 Qé)

1. We have W, H" (X, Q) = H (Xg, Qr) and W_,_1H"(Xg, Q) = 0. Fors € Z,
the nilpotent monodromy operator N € End(H" (X, Qr))(1) maps Wy to Wy_s.

2. Let 0 € Wi be an element of the Weil group with n(c) > 0 and s be an integer.
Let « be an eigenvalue of the action of o on Gr¥Y H"(Xg, Q). Then « is an algebraic
integer and the complex absolute values of their conjugates are ¢r9)@)/2.

Proof. 1. Clear from the definition of the weight filtration.
2. A consequence of the Weil conjecture [5].

Corollary 2.6 Let X be a proper and strictly semi-stable scheme over the integer ring
of a local field K and let r > 0 be an integer. Then Conjecture 0.5 for H" (X, Q) is
true if and only if the monodromy filtration and the weight filtration on H"(X g, Q)
are the same.

Lemma 2.7 Let Xk be a proper smooth scheme over a local field K. Then Conjecture
0.5 is true forr < 2.
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Proof. In [14] Satz 2.13, Conjecture 0.5 is proved for a proper and strictly semi-stable
scheme X over the integer ring of a local field K assuming dim X < 2. We reduce it to
this case. By Lemma 2.2, there is a finite extension L of K, a projective smooth scheme
W, over L and a proper surjective and generically finite morphism f : W, — Xg. Since
the restricition to G, C Gk of the representation H" (X, Q) is a direct summand of
H" (W3, Qq), it is sufficient to show the assertion for Wy, over L. By replacing Xx by
W, we may assume Xy is projective. Further replacing X by its hyperplane section,
we may assume dim Xx = r. Applying Lemma 2.2, we may assume that Xg is the
generic fiber of a projective and strictly semi-stable scheme X over the integer ring
Ok . Thus the assertion is proved.

Proof of Corollary 0.6. 1. By Lemma 2.4.(3),

(e e}

det(1— 0.7 : H'(Xg, Q) = exp(— Tr(o? H;(X;z, Qe))Tn)

n=1

is in Q[7'] and independent of ¢. It is sufficient to show that the eigenvalues of o, acting
on H"(Xg,Qy) is an algebraic integer. We may replace o by some power. Hence it
follows from Lemmas 2.2 and 2.5.2.

2. Similarly as above, it is sufficient to show that the trace Tr(o. : H"(Xg, Q/)’)
is a rational number independent of ¢. Let M,, F, and G* denote the monodromy,
the kernel and the image filtrations on H"(Xz, Q). By 1 and by the assumption
that H"(Xg, Q) satisfies Conjecture 0.5, the trace Tr(o. : GrMH"(Xg, Q) is a
rational number independent of /. By Proposition 1.2 and Lemmas 1.1, 1.3, we have an
isomorphism Gr H"( Xz, Qo) = @, ., GreGrE H (X g, Q). Further the map N :
GreGri H (X g, Qo) — Gri?' FoH™ (X, Qe)(—t) is an isomorphism. Hence we have
an equality Tr(o, : GrMH" (X, Qo)) = >, @' Tr(ow s Grig? FoH™ (X, Q). From
this we deduce that Tr(o. : Grb FoH" (Xg, Q) and hence Tr(o. : FoH (X7, Qo)) =
> Tr(ow : GriFoH (X, Qe)) are rational numbers independent of ¢. The action
of the inertia I on FyH"(Xg, Q) factors through a finite quotient //J and the I-
fixed part H"(Xg, Q)" is equal to (FoH"(Xg,Q))!/’. Hence, for a complete set
T C I of representatives, we have [I : J] - Tr(oy : H(Xg, Qo)') = > o Tr((o o 7). -
FoH"(Xg,Qy)) and the assertion follows.

Proof of Corollary 0.4. The assertion 1 follows from Corollary 0.2 by the same argument
as in the proof of Corollary 0.6.1. The assertion 2 follows from Corollary 0.6.1 and
Lemma 2.7.
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