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Summary: For a variety over a local field, we show that the alternating sum of
the trace of the composition of the actions of an element of the Weil group and an
algebraic correspondence on the �-adic etale cohomology is independent of �. We prove
the independence by establishing basic properties of weight spectral sequences [14].
We derive them from a new formal construction of weight spectral sequences using the
machinary of perverse sheaves.

Let K be a complete discrete valuation field with finite residue field F of order
q. We call such a field a local field. The geometric Frobenius FrF is the inverse of
the map a �→ aq in the absolute Galois group GF = Gal(F̄ /F ). The Weil group WK

is defined as the inverse image of the subgroup 〈FrF 〉 ⊂ GF by the canonical map
GK = Gal(K̄/K) → GF .

Theorem 0.1 Let XK be a proper smooth scheme of dimension n over a local field K,
σ ∈ WK be an element of the Weil group and Γ ∈ CHn(XK ×K XK) be an algebraic
correspondence on XK. Then, for a prime � different from the characteristic of F , the
alternating sum

Tr(Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)) =
2n∑
r=0

(−1)rTr(Γ∗ ◦ σ∗ : Hr(XK̄ ,Q�))

is in Z[1/q] and is independent of �.

In the case Γ is the diagonal ∆, it is proved in [15]. If σ is in the wild ramification
group P ⊂WK , it is proved in [12]. If XK is an abelian variety, individual Tr(Γ∗ ◦ σ∗ :
Hr(XK̄ ,Q�)) is known to be independent of � [7].

Corollary 0.2 Assume further n = dimXK ≤ 2. Then, for 0 ≤ r ≤ 2n, the trace

Tr(Γ∗ ◦ σ∗ : Hr(XK̄ ,Q�))

is in Z[1/q] and is independent of �.
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As an application of Theorem 0.1, we prove some cases of the following conjecture.
For σ ∈WK , let n(σ) be the integer such that the image of σ by GK → GF is Fr

n(σ)
F .

Conjecture 0.3 (cf. [17] C4 and C5) Let XK be a proper smooth scheme over a local
field K, r ≥ 0 be an integer and � be a prime number invertible in F .

1. For σ ∈WK with n(σ) ≥ 0, the eigenpolynomial

det(1− σ∗T : Hr(XK̄ ,Q�))

is in Z[T ] and independent of �.
2. The eigenpolynomial

det(1− Fr∗T : Hr(XK̄ ,Q�)
I)

is in Z[T ] and independent of �.

If r ≤ 1, it is proved in [7]. If char K > 0, it is proved in [18]. As an application of
Theorem 0.1, we prove the following.

Corollary 0.4 If dimXK ≤ 2, Conjecture 0.3 is true.

To state more results on Conjecture 0.3, we recall the monodromy filtration and the
weight monodromy conjecture. Let I ⊂ GK be the inertia subgroup and t� : I → Z�(1)
be the canonical map sending σ ∈ I to (σ(π1/�

n
)/π1/�

n
)n ∈ Z�(1). By the monodromy

theorem of Grothendieck [16] Appendix, there exist a nilpotent endomorphism N ∈
End(Hr(XK̄ ,Q�))(−1) and an open subgroup J ⊂ I such that, for σ ∈ J , the action
of σ on Hr(XK̄ ,Q�) is given by exp(t�(σ)N). Let M• be the increasing filtration on
Hr(XK̄ ,Q�) characterized by the conditions

(1) Ms = Hr(XK̄ ,Q�) and M−s−1 = 0 for a sufficiently large integer s.
(2) For s ∈ Z, the map N sends Ms to Ms−2(1).
(3) For s ≥ 0, the induced map N s : GrMs → GrM−s(s) is an isomorphism.

The filtration M• is called the monodromy filtration. The following weight monodromy
conjecture asserts that the monodromy filtration gives the weight filtration.

Conjecture 0.5 [3] Let XK be a proper smooth scheme over a local field K and let
r ≥ 0 and s be integers. Let σ ∈WK be an element of the Weil group and n(σ) be the

integer such that the image of σ by GK → GF is Fr
n(σ)
F . Then, the eigenvalues of the

action of σ on GrMs H
r(XK̄ ,Q�) are algebraic numbers and the complex absolute values

of their conjugates are q(r+s)n(σ)/2.

Conjecture 0.5 is proved if r ≤ 2, [14] Satz 2.13, or char K > 0, [5], [11] [18].

Corollary 0.6 Let r ≥ 0 be an integer.
1. Assume there exists an algebraic correspondence Γr ∈ CHn(XK × XK)Q such

that Γ∗
r on Hs(XK̄ ,Q�) is the identity if s = r and 0 if s �= r. Then, Conjecture 0.3.1

is true.
2. Assume further that Hr(XK̄ ,Q�) satisfies the weight monodromy conjecture,

Conjecture 0.5. Then Conjecture 0.3.2 is true.
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Theorem 1 is derived rathar directly from basic properties of weight spectral se-
quences [14] for a semi-stable scheme over the integer ring using alteration [2]. In the
first part of this paper, we establish the necessary basic properties, Propositions 1.14,
1.16, 1.18, 1.19 etc. of weight spectral sequences such as functoriality, compatibility
with the duality, push-forward and chern classes etc. We prove them using a new
construction of weight spectral sequences. The construction is a consequence of the
identification, Proposition 1.11, of the graded pieces of the monodromy filtration on
the perverse sheaf of nearby cycles. We deduce the identification from the facts Propo-
sition 1.5 that the sheaves of nearby cycles are tame and that the Rf !Λ is a dualizing
sheaf for a semi-stable scheme, using some elementary linear algebra.

We expect that the same argument using the weight spectral sequence of Mokrane
[13] shows the equality

Tr(Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)) = Tr(Γ∗ ◦ σ∗ : DpstH
∗(XK̄ ,Qp)).

We plan to work this out in a forthcoming paper.
The new construction of the weight spectral sequence came out of inspiring discus-

sion with Luc Illusie. The author expresses sincere gratitude to him for the discussion
and encouragement. A large part of this work was done during a stay of the au-
thor at Université de Paris-Sud in May and June 2001. He thanks the invitation and
the hospitality. He also likes to thank K. Consani for discussions on weight spectral
sequences.

1. Weight spectral sequence.
1.1 Monodromy filtrations.
Let C be an abelian category, A be an object of C and n ≤ 0 be an integer. Let

F• be an increasing filtration on A satisfying F−1A = 0 and FnA = A and G• be
a decreasing filtration on A satisfying G0A = A and Gn+1A = 0. We put MrA =∑

p−q=r FpA∩GqA. The increasing filtration M• satisfies MnA = A and M−n−1A = 0.

We consider the filtrations on GrMr A = MrA/Mr−1A induced by F and G. They are
defined by FpGr

M
r A = Im(FpA ∩MrA → GrMr A) and GqGrMr A = Im(GqA ∩MrA →

GrMr A). Similarly, we consider the filtration GqGrFp A = Im(GqA ∩ FpA → GrFp A) on
GrFp A = FpA/Fp−1A induced by G.

Lemma 1.1 1. For integers p, q and r satisfying p − q = r, there is a canonical
isomorphism GrFp Gr

M
r A → GrqGGr

F
p A induced by the natural maps FpA ∩ GqA →

GrFp Gr
M
r A and FpA ∩GqA→ GrqGGr

F
p A.

2. The filtrations F and G on GrMr A are r-opposite to each other. Namely,
GrqGGr

F
p Gr

M
r A = 0 for p − q �= r. There is a canonical isomorphism GrMr A →⊕

p−q=r Gr
q
GGr

F
p A.

Proof. 1. The kernel of the surjection FpA ∩ GqA → GrGq Gr
p
FA is (Fp−1A ∩ GqA) +

(FpA ∩ Gq+1A). We show that the map FpA ∩ GqA → GrFp Gr
M
r A is surjective and

its kernel K is equal to (Fp−1A ∩ GqA) + (FpA ∩ Gq+1A). We show FpA ∩MrA =
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∑
p′−q′=r,p′≤p Fp′A ∩ Gq

′
A. Since MrA ⊂ ∑

p′−q′=r,p′<p(Fp′A ∩ Gq
′
A) + GqA, we have

FpA∩MrA ⊂
∑

p′−q′=r,p′<p(Fp′A∩Gq
′
A)+(FpA∩GqA). The other inclusion is obvious.

It follows immediately from this equality that the map FpA ∩ GqA → GrFp Gr
M
r A is a

surjection. We show that the kernelK = (FpA∩GqA∩Mr−1A)+(FpA∩GqA∩Fp−1A∩
MrA) is equal to (Fp−1A ∩ GqA) + (FpA ∩ Gq+1A). Since Mr−1A ⊂ Fp−1A + Gq+1A,
we have K ⊂ (FpA ∩ GqA) ∩ (Fp−1A + Gq+1A) = FpA ∩ ((Fp−1A ∩ GqA) + Gq+1A) =
(Fp−1A ∩ GqA) + (FpA ∩ Gq+1A). The other inclusion is obvious. Thus the required
isomorphism GrFp Gr

M
r A→ GrqGGr

F
p A is defined.

2. By 1, we have Grq
′
GGr

F
p Gr

M
r A = 0 for p− q′ �= r and the filtrations F and G on

GrMr A = MrA/Mr−1A are r-opposite to each other. By [4] Proposition (1.2.5), we have
a canonical isomorphism GrMr A→

⊕
p−q=r Gr

q
GGr

F
p Gr

M
r A. Hence we have a canonical

isomorphism GrMr A→
⊕

p−q=r Gr
q
GGr

F
p A.

Let N be a nilpotent endomorphism of A and n ≥ 0 be an integer satisfying Nn+1 =
0. Then there exists a unique increasing filtration filtration M• on A characterized by
the following properties (1)-(3).

(1) MnA = A and M−n−1A = 0.
(2) N : A→ A sends MrA into Mr−2A for r ∈ Z.
(3) If r ≥ 0, the induced map N r : GrMr A→ GrM−rA is an isomorphism.

The filtration M• is called the monodromy filtration defined by N . We define an
increasing filtration F• by FpA = Ker(N p+1 : A → A) and a decreasing filtration G•

by GqA = Im(N q : A → A). We have F0A = Ker(N : A → A) and G0A = A. We
call F• the kernel filtration and G• the image filtration. The monodromy filtration is
described by the kernel filtration and the image filtration as follows.

Proposition 1.2 Let N be a nilpotent endomorphism of A and let M•, F• and G•

be the monodromy, kernel and the image filtrations on A. Then we have MrA =∑
p−q=r(FpA ∩GqA).

Proof. We put M ′
rA =

∑
p−q=r(FpA ∩ GqA) and show that the filtration M ′

• satisfies

the conditions (1)-(3) above. Let n ≥ 0 be an integer satisfying Nn+1 = 0. Since
FnA = A, F−1A = 0 and G0A = A,Gn+1A = 0, we have M ′

nA = A and M ′
−n−1A = 0

and the condition (1) is satisfied. Since NFpA ⊂ Fp−1A and NGqA ⊂ Gq+1A, we have
NM ′

rA ⊂ M ′
r−2A and the condition (2) is satisfied.

We show that the induced map N r : GrM
′

r A → GrM
′

−rA is an isomorphism to
complete the proof. As in Lemma 1.1, we identify GrM

′
r A =

⊕
p−q=r,p≥0,q≥0Gr

q
GGr

F
p A

and GrM
′

−rA =
⊕

p−q=r,p−r≥0,q+r≥0Gr
q+r
G GrFp−rA. It is sufficient to show that the map

N r : GrqGGr
F
p A → Grq+rG GrFp−rA is an isomorphism for p ≥ r ≥ 0 and q ≥ 0. We

deduce it from the following Lemma.

Lemma 1.3 For p, q ≥ 0, the induced map N q : GrFp+qA→ GrFp A is an injection. Its
image is equal to GqGrFp A.
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We complete the proof of Proposition 1.2 admitting Lemma 1.3. By Lemma 1.3,
the maps N q : GrFp+qA/NGr

F
p+q+1A → GrqGGr

F
p A and N q+r : GrFp+qA/NGr

F
p+q+1A →

Grq+rG GrFp−rA are isomorphisms. Hence the assertion follows.

Proof of Lemma. By the definition of the kernel filtration, we have (N q)−1Fp+1A =
Fp+q+1A for p, q ≥ 0. Hence, the induced map N q : GrFp+qA → GrFp A is injective.
Similarly, we have GqA∩FpA = Im(N q : Fp+qA→ FpA). Hence we obtain GqGrFp A =
Im(GqA ∩ FpA→ GrFp A) = Im(N q : GrFp+qA→ GrFp A).

We give a characterization of the kernel filtration under a certain hypothesis.

Lemma 1.4 Let A be an object of an abelian category C, N be an endomorphism of
A and n ≥ 0 be an integer. Let F ′

• be an increasing filtration of A satisfying F ′
−1A = 0

and F ′
nA = A.

1. If the following condition (1) is satisfied, we have Nn+1 = 0.
(1) For p ≥ 0, the map N sends F ′

pA to F ′
pA and the induced endomorphism

N : GrF
′

p A→ GrF
′

p A is the 0-map.
2. Assume the condition (1) is satisfied and let FpA = Ker(N p+1 : A → A) be the

kernel filtration. Further if the following conditions (2) and (3) are satisfied, we have
FpA = F ′

pA for p ≥ 0.
(2) F0A = F ′

0A.
(3) For p ≥ 0, there is no non-0 map from a subobject of Coker(N : GrF

′
p+1A →

GrF
′

p A) to GrF
′

p′ A for p′ > p + 1.

Proof. 1. The condition (1) means NF ′
pA ⊂ F ′

p−1A. Hence Np+1F ′
pA = 0 and the

assertion follows.
2. Since Np+1F ′

pA = 0, we have FpA ⊃ F ′
pA. We show FpA = F ′

pA by induction
on p ≥ 0. By (2), it holds for p = 0. We assume F ′

p′A = Fp′A for p′ ≤ p and show
F ′
p+1A = Fp+1A. We show Fp+1A/F

′
p+1A = 0. By the induction hypothesis, we have

GrFp A = GrF
′

p A. Since the map N : GrFp+1A → GrFp A is injective, it induces an

injection Fp+1A/F
′
p+1A = GrFp+1A/Gr

F ′
p+1A → Coker(N : GrF

′
p+1A → GrF

′
p A). By the

assumption (3), there is no non-zero map Fp+1A/F
′
p+1A→ GrF

′
p′ A for p′ > p+1. Hence

the injection Fp+1A/F
′
p+1A→ A/F ′

p+1A = F ′
nA/F

′
p+1A is the 0-map and the assertion

follows.

1.2 Nearby cycles on semi-stable schemes.
Let K be a henselian discrete valuation field with residue field F . The spectrum

of the integer ring OK will be denoted by S. We say a scheme X locally of finite
presentation over S is strictly semi-stable of relative dimension n if it is, Zariski locally
on X, etale over Spec OK [T0, . . . , Tn]/(T0 · · ·Tn−π) for a prime element π of K. If the
residue field F is perfect, a scheme X locally of finite presentation over S is strictly
semi-stable if and only if the following conditions (1)-(3) are satisfied.

(1) X is regular and flat over S.
(2) The generic fiber XK is smooth.
(3) The closed fiber XF is a divisor of X with simple normal crossings.
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In the rest of the paper, X denotes a strictly semi-stable scheme over OK of relative
dimension n and Y = XF denotes the closed fiber of X. Let K̄ be a separable closure of
K andKur be the maximum unramified extension of K in K̄. Let F̄ be the residue field
of Kur. It is a separable closure of F . Let I = Gal(K̄/Kur) ⊂ GK = Gal(K̄/K) be the
inertia subgroup. It is the kernel of the canonical surjection GK → GF = Gal(F̄ /F ).
For a prime number � invertible in F , let t� : I → Z�(1) be the canonical surjection
defined by σ �→ (σ(π1/�

n
)/π1/�

n
)n for a prime element π of K. Let Sur denote the

spectrum of the integer ring OKur . Let i : Y = XF → X, j : XK → X, ī : YF̄ → XSur

and j̄ : XK̄ → XSur be the canonical maps.
Let � be a prime number invertible in OK and let Λ denote either of Z/�mZ,Z� and

Q�. For p ≥ 0, let RpψΛ = ī∗Rpj̄∗Λ denote the sheaf of nearby cycles. It is a sheaf on
YF̄ with an action of GK compatible with the action of the quotient GF = GK/I on
YF̄ . Similarly RψΛ = ī∗Rj̄∗Λ is defined as a object of the derived category on YF̄ with
an action of GK .

In this subsection, we recall an explicit computation, Corollary 1.6 below, of the
sheaves RpψΛ (cf. [14]). We deduce it from the following Proposition. We identify a
sheaf on Y with its pull-back on YF̄ with the GF -action.

Proposition 1.5 Let f : X → S = Spec OK be a strictly semi-stable scheme of
relative dimension n. Then

1. ([10] Theorem 1.2, [14] Korollar 2.25) The action of the inertia subgroup I on
RpψΛ is trivial for p ≥ 0.

2. ([10] Theorem 1.4) The map Λ → Rf !Λ(−n)[−2n] sending 1 to the canonical
class [X] is an isomorphism.

We introduce some notation to state the computation of RpψΛ. Let D1, . . . , Dm

be the irreducible components of Y = XF . For a non-empty subset I ⊂ {1, . . . , m},
we put YI =

⋂
i∈I Di and let aI : YI → Y be the immersion. The scheme YI is smooth

of dimension n − p over F if Card I = p + 1. For an integer p ≥ 0, we put Y (p) =∐
I⊂{1,... ,m},Card I=p+1 YI and let ap : Y (p) → Y be the natural map. We put a−1 = idY .

We identify the exterior power Λpa0∗Λ with a(p−1)∗Λ. Let θ : Λ → i∗R1j∗Λ(1) be the
map defined by the class [π] ∈ H1(K,Λ(1)) of a prime element π ofK. It is independent
of the choice of π. Let θ also denote the map i∗Rp−1j∗Λ → i∗Rpj∗Λ(1) induced by θ
by the cup-product.

Corollary 1.6 1. Let p ≥ 0 be an integer. The canonical map i∗Rpj∗Λ → RpψΛ
is surjective. The map θ : i∗Rp−1j∗Λ → i∗Rpj∗Λ(1) induces a map θ̄ : Rp−1ψΛ →
i∗Rpj∗Λ(1). The sequences

0 −−−→ Rp−1ψΛ
θ̄−−−→ i∗Rpj∗Λ(1) −−−→ RpψΛ(1) −−−→ 0,

0 −−−→ RpψΛ
θ̄−−−→ i∗Rp+1j∗Λ(1)

θ−−−→ . . .
θ−−−→ i∗Rnj∗Λ(n− p) −−−→ 0

are exact.
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2. (cf. [10] Remarks 1.5 (c), [14] Satz 2.8) The map a0∗Λ → i∗R1j∗Λ(1) sending 1
on an irreducible component Di to the class of a uniformizer of Di is an isomorphism.
For p ≥ 0, the cup-product induces an isomorphism a(p−1)∗Λ → i∗Rpj∗Λ(p).

To deduce Corollary 1.6 from Proposition 1.5, we apply the following Lemma.

Lemma 1.7 Let T be an element in the inertia I such that t�(T ) is a generator of
Z�(1). Then,

1. The isomorphism i∗Rj∗Λ → RΓ(I, RψΛ) induces a quasi-isomorphism with the
mapping fiber

i∗Rj∗Λ −−−→ Fiber[RψΛ
T−1−−−→ RψΛ].

2. ([14] Lemma 1.2) Let θ : i∗Rj∗Λ → i∗Rj∗Λ(1)[1] be the map defined by the class
[π] ∈ H1(K,Λ(1)) = Hom(Λ,Λ(1)[1]) of a prime element π of K. Then the diagram

i∗Rj∗Λ −−−→ [0 −−−→ RψΛ
T−1−−−→ RψΛ]

θ

� �1⊗t�(T )

i∗Rj∗Λ(1)[1] −−−→ [RψΛ(1)
(T−1)⊗1−−−−−→ RψΛ(1) −−−→ 0]

is commutative, where the horizontal maps are the isomorphism in 1.

Proof of Lemma. 1. By Proposition 1.5.1, the natural map RψΛP → RψΛ is an
isomorphism. Hence, the isomorphism i∗Rj∗Λ → RΓ(I, RψΛ) induces an isomorphism
i∗Rj∗Λ → RΓ(I/P,RψΛ). Since I/P is a cyclic group generated by T , the assertion
follows.

Proof of Corollary 1.6. 1. By Proposition 1.5.1 and Lemma 1.7.1, we obtain an exact

sequence 0 → Rp−1ψΛ
∂→ i∗Rpj∗Λ → RpψΛ → 0 where ∂ : Rp−1ψΛ → i∗Rpj∗Λ is

the boundary map. We show that the composition i∗Rp−1j∗Λ → Rp−1ψΛ
∂→ i∗Rpj∗Λ

tensored with the map Λ → Λ(1) sending 1 to t�(T ) is equal to the cup-product with
[π] ∈ H1(K,Λ(1)). We may assume that the residue field is separably closed. Then the
class [π] ∈ H1(K,Λ(1)) is identified with the class of t� ∈ Hom(I,Λ(1)) = H1(K,Λ(1)).
By Lemma 1.7.2, the twisted composition i∗Rp−1j∗Λ → i∗Rpj∗Λ(1) is the same as the
map θ : i∗Rp−1j∗Λ → i∗Rpj∗Λ(1). Thus the assertions except the last exact sequence
are proved. The last exact sequence is deduced from the first one inductively.

2. More precisely, we prove the following Lemma. Let i(p) = i ◦ ap : Y (p) → X for
p ≥ 0 be the canonical map. The map i(p) : Y (p) → X is the disjoint sum of regular
immersions of codimension p + 1.

Lemma 1.8 Let p ≥ 0 and consider the diagram

i∗Rp+1j∗Λ(p+ 1) ←−−− ap∗Λ� �
Rp+2i!Λ(p+ 1) −−−→ ap∗R2p+2i(p)!Λ(p+ 1)

7



with the arrows defined as follows. The top horizontal is defined by the cup product of
the map a0∗Λ → i∗R1j∗Λ(1) in Corollary 1.6.2. The left vertical is the boudary map.
The bottom horizontal is induced by the dual of the quasi-isomorphism ΛY → [a0∗Λ →
· · · → ap∗Λ → · · · → an∗Λ]. The right vertical is the map sending 1 to the canonical
class [Y (p)]. Then the arrows are isomorphisms and the diagram is commutative.

Proof. First we show that the three arrows except the top horizontal one are isomor-
phisms. It is clear for the left vertical arrow. We show that the right vertical arrow is
an isomorphism. Let i0 : s → S be the immersion of the closed point and, for p ≥ 0,
let f (p) : Y (p) → Spec F be the canonical map. The map f (p) is smooth of relative
dimension n − p. Identifying Ri(p)!Rf !Λ = Rf (p)!Ri!0Λ, we consider a commutative
diagram

Λ(n− p)[2(n− p)] −−−→ i(p)∗Rf !Λ(−p)[−2p]� �
Rf (p)!Λ −−−→ Rf (p)!Ri!0Λ(1)[2] = Ri(p)!Rf !Λ(1)[2].

(1)

The maps are induced by those sending 1 to the canonical classes. The top horizontal
arrow is an isomorphism by Proposition 1.5.2, the left vertical is an isomorphism since
f (p) is smooth of relative dimension n−p and the bottom horizontal is an isomorphism
since OK is a discrete valuation ring. Hence the right vertical arrow is an isomorphism.
By Proposition 1.5.2, it implies that the right vertical arrow in the diagram of Lemma
1.8 is an isomorphism.

We show that the bottom horizontal arrow is an isomorphism. We have Ri!Λ =
RHomΛX

(i∗Λ,ΛX) and Ri(p)!Λ = RHomΛX
(i

(p)
∗ Λ,ΛX). By the quasi-isomorphism

ΛY → [a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ], we obtain a spectral sequence Ep,q
1 =

Rqi(−p)!Λ ⇒ Rp+qi!Λ. By the isomorphism Λ → Ri(p)!Λ(p + 1)[2(p + 2)], we have
Ep,2p

1 = ΛY (p)(−(p+ 1)) and Ep,q
1 = 0 for q �= 2p. Thus the spectral sequence degener-

ates at E1 and we obtain an isomorphism Rpi!Λ → R2pi(p)!Λ. The bottom horizontal
arrow is induced by this isomorphism with p replaced by p+ 1 and is an isomorphism.

To complete the proof, we show that the diagram is commutative. Shrinking X,
we may assume Y = D0 ∪ · · · ∪ Dp and Y (p) = D0 ∩ · · · ∩ Dp. We have Rj∗Λ =
RHomΛX

(j!Λ,ΛX). From the exact sequence 0 → j!Λ → ΛX → ΛY → 0, we obtain a
quasi-isomorphism j!Λ → Fiber(ΛX → ΛY ). The map i∗Rj∗Λ → Ri!Λ[1] is the dual of
the map ΛY [−1] → j!Λ defined by the commutative diagram

ΛY [−1] −−−→ Fiber(ΛX → ΛY )� ∥∥∥
j!Λ −−−→ Fiber(ΛX → ΛY ).

Hence the composition i∗Rj∗Λ → Ri!Λ[1] → Ri(p)!Λ[p+1] is the dual of the composition

of the natural map ΛY (p) [−(p + 1)] → [ΛX → i
(0)
∗ Λ → · · · → i

(p)
∗ Λ] with the inverse
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of the quasi-isomorphism j!Λ → [ΛX → i
(0)
∗ Λ → · · · → i

(p)
∗ Λ]. For 0 ≤ i ≤ p, let

ii : Di → X, i′i : Di → Y and ji : X−Di → X be the immersions. By the commutative
diagram ⊗p

i=0 ji!Λ −−−→ ⊗Lp

i=0[ΛX → ΛDi]� �
j!Λ −−−→ [ΛX → i

(0)
∗ Λ → · · · → i

(p)
∗ Λ],

we obtain a commutative diagram⊗p
i=0 i

′
i∗Λ −−−→ ⊗p

i=0R
1ji∗Λ(1) −−−→ ⊗p

i=0R
2i!iΛ(1)� � �

ap∗Λ −−−→ Rp+1j∗Λ(p+ 1) −−−→ R2(p+1)i!Λ(p+ 1).

Since the canonical class is defined as the product, the assertion follows.

1.3 Construction of weight spectral sequences.
Let X be a strictly semi-stable scheme of relative dimension n over S = Spec OK as

in the previous section. Let C be the abelian category of perverse Λ-sheaves on Y = XF

[1]. In the terminology of perverse sheaves, Corollary 1.6 implies the following.

Lemma 1.9 1. The complex A = RψΛ[n] is a perverse sheaf.
2. The shifted canonical filtration F ′

pA = τ≤p−nA = (τ≤pRψΛ)[n] is a filtration of a
perverse sheaf A = RψΛ[n] by sub perverse sheaves.

3. Let p ≥ 0 be an integer. Then, the graded piece GrF
′

p A = RpψΛ[n − p] is
quasi-isomorphic to the complex

[i∗Rp+1j∗Λ(1)
θ−−−→ · · · θ−−−→ i∗Rnj∗Λ(n− p)]

where i∗Rnj∗Λ(n− p) is put on degree 0. The truncation

[i∗Rp+q+1j∗Λ(q + 1)
θ−−−→ · · · θ−−−→ i∗Rnj∗Λ(n− p)]

defines a filtration G′qGrF
′

p A of GrF
′

p A by sub perverse sheaves.

Proof. Since Y (p) is smooth of dimension n−p and ap : Y (p) → Y is finite, the complex
ap∗Λ[n−p] is a perverse sheaf. By the isomorphism a(p−1)∗Λ → i∗Rpj∗Λ(p) in Corollary
1.6.2, the complex i∗Rpj∗Λ(p)[n − (p + 1)] is a perverse sheaf. The assertions follow
from this and Corollary 1.6.1 immediately.

Corollary 1.10 There is a canonical isomorphism

Gr′qGGr
F ′
p A −−−→ a(p+q)∗Λ(−p)[n− (p+ q)]

of perverse sheaves.
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Proof. By definition of the filtrationG′, we have a canonical isomorphismGr′qGGr
F ′
p A→

i∗Rp+q+1j∗Λ(q + 1)[n − (p + q)]. It is sufficient to compose it with the inverse of the
shifted and twisted of the isomorphism a(p+q)∗Λ → Rp+q+1j∗Λ(p + q + 1) in Corollary
1.6.2.

In the case p = 0, the canonical isomorphism Gr′qGGr
F ′
0 A → aq∗Λ[n− q] is defined

by the canonical quasi-isomorphism Λ → [a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ]. In fact,
since the map θ : Λ → i∗R1j∗Λ(1) is equal to the composition Λ → a0∗Λ → i∗R1j∗Λ(1)
of the canonical maps, the diagram

Λ −−−→ a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ� � � �
R0ψΛ −−−→

θ̄
i∗R1j∗Λ(1)→

θ
· · · →

θ
i∗Rp+1j∗Λ(p+ 1)→

θ
· · · →

θ
i∗Rn+1j∗Λ(n+ 1)

is commutative (cf. [14] Satz 2.9). Hence the assertion follows.

Proposition 1.11 Let X be a strictly semi-stable scheme of relative dimension n over
S = Spec OK. Let T be an element of the inertia group I such that t�(T ) is a generator
of Z�(1).

1. The operator ν = T − 1 on A = RψΛ[n] satisfies νn.
2. Let M• be the monodromy filtration on A defined by ν. Then there exists a

canonical isomorphism

GrMr A→
⊕
p−q=r

a(p+q)∗Λ(−p)[n− (p + q)].

The filtration M and the canonical isomorphism are independent of the choice of T .

If Λ = Q�, the nilpotent monodromy operator N defines a monodromy filtration
on A. It is the same as the filtration in Proposition 1.11.2. We also call the induced
filtration M• on RψΛ = A[−n] the monodromy filtration.

Corollary 1.12 ([14] Satz 2.10) Assume further X is proper over OK. Then the
monodromy filtration M• on RψΛ induces a spectral sequence

Ep,q
1 =

⊕
i≥max(0,−p)

Hq−2i(Y
(p+2i)

F̄
, RψΛ(−i)) ⇒ Hp+q(XK̄ ,Λ).

The spectral sequence in Corollary 1.12 is called the weight spectral sequence. The
induced increasing filtration W• on the limit Hr(XK̄ ,Λ) is called the weight filtration.
Proof of Corollary 1.12. The monodromy filtration M• on RψΛ induces a spectral
sequence Ep,q

1 = Hp+q(YF̄ , Gr
M
−pRψΛ) ⇒ Hp+q(YF̄ , RψΛ) = Hp+q(XK̄ ,Λ). By Proposi-

tion 1.11, the E1-term Ep,q
1 is canonically isomorphic to

Hp+q(YF̄ ,
⊕

i≥max(0,−p)
a(p+2i)∗Λ(−i)[−(p+ 2i)]) =

⊕
i≥max(0,−p)

Hq−2i(Y
(p+2i)

F̄
,Λ(−i)).

We deduce Proposition 1.11 from the following Lemma.
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Lemma 1.13 1. νn+1 = 0 and the kernel filtration FpA = Ker(νp+1 : A→ A) is equal
to the shifted canonical filtration F ′

pA = τ≤p−nA = (τ≤pRψΛ)[n].

2. For p, q ≥ 0, the image Im(νq : GrF
′

p+qA → GrF
′

p A) is equal to the filtration

G′qGrF
′

p A defined in Lemma 1.9.3.
3. Let p, q ≥ 0. For the canonical isomorphism in Corollary 1.10, the diagram

Gr′qGGr
F ′
p+1A −−−→ a(p+1+q)∗Λ(−(p+ 1))[n− (p+ 1 + q)]

ν

� �1⊗t�(T )

Gr′q+1
G GrF

′
p A −−−→ a(p+q+1)∗Λ(−p)[n− (p + q + 1)]

is commutative.

Proof of Proposition 1.11. We prove Proposition 1.11 admitting Lemma 1.13. We have
a canonical isomorphism GrMr A→ ⊕

p−q=r Gr
q
GGr

F
r A by Proposition 1.2 and Lemma

1.1. By Lemmas 1.3 and 1.13.2, we have GrqGGr
F
r A = GrqG′GrF

′
r A. By Corollary 1.10,

we have a canonical isomorphism GrqG′GrF
′

r A→ a(p+q)∗Λ(−p)[n− (p+ q)].
We show that the monodromy filtration M• is independent of T . Let T ′ be another

element of I such that tl(T
′) = utl(T ) for u ∈ Z×

� . Then the induced map GrMr A →
GrMr−2A by T ′ − 1 is uν. Hence M• is independent of T . The choice of T does not
appear in the definition of the canonical isomorphism.

Proof of Lemma 1.13. 1. We show that ν and F ′
• satisfy the conditions (1)-(3) in

Lemma 1.4. It is clear that ν = T − 1 maps F ′
pA to F ′

pA. By Proposition 1.5.1, the

induced map ν on GrF
′

p A = RpψΛ[n − p] is the 0-map. Hence the condition (1) is
satisfied and we have νn+1 = 0.

We show the condition (2) is satisfied. Namely we show that F ′
0A = Λ[n] = R0ψΛ[n]

is equal to F0A = Ker(T − 1 : A → A). By Lemma 1.9.1, the complex F ′
0A =

Λ[n] is a perverse sheaf on Y . By Lemma 1.8, we have an isomorphism Rp+2i!Λ →
ap∗Λ(−(p+1)). Hence the complex Ri!Λ[n+2] is a perverse sheaf. By the distinguished
triangle Ri!Λ → i∗Λ → i∗Rj∗Λ →, we have pH0(i∗Rj∗Λ[n]) = Λ[n], pH1(i∗Rj∗Λ[n]) =
Ri!Λ[n+ 2] and pHq(i∗Rj∗Λ[n]) = 0 for q �= 0, 1. Hence by Lemma 1.7.1, we obtain an
exact sequence

0 −−−→ Λ[n] −−−→ A
T−1−−−→ A −−−→ Ri!Λ[n + 2] −−−→ 0

of perverse sheaves. Therefore the canonical map Λ[n] = R0ψΛ[n] → Ker(T − 1 : A→
A) is an isomorphism and the condition (2) is satisfied.

We show the condition (3) is satisfied. First, we show that the cokernel of the
map ν : GrF

′
p+1A = Rp+1ψΛ[n − (p + 1)] → GrF

′
p A = RpψΛ[n − p] is isomorphic to

i∗Rp+1j∗Λ[n− p]. By Lemma 1.7.1, the bottom arrow of the commutative diagram

RψΛ Cone[0 → RψΛ]

T−1

� �Cone(0,id)

RψΛ ←−−−
T−1

Cone[i∗Rj∗Λ → RψΛ]
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is a quasi-isomorphism. Hence we have a commutative diagram

Rp+1ψΛ[n− (p + 1)] [0 → Rp+1ψΛ]

ν

� �
RpψΛ[n− p] −−−→ [i∗Rp+1j∗Λ→ Rp+1ψΛ]

(2)

where the bottom horizontal arrow is a quasi-isomorphism and Rp+1ψΛ in the right
column are put on degree p+1−n. Hence the cokernel is isomorphic to i∗Rp+1j∗Λ[n−
p] = ap∗Λ(−(p+ 1))[n− p].

We show that there is no non-0 map from a sub perverse sheaf of Coker(ν :
Rp+1ψΛ[n− (p+1)] → RpψΛ[n−p]) � ap∗Λ(−(p+1))[n−p] to GrF

′
p′ A = Rp

′
ψΛ[n−p′]

for p′ > p + 1. By Corollary 1.10, the perverse sheaf Rp
′
ψΛ[n − p′] is isomorphic

to a successive extension of a(p′+q)∗Λ(−(p + q + 1))[n − (p′ + q)] for q ≥ 0. Hence,
there is no non-0 map from a sub perverse sheaf of Coker(ν : Rp+1ψΛ[n− (p + 1)] →
RpψΛ[n− p]) � ap∗Λ(−(p + 1))[n − p] to GrF

′
p′ A if p′ > p. Thus the condition (3) is

also satisfied. By applying Lemma 1.4, we obtain FpA = F ′
pA for p ≥ 0.

2. By induction on q, we deduce a commutative diagram

Rp+qψΛ[n− (p + q)]
θ̄→ [0 → i∗Rp+q+1j∗Λ(1)

θ→ · · · θ→ i∗Rnj∗Λ(n− (p + q))]

νq

� �t�(T )
⊗q

RpψΛ[n− p]→̄
θ

[i∗Rp+1 j∗Λ(1) →
θ
· · · →

θ
i∗Rp+q+1j∗Λ(q + 1) →

θ
· · · →

θ
i∗Rnj∗Λ(n− p)]

from the commutative diagram (2) and the proof of Corollary 1.6. The horizontal
arrows are quasi-isomorphisms and i∗Rnj∗Λ(n − p) and i∗Rnj∗Λ(n − (p + q)) in the
right column are put on degree 0. Hence the assertion follows.

3. It follows from the commutative diagram above and the definition of the canonical
isomorphism.

1.4 Properties of weight spectral sequences I, functorialty and duality.
In this subsection, we establish the functoriality and the compatiblity with the

Poincaré duality for weight spectral sequences. In the next subsection, using these
properties, we establish the compatiblity with push-forward, chern classes etc.

We begin with the functoriality. LetX andX ′ be strictly semi-stable schemes over S
and f : X → X ′ be a morphism over S. To formulate the functoriality of weight spectral
sequences, we introduce some notations. LetD1, . . . , Dm be the irreducible components
of Y = XF and D′

1, . . . , D
′
m′ be the irreducible components of Y ′ = X ′

F . We define
Y ′(p) =

⋃
I⊂{1,... ,m′},Card I=p+1 Y

′
I and a′p : Y ′(p) → Y ′ = X ′

F for p ≥ 0 similarly as for X.

For p ≥ 0, we define maps f (p)∗ : f∗a′p∗Λ → ap∗Λ and f (p)∗ : Hq(Y
′(p)
F̄
,Λ) → Hq(Y

(p)

F̄
,Λ).

Since
∑m′

i′=1 f
∗D′

i′ =
∑m

i=1Di as divisors, there exists a unique i′ ∈ {1, . . . , m′} such
that f(Di) ⊂ D′

i′ for each i ∈ {1, . . . , m}. We define a map ϕ : {1, . . . , m} →
{1, . . . , m′} by requiring f(Di) ⊂ D′

ϕ(i). Renumbering if necessary, we assume that the

map ϕ is increasing. For a subset I ⊂ {1, . . . , m′} and an integer p′ ≥ p = Card I − 1,
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we put II′,p′ = {I ⊂ {1, . . . , m}| Card I = p′ + 1 and ϕ induces a surjection I → I ′}.
For I ∈ II′,p, the map f induces a map fI′I : YI =

⋂
i∈I Di → Y ′

I′ =
⋂
i′∈I ′D

′
i′ and the

maps f∗I′I : f∗a′I′∗Λ → aI∗Λ and f∗I′I : Hq(YI′,F̄ ,Λ) → Hq(YI,F̄ ,Λ) are defined. They are
independent of the choice of numbering. We define maps f (p)∗ : f∗a′p∗Λ → ap∗Λ and

f (p)∗ : Hq(Y
′(p)
F̄
,Λ) → Hq(Y

(p)

F̄
,Λ) to be the sum

∑
I′⊂{1,... ,m′},Card I′=p+1

∑
I∈II′,p

f∗I′I .

Proposition 1.14 Let X and X ′ be strictly semi-stable schemes over S of relative
dimension n and n′ respectively and f : X → X ′ be a morphism over S. Then,

1. The inverse image f∗A′[n−n′] and f∗MrA
′[n−n′] are perverse sheaves on Y =

XF . The inverse image f∗MrA
′[n−n′] gives the monodromy filtration on f∗A′[n−n′].

2. The natural map f∗ : f∗A′[n− n′] → A sends the filtration f∗MrA
′[n− n′] into

MrA. We have a commutative diagram

f∗GrMr A
′[n− n′] −−−→ ⊕

p−q=r f
∗a′(p+q)∗Λ(−p)[n− (p+ q)]

GrM
r f∗

� �⊕f (p+q)∗

GrMr A −−−→ ⊕
p−q=r a(p+q)∗Λ(−p)[n− (p + q)]

where the horizontal arrows are the canonical map in Proposition 1.11. The left vertical
arrow is the map induced by f∗ : f∗A′[n− n′] → A and the right vertical arrow is the
direct sum of f (p+q)∗.

Corollary 1.15 Assume further X and X ′ are proper over S. Then we have a map
of weight spectral sequences

E ′p,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
′(p+2i)

F̄
,Λ(−i))⇒Hp+q(X ′̄

K
,Λ)

⊕f (p+2i)∗
� �f ∗̄

K

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
(p+2i)

F̄
,Λ(−i))⇒Hp+q(XK̄ ,Λ).

Proof of Proposition 1.14. 1. By the isomorphism GrMr A
′ → ⊕

p−q=r a
′
(p+q)∗Λ(−p)[n′−

(p + q)] in Proposition 1.11, it is sufficient to show that f∗a′p∗Λ[n − p] is a per-
verse sheaf. Hence, it is sufficient to show that f∗aI∗Λ[n − p] is a perverse sheaf
for I ′ ⊂ {1, . . . , m′} and Card I ′ = p + 1. We put II′,p′ = {I ⊂ {1, . . . , m}| Card I =
p′ + 1 and ϕ induces a surjection I → I ′} as above. Then the inverse image f−1(Y ′

I′)
is equal to the union

⋃
I∈II′,p

YI . Hence, we have an exact sequence f∗a′I′∗Λ →⊕
I∈II′,p

aI∗Λ → · · · → ⊕
I∈II′,n′ aI∗Λ. Thus f∗a′I′∗Λ[n − p] is a perverse sheaf and

the assertion is proved.
2. By the definition of the canonical isomorphism GrqGGr

F
p A → a(p+q)∗Λ(−p)[n −
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(p + q)], it is sufficient to show that the diagrams

f∗GrqGGr
F
p A

′[n− n′] −−−→ f∗i′∗Rp+q+1j′∗Λ(q + 1)[n − (p + q)]

f∗
� �f∗

GrqGGr
F
p A −−−→ i∗Rp+q+1j∗Λ(q + 1)[n− (p + q)],

f∗i′∗Rpj′∗Λ(p) −−−→ f∗a′(p−1)∗Λ

f∗
� �f (p)∗

i∗Rpj∗Λ(p) −−−→ a(p−1)∗Λ

are commutative. The commutativity of the first square is clear from the construction.
We show the commutativity of the second diagram. By Proposition 1.5.2, it is reduced
to the case where p = 1. In the case p = 1, it follows from f∗[D′

i′] =
∑

i∈ϕ−1(i′)[Di].

Next, we establish compatibility with the Poincaré duality. Let f : X → S be a
strictly semi-stable scheme over S of relative dimension n. We define a perverse sheaf
A′ by A′ = RψRf !Λ[−n] = A ⊗ Rf !Λ[−2n]. Let fY : Y → Spec F be the closed
fiber of f and let f (p) = fY ◦ ap : Y (p) → Spec F be the canonical map for p ≥ 0.
The map f (p) is smooth of relative dimension n − p. Let DY and DY (p) denote the
functors RHom( , Rf !Y Λ) and RHom( , Rf (p)!Λ). We define a commutative diagram
of isomorphisms

GrMr A
′ −−−→ ⊕

q−p=r a(p+q)∗DY (p+q)Λ(p)[−(n− (p + q))]� �
DYGr

M
−rA −−−→ ⊕

p−q=−rDY (a(p+q)∗Λ)(p)[−(n− (p + q))].

(3)

The left verticall arrow is induced by the canonical isomorphism A′ → DYA =
RHom(A,Rf !Y Λ) [9] 4.3. We recall the definition of A′ → DYA. The product de-
fines a pairing A × A′ → RψRf !Λ. Let Rψ0 denote the nearby cycle functor for S
itself. We have a base change map RψRf !Λ → Rf !YRψ0Λ = Rf !Y Λ loc.cit 4.3.b). The
composite pairing A × A′ → Rf !Y Λ induces the required map. By [9] Théorème 4.2,
the canonical map A′ → DYA is an isomorphism. The bottom horizontal arrow in the
diagram (3) is the dual of the canonical isomorphism in Proposition 1.11. The right
vertical arrow is defined by the canonical isomorphism a(p+q)∗DY (p+q)Λ → DY (a(p+q)∗Λ).
The top horizontal arrow is defined by the commutativity of the diagram.

Proposition 1.16 Let f : X → S be a strictly semi-stable scheme over S of relative
dimension n. Then we have a commutative diagram of isomorphisms

GrMr A(n) −−−→ ⊕
p−q=r a(p+q)∗Λ(n− p)[n− (p + q)]� �

GrMr A
′ −−−→ ⊕

q−p=r a(p+q)∗DY (p+q)Λ(p)[−(n− (p + q))]
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where the top horizontal arrow is the twist of the canonical map in Proposition 1.11 and
the bottom horizontal arrow is the top horizontal arrow in the diagram (3) above. The
left vertical arrow is induced by the canonical map Λ(n)[2n] → Rf !Λ. The right vertical
arrow is the direct sum of (−1)q-times that induced by the canonical isomorphisms
Λ(n − (p + q))[2(n− (p + q))] → Rf (p+q)!Λ → DY (p+q)Λ sending the (p, q)-components
to the (q, p)-components.

Corollary 1.17 Assume further X is proper and Λ = F� or Q�. Then, we have an
isomorphism of the weight spectral sequence with its dual

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
(p+2i)

F̄
,Λ(n− i)) ⇒ Hp+q(XK̄ ,Λ(n))� �

E ′p,q
1 =

⊕
i≥max(0,−p)H

2(n−(p+2i))−(q−2i)(Y
(p+2i)

F̄
,Λ(−(p+ i))∗⇒H2n−(p+q)(XK̄ ,Λ)∗.

The superscript * denotes the linear dual. The right vertical arrow is induced by the
pairing Hp+q(XK̄ ,Λ(n)) × H2n−(p+q)(XK̄ ,Λ) → Λ. The left vertical arrow is the di-

rect sum of the (−1)p+i-times that induced by the pairing Hq−2i(Y
(p+2i)

F̄
,Λ(n − i)) ×

H2(n−(p+2i))−(q−2i)(Y
(p+2i)

F̄
,Λ(−(p+ i)) → Λ.

Proof of Corollary. The canonical isomorphism Λ(n) → Rf !Λ[−2n] induces an isomor-
phism of spectral sequences

Ep,q
1 = Hp+q(YF̄ , Gr

M
−pA(n)[−n])⇒ Hp+q(XK̄ ,Λ(n))� �

Ep,q
1 = Hp+q(YF̄ , Gr

M
−pA

′[−n]) ⇒Hp+q−2n(XK̄ , DXΛ).

The assertion follows form Proposition 1.16 and the Poincaré duality Hq(V,DV Λ) �
H−q(V,Λ)∗ for a proper smooth scheme V over a separably closed field.

Proof of Proposition. By the definition of the canonical isomorphisms, it is sufficient
to show that the diagram

GrqGGr
F
p A(n) −−−→ a(p+q)∗Λ(n− p)[n − (p + q)]� �

DYGr
p
GGr

F
q A −−−→ DY (a(p+q)∗Λ)(q)[−(n− (p+ q))]

(4)

is commutative. The horizontal arrows are the twist and the dual of the canonical
isomorphism in Corollary 1.10. The left vertical arrow is induced by the composition
A→ A′(n) → DYA. The right vertical arrow is induced by (−1)q-times the canonical
isomorphism Λ(n − (p + q))[2(n− (p + q))] → Rf (p+q)!Λ.

First we prove the case q = 0. In this case, we have GrF0 A = Λ[n] and the compo-
sition via the lower left is the same as the composition of isomorphisms

Gr0GGr
F
p A(n) −−−→ GrFp Gr

0
GA

′ −−−→ GrFp DY (Λ[n]) −−−→ DY (ap∗Λ[n− p]).
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The middle arrow is induced by the base change map A′ = RψRf !Λ[−n] → DY (Λ[n]) =
Rf !RψΛ[−n]. The last arrow is induced by the dual of the quasi-isomorphism Λ →
[a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ] since the diagram

Λ −−−→ a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ� � � �
R0ψΛ −−−→

θ̄
i∗R1j∗Λ(1)→

θ
· · · →

θ
i∗Rp+1j∗Λ(p+ 1)→

θ
· · · →

θ
i∗Rn+1j∗Λ(n+ 1)

is commutative.
We compute the right vertical arrow in the diagram (4) in the case q = 0. We

identify DY (ap∗Λ) = ap∗Ra!pRf
!
Y Λ. Let i0 : Spec F → S, j0 : Spec K → S and

i(p) = i ◦ ap : Y (p) → X for p ≥ 0 be the canonical maps. Then by the commutative
diagram (1) in the proof of Lemma 1.8, the right vertical arrow in the diagram (4) is
induced by the composition of the isomorphisms

Λ(n− p)[2(n− p)] → i(p)∗Rf !Λ(−p)[−2p] → Ri(p)!Rf !Λ(1)[2] ← Ra!pRf
!
Y Λ.

The maps are induced by the canonical isomorphisms Λ(n)[2n] → Rf !Λ,Λ(−(p +
1))[−2(p + 1)] → Ri(p)!Λ and Λ(−1)[−2] → Ri!0Λ. Thus the case q = 0 is reduced to
the commutativity of the diagram of isomorphisms

Gr0GGr
F
p RψRf

!Λ −−−→ ap∗i(p)∗Rf !Λ(−p)[−p] −−−→ ap∗Ri(p)!Rf !Λ(1)[p + 2]� �
GrFp DY Λ −−−→ DY (ap∗Λ[−p]) −−−→ ap∗Ra!pRf

!
YRi

!
0Λ(1)[p+ 2].

The top left arrow is induced by the canonical map in Corollary 1.10, the top right is
induced by the canonical map Λ(−(p + 1))[−2(p + 1)] → Ri(p)!Λ, the right vertical is
induced by the isomorphism Ri(p)!Rf ! → Ra!pRf

!
YRi

!
0, the left vertical is induced by

RψRf !Λ → Rf !Λ = DY Λ, the bottom left is induced by the quasi-isomorphism Λ →
[a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ] and the bottom right is induced by the canonical
isomorphism Λ → Ri!0Λ(1)[2] with the identifycation DY (ap∗Λ) = ap∗Ra!pRf

!
Y Λ.

Since the diagram

RψRf !Λ −−−→ i∗Rj∗Rf !Λ(1)[1] −−−→ Ri!Rf !Λ(1)[2]� � ��

Rf !YRψΛ −−−→ Rf !Y i
∗
0Rj0∗Λ(1)[1] −−−→ Rf !YRi

!
0Λ(1)[2]

is commutative, we obtain a commutative diagram of isomorphisms

Gr0GR
pψR−2nf !Λ −−−→ i∗Rp+1j∗R−2nf !Λ(1)� �

Rp−2nf !YR
0ψ0Λ Rp+2i!R−2nf !Λ(1) −−−→ ap∗R2p+2i(p)!R−2nf !Λ(1)∥∥∥ � �

Rp−2nf !YΛ −−−→ Rp−2nf !YR
2i!0Λ(1) −−−→ ap∗R2p−2nf (p)!R2i!0Λ(1).
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The left bottom arrow is induced by Λ → R2i!0Λ(1) sending 1 to the canonical class
[s] of the closed point s ∈ S. The right horizontal arrows are induced by the dual of
the quasi-isomorphism Λ → [a0∗Λ → · · · → ap∗Λ → · · · → an∗Λ]. Hence, if q = 0, the
commutativity of the diagram (4) follows from Lemma 1.8.

We reduce the general case to the case q = 0. Since the adjoint of T on A′ is T−1

on A and T−1 − 1 = −T−1(T − 1) induces −ν on GrqGGr
F
p A, the diagram

Gr0GGr
F
p+qA(n)

νq−−−→ GrqGGr
F
p A(n)� �

DYGr
p+q
G GrF0 A −−−−→

(−1)qνq
DYGr

p
GGr

F
q A

is commutative. Hence the assertion follows from Lemma 1.13.3.

1.5 Properties of weight spectral sequences II, push-forward, chern classes
etc.

Let X and X ′ be proper and strictly semi-stable schemes over S of relative di-
mension n and n − r and let f : X → X ′ be a morphism over S. For p ≥ 0, we
define the push-forward map f

(p)
∗ : Hq(Y

(p)

F̄
,Λ) → Hq−2r(Y

′(p)
F̄
,Λ(−r)) to be the sum∑

I′⊂{1,... ,m′},Card I′=p+1

∑
I∈II′,p

fI′I∗ similarly as f (p)∗.

Proposition 1.18 Let X and X ′ be proper and strictly semi-stable schemes over S of
relative dimension n and n′ = n − r and let f : X → X ′ be a morphism over S. Let
Λ = F� or Q�. Then, we have a map of spectral sequence

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
(p+2i)

F̄
,Λ(−i)) ⇒ Hp+q(XK̄ ,Λ)

⊕f (p+2i)
∗

� �f∗

E ′p,q−2r
1 =

⊕
i≥max(0,−p)H

q−2r−2i(Y
′(p+2i)

F̄
,Λ(−i− r))⇒Hp+q−2r(X ′̄

K
,Λ(−r)).

The right vertical map f∗ is the push-forward map and the left vertical map is the direct
sum of f

(p+2i)
∗ .

Proof. For a morphism f : V → V ′ of proper smooth schemes of dimV = d,dim V ′ =
d′ − r over a separably closed field, we have a commutative diagram

Hq(V,Λ) −−−→ H2d−q(V,Λ(d))∗

f∗

� �(f∗)∗

Hq−2r(V,Λ(−r)) −−−→ H2d−q(V,Λ(d))∗.

The horizontal arrows are the isomorphisms of Poincaré duality and the right vertical
arrow is the dual of the pull back f∗. Hence the required map is obtained as the
composition of the dual of the map in Proposition 1.14 with the maps in Proposition
1.16 for X and for X ′.
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Proposition 1.19 Let X be a proper and strictly semi-stable scheme over S of relative
dimension n and E be a locally free OX-module of rank r. Then, for 0 ≤ k ≤ r, the
chern class ck(E) induces a map of spectral sequences

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
(p+2i)

F̄
,Λ(−i)) ⇒ Hp+q(XK̄ ,Λ)

ck(E)∪
� �ck(E)∪

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i+2k(Y
(p+2i)

F̄
,Λ(−i+ k))⇒Hp+q+2k(XK̄ ,Λ(k)).

Proof. First we prove the case where k = r. Let π : E = SpecOX
S•E → X be the

vector bundle over X associated to E and i : X → E be the 0-section. We consider the
isomorphism ΛX → Ri!ΛE(r)[2r] sending 1 to the canonical class [X]. The induced
map Λ → Λ(r)[2r] is the top chern class cr(E). Since the monodromy filtrationM•AE of
AE = RψΛ[n+r] is equal to π∗sM•AX [r], it induces an isomorphism of filtered complexes
RψΛX → Ri!RψΛE(r)[2r] = RψΛX ⊗ Ri!ΛE(r)[2r]. By adjunction i∗Ri! → id and
by pull-back i∗, it induces a map of filtered complexes RψΛX → RψΛX(r)[2r]. The
induced maps on the graded pieces are induced by ΛY (p) → Ri!

Y (p)ΛE×XY (p)(r)[2r] where

i!
Y (p) : Y (p) → E ×X Y

(p) denotes the immersion. Hence the assertion follows.
There is an alternative proof when Λ = F� or Q�. Let P = P(E ⊕ O) be the

Pr ⊃ E-bundle associated to E ⊕ O and i : X → P be the 0-section. Then the map
cr(E) is equal to the composition i∗ ◦ i∗. Hence the assertion in this case follows form
Propositions 1.14 and 1.18.

Since c1(E) = c1(L) for L = ΛrE, the case k = 1 is proved.
We prove the general case. Let P = P(E) be the Pr−1-bundle associated to E

and π : P → X be the projection. Let h = c1(O(1)) be the first chern class of the
tautological invertible sheaf. Then we have a commutative diagram

Hp(XK̄ ,Λ)
⊕ck(E)−−−−→ ⊕r−1

k=0H
p+2k(XK̄ ,Λ(k))∥∥∥ �⊕(−1)kh(r−k)◦π∗

Hp(XK̄ ,Λ) −−−→
hr◦π∗

Hp+2r(PK̄ ,Λ(r))

and the right vertical arrow is an isomorphism. Thus the assertion follows from Propo-
sition 1.14 and the case k = 1.

We generalize Proposition 1.19 for an element in K-groups. We briefly recall the
terminology. For a scheme X, let K(X) be the Grothendieck group of the category
of locally free OX -modules of finite rank. It is the quotient of the free abelian group
generated by the isomorphism classes [E ] of locally free OX -modules of finite rank by the
relations [E ] = [E ′] + [E ′′] for exact sequences 0 → E ′ → E → E ′′ → 0. The γ-filtration
F nK(X) on K(X) is defined as follows. Let λt : K(X) → 1 + tK(X)[[t]] ⊂ K(X)[[t]]×

be the canonical map sending the class [E ] of a locally free OX -module E to
∑

q[Λ
qE]tq.

For x ∈ K(X), we put γt(x) = λ t
1−t

(x) = 1 +
∑

n>0 γ
n(x)tn. For n = 1, F 1K(X)

is defined to be the kernel of the map K(X) → Zπ0(X) sending [E ] to rank E. For
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n ≥ 1, F nK(X) is defined as the subgroup generated by the elements of the form
γn1(x1) · · · γnr(xr) where xi ∈ F 1K(X) and

∑
i ni ≥ n. We put F 0K(X) = K(X).

Let X be a strictly semi-stable scheme over S. The map ch : K(X) → CH∗(XK)Q
sending the class [E ] of a locally free OX -module E to its chern character (chi(E))i is
a ring homomorphism. It is compatible with the γ-filtration and induces a homomor-
phism ch : Gr∗FK(X) → CH∗(XK)Q of graded rings.

Lemma 1.20 The map ch : Gr∗FK(X)Q → CH∗(XK)Q is surjective.

Proof. Since X is regular, the map K(X) → K(XK) is surjective by [8] Corollary
2.2.7.1. Hence the map Gr∗FK(X) → Gr∗FK(XK) is surjective. Let CH∗(XK)Q →
Gr∗FK(XK)Q be the natural map sending the class [F ] of an integeral closed subscheme
F to the class of [OF ]. Then, by Riemann-Roch [6] Corollary 18.3.2, it is the inverse
of ch : Gr∗FK(XK)Q → CH∗(XK)Q.

Proposition 1.21 Let X be a proper and strictly semi-stable scheme over S and k ≥ 0
be an integer. Let a ∈ F kK(X) be an element of the k-th γ-filtration. Let Λ = Q�.
Then, the chern character chk(a) induces a map of spectral sequences

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
(p+2i)

F̄
,Λ(−i)) ⇒ Hp+q(XK̄ ,Λ)

chk(a)∪
� �chk(a)∪

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i+2k(Y
(p+2i)

F̄
,Λ(−i+ k))⇒Hp+q+2k(XK̄ ,Λ(k)).

Proof. By the definition of the γ-filtration, we may assume a = γk([E ] − rank E)
for a locally free OX -module E. Then chk(a) = ck(E) and the assertion follows from
Proposition 1.19.

Finally, we establish the functoriality for an algebraic correspondence. As a pre-
liminary, we construct a resolution of the product of strictly semi-stable schemes.

Lemma 1.22 Let X and X ′ be strictly semi-stable schemes over S. Let D1, . . . , Dm be
the irreducible components of Y = XF and Ii = O(−Di) ⊂ OX be the ideal defining Di

for i = 1, . . . , m. Similarly, let D′
1, . . . , D

′
m′ be the irreducible components of Y ′ = X ′

F

and I ′
i = O(−D′

i) ⊂ OX ′ be the ideal defining D′
i for i = 1, . . . , m′. We put ∆′′ = ∆×∆′

where ∆ = {1, . . . , m},∆′ = {1, . . . , m′} and regard ∆′′ as a partially ordered set with
the product order. Then,

1. The blow-up X ′′ of X ×S X
′ by the ideal

∏
(i,i′)∈∆′′(

∏i
j=1 pr

∗
1Ij +

∏i′
j′=1 pr

∗
2I ′

j′) is
strictly semi-stable over S.

2. The closed fiber Y ′′ = X ′′
F is the sum of the proper transforms D′′

ii′ of Di ×F D
′
i′

for (i, i′) ∈ ∆′′. For (i, i′), (j, j′) ∈ ∆′′, if the intersection D′′
i,i′ ∩D′′

j,j′ is not empty, we
have either (i, i′) ≤ (j, j′) or (j, j′) ≤ (i, i′).
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Proof. The question is local on X and on X ′. We may assume X and X ′ are etale over
X0 = Spec OK [T0, . . . , Tn]/(T0 · · · Tn−π) and X ′

0 = Spec OK [T ′
0, . . . , T

′
n′]/(T

′
0 · · · T ′

n′ −
π) respectively. Further, we may assume X = X0, X

′ = X ′
0, m = n+1 and m′ = n′+1.

We describe the blow-up X ′′ → X ×S X
′ using a cone decomposition. Let Σ be

the set of totally ordered subsets of ∆′′ and call an element σ ∈ Σ a face of ∆′′.
Let M = Nm +N Nm′

be the amalgamate sum of N → Nm : 1 �→ (1, . . . , 1) and
N → Nm′

: 1 �→ (1, . . . , 1). For i ∈ ∆ and i′ ∈ ∆′, let ei and ei′ ∈ M be the images
of the standard bases. Let N = Hom(M,N) be the dual monoid. For (i, i′) ∈ ∆′′, we
define fii′ ∈ N by fii′(ei) = fii′(e

′
i′) = 1 and fii′(ej) = fii′(e

′
j′) = 0 for j �= i, j′ �= i′. By

identifying (i, i′) with fii′, we regard ∆′′ as a subset of N . The monoid N is generated
by ∆′′.

Lemma 1.23 For a face σ ∈ Σ, let Nσ ⊂ N be the submonoid generated by fi,i′ for
(i, i′) ∈ σ and Mσ be the submonoid {x ∈Mgp|f(x) ≥ 0 for f ∈ Nσ} of the associated
group Mgp = {xx′−1|x, x′ ∈ M} � Zm+m′−1. Then the family (Nσ)σ∈Σ is a regular
proper subdivision of N . Namely the following conditions (1)-(6) are satisfied.

(1) For σ ∈ Σ, Nσ ∩∆′′ = σ.
(2) For v ∈ ∆′′, {v} ∈ Σ.
(3) For σ ∈ Σ and x ∈Mσ, the subset σx = {f ∈ σ|f(x) = 0} ⊂ σ is in Σ.
(4) For σ, τ ∈ Σ, there exists x ∈Mσ such that Nσ ∩Nτ = Nσx .
(5) N =

⋃
σ∈ΣNσ.

(6) For σ ∈ Σ, the monoid Nσ is isomorphic to Nr for some r ≥ 0.

Proof of Lemma. We use multiplicative notation to denote the operation in M . The
condition (2) is clear from the definition. Let s : N → N be the map f �→ f(

∏m
i=1 ei) =

f(
∏m′

i′=1 e
′
i′). Then ∆′′ = {f ∈ N |s(f) = 1} and the condition (1) follows. It also follows

from this that, for σ ∈ Σ, the map Nσ → Nσ sending the standard basis e(i,i′) to fii′
is an isomorphism. Hence the condition (6) follows. The condition (3) follows easily
from (6). To show the conditions (4) and (5) are satisfied, we define a map

Σ →
m+m′−1⋃
r=1


g : ∆× {1} �∆′ × {2}

→ {0, 1, . . . , r} |
g|∆×{1} and g|∆′×{2} are increasing,

the image of g contains {1, . . . , r} as
a subset and g(m, 1) = g(m′, 2) = r




by sending σ ∈ Σ to the map gσ : ∆ × {1} � ∆′ × {2} → {0, 1, . . . ,Card σ} defined
by gσ(i, 1) = Card {(i′, j) ∈ σ|i′ ≤ i} and gσ(i

′, 2) = Card {(i, j′) ∈ σ|j ′ ≤ i′}. It
is a bijection since the inverse is given by sending a map g : ∆ × {1} � ∆′ × {2} →
{0, 1, . . . , r} to the face σg ⊂ ∆′′ defined by σg = {(ming(i,1)≥j i,ming(i′,2)≥j i′)|1 ≤
j ≤ r}. The dual monoid N is identified with the monoid {(a1, . . . , am, b1, . . . , bm′) ∈
Nm+m′ |∑m

i=1 ai =
∑m′

i′=1 bi′} by the map f �→ (f(e1), . . . , f(em), f(e′1), . . . , f(e
′
m′)).

We have

Nσ =

{
f ∈ N |

∑i
j=1 f(ej) ≤

∑i′
j′=1 f(e

′
j′) if gσ(i, 1) ≤ gσ(i′, 2) and∑i′

j′=1 f(e
′
j′) ≤

∑i
j=1 f(ej) if gσ(i

′, 2) ≤ gσ(i, 1)

}
.
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For f ∈ N , we put Φ = {∑i
j=1 f(ej),

∑i′
j′=1 f(e

′
j′)|1 ≤ i ≤ m, 1 ≤ i′ ≤ m′} and define a

map g : ∆× {1} �∆′ × {2} → {0, 1, . . . , r} by g(i, 1) = Card {c ∈ Φ|c ≤ ∑i
j=1 f(ej)}

and g(i′, 2) = Card {c ∈ Φ|c ≤ ∑i′
j′=1 f(e

′
j′)}. Then we have f ∈ Nσg and the condition

(5) is satified. It is easy to deduce Nσ ∩ Nτ = Nσ∩τ from the description of Nσ above.
The condition (4) follows from this and (6).

We return to the proof of Lemma 1.22. Let PΣ → Spec Z[M ] be the blow-up of

the spectrum of the monoid algebra Z[M ] by the ideal
∏

(i,i′)∈∆′′(
∏i

j=1 ej,
∏i′

j′=1 e
′
j′).

We show that the scheme PΣ is obtained by naturally patching Z[Mσ] for σ ∈ Σ.
It is obtained by patching Uε = Spec Z[M ][(

∏
j≤i ej/

∏
j′≤i′ e

′
j′)

ε(i,i′), (i, i′) ∈ ∆′′] for
ε : ∆′′ → {±1}. For a map ε : ∆′′ → {±1}, we have Uε = Spec Z[Mε] where Mε is
the submonoid M + 〈(∏j≤i ej/

∏
j′≤i′ e

′
j′)

ε(i,i′), (i, i′) ∈ ∆′′〉 ⊂ Mgp. For a face σ ∈ Σ,
we have Mσ = M + 〈∏j≤i ej/

∏
j′≤i′ e

′
j′, g(i, 1) ≥ g(i′, 2);

∏
j′≤i′ e

′
j′/

∏
j≤i ej, g(i, 1) ≤

g(i′, 2)〉. Hence, if we put σε = {(i, i′) ∈ ∆′′|fii′(x) ≥ 0 if x ∈ Mε} for ε : ∆′′ → {±1},
we have Mε = Mσε. Therefore PΣ is obtained by patching Z[Mσ] for σ ∈ Σ.

We show that X ′′ is identified with (X ×S X
′) ×Spec Z[M ] PΣ. We define a map

X×SX
′ → Spec Z[M ] by ei �→ Ti−1 and e′i′ → T ′

i′−1. Since the blow-up X ′′ is obtained
by patching X×SX

′[(
∏

j≤i tj/
∏

j′≤i′ t
′
j′)

ε(i,j), (i, j) ∈ ∆′′] = (X×SX
′)×Spec Z[M ]Uε for

ε : ∆̄′′ → {±1}, it is identified with the fiber product (X ×S X
′)×Spec Z[M ] PΣ.

We show 1. It is sufficient to show that (X ×S X
′) ×Spec Z[M ] Spec Z[Mσ] =

Spec OK [Mσ]/(e1 · · · em − π) is strictly semi-stable for σ ∈ Σ. For r = Card σ, the
monoid Mσ is isomorphic to Nr × Zm+m′−1−r and the composition of N → M → Mσ

with the projection Mσ → Nr sends 1 to (1, . . . , 1). Hence OK [Mσ]/(e1 · · · em − π) is
isomorphic to OK [S1, . . . , Sr, U

±1
1 , . . . , U±1

m+m′−1−r]/(S1 · · · Sr − π). Thus the assertion
follows.

We show 2. For (i, i′) ∈ ∆′′, the proper transform D′′
ii′ is the closed subscheme

of X ′′ corresponding to the face {(i, i′)} ∈ Σ. Hence Dii′ is a divisor of X ′′ and
we have X ′′

F =
∑

(i,i′)∈∆′′Dii′ . For (i, i′), (j, j′) ∈ ∆′′, if either of (i, i′) ≤ (j, j′) and

(j, j′) ≤ (i, i′) is not satisfied, there is no face σ ∈ Σ such that (i, i′), (j, j′) ∈ σ. Hence
for such (i, i′), (j, j′), the intersection Dii′ ∩Djj′ is empty.

For integers p, k ≥ 0, we define a map ch
(p)
k : F kK(X ′′) → CHk−p(Y ′(p) ×F Y

(p))Q.
Let p1 : X ′′ → X and p2 : X ′′ → X ′ be the compositions of X ′′ → X ×S X

′ with the
projections. For subsets I ⊂ ∆ and I ′ ⊂ ∆′ with Card I = Card I ′, let I ∧ I ′ ⊂ ∆′′

be the graph of the increasing bijection I → I ′. It is a face of ∆′′. Let fI∧I ′ : Y ′′
I∧I ′ =⋂

(i,i′)∈I∧I ′D
′′
ii′ → YI ×F Y

′
I′ denote the restriction of f . If Card I = Card I ′ = p + 1,

we have dim(YI ×F Y
′
I′) = n + n′ − 2p and dimY ′′

I∧I ′ = n + n′ − p. We define a map

ch
(p)
k : F kK(X ′′) → CHk−p(Y (p) ×F Y

′(p))Q by

ch
(p)
k (a) =

∑
I′⊂∆,I′⊂∆′,Card I=Card I′=p+1

fI∧I ′∗(chk(a|Y ′′
I∧I′

)).

Proposition 1.24 Let X and X ′ be proper and strictly semi-stable schemes over S
of relative dimension n and n′. Let X ′′ → X ×S X

′ be the normalization of the blow-
up as in Lemma 1.22. Let a ∈ F kK(X ′′) be an element in the k-th γ-filtration. Let
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Γ = chk(a) be the image of a by chk : F kK(X ′′) → CHk(XK ×K X
′
K)Q and, for p ≥ 0,

let Γ̄(p) = ch
(p)
k (a) ∈ CHk−p(Y (p) ×F Y

′(p))Q be the element defined above. Let Λ = Q�.
Then, we have a map of weight spectral sequences

E ′p,q
1 =

⊕
i≥max(0,−p)H

q−2i(Y
′(p+2i)

F̄
,Λ(−i)) ⇒ Hp+q(X ′̄

K
,Λ)

⊕Γ̄(p+2i)∗
� �Γ∗

Ep,q
1 =

⊕
i≥max(0,−p)

Hq−2i+2(k−n)(Y (p+2i)

F̄
,Λ(−i+ k − n))⇒Hp+q+2(k−n)(XK̄ ,Λ(k − n)).

Proof. The map Γ∗ : Hr(X ′̄
K
,Λ) → Hr+2(k−n)(XK̄ ,Λ(k − n)) is the composition of

Hr(X ′̄
K
,Λ)

pr∗2−−−→ Hr((X ×K X
′)K̄ ,Λ)

chk(a)∪−−−−→ Hr+2k((X ×K X
′)K̄ ,Λ(k))

pr1∗−−−→ Hr+2(k−n)(XK̄ ,Λ(k − n))
and, for p ≥ 0, the map Γ̄(p)∗ : Hr(Y

′(p)
F̄
,Λ) → Hr+2(k−n)(Y (p)

F̄
,Λ(k − n)) is the compo-

sition of

Hr(Y
′(p)
F̄
,Λ)

p∗2−−−→ Hr(Y
′′(p)
F̄

,Λ)
chk(a|Y ′′(p))∪−−−−−−−−→ Hr+2k(Y

′′(p)
F̄

,Λ(k))
p1∗−−−→ Hr+2(k−n)(Y (p)

F̄
,Λ(k − n)).

Hence the assertion follows from Propositions 1.14, 1.18 and 1.21.

2. Independence of �.
Let XK be a proper smooth scheme of dimension n over a field K, σ ∈ GK ,

Γ ∈ CHn(XK ×K XK) and � be a prime number different from the characterstic of K.
Recall that the map Γ∗ : Hr(XK̄ ,Q�) → Hr(XK̄ ,Q�) is defined as the composition

Hr(XK̄ ,Q�)
pr∗2→ Hr((X ×K X)K̄ ,Q�)

[Γ]∪→ Hr+2n((X ×K X)K̄ ,Q�(n))
pr1∗→ Hr(XK̄ ,Q�)

where [Γ] ∈ H2n((XK ×K XK)K̄ ,Q�(n)) denotes the image by the cycle map. We
compute the alternating sum Tr (Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)) using an alteration. Let
L be a finite normal extension K, WL be a proper and smooth scheme over L and
f : WL → XK be a proper, surjective and generically finite morphism over K. We fix
an embedding L0 → K̄ of the separable closure L0 of K in L and let σ also denote
the extension to L of the restriction of σ to L0. Let pr2 : Wσ,L = WL ×L L → L
be the base change by σ and fσ denote the composition f ◦ pr1 : Wσ,L → X. Let
Γσ ∈ CHn(WL ×LWσ,L) be the pull-back (f × fσ)∗Γ of Γ by f × fσ : WL ×L Wσ,L →
XK ×K XK . It induces a homomorphism Γ∗

σ : H∗(Wσ,L̄,Q�) → H∗(WL̄,Q�). The
isomorphism σ∗ = 1 × σ∗ : Wσ,L̄ → WL̄ = W ×L L̄ also induces an isomorphism
σ∗ = (σ∗)∗ : H∗(WL̄,Q�) → H∗(Wσ,L̄,Q�).

Lemma 2.1 We have an equality

[WL : XL]Tr (Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)) = Tr (Γ∗
σ ◦ σ∗ : H∗(WL̄,Q�)).
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Proof. We prove the equality by showing the commutativity of the diagram.

H∗(WL̄,Q�)
σ∗−−−→ H∗(Wσ,L̄,Q�)

Γ∗
σ−−−→ H∗(WL̄,Q�)

f∗

� fσ∗

� f∗
�

H∗(XK̄ ,Q�) −−−→
σ∗

H∗(XK̄ ,Q�) −−−→
Γ∗

H∗(XK̄ ,Q�).

We show the commutativity. By the functoriality of the cycle map, the pull-back of
the class [Γ] ∈ H2d(XK̄ × XK̄ ,Q�(d)) by f × fσ is [Γσ] ∈ H2d(WL̄ × Wσ,L̄,Q�(d)).
Therefore, by the definition of the map Γ∗ : H∗(XK̄ ,Q�) → H∗(XK̄ ,Q�) and of Γ∗

σ :
H∗(Wσ,L̄,Q�) → H∗(WL̄,Q�), the right square is commutative. The left square is
commutative by the transport of structure.

We show the equality. Since f∗◦f∗ is the multiplication by the degree [WL : XL], the
map f∗ : H∗(XK̄ ,Q�) → H∗(WL̄,Q�) is injective. By the commutative diagram above,
the image Im Γ∗

σ ◦σ∗ is a subspace of Im f∗. Hence the trace Tr (Γ∗
σ ◦σ∗ : H∗(WL̄,Q�))

is equal to the trace of the restriction on Im f∗. Thus we obtain

Tr (Γ∗
σ ◦ σ∗ : H∗(WL̄,Q�)) = Tr (Γ∗ ◦ σ∗ ◦ f∗ ◦ f∗ : H∗(XK̄ ,Q�))

=[WL : XL]Tr (Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)).

To prove Theorem 0.1, we apply the following theorem on alteration.

Lemma 2.2 ([2] Theorem 5.9) Let K be a local field and XK be a proper scheme
over K. Then there exist a finite normal extension L of K, a strictly semi-stable and
projective scheme W over the integer ring OL and a proper, surjective and generically
finite morphism f : WL → XK over K.

Proof of Theorem 0.1. Since Tr (Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)) is in Z�, it is sufficient to show
that Tr (Γ∗ ◦ σ∗ : H∗(XK̄ ,Q�)) is a rational number independent of �. First we prove
the case n(σ) ≥ 0, where n(σ) is the integer such that the image of σ by GK → GF is

Fr
n(σ)
F .
Let L,W → Spec OL and f : WL → XK be as in Lemma 2.2. Let Wσ = W ×OL

OL,
fσ : Wσ,L → X and Γσ = (f × fσ)∗Γ ∈ CHn(WL ×L Wσ,L) be as in Lemma 2.1. By
Lemma 2.1, it is sufficient to show that Tr (Γ∗

σ ◦σ∗ : H∗(WL̄,Q�)) is a rational number
independent of �. Let E be the residue field of L and V = WE be the closed fiber. We
identify the closed fiber Vσ̄ = Wσ,E with the base change V ×EE by the map σ̄ : E → E
induced by σ. By numbering the irreducible components of V and Vσ̄, we define the
blow-up W ′′ → W ×OL

Wσ as in Lemma 1.22. By Lemma 1.20, there exists an element
a ∈ F nK(W ′′)Q such that chn(a) = Γσ ∈ CHn(WL ×L Wσ,L)Q. For p ≥ 0, we define

Γ̄
(p)
σ = ch

(p)
n (a) ∈ CHn−p(V (p) ×E V

(p)
σ̄ ) as in Proposition 1.24. Then by Proposition

1.24, we have a map of weight spectral sequences

E ′p,q
1 =

⊕
i≥max(0,−p)H

q−2i(V
(p+2i)

σ̄Ē
,Q�(−i))⇒Hp+q(Wσ,L̄,Q�)

⊕Γ̄
(p+2i)∗
σ

� �Γ∗
σ

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(V
(p+2i)

Ē
,Q�(−i))⇒Hp+q(WL̄,Q�).
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By transport of structure, we have an isomorphism of spectral sequences

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(V
(p+2i)

Ē
,Q�(−i))⇒ Hp+q(WL̄,Q�)

⊕σ̄(p+2i)
∗

� �σ∗

E ′p,q
1 =

⊕
i≥max(0,−p)H

q−2i(V
(p+2i)

σ̄,Ē
,Q�(−i))⇒Hp+q(Wσ,L̄,Q�).

For p ≥ 0, let σ
(p)
geom : V

(p)

σ̄,Ē
→ V

(p)

Ē
denote the composition ϕf ·n(σ) ◦σ∗(p) where ϕ denote

the absolute Frobenius and q = pf is the order of the residue field F . It is a morphism
of schemes over Ē. Since the action of the absolute Frobenius on Hq(V

(p)

Ē
,Q�) is the

identity, we obtain an endomorphism of spectral sequences

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(V
(p+2i)

Ē
,Q�(−i))⇒Hp+q(WL̄,Q�)

⊕Γ̄
(p+2i)∗
σ ◦σ(p+2i)

geom∗

� �Γ∗
σ◦σ∗

Ep,q
1 =

⊕
i≥max(0,−p)H

q−2i(V
(p+2i)

Ē
,Q�(−i))⇒Hp+q(WL̄,Q�).

Hence we have an equality

Tr(Γ∗
σ ◦ σ∗ : H∗(WL̄,Q�)) =

∑
i≥max(0,−p)

(−1)pTr(Γ
(p+2i)∗
σ̄ ◦ σ(p+2i)

geom∗ : H∗(V (p+2i)

Ē
,Q�(−i)))

=
n∑
p=0

(−1)p(p+ 1)Tr(Γ
(p)∗
σ̄ ◦ σ(p)geom∗ : H∗(V (p)

Ē
,Q�)).

Let Γ
σ

(p)
geom∗

∈ CHn−p(V (p)

σ̄,Ē
× V (p)

Ē
) be the class of the graph of σ

(p)
geom and let tΓ

σ
(p)
geom

∈
CHn−p(V (p)

Ē
× V (p)

σ̄,Ē
) be its transpose. By Lefschetz Trace formula, we have

Tr (Γ
(p)∗
σ̄ ◦ σ(p)geom∗ : H∗(V (p)

Ē
,Q�)) = (Γ

(p)
σ̄ ,

tΓ
σ

(p)
geom

).

The right hand side is the intersection number in V
(p+2i)

Ē
× V (p+2i)

σ̄,Ē
and is a rational

integer independent of �. Thus the proof of the case n(σ) ≥ 0 is completed.
The case n(σ) < 0 is reduced to the case n(σ) ≥ 0 by the following Lemma.

Lemma 2.3 Let L and L′ be a field of characteristic 0. Let A0 and B0 (resp. A1

and B1) be endomorphisms of L-vector spaces V0 (resp. of V1) of finite dimensions
commutative to each other and let A′

0 and B ′
0 (resp. A′

1 and B ′
1) be endomorphisms

of L′-vector spaces V ′
0 (resp. of V ′

1) of finite dimensions commutative to each other.
Assume that Tr(Am0 B

n
0 )−Tr(Am1 B

n
1 ) and Tr(A′m

0 B
′n
0 )−Tr(A′m

1 B
′n
1 ) are rational numbers

and
Tr(Am0 B

n
0 )− Tr(Am1 B

n
1 ) = Tr(A′m

0 B
′n
0 )−Tr(A′m

1 B
′n
1 )

for integers n,m ≥ 0. If B0, B1, B
′
0 and B

′
1 are invertible, then Tr(A0B

−1
0 )−Tr(A1B

−1
1 )

and Tr(A′
0B

′−1
0 )− Tr(A′

1B
′−1
1 ) are rational numbers and

Tr(A0B
−1
0 )− Tr(A1B

−1
1 ) = Tr(A′

0B
′−1
0 )− Tr(A′

1B
′−1
1 ).
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Proof. Since

det(1 − (B1 − A1T )S)

det(1 − (B0 − A0T )S)
= exp

∞∑
n=1

(Tr(B0 − A0T )n − Tr(B1 − A1T )n)

n
Sn

we have
det(1− (B1 − A1T )S)

det(1− (B0 − A0T )S)
=

det(1 − (B ′
1 − A′

1T )S)

det(1 − (B ′
0 − A′

0T )S)

in Q(T, S)×. If we put

det(1 − (B1 −A1T )S)

det(1 − (B0 −A0T )S)
= (−S−1)n0

∞∑
n=0

fnS
−n

in Q(T )((S−1))× where n0 = dim V0 − dimV1, we have f0 = det(B1 − A1T )/det(B0 −
A0T ) ∈ Q(T )×. Hence we have

det(B1 −A1T )

det(B0 −A0T )
=

det(B ′
1 − A′

1T )

det(B ′
0 − A′

0T )

in Q(T ). If we put det(B1 − A1T )/det(B0 − A0T ) =
∑∞

n=0 cnT
n ∈ Q[[T ]]×, we have

Tr(A0B
−1
0 )−Tr(A1B

−1
1 ) = c1/c0. Hence the assertion follows.

Proof of Corollary 0.2. Since H3 and H4 are the duals of H1 and H0 if n = 2, it is a
consequence of Theorem 0.1 and Lemma 2.4(1) below.

Lemma 2.4 Let K,XK , n, r, σ,Γ and � be as in Theorem 0.1. If one of the following
conditions (1)-(3) is satisfied, the trace Tr(Γ∗ ◦ σ∗ : Hr(XK̄ ,Q�)) is in Z[1/q] and is
independent of �.

(1) r ≤ 1.
(2) XK is an abelian variety.
(3) There exists an algebraic correspondence Γr ∈ CHn(XK × XK)Q such that Γ∗

r

on Hs(XK̄ ,Q�) is the identity if s = r and 0 if s �= r.

Proof. Since the trace Tr(Γ∗ ◦ σ∗ : Hr(XK̄ ,Q�)) is in Z�, it is sufficient to show that it
is in Q and is independent of �. If the condition (3) is satisfied, it is sufficient to apply
Theorem 0.1 to the composition ΓrΓ. If XK is an abelian variety, the condition (3) is
satisfied and the case (2) is reduced to the case (3). We reduce the case (1) to the case
(2). Since the case r = 0 is clear, we may assume r = 1.

We assume r = 1 and reduced it to the case where XK is an abelian variety. We may
assume XK is connected. Let L = Γ(XK , O) be the constant field of XK . It is a finite
separable extension of K. Let AL be the Albanese variety of the variety XK over L and
let A′

K = ResL/KAL be the Weil restriction. We identify H1(XL̄,Q�) with H1(AL̄,Q�)

and H1(XK̄ ,Q�) = IndGK
GL
H1(XL̄,Q�) with H1(A′̄

K
,Q�) = IndGK

GL
H1(AL̄,Q�). We will

define an endomorphism f of an abelian variety AK such that the endomorphism Γ∗ of
H1(XK̄ ,Q�) is identified with the endomorphism f∗ on H1(AK̄ ,Q�). Applying Lemma
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2.2 to a closed subscheme of XK ×K XK , we may assume that there exists a proper
smooth scheme WK of dimension n and morphisms p1, p2 : WK → XK such that
Γ∗ = p1∗ ◦ p∗2. Let M ⊃ L be the constant field of WK . Replacing K by a purely
inseparable extension of K, we may assume M is a separable extension of K. Let BM
be the Albanese variety of the variety WK over M and B ′

K = ResM/KBM be the Weil
restriction. By the functoriality, the map p2 : WK → XK induces p2∗ : BM → AL⊗LM .
We define p2∗ : B ′

K → A′
K to be the composition B ′

K = ResM/KBM → ResM/K(AL ⊗L

M)
NM/L→ ResL/KAL = A′

K . The map p∗2 : H1(XK̄ ,Q�) → H1(WK̄ ,Q�) is identified with
p∗2 : H1(A′

K̄
,Q�) → H1(B ′̄

K
,Q�).

Let A∗
L and B∗

M be the Picard varieties of XK over L and of WK over M respec-
tively. They are identified with the dual abelian varieties of AL and of BM . The
Weil restrictions A′∗

K = ResL/KA
∗
L and B ′∗

K = ResM/KB
∗
M are identified with the dual

of A′
K and of B ′

K respectively. The push-forward of invertible sheaves defines a map
p1∗ : B∗

M → A∗
L ⊗L M of abelian varieties over M . We identify H1(XL̄,Q�(1)) and

H1(WM̄ ,Q�(1)) with the Tate modules T�A
∗
L ⊗ Q� and T�B

∗
M ⊗ Q�. Then the map

p1∗ : H1(WM̄ ,Q�(1)) → H1(XL̄,Q�(1)) is identified with the map (p1∗)∗ : T�B
∗
M⊗Q� →

T�A
∗
L⊗Q�. Let (p1∗)∗ : A′

K → B ′
K be the dual of the composition B ′∗

K = ResM/KB
∗
M →

ResM/K(A∗
L ⊗L M)

NM/L→ ResL/KA
∗
L = A′∗

K . Then the map p1∗ : H1(WM̄ ,Q�(1)) →
H1(XL̄,Q�(1)) is the same as the pull-back by the map (p1∗)∗ : A′

K → B ′
K . Therefore

the composition Γ∗ = p1∗ ◦ p∗2 on H1(XK̄ ,Q�) is the pull-back f∗ by the endomorphism
f = p2∗ ◦ (p1∗)∗ : A′

K → A′
K . Hence the case r = 1 is reduced to the case where XK is

an abelian variety. Thus Lemma is proved.

We prove Corollary 0.6 by comparing the monodromy filtration with the weight
filtration.

Lemma 2.5 Let X be a proper and strictly semi-stable scheme over the integer ring
of a local field K and let r ≥ 0 be an integer. Let W• be the weight filtration on
Hr(XK̄ ,Q�).

1. We have WrH
r(XK̄ ,Q�) = Hr(XK̄ ,Q�) and W−r−1H

r(XK̄ ,Q�) = 0. For s ∈ Z,
the nilpotent monodromy operator N ∈ End(Hr(XK̄ ,Q�))(1) maps Ws to Ws−2.

2. Let σ ∈WK be an element of the Weil group with n(σ) ≥ 0 and s be an integer.
Let α be an eigenvalue of the action of σ on GrWs H

r(XK̄ ,Q�). Then α is an algebraic
integer and the complex absolute values of their conjugates are q(r+s)n(σ)/2.

Proof. 1. Clear from the definition of the weight filtration.
2. A consequence of the Weil conjecture [5].

Corollary 2.6 Let X be a proper and strictly semi-stable scheme over the integer ring
of a local field K and let r ≥ 0 be an integer. Then Conjecture 0.5 for Hr(XK̄ ,Q�) is
true if and only if the monodromy filtration and the weight filtration on Hr(XK̄ ,Q�)
are the same.

Lemma 2.7 Let XK be a proper smooth scheme over a local field K. Then Conjecture
0.5 is true for r ≤ 2.
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Proof. In [14] Satz 2.13, Conjecture 0.5 is proved for a proper and strictly semi-stable
scheme X over the integer ring of a local fieldK assuming dimXK ≤ 2. We reduce it to
this case. By Lemma 2.2, there is a finite extension L of K, a projective smooth scheme
WL over L and a proper surjective and generically finite morphism f : WL → XK . Since
the restricition to GL ⊂ GK of the representation Hr(XK̄ ,Q�) is a direct summand of
Hr(WL̄,Q�), it is sufficient to show the assertion for WL over L. By replacing XK by
WL, we may assume XK is projective. Further replacing XK by its hyperplane section,
we may assume dimXK = r. Applying Lemma 2.2, we may assume that XK is the
generic fiber of a projective and strictly semi-stable scheme X over the integer ring
OK . Thus the assertion is proved.

Proof of Corollary 0.6. 1. By Lemma 2.4.(3),

det(1− σ∗T : Hr(XK̄ ,Q�)) = exp(−
∞∑
n=1

Tr(σn∗ : Hr(XK̄ ,Q�))

n
T n)

is in Q[T ] and independent of �. It is sufficient to show that the eigenvalues of σ∗ acting
on Hr(XK̄ ,Q�) is an algebraic integer. We may replace σ by some power. Hence it
follows from Lemmas 2.2 and 2.5.2.

2. Similarly as above, it is sufficient to show that the trace Tr(σ∗ : Hr(XK̄ ,Q�)
I)

is a rational number independent of �. Let M•, F• and G• denote the monodromy,
the kernel and the image filtrations on Hr(XK̄ ,Q�). By 1 and by the assumption
that Hr(XK̄ ,Q�) satisfies Conjecture 0.5, the trace Tr(σ∗ : GrMs H

r(XK̄ ,Q�)) is a
rational number independent of �. By Proposition 1.2 and Lemmas 1.1, 1.3, we have an
isomorphism GrMs H

r(XK̄ ,Q�) =
⊕

t−u=sGr
u
GGr

F
t H

r(XK̄ ,Q�). Further the map N t :
GruGGr

F
t H

r(XK̄ ,Q�) → Gru+tG F0H
r(XK̄ ,Q�)(−t) is an isomorphism. Hence we have

an equality Tr(σ∗ : GrMs H
r(XK̄ ,Q�)) =

∑
t−u=s q

t ·Tr(σ∗ : Gru+tG F0H
r(XK̄ ,Q�)). From

this we deduce that Tr(σ∗ : GrtGF0H
r(XK̄ ,Q�)) and hence Tr(σ∗ : F0H

r(XK̄ ,Q�)) =∑
t Tr(σ∗ : GrtGF0H

r(XK̄ ,Q�)) are rational numbers independent of �. The action
of the inertia I on F0H

r(XK̄ ,Q�) factors through a finite quotient I/J and the I-
fixed part Hr(XK̄ ,Q�)

I is equal to (F0H
r(XK̄ ,Q�))

I/J . Hence, for a complete set
T ⊂ I of representatives, we have [I : J ] · Tr(σ∗ : Hr(XK̄ ,Q�)

I) =
∑

τ∈T Tr((σ ◦ τ )∗ :
F0H

r(XK̄ ,Q�)) and the assertion follows.

Proof of Corollary 0.4. The assertion 1 follows from Corollary 0.2 by the same argument
as in the proof of Corollary 0.6.1. The assertion 2 follows from Corollary 0.6.1 and
Lemma 2.7.
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