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1 Introduction

In this article we deal only with the case of characteristic 0. We recall two Lang's Con-
jectures:

L.C.1 ('60, '74) Let V be an algebraic variety de�ned over a number �eld F . Assume
that V with some embedding F ,! C is Kobayashi hyperbolic. Then jV (F )j <1? Does
the analogue over function �elds hold, either?

L.C.2 ('66) Let f : C ! A be an analytic 1-parameter subgroup (or holomorphic
curve) in an Abelian variety A, and D be an ample divisor of A. Then f(C) \D 6= ;?

For L.C.1 a basic conjectural observation is the correspondence:

1.1
non-constant holomorphic

()
an in�nite set of

curves f : C! V rational points on V .

Theorem 1.2 (i) L.C.1 over function �elds holds in the case of dimV = 1. (Manin
[M63], Grauert [Gra65], Noguchi [No85].)

(ii) L.C.1 over number �elds holds in the case of dimV = 1. (Faltings [Fa83].)

(iii) L.C.1 over function �elds holds in arbitrary dimV = 1. (Noguchi [No85], [No92].)

(iv) For a subvariety V of an Abelian variety L.C.1 holds. Moreover, this holds on
semi-Abelian varieties in a generalized sense. (Faltings [Fa91], Vojta [Vo96].)

L.C.1 over number �elds is open for dimV > 1. As the Nevanlinna theory is a powerful
tool to prove the hyperbolicity of a complex manifold, so is the Diophantine approximation
to obtain the �niteness of the set of rational points of a variety. In this context, Vojta
[Vo87] made observation 1.1 deeper to the analogue

1.3 Nevanlinna theory () Diophantine approximation.
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2 S.M.T. and integral points

After Vojta's analogue 1.3 Roth-Schmidt's approximation corresponds to the S.M.T.
(second main theorem) in Nevanlinna-Cartan theory.

Theorem 2.1 ([Ca33]) Let f : C ! Pn(C) be a linearly non-degenerate holomorphic
curve. Let fHjg

q
j=1 be a �nite family of hyperplanes in Pn(C) in general position. Then

(q � n� 1)Tf(r) <

qX
j=1

Nn(r; f
�Hj) +O(log(rTf(r)))jj:

Here Tf (r) is the order function of f with respect the hyperplane bundle O(1)Pn(C)

over Pn(C), and Nn(r; f
�Hj) the counting function of the divisor f �Hj, truncated at level

n (cf. [Ca33], [Fu93]). The truncation for the counting functions are very important and
is related to \abc-Conjecture" in number theory. An implication of this theorem is

Corollary 2.2 (Borel's Theorem) Let f1(z); f2(z); : : : ; fs(z) be entire functions which are
units (zero free). Assume the following unit equation.

f1(z) + f2(z) + � � �+ fs(z) = 0:

Then there is a partition f1; : : : ; sg =
S
I� of the index satisfying the following.

(i) jI�j = 2.

(ii) For arbitrary i; j 2 I�, the function
fi(z)

fj(z)
= cij is constant.

(iii) For every �,
P

i2I�
fi(z) = 0.

Theorem 2.3 (Roth-Schmidt) Let F be a number �eld, and S a �nite set of places
including all in�nite places of F . Let fHjg

q
j=1 be a �nite family of hyperplanes in PF in

general position. Then for an arbitrary � > 0 there is a �nite union E of proper linear
subspaces such that for x 2 Pn(F ) n E

(q � n� 1� �)Ht(x) <

qX
j=1

N(S;Hj(x)) + Const:

An immediate consequence analogous to Corollary 2.2 is

Corollary 2.4 Let Z be the set of all S-unit solutions of equation

a1x1 + � � �+ asxs = 0 (s = 2)

with aj 2 F �. Then there is a �nite decomposition Z = [�0�=1Z� (�0 < 1) such that
for every �xed Z�, 1 5 � 5 �0, there is a decomposition of indices f1; : : : ; sg =

Sm

l=1 Il
satisfying the following conditions:
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(i) jIlj = 2 for all l.

(ii) If we write Z� = f(xi(�)); � 2 Z�g and take an arbitrarily �xed Il, then

xj(�)

xk(�)
= cjk 2 O

�
S

are independent of � 2 Z� for all j; k 2 Il.

(iii)
P

j2Il
ajxj(�) = 0 for � 2 Z� and l = 1; 2; : : : ; m.

The ways of the arguments to deduce Corollaries 2.2 and 2.4 from Theorems 2.1 and
2.3 are almost identical by making use of the induction on s ([No97]).

Theorem 2.5 (M. Ru and P.-M. Wong [RW91]) Let fHjg
q
j=1 be hyperplanes in Pn

F in
general position. Let A be a (

Pq

j=1Hj; S)-integral point set. Then A is contained in a
�nite union W of linear subspaces such that

dimW 5 (2n+ 1� q)+:

In special, A is �nite for q = 2n+ 1.

In their proof, Nochka's weight was essential. But, in the case of Nevanlinna theory
Fujimoto '72 and Green '72 independently obtained an optimal dimension estimate

dim 5 [n=(q � n)]; q > n;

where [�] stands for Gauss' symbol. In fact, we have the same dimension estimate as
above for A in Theorem 2.5 in more general context as follows.

Theorem 2.6 ([NW99]) Let V be an n-dimensional projective algebraic variety de�ned
over F . Let fDjg

q
j=1 be a family of e�ective divisors on VF in general position.

(i) Assume that allDi are ample and that q > n(rankZNS(V )+1). Then any (
Pl

i=1Di; S)-
integral point set of V (K) is �nite.

(ii) Let X � Pm
F be an irreducible subvariety, and let Dj; 1 5 j 5 q, be distinct hyper-

surface cuts of X that are in general position as hypersurfaces of X. If q > 2 dimX,
then any (

Pq

j=1Dj; S)-integral point set of X(K) is �nite.

(iii) Let Dj; 1 5 j 5 q, be ample divisors of V in general position. Let A be a subset
of V (K) such that for every Dj, either A � Dj, or A is a (

P
Dj 6�A

Dj; S)-integral
point set. Assume that q > n. Then A is contained in an algebraic subvariety W of
V such that

dimW 5

�
n

q � n
rankZNS(V )

�
:

In the special case of V = Pm
K we have

dimW 5

�
n

q � n

�
:

In the proof we use Vojta's result ('96), which in the Nevanlinna theory is known as
log-Bloch-Ochiai's Theorem ([No77], [No81]).
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3 S.M.T. over function �elds

As we saw the force of the estimate of S.M.T., it is interesting to deal with it over
function �elds. Actually a number of people have obtained such estimates (Mason, Voloch,
Brownawell-Masser, J. Wang, Noguchi ...). We recall

Theorem 3.1 ([No97]) Let x = [x0; : : : ; xn] : R! Pn(C) be a morphism from a smooth
projective variety (or compact K�ahler manifold) R with a K�ahler form !. Let H1; : : : ; Hq

(q = n + 1) be linear forms on Pn(C) in general position such that the divisor (Hj(x))
is de�ned for every j. Let r denote the rank of dx at general point, and let l denote the
dimension of the smallest linear subspace of Pn(C) containing x(R). Then

(q � 2n+ l � 1)ht(x;!) 5

qX
i=1

Nl�r+1((Hi(x));!)

+

�
(l � r + 1)(l � r + 2)

2
+ r � 1

�
2n� l + 1

l + 1
N(J ;!):

If dimR = 1, N(J ;!) = 2g � 2, where g denotes the genus of R.

Here, we set

ht(x;!) =

Z
R

x�c1(O(1)Pn(C)) ^ !dimR�1;

Nl�r+1((Hi(x));!) =

Z
a2fHj(x)=0g

minforda(Hj(x)); l � r + 1g !dimR�1:

J. Wang dealt with the case where the coe�cients of Hi; 1 5 i 5 q are not constants,
but elements of the function �eld over R when dimR = 1 (see [W96], [W00]). The
case of non-constant coe�cients is of interest from the viewpoint of the Diophantine
approximation; the variables should belong to the same �eld as the coe�cients'. In the
estimate we still need to make e�ective and clear the following points:

(i) In the proof of her result there was a part to chase the lower-limit

lim inf
r!1

d(r + 1)

d(r)
= 1;

where d(r) denotes the dimension of the vector space generated by the r-th products
of coe�cients of Hi. This r is involved in the coe�cients and the constant terms of
the approximation; this is also the case for Hj with constant coe�cients.

(ii) The level of the truncation of counting functions is not computed at all.

If the counting functions are not truncated, then the �rst and second main theorems
coincide with Poincar�e's duality, or a special case of complete intersection theory over
compact varieties. The truncation in counting functions is as essentially important as in
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the case of \abc-Conjecture". We will show some S.M.T. where the truncation level is a
bit complicated, but computable.

By making use of Theorem 3.1 and the method of Steinmetz [St85]-Shirosaki [Sh91]
we have

Theorem 3.2 Let dimR = 1 and let the genus of R be g. Let L be a line bundle on R
whose degree is degL. Let Hj; 1 5 j 5 q, be linear forms on Pn, with coe�cients aji 2
H0(R;L) such that there is no common zero of aij. For an arbitrarily given 0 < � < 1,
let

p� = max

��
2n

�

�
+ g; 2g � 2

�
+ 1

Then for an arbitrary morphism x : R! Pn, we have

(q � 2n� �)ht(x) 5

qX
j=1

N(n+1)h(p�+1)�1(Hj(x)) + C(�; q);

where h(p� + 1) = (p� + 1) degL� g + 1 and

C(�; q) = q

�
q

n+ 1

�
(n+ 1)(p� + 1) degL+ 2n((n+ 1)h(p� + 1)� 1)(2g � 2)+:

In the proof we use the Riemann-Roch: For p degL > 2g � 2,

h0(Lp) = p degL� g + 1:

It immediately follows from Theorem 3.2

Corollary 3.3 Let the notation be as in Theorem 3.2. Let S � R be a �nite set, and
q = 2n+ 1. If x is a (

P
Hj; S)-integral point, i.e., as a mapping x�1(

P
Hj) � S, then

(1� �)ht(x) 5 q((n+ 1)h(p� + 1)� 1)jSj+ C(�; q); 0 < � < 1:

For the case dimR = 2, we do not know h0(Lp) so explicitly, but h0(Lp) is known
to be a polynomial of degree at most dimR for large p. Assuming this polynomial, we
can work out the above obtained result for R of dimR = 2. For instance, let dimR = 2.
Then, by R.-R.

h0(Lp)� h1(Lp) + h2(Lp) =
L � L

2
p2 �

L �KR

2
p+ �(OR):

Assume that L is ample. By the vanishing theorem we see that for all large p (geometri-
cally e�ective), h1(Lp) = h2(Lp) = 0, so that

h0(Lp) =
L � L

2
p2 �

L �KR

2
p+ �(OR):

Then for a given � > 0 one can determine e�ectively p; in all dimensions,

p & 1=�:
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Remark. We explain the meaning of the truncation estimate in relation with abc-Conjecture:

(1� �) logmaxfjaj; jbj; jcjg �

 X
prime p

minf1; ordpag log p

+
X

primep

minf1; ordpbg log p +
X

primep

minf1; ordpcg log p

!
+ C�;

where a; b; c are coprime integers and a + b + c = 0. Here the truncation level is 1. One
may relax the claim so that for some given k > 0

(1� �) logmaxfjaj; jbj; jcjg �

 X
primep

minfk; ordpag log p

+
X

primep

minfk; ordpbg log p +
X

primep

minfk; ordpcg log p

!
+ C�:

Furthermore, one may allow that k depends on �. Unfortunately, the truncation level of
N� in Theorem 3.2 is depending on �, and it is an open problem if it is taken independent
of �.

Taking the analogue to Theorem 3.2 one may pose
Little abc-Conjecture. For � > 0, there exit positive constants k� and C� such that

(1� �) logmaxfjaj; jbj; jcjg �

 X
primep

minfk�; ordpag log p

+
X

primep

minfk�; ordpbg log p +
X

primep

minfk�; ordpcg log p

!
+ C�:

4 L.C.2

Answering a question raised by S. Lang [L66], Ax [Ax72] proved

Theorem 4.1 Let f : C ! A be a non-trivial analytic 1-parameter subgroup of an
Abelian variety A, and D be an ample divisor on A. Then

N(r; f �D) � r2; r!1:

Then Gri�ths [Gri74] generalized the question for holomorphic curves which are not
necessarily subgroups; then this is a problem of the Nevanlinna theory. Siu-Yeung [SY96]
and [No98] proved that non-constant holomorphic f always intersects D.
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To deal with more general case we introduce a notion of a semi-torus. Let M be a
complex Lie group admitting the exact sequence

0! (C�)p !M
�
! M0 ! 0;(4.2)

where C� is the multiplicative group of non-zero complex numbers, andM0 is a (compact)
complex torus. Such M is called a complex semi-torus or a quasi-torus. IfM0 is algebraic,
that is, an Abelian variety, M is called a semi-Abelian variety or a quasi-Abelian variety.

Lately we proved

Theorem 4.3 ([NWY99], [NWY00]) Let f : C ! M be a holomorphic curve into a
complex semi-torus M such that the image f(C) is Zariski dense in M . Let D be an
e�ective divisor on M such that the closure �D of D in �M is an e�ective divisor on �M .
Assume that D satis�es a certain boundary condition. Then we have the following.

(i) Suppose that f is of �nite order �f . Then there is a positive integer k0 = k0(�f ; D)
depending only on �f and D such that

Tf (r; c1( �D)) = Nk0(r; f
�D) +O(log r):

(ii) Suppose that f is of in�nite order. Then there is a positive integer k0 = k0(f;D)
depending on f and D such that

Tf (r; c1( �D)) = Nk0(r; f
�D) +O(log(rTf (r; c1( �D))))jjE:

Cf. [Kr00], [Mc96] and [SY97] for related results. The following very precise estimate
is an immediate consequence of Theorem 4.3 (cf. Theorem 4.1):

Theorem 4.4 Let f : C ! A be a 1-parameter analytic subgroup in an Abelian variety
A with a = f 0(0) 6= 0. Let D be an e�ective divisor on A with the Riemann form H(�; �)
such that D 6� f(C). Then we have

N(r; f �D) = H(a; a)�r2 +O(log r):

Since H(a; a) = limr!1N(r; f �D)=�r2, the Riemann form H may be recovered by
the counting functions N(r; f �D) for 1-parameter analytic subgroups.

Yamanoi [Ya01] proved very lately that

Theorem 4.5 Let the notation be as above. For arbitrary � > 0

N(r; f �D)�N1(r; f
�D) < �Tf (r; c1(D))jj�:

Hence we have
(1� �)Tf (r; c1(D)) < N1(r; f

�D)jj�:
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Remark 4.6 In the above estimate the term �Tf (r; c1(D)) cannot be replaced by

O(log(rTf(r; c1( �D))))jjE:

In fact, let E = C=(Z + iZ) be an elliptic curve, and let D be an irreducible divisor on
E2 with cusp of order l at 0 2 E2. Let f : z 2 C ! (z; z2) 2 E2. Then f(C) is Zariski
dense in E2, and

Tf (r;L(D)) � r4(1 + o(1)):

Note that f�1(0) = Z + iZ and f �D = N(Z + iZ). For an arbitrary �xed k0, we take
N > k0, and then have

N(r; f �D)�Nk0(r; f
�D) = (N � k0)r

2(1 + o(1)):

The above left-hand side cannot be bounded by O(log r). This gives also a counter-
example to [Kr91], Lemma 4.
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