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Abstract. We consider an elliptic partial di�erential operator P (x; @) with

analytic coe�cients and discuss the unique continuation along an analytic

curve. That is, let P (x; @)u = 0 in a simply connected domain 
 � Rn,

 � 
 be an analytic curve and let fxjgj2N �  have an accumulation point.

Our main result asserts that if u(xj) = 0, j 2 N , then u(x) = 0 for any

x 2 . Furthermore we apply such uniqueness to an isotropic Lam�e system

with constant Lam�e coe�cients and the Kirchho� plate equation with analytic

coe�cients.

1. Introduction

Let 
 � R2 be a bounded simply connected domain and L be a straight line

which intersects 
. Assume that L1 is a interval on L such that L1 � L \
.

Let u 2 C2(
) \ C(
) satisfy

�u+ k2u = 0 in 
:(1.1)
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Then, in Bruckner, Cheng and Yamamoto [2], it is proved that if u(xj) = 0 for

xj 2 L1, j 2 N which are mutually distinct, then u = 0 on 
 \ L1. This is a unique

continuation property along a line from a discrete set. This unique continuation is

restricted to the straight line L and we have no information of u outside L. In fact,

u = u(x1; x2) = x2e
ikx1 satis�es (1.1) and u(x1; 0) = 0, x1 2 R, while u(x1; x2) 6= 0

if x2 6= 0.

The main purpose of this paper is to extend such unique continuation along a

straight line to an elliptic partial di�erential operator with analytic coe�cient of

the form:

(�mu)(x) +
X

j�j�2m�1

a�(x)@
�u(x) = 0(1.2)

in a simply connected domain 
 � Rn, where a�, j�j � 2m� 1, satisfy conditions

on analyticity.

This paper is composed of �ve sections.

� Section 2. Formulation and the main result

� Section 3. Holomorphic extension of the fundamental solution

� Section 4. Proof of the main result

� Section 5. Applications to the equations of elasticity.

2. Formulation and the main result

Let x = (x1; � � � ; xn) 2 Rn and z = (z1; � � � ; zn) 2 Cn. We set

� = (�1; � � � ; �n) 2 (N [ f0g)n; j�j = �1 + � � �+ �n;

@j =
@

@xj
; 1 � j � n; @� = @�11 � � � @�nn ; � =

nX
j=1

@2j :
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Throughout this paper, we assume that 
 � Rn is a simply connected domain. By

I(z0), we denote the isotropic cone with vertex at z0 = (z01 ; � � � ; z0n) 2 Cn:

I(z0) =

8<
:z 2 Cn j

nX
j=1

(zj � z0j )
2 = 0

9=
; :(2.1)

We de�ne the kernel of harmonicity hull N(
) of 
 by

N(
) = fz 2 Cn jCH (Rn \ I(z)) � 
g(2.2)

(Ebenfelt [6]). Here CH (A) denotes the convex hull of a set A � Rn.

We consider an elliptic partial di�erential operator:

P (x; @)u(x) = �mu(x) +
X

j�j�2m�1

a�(x)@
�u(x); x 2 
:(2.3)

Throughout this paper, we assume

a�; j�j � 2m� 1; can be extended as holomorphic functions in N(
):(2.4)

We are ready to state our main result:

Theorem 2.1. Suppose that u 2 C2m(
) satis�es

P (x; @)u(x) = 0; x 2 
:(2.5)

Let  be an analytic curve such that  � 
 and let the discrete set fxjgj2N be on

. If

u(xj) = 0; j 2 N ;

then u = 0 on .

In Theorem 2.1, by the analytic curve , we mean that, for any x� 2 , there

exist small � > 0, � > 0 and an interval I = (0; l) such that  \ Ox�(�) can be

represented by
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x(�) = (x1(�); � � � ; xn(�)); � 2 I

where Ox�(�) = fx j jx� x�j < �g and x(�) can be extended as an analytic function

in

f� + i� 2 C j � 2 I; �� < � < �g:(2.6)

See Bukhgeim [3] for other unique continuation from a discrete set. As for

unique continuation along a line which has character similar to our main result, we

refer to Alessandrini and Favaron [1], Cheng, Hon and Yamamoto [4], Cheng and

Yamamoto [5].

In the case of n = 2 (a planar domain) and m = 1 (a second order elliptic

operator), we have

Corollary 2.2. We consider the case: n = 2 and m = 1. In (2.3), suppose that

a0 � 0 and (2.4) holds. If  � 
 be a closed curve which is analytic in the sense of

Theorem 2.1 and assume that  � 
. Let fxjgj2N � . Then u = 0 on 
 follows

from that u(xj) = 0, j 2 N .

In fact, by Theorem 2.1, we have uj = 0. Therefore since a0 � 0 on 
, the

uniqueness of the Dirichlet boundary value problem yields u = 0 in the domain

bounded by . Thus the classical unique continuation (e.g. H�ormander [7], Isakov

[8]) implies that u = 0 on 
.

It is interesting to compare this unique continuation with the following unique

continuation of a harmonic function from the boundary: let a bounded domain


 � R2 have C1-boundary @
, and �0 � @
 be closed and have positive measure.
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If u 2 C2(
) \ C1(
 [ �0) satis�es �u = 0 in 
 and u = jruj = 0 on �0, then

u = 0 in 
 (e.g. [8]).

In contrast with this unique continuation, the corollary means that, for some set

! � 
 of measure 0 (i.e. ! = fxjgj2N ), u = 0 in ! (without jruj = 0 in ! ) may

yield that u = 0 over 
.

3. Holomorphic extension of the fundamental solution

Let E(x; t) be the Green function of P (x; @):

P (x; @)E(�; t) = �t; x 2 
;(3.1)

where �t is the Dirac delta function at the point t. Under the assumption for P , it

is known (e.g. John [9]) that there exists a fundamental solution E. We de�ne the

solid isotropic cone with vertex at t 2 Rn by

S(t) = fz = x+ iy 2 Cn j < x� t; y >= 0; jx� tj � jyjg(3.2)

where < �; � > denotes the scalar product in Rn and we set jxj = p
< x; x > for

x 2 Rn. Then we have

Theorem 3.1. (Ebenfelt [6]) Under the assumption (2.4), the fundamental solu-

tion E(�; t) extends as a holomorphis function in Cn n S(t).

4. Proof of the main result

First Step: Assume that x� is a accumulation point of fxjgj2N and l1 � 

is a small connected part, which contains x�, such that l1 can be represented by

x(�) = (x1(�); � � � ; xn(�)); � 2 I1. Here I1 is an interval. For simplicity, we denote

I1 by (0; `) and x� = (x1(
`
2
); � � � ; xn( `2 )).
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It is su�cient to prove that u = 0 on a part l1, because we can repeat a similar

argument until the whole  is covered.

Since  � 
, we can take a C2-closed curve � � 
 and a su�ciently small � > 0

such that

dist (x(�);�) � �; � 2 (0; `):(4.1)

By 
�, we denote the domain bounded by �. Then we note that  � 
�.

Furthermore, for �1 > 0, we set

D�1 = fz 2 C j 0 < Re z < `; jIm zj < �1g:(4.2)

In this step, we will prove

Lemma 4.1. (Complex extension). Suppose that u satis�es

P (x; @)u = 0 in 
:(4.3)

Then there exist �1 > 0 and a complex-valued function G(z) which is holomorphic

in D�1 such that

G(�) = u(x(�)); 0 < � < `:(4.4)

Proof of Lemma 4.1: Let E(�; t) be a fundamental solution to the operator

P (x; @)� in 
:

P (x; @)�u = �mu+
X

j�j�2m�1

(�1)j�j@�(a�u);

which is the formal adjoint of P (x; @). Then, in view of Theorem 3.1( [6]), E(�; t)

can be extended as a holomorphic function E(z; t) for z 2 Cn n S(t). On the other
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hand, by the Green formula, we have

u(x) =

Z

�

P (�; @)�E(x; �)u(�)d� �
Z

�

P (�; @)u(�)E(x; �)d�

=

Z
�

f(M(�; @)E)(x; �)u(�) � (fM(�; @)u)(�)E(x; �)gd�� ; x 2 
�;

where M and fM are di�erential operators involving derivatives of orders at most

2m� 1. In particular, on l1, we have

u(x(�)) =

Z
�

(M(�; @)E)(x(�); �)u(�)d��

�
Z
�

(fM(�; @)u)(�)E(x(�); �)d�� ; 0 < � < l:(4.5)

Next we will prove that there exists a positive constant �1 > 0, which depends

on �, �, �, 
� and , such that

fx(z) j z 2 D�1g � C
n n
[
�2�

S(�):(4.6)

Here � > 0 is given in (2.6).

Proof of (4.6): Let us denote the analytic extension of x(�) by x(� + i�) =

a(� + i�) + ib(� + i�), �; � 2 R, where a, b are Rn-valued, and x(�) = a(�) for

0 < � < `. Moreover by any � > 0, there exists � = �(�) > 0 such that

if j�j < �; then jb(� + i�)j < � for 0 < � < `:(4.7)

We set z = � + i� with �; � 2 R. By (4.1), we have

inf
0���`;�2�

jx(�) � �j � �:

Choosing �2 > 0 su�ciently small for �, `, 
� and , we obtain

inf
0���`;j�j��2; �2�

ja(� + i�)� �j � �

2
:(4.8)
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In view of (4.7), we can take �3 = �(�=2) such that

sup
0���`; j�j��3

jb(� + i�)j < �

2
:

Setting �1 = minf�; �2; �3g, we see that, if z = � + i� 2 D�1 and � 2 �, then

ja(� + i�)� �j > jb(� + i�)j, that is, x(z) 62 S(�) for any � 2 �. Thus the proof of

(4.6) is completed.

We de�ne a complex-valued function

G(z) =

Z
�

(M(�; @)E)(x(z); �)u(�)d��(4.9)

�
Z
�

(fM(�; @)u)(�)E(x(z); �)d�� ; z 2 D�1 ;

where E(x(z); �) is a holomorphic extension of the fundamental solution E(x(�); �).

By (4.6), (4.8) and (4.9), Theorem 3.1 implies that the function G(z) is holomorphic

in D�1 . By (4.5) and (4.9), we see (4.4). Thus the proof of Lemma 4.1 is complete.

Second Step: In this step, we will complete the proof of Theorem 2.1. Since

xj 2 fx(�); 0 < � < `g, we take �j 2 (0; `) such that xj = x(�j), j 2 N . By

u(xj) = 0, j 2 N , we have G(�j) = 0, j 2 N . In view of Lemma 4.1, the function

G is holomorphic in D�1 and �j 2 (0; `) � D�1 , so that the unicity theorem for

analytic functions yields that G = 0 in D�1 . Again by (4.4) in Lemma 4.1, the

proof of the Theorem 2.1 is complete.

5. Applications to equations of elasticity

Let  and fxjgj2N be taken as in Theorem 2.1.

5.1. Isotropic Lam�e equation with constant Lam�e coe�cients. We consider

��U + (�+ �)r(divU) = 0 in 
 � Rn(5.1)
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where U = (u1; � � � ; un) denotes displacement and �, � are constants such that

�+ 2� > 0 and � > 0. Then we show

Theorem 5.1. Let U = (u1; � � � ; un) 2 C4(
) satisfy (5.1). We �x k 2 f1; � � � ; ng.

If uk(x
j) = 0, j 2 N , then uk = 0 on .

Remark 5.2. The uniqueness holds for the respective component of U .

Proof. The reduction of (5.1) to the biharmonic equation �2uk = 0, is well-known

(e.g. John [10]) and for completeness we show it. That is, we write (5.1) as

��uk + (�+ �)@k(divU) = 0; 1 � k � n:(5.2)

Therefore taking the divergence, we have (�+ 2�)�(divU) = 0, that is,

�(divU) = 0:(5.3)

Next applying @2m to (5.2) and summing over m = 1; � � � ; n, we obtain ��2uk +

(�+�)@k�(divU) = 0, which implies �2uk = 0, 1 � k � n by (5.3). Therefore the

application of Theorem 2.1 completes the proof of Theorem 5.1.

5.2. The Kirchho� plate equation. Let 
 � R2 and let u = u(x1; x2) denote

the displacement in describing transformation of an isotropic elastic plate from

the �xed plane position. Then we can state the classical Kirchho� plate equation

without force terms:

(�+ �)�2u+ 2r(�+ �) � r(�u) + �(�+ �)�u(5.4)

+2(@1@2�)@1@2u� (@22�)@
2
1u� (@21�)@

2
2u = 0 in 
:

Here we assume that � and � satisfy (2.4). Therefore the equation (5.4) falls within

the form of (2.3), so that Theorem 2.1 yields
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Theorem 5.3. Let u 2 C4(
) satisfy (5.4). If u(xj) = 0, j 2 N , then u = 0 on

.
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