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On the occasion of the centennial celebration of Professor Kunihiko Kodaira

Abstract. We study degenerations of smooth projective varieties
with trivial canonical bundle, and discuss equivalences that the finite-
ness of the Weil-Petersson distance, the uniform boundedness of di-
ameters with respect to Kähler-Einstein metrics, and that the limit
variety has canonical singularities at worst.

1. Introduction

We discuss relations among various geometric properties along degen-

erations of smooth projective varieties with trivial canonical bundle, such

as the finiteness of the Weil-Petersson distance, the uniform boundedness

of diameters with respect to Ricci-flat Kähler metrics, the volume non-

collapsing property, and that the limit variety has canonical singularities at

worst. This picture was initiated by Wang [W1], [W2] and continued by

Tosatti [To] in connection with recent developments of Gromov-Hausdorff

convergence theory in Kähler geometry by Tian, Donaldson-Sun [DS], and

of the minimal model theory by Birkar-Cascini-Hacon-McKernan [BCHM]

and others, especially Lai [L] ([Fu] in more explicit terms). We complete

the picture in this paper. To state our results, we explain our situation and

recall basic definitions.

Set up 1.1. (1) Let X be a reduced and irreducible complex space ad-

mitting a projective surjective holomorphic map f : X → C with connected

fibers, to a Riemann surface C with a special point 0 ∈ C. Suppose that

Xo := X \ f−1(0) is smooth, f is smooth on Xo, and that Xt := f−1(t) is
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n-dimensional and has a trivial canonical bundle, i.e. KXt = OXt for any

t ∈ Co := C \ {0}. Let X0 := f∗(0) be the special/central fiber, which may

be non-reduced. The symbol t will also stand for a local coordinate of C

centered at 0.

(2) Let L be a holomorphic line bundle on Xo which is f -ample over

Co, and denote by Lt = L|Xt for t ∈ Co. According to Yau, there exists a

unique Ricci-flat Kähler form ωt on Xt in the cohomology class c1(Lt) for

t ∈ Co. (If one prefers, one can start with a line bundle L on X which is

f -ample over C, and with normal X.)

1.2. There are fundamental geometric intrinsic objects/properties at-

tached to a family of varieties in 1.1. For our purpose here, we may suppose

that C is a disk in C or an open Riemann surface.

(1) Let X ′ → X be the normalization, and let f ′ : X ′ → C be the in-

duced morphism. We denote by KX′ the canonical sheaf, which is reflexive

of rank 1, defined by j∗KX′
reg

with j : X ′
reg → X ′ is the open immersion of

the regular part, and by KX′/C := KX′ ⊗ f ′∗K−1
C . Then f ′

∗KX′/C becomes

a line bundle and hence trivial on C. We take a frame η ∈ H0(C, f ′
∗KX′/C)

so that ηOC ∼= f ′
∗KX′/C . There are naturally induced homomorphism

f ′∗f ′
∗KX′/C → KX′/C and isomorphism H0(C, f ′

∗KX′/C) ∼= H0(X ′,KX′/C).

Thus there exists

Ω ∈ H0(X ′,KX′/C)

corresponding to η such that H0(X ′,KX′/C) = Ωf ′∗H0(C,OC). We denote

the restriction by Ωt = Ω|Xt ∈ H0(Xt,KXt) for any t ∈ Co, which we regard

as a nowhere vanishing holomorphic n-form, and (−1)n
2/2Ωt ∧Ωt as a non-

degenerate volume form on Xt. We can ask whether or not the volume∫
Xt

(−1)n
2/2Ωt ∧Ωt is uniformly bounded in t ∈ Co. This property does not

depend on the generator Ω (i.e. η).

(2) We recall a classical definition, [W1, 0.7] for example. We consider

a smooth (1, 1)-form

ωWP :=

√
−1

2π
∂∂ log

(∫
Xt

(−1)n
2/2Ωt ∧ Ωt

)

on Co, where Ωt is as above. By Griffiths’ computation on the curvature

of the Hodge (line) bundle f∗KXo/Co , ωWP is a semi-positive (1, 1)-form on

Co. This ωWP, or the corresponding (pseudo-)metric tensor, is called the
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Weil-Petersson (pseudo-)metric on Co. Thus we can discuss whether or

not 0 is at finite distance from Co with respect to ωWP (from any reference

point q ∈ Co). We will refer as dWP(Co, 0) < ∞ or dWP(Co, 0) = ∞. By

[W1, 1.2], dWP(Co, 0) = ∞ is equivalent to that ωWP is quasi-isometric to

the Poincaré metric at the boundary 0.

(3) Let L and ωt be as in 1.1(2). Let Bωt(x, r) be the geodesic ball of

radius r centered at x ∈ Xt and let VolωtBωt(x, r) be the volume with ev-

erything respect to ωt. Let also diam (Xt, ωt) be the diameter. We consider

the following volume non-collapsing property (with respect to L or ωt) [DS,

(1.2)]: There exists a constant α > 0 such that, for any t �= 0, any x ∈ Xt,

and any 0 < r ≤ diam (Xt, ωt), a uniform estimate

VolωtBωt(x, r) ≥ αr2n

holds. This property is in fact equivalent to the following uniform diameter

bound ([To, 1.1(e) ⇔ (f)]): There exists a constant α > 0 such that

diam (Xt, ωt) ≤ α

holds for all t �= 0.

(4) We finally recall a relation. The Ricci-flat Kähler form ωt satisfies a

Monge-Ampère equation

ωnt = ect(−1)n
2/2Ωt ∧ Ωt

for a normalizing constant ct ∈ R satisfying c1(Lt)
n = ect

∫
Xt

(−1)n
2/2Ωt∧Ωt,

where c1(Lt)
n is independent of t �= 0.

Wang [W1, 2.3] proved that, if X0 (is normal and) has canonical singu-

larities at worst and KX0 = OX0 , then 0 is at finite Weil-Petersson distance

from Co; dWP(Co, 0) < ∞. He conjectured some sort of converse [W1, 2.4]:

the finiteness dWP(Co, 0) < ∞ implies X0 has canonical singularities at

worst and KX0 = OX0 , possibly after a finite base change and a birational

modification, and he proved it under some sort of relative minimal model

conjecture holds [W2, 1.2]. Recently [To, 1.2] proves such a kind of converse

using the semi-stable minimal model theory from [Fu]. Our first result is to

prove a more precise version of the converse without using the semi-stable

minimal model theory.
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Theorem 1.3. Suppose in 1.1(1) that the morphism f : X → C is

log-canonical, and that KX/C ∼Q 0. Suppose further that 0 is at finite Weil-

Petersson distance from Co, i.e. dWP(Co, 0) < ∞. Then X0 has canonical

singularities at worst and KX0 = OX0.

In our setting, f : X → C is log-canonical, if X is normal and the pair

(X,X0) has log-canonical singularities ([KM, 7.1] or 2.1 here), for example if

X is smooth and X0 is reduced and (not necessarily simple) normal crossing.

Here KX/C ∼Q 0 means that the corresponding Weil divisor KX/C satisfies

mKX/C ∼ 0 for some integer m > 0. It will turn out that KX/C ∼Q 0 is

equivalent to KX/C ∼ 0 (see 2.4). If X is smooth with KX/C = OX and X0

is simple normal crossing, 1.3 is a direct consequence of [W1, 2.1] together

with the adjunction formula. To obtain 1.3, we use, other than [W1, 2.1],

(non-)uniruledness criteria of varieties such as [HM] and [Ta], which largely

rely on an extension technique of pluricanonical forms.

Tosatti [To] introduces a new perspective in the study of Wang, related

to the work of Donaldson-Sun [DS] on the stability problem in Kähler geom-

etry (Donaldson-Tian-Yau conjecture). He shows that if X0 has canonical

singularities, then the volume non-collapsing property holds, and he asks

about the converse. We answer his question by proving 1.3 and the follow-

ing

Theorem 1.4. Suppose in 1.1 that the volume non-collapsing property

with respect to L holds. Then 0 is at finite Weil-Petersson distance from

Co, i.e. dWP(Co, 0) < ∞.

This together with 1.3 gives an algebro-geometric characterization of

volume non-collapsing property for families of Calabi-Yau type manifolds,

which was mentioned by Donaldson-Sun [DS, p. 65]. A theorem [DS, 1.2]

says, at least in our setting 1.1, that after embedding these Xt (t �= 0) into

PN and taking a projective transform of Xt, there exists a limit X∞ as

t → 0 in a Hilbert scheme of varieties in PN , moreover X∞ turns out to

be a normal projective variety with log-terminal singularities at worst ([DS,

4.15], which actually proves X∞ has canonical singularities at worst and

KX∞ = OX∞). The limit variety X∞ and our X0 may be different, however

we can compare the period maps of manifolds converging to these two limits

(one is our f : Xo → Co). For a family converging to X∞, we can apply
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[W1, 2.3] and obtain the finiteness of the Weil-Petersson distance. We then

deduce the finiteness dWP(Co, 0) < ∞ for f : X → C.

In the rest of this introduction, we list a number of corollaries cor-

responding to various situations of interests, for the reader’s convenience

(cf. [To, 1.1, 1.2]). Our contribution is limited to 1.3 and 1.4. Other state-

ments are mainly due to [W1], [To], [RZ] (see §4). The question of Tosatti

[To] is an implication (f) ⇒ (a) in 1.5. It seems that it is difficult to prove

it directly. See also [To, §1] for a nice overview of consequences when X0

has canonical singularities at worst.

Corollary 1.5. Suppose in 1.1 (and 1.2) that the morphism f : X →
C is log-canonical, and that KX/C ∼Q 0. Then the following properties are

equivalent:

(a) X0 has canonical singularities at worst and KX0 = OX0.

(b) 0 is at finite Weil-Petersson distance from Co, i.e. dWP(Co, 0) < ∞.

(c) There is a constant α > 0 such that
∫
Xt

(−1)n
2/2Ωt ∧ Ωt ≤ α for all

t �= 0.

(d) There is a constant α > 0 such that ωnt ≥ α−1(−1)n
2/2Ωt∧Ωt on Xt

for all t �= 0.

(e) There is a constant α > 0 such that diam (Xt, ωt) ≤ α for all t �= 0.

(f) The volume non-collapsing property with respect to L holds.

Corollary 1.6. Suppose in 1.1 that the morphism f : X → C is log-

canonical. Then the following property (a’) and the properties (b), (c), (d),

(e), (f) in 1.5 are equivalent:

(a’) There exists an (in fact unique) irreducible component F of X0 such

that H0(F̃ ,KF̃ ) �= 0 for a smooth projective variety F̃ birational to F .

Suppose further that X and C are quasi-projective, then the above equivalent

properties are equivalent to the following:

(a) X0 has canonical singularities at worst and KX0 = OX0, after pos-

sibly a birational modification along the central fiber.

The quasi-projectivity assumption is required when we apply a relative

minimal model program in [L] (and in [Fu]). The meaning of (a) in 1.6 is

that, there exists another f ′ : X ′ → C satisfying 1.1(1) which is birational

to f : X → C and isomorphic over Co, and whose central fiber X ′
0 = f ′∗(0)

has canonical singularities at worst and KX′
0

= OX′
0
.
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Corollary 1.7. In 1.1, the properties in (b), (e), (f) in 1.5 are equiv-

alent.

Suppose further that X and C are quasi-projective, then the above equivalent

properties are equivalent to the following:

(a) X0 has canonical singularities at worst and KX0 = OX0, after

possibly a finite base change and a birational modification along the cen-

tral fiber.

In particular (e) and (f) do not depend on the polarization L, as (b)

does not. When X has singularities worse than canonical, Ω|Xo ∈
H0(Xo,KXo/Co) does not behave well by birational transforms for exam-

ple, and this is the reason why the conditions (c) and (d) are not mentioned

in 1.7. The meaning of (a) in 1.7 is that, there exist a finite morphism

τ : C ′ → C and a morphism f ′′ : X ′′ → C ′ satisfying 1.1(1) over C ′, which

is a birational modification of f ′ : X ′ = X ×C C ′ → C ′ along the central

fiber, and whose central fiber X ′′
0 := f ′′∗(τ−1(0)) has canonical singularities

at worst and KX′′
0

= OX′′
0
. Note that the properties 1.2 (2) and (3) are

not affected by taking finite base changes C ′ → C (and consider a family

X ×C C ′ → C ′), by taking birational modifications X ′ ��� X along the

central fiber (and consider a family X ′ → C), and combinations of these.

Acknowledgments. The author would like to thank Sébastien Bouck-

som for pointing out a serious gap in a trial version of this paper, Professors

Keiji Oguiso, Kunio Obitsu and Osamu Fujino for answering questions, and

Professor Yujiro Kawamata for calling his attention to the result [L, 4.4] and

answering questions. He would also like to thank the referee for his/her sug-

gestions to improve the presentation in this paper. The problem we address

here is one of a large number of aspects which are modeled after Kodaira’s

detailed analysis on the structure of elliptic fibrations on complex surfaces.

It is a great pleasure to contribute this work in this special occasion. This

research is supported by Grant-in-Aid for Scientific Research (B) 23340013.

2. Use of a Frame Work of Minimal Model Theory

We shall prove 1.3 in this section. We recall some basics in the classifi-

cation theory of algebraic varieties, at least in our setting.
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Definition 2.1 ([KM, 2.34, 7.1]). Let X be a normal variety and ∆

be an effective Q-Weil divisor on X such that KX + ∆ is Q-Cartier. Let

µ : X ′ → X be a log-resolution of singularities of the pair (X,∆), and write

as KX′ + ∆′ ∼Q µ∗(KX + ∆) +
∑

eiEi, where ∆′ is the strict transform of

∆, Ei are µ-exceptional prime divisors, ei ∈ Q, and where ∼Q stands for

the Q-linear equivalence.

(1) Then X (with ∆ = 0) has canonical singularities, if (KX is Q-Cartier

and) ei ≥ 0 holds for any i for any log-resolution of singularities µ : X ′ → X.

Canonical singularities are rational singularities and satisfy µ∗KX′ = KX
for any resolution of singularities µ : X ′ → X ([KM, 5.12]).

(2) The pair (X,∆) is log-canonical (lc for short), if ei ≥ −1 holds for

any i for some any log-resolution of singularities µ : X ′ → X.

(3) A morphism f : X → C (as in 1.1) is log-canonical (lc for short), if X

is normal and the pair (X,Xt = f∗(t)) is log-canonical for any t ∈ C. Then,

any fiber of f is reduced ([KM, 7.2(1)]), and X has canonical singularities

at worst ([KM, 7.2(5)] with B = 0).

Following a classical convention, for a proper variety Y , we set pg(Y ) =

dimH0(Y ′,KY ′) for any smooth model Y ′ of Y . If Y has canonical singu-

larities, then pg(Y ) = dimH0(Y,KY ).

We next explain a nice property of lc morphisms, which we will use

several time.

Remark 2.2. Let f : X → C be as in 1.1 and suppose f is lc.

(1) We let in general a : C ′ → C be a finite morphism from a Riemann

surface C ′, and let b : X ′ := X×C C ′ → X be the induced morphism. Then

by [KM, 7.6], X ′ is normal and the morphism f ′ : X ′ → C ′ is lc, and also

KX′/C′ = b∗KX/C (see the proof of [KM, 7.6]). In particular, any fiber of f ′

is reduced, and X ′ has canonical singularities. As f is smooth over C \ {0},
X ′ \ (a ◦ f ′)−1(0) is smooth over C ′ \ a−1(0). By definition of the fiber

product X ×C C ′, f ′−1(0′) and f−1(0) are the same for every 0′ ∈ a−1(0).

Thus if we want to say something on X0, we are free to take a finite base

change.

(2) By the semi-stable reduction theorem ([KM, 7.17]), possibly after

replacing C by an open subset containing 0, we can find a finite morphism

a : C ′ → C from a Riemann surface C ′ such that a−1(0) consists of a point

0′ ∈ C ′ and a resolution of singularities µ : X ′′ → X ′ = X ×C C ′ which is
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isomorphic over X ′\f ′−1(0′), such that every fiber of the induced morphism

f ′′ : X ′′ → C ′ is reduced and simple normal crossing, and such that f ′′ is

smooth over C ′ \ {0′}.

X ′′ µ−−−→ X ′ = X ×C C ′ b−−−→ X

f ′′
� f ′

� �f
C ′ C ′ −−−→

a
C

We let X ′
0 := f ′∗(0′) which is identified with X0 via b. Locally around

0′ ∈ C ′, the map a : C ′ → C is given by t′ �→ t = (t′)m with an integer

m > 0. The condition that a−1(0) consists of a point, is not so important

(just for a simplification of presentations). If C is a disk, it is clear. If C is

quasi-projective, we can obtain this by a “covering lemma” ([KM, 2.67]).

We further note the following basic properties of Ω in 1.2.

Remark 2.3. Suppose in 1.1 that f : X → C is lc, and C is non-

compact. We take an Ω ∈ H0(X,KX/C) (up to a choice of a frame) in

1.2.

(1) Let X0 =
∑
i∈I Fi be the irreducible decomposition as a Weil divisor.

We consider Ω|Xreg ∈ H0(Xreg,KX/C). Then the zero divisor of Ω|Xreg is∑
j∈J rj(Fj ∩Xreg) for some integers rj > 0 for a subset of indexes J ⊂ I.

As H0(X,KX/C) = Ωf∗H0(C,OC) and X0 is reduced, it has to be J �= I.

Thus KX/C ∼
∑
j∈J rjFj as a Weil divisor.

(2) As X has canonical singularities, we have µ∗KX′ = KX for any

resolution of singularities µ : X ′ → X, and hence H0(X ′,KX′/C) ∼=
H0(X,KX/C). Thus Ω ∈ H0(X,KX/C) is canonically attached to f : X →
C, namely we can take Ω′ ∈ H0(X ′,KX′/C) such that H0(X ′,KX′/C) =

Ω′f ′∗H0(C,OC), and µ∗Ω′ = Ω, and in particular Ω′|X′o = Ω|Xo via the

isomorphism µ : X ′o → Xo, where X ′o = X ′ \ f ′−1(0).

(3) The lc morphism f : X → C is nicely behaved under finite base

changes C ′ → C as we saw in 2.2. By a flat base change a : C ′ → C,

we have a natural isomorphism a∗f∗KX/C
∼→ f ′

∗b
∗KX/C . The induced f ′ :

X ′ → C ′ is lc, and KX′/C′ = b∗KX/C , and hence a∗f∗KX/C ∼= f ′
∗KX′/C′ . A

frame of f∗KX/C induces that of a∗f∗KX/C and hence of f ′
∗KX′/C′ . Thus

Ω′ := b∗Ω ∈ H0(X ′,KX′/C′) satisfies H0(X ′,KX′/C′) = Ω′f ′∗H0(C ′,OC′).
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Lemma 2.4. (1) Suppose further in 1.1 that f : X → C is lc, C is

non-compact, KX/C ∼Q 0, i.e., mKX/C = OX for an integer m > 0. Then

KX/C ∼ 0.

(2) Let Y be a normal projective variety with canonical singularities such

that KY ∼Q 0 and H0(Y,KY ) �= 0 (i.e., pg(Y ) �= 0). Then KY = OY .

Proof. (1) We take a frame Ω ∈ H0(X,KX/C) as in 1.2. We have

(Ω|Xreg)
⊗m ∈ H0(Xreg,mKX/C) = H0(Xreg,OX) = H0(X,OX) =

f∗H0(C,OC). As we saw in 2.3(1) that Ω|Xreg does not identically vanish

along X0, Ω|Xreg is nowhere zero on Xreg. In particular Ω|Xreg gives a trivi-

alization KXreg = OXreg . Hence KX = j∗KXreg = OX , where j : Xreg → X

is the open immersion.

(2) We take a non-zero Ω ∈ H0(Y,KY ). Suppose mKY = OY for

an integer m > 0. Then (Ω|Yreg)
⊗m ∈ H0(Yreg,mKY ) = H0(Yreg,OY ) =

H0(Y,OY ) = C. Thus Ω|Yreg is nowhere zero on Yreg, and hence gives a

trivialization KYreg = OYreg . Then we have KY = OY . �

We now prove 1.3 and 1.6 (a’) ⇒ (a).

2.5 (Proof of 1.3). We use the semi-stable reduction process in 2.2 (1)

and (2), and use the notations there.

X ′′ µ−−−→ X ′ = X ×C C ′ b−−−→ X

f ′′
� f ′

� �f
C ′ C ′ −−−→

a
C

As X ′
0 = f ′∗(0′) = X0, it is enough to show that X ′

0 has canonical singular-

ities and KX′
0

= OX′
0
.

(3) Let X ′′
0 := f ′′∗(0′) = S1 +S2 + . . .+Sk be the irreducible decomposi-

tion. By our assumption, 0′ is at finite Weil-Petersson distance from (C ′)o,
i.e. dWP((C ′)o, 0) < ∞. By Wang [W1, 2.1], dWP((C ′)o, 0) < ∞ if and only

if pg(S1) = 1 and pg(S2) = . . . = pg(Sk) = 0 (possibly after relabeling). In

particular S1 is not uniruled.

Since X ′ has canonical singularities, every µ-exceptional divisor in X ′′

is uniruled by [HM, 1.5]. Thus S1 is not µ-exceptional, and then µ(S1) is

an irreducible component of X ′
0, which is not uniruled. Noting X ′

0 = X0,
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there exists a unique irreducible component F ⊂ X0 such that pg(F ) �= 0.

Note that we do not use KX/C = OX yet.

(4) We note that KX′/C′ = b∗KX/C = OX′ . As KX′/C′ = OX′ , X ′
0 has

to be irreducible by [Ta, 1.1(2)] (otherwise all irreducible components of X ′
0

are uniruled). Then by [Ta, 1.1(1.1)], X ′
0 is normal (otherwise X ′

0 = X0 = F

is uniruled). We now note that X ′ has no codimension 2 singularities, since

X ′ is smooth where the Cartier divisor X ′
0 is smooth. Thus the assumptions

in [Ta, 1.1(1.2)] are satisfied, and hence X ′
0 has canonical singularities. By

the adjunction formula, we have KX′
0

= OX′
0
. �

2.6 (Proof of 1.6 (a’) ⇒ (a)). We use the semi-stable reduction process

in 2.2 (1) and (2), and use the notations there.

(3) By the condition (a’) and [Ta, 1.1(0)], there exists a unique com-

ponent F ⊂ X0 with pg(F ) �= 0. We take a log-resolution of singularities

µ : Y → X of the pair (X,X0), which is isomorphic outside X0 (and SuppY0

is simple normal crossing, where Y0 = (f ◦ µ)∗(0)). We note that the strict

transform F̃ of F in Y is not uniruled, and other irreducible components of

Y0 are uniruled by [Ta, 1.1(2)]. As f has reduced fibers, the multiplicity of

Y0 along F̃ is one, too.

(4) We run a relative minimal model program [L, 4.4] for g := f ◦ µ :

Y → C and obtain a relative minimal model g′ : Y ′ → C. Here Y ′ has

(Q-factorial) terminal singularities at worst, KY ′ ∼Q 0, and Y ′ is obtained

from Y , say ϕ : Y ��� Y ′, by a finite composition of divisorial contractions

and flips, and ϕ : Y ��� Y ′ is isomorphic over Co. (This is not exactly the

same as [L, 4.4]. However it is said that this is a common knowledge among

experts. We refer [Fu, 1.5] which is written explicitly for the author’s and

the reader’s conveniences.) Let T = Supp g′∗(0). Since F̃ is not uniruled, F̃

is not contracted by ϕ (a divisorial contraction contracts a uniruled divisor

[KMM, 5-1-8]). In particular, T contains an irreducible component which

is birational to F̃ . We then see that T is irreducible, because otherwise all

irreducible components of T are uniruled ([Ta, 1.1(2)], [Fu, 1.5]). Thus T

is birational to F̃ and T = g′∗(0) (with multiplicity one). In particular T is

not uniruled and pg(T ) �= 0. This can happen only when T is normal and

has canonical singularities ([Ta, 1.1], [Fu, 1.5]). Then KT ∼Q OT , and in

fact KT = OT by virtue of 2.4. Notice that the quasi-projectivity of X and

C is required when we apply [L] (and [Fu]). �
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Remark 2.7. There may be other variants of 1.3 and 1.6 (a’) ⇒ (a),

for example [To, 1.1 (b) ⇒ (a), 1.2]. These can be obtained as combina-

tions of a semi-stable reduction, a relative minimal model program, (non-)

uniruledness criteria, adjunction formulas, ...

3. Use of Donaldson-Sun’s Theory

3.1 (Proof of 1.4). We prove here 1.4, namely that the volume non-

collapsing property implies the finiteness of the Weil-Petersson distance, i.e.

dWP(Co, 0) < ∞. Since our assertion is local around X0, we may suppose

that C is a unit disk in C with center t = 0, and that everything is defined

on a slightly larger disk (or we may replace C be a smaller disk). We take

a sequence of points ti ∈ Co, i = 1, 2, . . . , such that ti → 0 as i → ∞. As

we will see, the volume non-collapsing property along a sequence of points

ti ∈ Co with limi→∞ ti = 0 is enough to conclude the finiteness of Weil-

Petersson distance.

(1) We first make a simplification. We reduce to the case that L is a line

bundle on X (not only on Xo), L is f -very ample over C, and f∗L ∼= U⊗OC
for an (N +1)-dimensional C-vector space U , where U ∼= H0(Xt, Lt) for any

t ∈ C.

It is clear that the volume non-collapsing property with respect to L

holds if and only if it holds with respect to Lk(= L⊗k) for some (any)

integer k > 0. In particular we are free to pass to a higher power of L. We

may suppose that L is f -very ample over Co, for example we can take Lk

with k = O(n3) by the effective very ampleness result of [AS]. Note that

in any event, f∗L is locally free on Co, and any locally free sheaf on an

open Riemann surface is trivial ([Fo, 30.4]). Then as in [Ht, III.9.8], the

embedded f : Xo → Co in P(f∗L) ∼= PN × Co can be extended (by taking

the closure in PN × C) as a family f ′ : X ′ → C in PN × C satisfying 1.1

and L on Xo also extends as an f ′-very ample line bundle L′ on X ′ (that

is a restriction of the relative O(1)). Hence without loss of generality, by

replacing f : X → C and L by f ′ : X ′ → C and L′, we may suppose from

the beginning that L is f -very ample on X, as the properties in questions

in 1.4 depend only on f : Xo → Co and on L on Xo. Then by taking a

higher power of this new L if necessary, we may suppose there are no higher

cohomology groups, i.e., Hq(Xt, Lt) = 0 for any t ∈ C (including t = 0)
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and q > 0, and that f∗L ∼= U ⊗ OC for an (N + 1)-dimensional C-vector

space U , where U ∼= H0(Xt, Lt) for any t ∈ C. We obtain an embedding

Ψ : X → (P(f∗L) ∼=)P(U) × C over C. Let Φ = pr1 ◦ Ψ : X → P(U), where

pr1 : P(U)×C → P(U) is the first projection. We will also use the notation

PN instead of P(U) in what follows.

(2) Let HilbP (PN ) be the Hilbert scheme of closed subschema in PN

with Hilbert polynomial P satisfying P (m) = h0(Xt, L
m
t ) for all sufficiently

large integer m. Here P (x) = d
n!x

n+ (lower order terms), with d = c1(Lt)
n.

Let Hilb ⊂ HilbP (PN ) be the reduced structure of HilbP (PN ). For every

t ∈ C, the image Φ(Xt) ⊂ PN defines a point Φ(Xt) ∈ Hilb (by a slight

abuse of notation). By the universal property of the Hilbert scheme, we

have a morphism

h : C → Hilb, given by t �→ Φ(Xt),

such that X ∼= h∗(Univ) over C, where Univ → Hilb is the universal family

(induced from the one over HilbP (PN )) ([Kol, I.1.4]). Let Hilbo ⊂ Hilb

be the Zariski open subset parameterizing smooth subvarieties in it (cf. [C,

1.24]). We have a morphism h : Co → Hilbo by restriction.

(3) We take a Hermitian metric at on Lt for t ∈ Co, whose curvature

form satisfies ωt =
√
−1
2π ∂∂ log at. By Donaldson and Sun [DS, 1.2], espe-

cially around [DS, Lemma 4.3] and the argument after [DS, 4.13] (using

the volume non-collapsing condition), possibly after replacing L by a higher

power and passing to a subsequence of tis, we can find an orthonormal basis

of H0(Xti , Lti) with respect to ωt and at for each i, such that a sequence

Tti(Xti) ∈ Hilb convergent to a point W ∈ Hilb, where Tti : Xti → PN is

the embedding with respect to the orthonormal basis of H0(Xti , Lti)
∼= U .

Furthermore, by taking a higher power of L and passing to a subsequence if

necessary, Donaldson and Sun show that W is normal ([DS, 4.12] in general)

and has “log-terminal” singularities in the Kähler-Einstein cases [DS, 4.15].

(The study of W is done by exploiting the Gromov-Hausdorff convergence

(Xti , ωti ) → (X∞, ω∞).)

We show that W has canonical singularities at worst and KW = OW in

our situation. Since KXt = OXt for any t ∈ Co, the proof of [DS, 4.15] shows

that there is a nowhere vanishing holomorphic n-form Θ on the smooth locus

Wreg (and it is L2 on Wreg). That gives a trivialization KWreg = OWreg , and
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then KW = j∗(KWreg) = j∗(OWreg) = OW as we already know W is normal,

where j : Wreg → W is the open immersion. Thus W has KW = OW and is

“log-terminal” by [DS, 4.15] (it is not clear KW is Q-Cartier in [DS, 4.15]).

This concludes that W has canonical singularities at worst.

(4) We let G = SL(N + 1,C) = SL(U), and realize it as an affine

subvariety of C(N+1)2 : namely the space of all (N + 1) × (N + 1) matrices

by our choice of a basis of the vector space U to give U ∼= CN+1. We

take a compactification P(N+1)2 of C(N+1)2 , and take the Zariski closure G

of G in P(N+1)2 for convenience. The group G acts on Hilb in a natural

manner. We denote by Gx = {(g, gx); g ∈ G} ⊂ G×Hilb (which is a graph

Gx ∼= G) and by Ox the G-orbit of every x ∈ Hilb. Then the projection

prH : G×Hilb → Hilb induces a surjective morphism Gx → Ox for x ∈ Hilb.

(Although we do not use it, the morphism Gh(t) → Oh(t) is in fact finite for

t ∈ Co. See 3.2.) For every x ∈ Hilb, the Zariski closure Gx in G × Hilb

is irreducible, and prH(Gx) = prH(Gx) which is Ox (and it is independent

of the choice of a compactification of G). We shall denote by “pr−” the

projection to the factor under consideration.

We consider the Zariski closure of all G-orbits Oh(t) over C:

A =
⋃
t∈C

{t} ×Oh(t) =
⋃
t∈C

{t} ×Oh(t) ⊂ C × Hilb.

This can also be described as follows. We first consider the graph Λ ∼= C×G

of a morphism 1× h̃ : C ×G → C ×G×Hilb, given by (t, g) �→ (t, g, gh(t)),

and take the Zariski closure Λ in C × G × Hilb. Then A is obtained by

the projection A = prC×H(Λ) to the factor C × Hilb. In particular A is

irreducible and projective over C under the projection α := prC |A : A → C.

C ×G× Hilb
prC×H−−−−→ C × Hilb ⊃ A�prC

�prC

�α
C C = C

The graph Λ = ∪t∈C({t}×Gh(t)) is an irreducible variety of dim Λ = dimG+

1, and it is Zariski open in Λ. Let λ : Λ → C be the projection. As Λ is

irreducible, every general fiber of λ is a union of varieties of dimension

dimG. Note λ−1(t) = (λ−1(t) ∩ Λ) � (λ−1(t) ∩ (Λ \ Λ)) = ({t} × Gh(t)) �
(λ−1(t) ∩ (Λ \ Λ)), and dim(Λ \ Λ) ≤ dimΛ − 1 = dimG. Thus we have
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dim(λ−1(t) ∩ (Λ \ Λ)) < dimG for general t ∈ C. As {t} × Gh(t) ⊂ λ−1(t)

and dimGh(t) = dimG, we can see λ−1(t) = {t} × Gh(t) for general t ∈ C

(so that dim(λ−1(t) ∩ (Λ \ Λ)) < dimG). By shrinking C if necessary, we

may suppose λ−1(t) = {t} × Gh(t) for any t ∈ Co. Since the map Λ → A

induces a surjection λ−1(t) → α−1(t) and since prH(Gh(t)) = Oh(t) for any

t ∈ C, we have α−1(t) = {t} × Oh(t) for any t ∈ Co as well. We have also

observed that general fibers of λ and α are irreducible. As C is normal,

Zariski’s main theorem shows both λ and α have connected fibers. The last

point will not be used. We finally set

Ao := A ∩ (Co × Hilbo),

which is non-empty and Zariski open in A (recall Hilbo ⊂ Hilb parametrizes

smooth subvarieties).

(5) We will denote by 0C ∈ C the special point 0 to avoid any risk of

confusion. By [DS] as we explained above, we can find a sequence gi ∈ G

such that gih(ti) ∈ Hilb converges to a point W ∈ Hilb, moreover W is

normal with canonical singularities at worst and with KW = OW . As

(ti, gih(ti)) ∈ A and A is closed, we have the limit (0C ,W ) ∈ A. We do not

know if W ∈ Oh(0), though (0C ,W ) ∈ α−1(0C).

We take a general irreducible curve

B′ ⊂ A

passing through the point (0C ,W ) ∈ A and B′∩Ao �= ∅. We note that {b′ ∈
B′, b′ ∈ A \ Ao} consists of isolated points in B′, namely {b′ ∈ B′, b′ ∈ Ao}
is non-empty Zariski open in B′. As α(= prC |A) : A → C is projective and

surjective, we may suppose that α|B′ : B′ → C is finite (and surjective).

We take the normalization ν : B → B′, and obtain a finite morphism

τ = α|B′ ◦ ν : B → C as a composition. Then, after shrinking C to a

smaller disk (and shrink everything accordingly) and taking an irreducible

component of B′ containing (0C ,W ), we may suppose that {b′ ∈ B′, b′ ∈
Ao} = B′ \ {(0C ,W )}, and that ν−1((0C ,W )) ⊂ B consists of a point,

say 0B ∈ B, and the morphism τ : (B, 0B) → (C, 0C) is isomorphic to a

(ramified) covering (∆, 0) → (∆, 0) given by s �→ t = sk for an integer k > 0.

(A minor remark is that, after shrinking the original B′ according to the

shrinking of C, B′ may be reducible.) Let

g : Y := (B ×Hilb Univ)red → B
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be the induced family from the universal family Univ → Hilb via the com-

position B → A ⊂ (C×Hilb) → Hilb, where everything is the given one and

the last one is the projection. Here (− )red stands for the reduced structure.

Noting that ν(s) ∈ B′ ∩ Hilbo for every s ∈ Bo := B \ {0B}, we see that

g : Y → B satisfies 1.1(1) with the central fiber W over 0B (we borrow

the argument in [C, 1.26, p. 572 bottom]). Every other fiber Ys, s ∈ Bo, is

isomorphic to some of Xt, t ∈ Co.

(6) We now look at the period maps (of arbitrary weight with polar-

izations given by OPN (1)). We follow [GS, §3(b)] for a general discus-

sion. Our main interest is, needless to say, the Hodge sub-line-bundle

(f |Xo)∗KXo/Co ⊂ Rn(f |Xo)∗C of weight n part. For the smooth family

f : Xo → Co with polarizations given by L = Φ∗OPN (1), we have a pe-

riod map φf : Co → Γ\D ([GS, p. 57], [W1, 0.2]). Also on Hilbo (which

parametrizes smooth members), we have a period map φH : Hilbo → Γ\D.

We note that, on Oh(t) ∩ Hilbo with t ∈ Co (not only on Oh(t)), the period

map φH takes a constant value φf (t). Thus, on Ao(⊂ Co×Hilbo), the right

hand side of the following diagram is commutative:

Bo
ν−−−→ Ao

prH−−−→ Hilbo

τ

� α

� �φH
Co Co −−−→

φf
Γ\D

Here α = prC : Ao → Co, resp. prH : Ao → Hilbo, is (the restriction

of) the projection. By construction, the left hand side of the diagram is

commutative. On the other hand, by definition of the family g : Y → B,

the period map φg : Bo → Γ\D over Bo is given by the composition along

the upper right: Bo → Ao → Hilbo → Γ\D.

By the commutativity of the diagram above, we have φg = φf ◦ τ :

Bo → Co → Γ\D. (To be honest, the author does not know whether

φH : Hilbo → Γ\D is holomorphic or not as Hilbo may be singular. However

we can define φH set theoretically and obtain φg = φf ◦ τ , which is what we

need.) In particular the Weil-Petersson form on Bo (which is the curvature

form of the Hodge line bundle with the canonical L2-metric) is the pull-back

of the one on Co by the finite morphism τ : B → C. As the central fiber

W of g : Y → B has canonical singularities with KW = OW , we have the
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finiteness of the Weil-Petersson distance, i.e. dWP(Bo, 0B) < ∞ by Wang

[W1, 2.3]. This is equivalent to the finiteness dWP(Co, 0C) < ∞. This

completes the proof of 1.4. �

Remark 3.2 (Oguiso). In the proof above, we made a comment on

the finiteness of the morphism Gx → Ox for every t ∈ Co. This indeed

follows from the following fact (we learned from Oguiso). Let M be a smooth

projective variety with KM = OM , and let L be an ample line bundle on M .

Then IL = {g ∈ Aut (M); g∗L = L} is finite.

This (must be well-known and) is proved for Abelian varieties in [GH,

p. 326] and for simply connected smooth projective variety M with KM =

OM in [O, 2.4]. For the general case, without conditions on π1(M) or on

H1(M,OM ), we pass to the so-called Bogomolov decomposition of such

types of manifolds, and after possibly taking a finite étale Galois cover, we

can then reduce our assertion to the above mentioned primitive cases.

4. Proof of Corollaries

We shall prove the corollaries in the introduction.

4.1. The structure of proofs of 1.5, 1.6, 1.7 under 1.1 is as follows.

(1) If f : X → C is lc (as long as Ω is nicely defined in a functorial way),

(c) and (d) in 1.6 (and hence in 1.5) are equivalent, see [To, 1.1(c) ⇔
(d)].

(e) and (f) in 1.7 (and hence in 1.5 and 1.6) are equivalent, see [To,

1.1(e) ⇔ (f)].

(f) implies (b) in 1.7 (and hence in 1.5 and 1.6) by 1.4.

(2) On 1.5. Our contributions are (f) ⇒ (b) by 1.4 and (b) ⇒ (a) by 1.3.

The rests have been done by others as noticed in [To, 1.1]:

(a) ⇒ (b) by [W1, 2.3].

(b) ⇒ (c) by Gross in [RZ, Appendix B.1(ii)] (see also 4.5)

(c) ⇒ (e)=(f) by [RZ, 2.1] (see also 4.3).

(3) On 1.6. Our main contribution is (f) ⇒ (b) by 1.4. The other proper-

ties have almost already been obtained verbatim in prior works. Some

minor adjustments of the implications listed above for 1.5 are suffi-

cient to conclude.
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(a’) ⇒ (b) follows from [W1, 2.1] after a semi-stable reduction 2.2.

(b) ⇒ (a’) is already done in the proof of 1.3, Step (3).

(b) ⇒ (c) by a version of Gross in [RZ, Appendix B.1(ii)], see 4.5.

(c) ⇒ (e)=(f) by a version of [RZ, 2.1], see 4.3.

(a) ⇒ (b) by [W1, 2.3].

(a’) ⇒ (a) See 2.6. A relative minimal model theory [L] ([Fu]) is used.

(4) On 1.7. As those properties are stable under finite base changes and

birational modifications along the special fiber, by taking a semi-stable

reduction, we may suppose that X is smooth and X0 is reduced and

simple normal crossing. Thus 1.7 is reduced to 1.6.

We shall prove some variants of results in [RZ], which complete the proof

of corollaries. The first one is a variant of [RZ, 2.1].

Proposition 4.2. Suppose that π : M → ∆ is as in 1.1(1), ∆ ⊂ C is

a disk, M is normal, and that there exists an irreducible component F of the

central fiber M0 = π∗(0) with multiplicity 1 such that Ω ∈ H0(M,KM/∆)

(as in 1.2) does not vanish identically along F . Let L be a line bundle

on M \ M0 which is relatively ample over ∆ \ {0}. Let g̃t (for t �= 0)

be the unique Ricci-flat Kähler metric on Mt = π−1(t) with Kähler form

ω̃t ∈ c1(L)|Mt ∈ H1,1(Mt,R). Then there is a constant D > 0 independent

of t �= 0 such that the diameter of (Mt, g̃t) satisfies

diam g̃t(Mt) ≤ 2 + D

∫
Mt

(−1)n
2/2Ωt ∧ Ωt

for all t �= 0.

Proof. To infer this variant from [RZ, 2.1], it is enough to consider

the following two points in the proof. There need to exist a point p ∈ M0

such that, around the point p ∈ M0, both the morphism π : M → ∆ is

smooth (in the paragraph just before [RZ, Lemma 2.2]), and the fiberwise

volume form (−1)n
2/2Ωt∧Ωt is uniformly bounded from below (the bottom

line in [RZ, p. 242]). If we take a general point p ∈ F ⊂ M0 in 4.2, the

above mentioned technical points are satisfied and the proof of [RZ, 2.1]

goes through.
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One may wonder about the role of π-ample line bundle L on M in [RZ,

2.1]. Let us take an auxiliary π-ample line bundle L on M , which gives an

embedding M → PN × ∆ over ∆ such that Lm = (pr∗1OPN (1))|M for some

m ≥ 1, where pr1 : PN × ∆ → PN is the projection. Let ωt = 1
mωFS |Mt

be the pull-back of the Fubini-Study metric via the induced embedding

Mt → PN (see [RZ, p. 241 top]). In [RZ, 2.1], L and L are the same.

However in fact, we can separate their roles: one (L) is giving polarizations

for the Ricci-flat Kähler form ω̃t, another (L) is as an auxiliary π-ample line

bundle and giving a reference metric ωt. We note for example that [RZ,

p. 242, line 7]:
∫
Mt

ω̃t ∧ ωn−1
t = (L|Mt) · (L|Mt)

n−1 =: C is independent of

t �= 0. The roles of L and ωt are not crucial. �

In our terms, 4.2 is

Corollary 4.3. Suppose in 1.1 that X is normal and X0 is reduced.

Let Ω ∈ H0(X,KX/C) be as in 1.2. Then there is a constant D > 0 inde-

pendent of t ∈ Co such that

diam (Xt, ωt) ≤ 2 + D

∫
Xt

(−1)n
2/2Ωt ∧ Ωt

holds for all t ∈ Co.

Proof. We know Ω does not vanish identically along X0 by 2.3, and

hence can apply 4.2. �

We next bound
∫
Xt

(−1)n
2/2Ωt ∧ Ωt.

Proposition 4.4 ([RZ, Appendix B.1(ii)]). Suppose in 1.1 that X is

smooth and X0 is reduced and has simple normal crossing (then it is well-

known the monodromy acting on Rn(f |Xo)∗C is unipotent), and let Ω ∈
H0(X,KX/C) be as in 1.2. Suppose that there exists an irreducible compo-

nent F of X0 such that Ω does not vanish identically on F and H0(F,KF ) �=
0. Then there is a constant α > 0 such that

∫
Xt

(−1)n
2/2Ωt ∧Ωt ≤ α for all

t �= 0.

Proof. The outline of the proof is as follows. We can start with the

argument from the latter half of [RZ, p. 264], recalling some standard mate-

rial concerning the limiting mixed Hodge structure and the nilpotent orbit
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theorem. In [RZ], the initial data (M,M0,Ω) is resolved by a semi-stable re-

duction, and reduced to (M̃, M̃0, η
∗Ω), which corresponds to our (X,X0,Ω)

here. The X0 ⊂ M̃0 (the strict transform of M0) in [RZ] corresponds to our

F ⊂ X0. The special future that Ω does not vanish identically on F and

H0(F,KF ) �= 0, only enters in the final five lines in the proof. Then the

argument there is essentially due to Wang [W1, 1.1, 2.1]. �

Using the above version 4.4 of the [RZ] statement, we get

Proposition 4.5. Suppose in 1.1 that f : X → C is lc. If

dWP(Co, 0) < ∞, then there is a constant α > 0 such that
∫
Xt

(−1)n
2/2Ωt ∧

Ωt ≤ α for all t �= 0.

Proof. There are some overlaps with 2.5 and 2.6. Let X0 =
∑
i∈I Fi

be the irreducible decomposition. As in 2.3, we can write as KX/C ∼∑
j∈J rjFj as a Weil divisor, where J ⊂ I is a set of indexes with J �= I, and

rj are positive integers. A basic fact is that Ω does not vanish identically

along Fi for any i ∈ I \ J . By [Ta, 1.1(2)], all Fj with j ∈ J are uniruled.

We use the semi-stable reduction as in 2.2 (1) and (2). We consider

Ω′ := b∗Ω ∈ H0(X ′,KX′/C′) and Ω′′ ∈ H0(X ′′,KX′′/C′) such that µ∗Ω′′ =

Ω′.

X ′′ µ−−−→ X ′ = X ×C C ′ b−−−→ X

f ′′
� f ′

� �f
C ′ C ′ −−−→

a
C

(3) Let X ′′
0 := f ′′∗(0′) = S1 + S2 + . . . + Sk be the irreducible decom-

position. By Wang [W1, 2.1], 0′ is at finite Weil-Petersson distance from

(C ′)o if and only if pg(S1) = 1 and pg(S2) = . . . = pg(Sk) = 0 (possibly

after relabeling). In particular S1 is not uniruled. Since X ′ has canonical

singularities, every µ-exceptional divisor in X ′′ is uniruled by [HM, 1.5].

(4) Noting that X ′
0 = f ′∗(0′) and X0 = f∗(0) are identified via the map

b, we can see that Ω′′ ∈ H0(X ′′,KX′′/C′) does not vanish identically along

every irreducible component of X ′′
0 which correspond to Fi with i ∈ I \ J .

(Recall KX′/C′ = b∗KX/C . The ramification of b : X ′ → X affects on KX′ ,

but not on KX′/C′ .) Every irreducible component of X ′′
0 which correspond
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to Fj with j ∈ J is uniruled. Thus there exists a (unique) irreducible

component F ′′(= S1) of X ′′
0 which corresponds to some of Fi with i ∈ I \ J

and H0(F ′′,KF ′′) �= 0. Then we can apply 4.4 for f ′′ : X ′′ → C ′ with Ω′′

and F ′′ ⊂ X ′′
0 , and obtain a uniform bound for Ω′′

t′ , t
′ ∈ C ′o. If a(t′) = t

for t′ ∈ C ′o, we have Ω′′
t′ = Ωt in H0(Xt,KXt) say. We then have the same

uniform bound for Ωt, t ∈ Co. �
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