On Non-Sensitive Homeomorphisms of the Boundary of a Proper Cocompact \(\text{CAT}(0) \) Space

By Tetsuya Hosaka

Abstract. We investigate the homeomorphism \(\tilde{f} \) of the boundary \(\partial X \) of a proper cocompact \(\text{CAT}(0) \) space \(X \) with \(|\partial X| > 2 \) induced by an isometry \(f \) of \(X \), and we study when the induced homeomorphism \(\tilde{f} \) of the boundary \(\partial X \) is non-expansive or non-sensitive.

1. Introduction

In this paper, we study non-expansive homeomorphisms and non-sensitive homeomorphisms of the boundary of a proper cocompact \(\text{CAT}(0) \) space. Definitions and basic properties of \(\text{CAT}(0) \) spaces and their boundaries are found in [1]. We introduce some basic of \(\text{CAT}(0) \) spaces and their boundaries in Section 2. For a proper \(\text{CAT}(0) \) space \(X \) and the boundary \(\partial X \) of \(X \), we can define a metric on the boundary \(\partial X \) as follows: We first fix a basepoint \(x_0 \in X \). Let \(\alpha, \beta \in \partial X \). There exist unique geodesic rays \(\xi_{x_0,\alpha} \) and \(\xi_{x_0,\beta} \) in \(X \) with \(\xi_{x_0,\alpha}(0) = \xi_{x_0,\beta}(0) = x_0 \), \(\xi_{x_0,\alpha}(\infty) = \alpha \) and \(\xi_{x_0,\beta}(\infty) = \beta \). Then the metric \(d_{\partial X}^{x_0}(\alpha, \beta) \) of \(\alpha \) and \(\beta \) on \(\partial X \) with respect to the basepoint \(x_0 \) is defined by

\[
d_{\partial X}^{x_0}(\alpha, \beta) = \sum_{i=1}^{\infty} \min\{d(\xi_{x_0,\alpha}(i), \xi_{x_0,\beta}(i)), \frac{1}{2^i}\}.
\]

The metric \(d_{\partial X}^{x_0} \) depends on the basepoint \(x_0 \) and the topology of \(\partial X \) does not depend on \(x_0 \).

An isometry \(f \) of a proper \(\text{CAT}(0) \) space \(X \) naturally induces the homeomorphism \(\tilde{f} \) of the boundary \(\partial X \) (cf. [1, p.264, Corollary II.8.9]). The purpose of this paper is to investigate when the homeomorphism \(\tilde{f} \) of the

2010 Mathematics Subject Classification. 20F65, 57M07.

Key words: \(\text{CAT}(0) \) space, boundary, isometry, non-expansive homeomorphism, non-sensitive homeomorphism.

Partly supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan. (No. 21740037).
boundary ∂X is non-expansive or non-sensitive. Here, in this paper, non-expansive homeomorphisms and non-sensitive homeomorphisms are defined as follows: A homeomorphism $g : Y \to Y$ of a metric space (Y, d) is said to be non-expansive if for any $\epsilon > 0$ there exist $x, y \in Y$ with $x \neq y$ such that $d(g^i(x), g^i(y)) < \epsilon$ for any $i \in \mathbb{Z}$. Also a homeomorphism $g : Y \to Y$ is said to be non-sensitive if for any $\epsilon > 0$ there exist a point $x \in Y$ and a neighborhood U of x in Y such that the diameter $\text{diam}(g^i(U)) < \epsilon$ for any $i \in \mathbb{Z}$. (We note that non-expansiveness and non-sensitiveness of a homeomorphism g of a metric space (Y, d) depends on the topology of Y and does not depend on the metric d of Y.) In dynamical systems and chaos theory, (non-)expansive homeomorphisms and (non-)sensitive homeomorphisms are important concepts. In this paper, we would like to obtain some information of homeomorphisms of boundaries of CAT(0) spaces by using a concept of the dynamical systems and the chaotic theory. We can find some recent research using a concept of the dynamical systems and the chaotic theory on minimality and scrambled sets of boundaries of CAT(0) groups and Coxeter groups in [7], [8], [9], [10], [11] and [13].

We introduce some remarks on isometries of CAT(0) spaces and induced homeomorphisms of boundaries in Section 3, and we show the following theorem in Sections 4–7.

Theorem 1.1. Let X be a proper cocompact CAT(0) space with $|\partial X| > 2$. Suppose that $f : X \to X$ is an isometry and $\bar{f} : \partial X \to \partial X$ is the homeomorphism induced by f.

1. If f is an elliptic isometry, then there exists a point $x'_0 \in X$ such that $\bar{f} : (X, d^\partial_{\partial X}) \to (X, d^\partial_{\partial X})$ is an isometry, and hence \bar{f} is a non-expansive and non-sensitive homeomorphism of ∂X with respect to any metric on the boundary ∂X.

2. If the CAT(0) space X is non-hyperbolic, then \bar{f} is a non-expansive homeomorphism of ∂X.

3. If the CAT(0) space X is hyperbolic, then \bar{f} is a non-sensitive homeomorphism of ∂X.

4. \bar{f} is a non-expansive homeomorphism of ∂X.
Here we note that the boundary ∂X of a proper cocompact CAT(0) space X with $|\partial X| > 2$ has no isolated points (cf. [6]). Hence if \bar{f} is a non-sensitive homeomorphism of the boundary ∂X, then \bar{f} is a non-expansive homeomorphism of ∂X. Thus, in Theorem 1.1, the statements (2) and (3) implies (4).

We introduce sensitiveness of the induced homeomorphisms of the boundary with respect to neighborhoods of a point in Section 8, and we provide some remarks and questions in Section 9.

2. CAT(0) Spaces and Their Boundaries

We say that a metric space (X, d) is a geodesic space if for each $x, y \in X$, there exists an isometric embedding $\xi : [0, d(x, y)] \to X$ such that $\xi(0) = x$ and $\xi(d(x, y)) = y$ (such ξ is called a geodesic). Also a metric space X is said to be proper if every closed metric ball is compact.

Let X be a geodesic space and let T be a geodesic triangle in X. A comparison triangle for T is a geodesic triangle \overline{T} in the Euclidean plane \mathbb{R}^2 with same edge lengths as T. Choose two points x and y in T. Let \bar{x} and \bar{y} denote the corresponding points in \overline{T}. Then the inequality

$$d(x, y) \leq d_{\mathbb{R}^2}(\bar{x}, \bar{y})$$

is called the CAT(0)-inequality, where $d_{\mathbb{R}^2}$ is the usual metric on \mathbb{R}^2. A geodesic space X is called a CAT(0) space if the CAT(0)-inequality holds for all geodesic triangles T and for all choices of two points x and y in T.

Let X be a proper CAT(0) space and $x_0 \in X$. The boundary of X with respect to x_0, denoted by $\partial_{x_0}X$, is defined as the set of all geodesic rays issuing from x_0. Then we define a topology on $X \cup \partial_{x_0}X$ by the following conditions:

1. X is an open subspace of $X \cup \partial_{x_0}X$.

2. For $\alpha \in \partial_{x_0}X$ and $r, \epsilon > 0$, let

$$U_{x_0}(\alpha; r, \epsilon) = \{x \in X \cup \partial_{x_0}X \mid x \notin B(x_0, r), \ d(\alpha(r), \xi_x(r)) < \epsilon\},$$

where $\xi_x : [0, d(x_0, x)] \to X$ is the geodesic from x_0 to x ($\xi_x = x$ if $x \in \partial_{x_0}X$). Then for each $\epsilon_0 > 0$, the set

$$\{U_{x_0}(\alpha; r, \epsilon_0) \mid r > 0\}$$
is a neighborhood basis for \(\alpha \) in \(X \cup \partial_{x_0}X \). This topology is called the \textit{cone topology} on \(X \cup \partial_{x_0}X \). It is known that \(X \cup \partial_{x_0}X \) is a metrizable compactification of \(X \) ([1]).

Let \(X \) be a proper CAT(0) space. Two geodesic rays \(\xi, \zeta : [0, \infty) \rightarrow X \) are said to be \textit{asymptotic} if there exists a constant \(N \) such that \(d(\xi(t), \zeta(t)) \leq N \) for any \(t \geq 0 \). It is known that for each geodesic ray \(\xi \) in \(X \) and each point \(x \in X \), there exists a unique geodesic ray \(\xi' \) issuing from \(x \) such that \(\xi \) and \(\xi' \) are asymptotic.

Let \(x_0 \) and \(x_1 \) be two points of a proper CAT(0) space \(X \). Then there exists a unique bijection \(\Phi : \partial_{x_0}X \rightarrow \partial_{x_1}X \) such that \(\xi \) and \(\Phi(\xi) \) are asymptotic for any \(\xi \in \partial_{x_0}X \). It is known that \(\Phi : \partial_{x_0}X \rightarrow \partial_{x_1}X \) is a homeomorphism ([1]).

Let \(X \) be a proper CAT(0) space. The asymptotic relation is an equivalence relation on the set of all geodesic rays in \(X \). The \textit{boundary} of \(X \), denoted by \(\partial X \), is defined as the set of asymptotic equivalence classes of geodesic rays. The equivalence class of a geodesic ray \(\xi \) is denoted by \(\xi(\infty) \). For each \(x_0 \in X \) and each \(\alpha \in \partial X \), there exists a unique element \(\xi \in \partial_{x_0}X \) with \(\xi(\infty) = \alpha \). Thus we may identify \(\partial X \) with \(\partial_{x_0}X \) for each \(x_0 \in X \).

We can define the metric \(d^{\partial_0}_{\partial X} \) on the boundary \(\partial X \) as in Section 1. In this paper, we suppose that every CAT(0) space \(X \) has a fixed basepoint \(x_0 \) and \(d^{\partial_0}_{\partial X} \) is the metric on the boundary \(\partial X \) as in Section 1.

Let \(X \) be a non-compact proper cocompact CAT(0) space. (Here \(X \) is said to be \textit{cocompact} if there exists a compact subset \(K \) of \(X \) such that \(\text{Isom}(X) \cdot K = X \), where \(\text{Isom}(X) \) is the isometry group of \(X \).) Then \(X \) is \textit{almost geodesically complete} by [5, Corollary 3] (cf. [5] and [12]). Hence by the proof of [6, Theorem 3.1], we can obtain the following proposition.

\textbf{Proposition 2.1.} \textit{Let \(X \) be a proper cocompact CAT(0) space with }\(|\partial X| > 2\). \textit{Then every point of }\(\partial X \text{ is an accumulation point, i.e., } \partial X \text{ has no isolated points.}

\section{On Homeomorphisms of Boundaries Induced by Isometries of CAT(0) Spaces}

Let \((X, d) \) be a metric space and let \(f : X \rightarrow X \) be an isometry of \(X \). Then the \textit{translation length} of \(f \) is defined as \(|f| := \inf\{d(x, f(x)) \mid x \in X\} \).
We also define the set \(\text{Min}(f) := \{ x \in X \mid d(x, f(x)) = |f| \} \). An isometry \(f \) of a metric space \(X \) is said to be \emph{semi-simple} if \(\text{Min}(f) \) is non-empty.

Definition 3.1 (cf. [1, p.229]). Let \(f \) be an isometry of a metric space \(X \).

1. \(f \) is called \emph{elliptic} if \(f \) has a fixed-point (in this case, \(|f| = 0 \) and \(\text{Min}(f) \) is the fixed-points set of \(f \)).
2. \(f \) is called \emph{hyperbolic} if \(f \) is semi-simple and \(|f| > 0 \).
3. \(f \) is called \emph{parabolic} if \(f \) is not semi-simple, i.e., \(\text{Min}(f) \) is empty.

For a hyperbolic isometry of a CAT(0) space, the following remark is well-known (cf. [1, p.231, Theorem II.6.8]).

Remark. Let \(f \) be a hyperbolic isometry of a proper CAT(0) space \(X \). Then there exists a geodesic line \(\sigma : \mathbb{R} \to X \) such that \(f(\sigma(t)) = \sigma(t + |f|) \) for any \(t \in \mathbb{R} \). Such a geodesic line is called an \emph{axis} of \(f \). We note that \(\text{Im} \sigma \subset \text{Min}(f) \). It is known that the axes of \(f \) are parallel to each other and \(\text{Min}(f) \) is the union of the all axes. Hence \(\text{Min}(f) \) splits as \(\text{Min}(f) = Y \times \mathbb{R} \) for some \(Y \subset X \).

For an axis \(\sigma \) of \(f \), we define \(f^\infty := \sigma(\infty) \) and \(f^{-\infty} := \sigma(-\infty) \). Here the two points \(f^\infty \) and \(f^{-\infty} \) of the boundary \(\partial X \) are not dependent on the axis \(\sigma \). Also we note that for every point \(x \in X \), the sequence \(\{ f^i(x) \} \) converges to \(f^\infty \) as \(i \to \infty \) in \(X \cup \partial X \), and the sequence \(\{ f^{-i}(x) \} \) converges to \(f^{-\infty} \) as \(i \to -\infty \) in \(X \cup \partial X \).

Let \(f \) be an isometry of a proper CAT(0) space \(X \). For each geodesic ray \(\xi \) in \(X \), the map \(f \circ \xi \) is also a geodesic ray in \(X \) since \(f \) is an isometry of \(X \). We define the map \(\tilde{f} : \partial X \to \partial X \) by \(\tilde{f}([\xi]) := [f \circ \xi] \) for \([\xi] \in \partial X \) (where \([\xi]\) is the equivalence class of asymptotic relation of a geodesic ray \(\xi \) in \(X \)). Then it is known that \(\tilde{f} \) is a homeomorphism of the boundary \(\partial X \) (cf. [1, p.264, Corollary II.8.9]).

The purpose of this paper is to investigate the homeomorphism \(\tilde{f} \) of the boundary \(\partial X \) induced by an isometry \(f \) of \(X \).
4. On Homeomorphisms of Boundaries Induced by Elliptic Isometries of CAT(0) Spaces

In this section, we consider the homeomorphism \bar{f} of the boundary ∂X induced by an elliptic isometry f of a proper cocompact CAT(0) space X.

We show the following theorem.

Theorem 4.1. Let X be a proper cocompact CAT(0) space with $|\partial X| > 2$ and let $f : X \to X$ be an elliptic isometry. Then there exists a point $x_0' \in X$ such that \bar{f} is an isometry of the metric space $(\partial X, d_{x_0'}^{r_0})$. Hence \bar{f} is a non-expansive and non-sensitive homeomorphism of the boundary ∂X with respect to any metric on the boundary ∂X.

Proof. Since f is an elliptic isometry, there exists a fixed-point $x_0' \in X$ of f. Let $\alpha, \beta \in \partial X$ and let ξ and ζ be the geodesic rays in X such that $\xi(0) = \zeta(0) = x_0'$, $\xi(\infty) = \alpha$ and $\zeta(\infty) = \beta$. Then $f(x_0') = x_0'$, and $f \circ \xi$ and $f \circ \zeta$ are the geodesic rays issuing from x_0' such that $f \circ \xi(\infty) = \bar{f}(\alpha)$ and $f \circ \zeta(\infty) = \bar{f}(\beta)$.

Now $d(f \circ \xi(t), f \circ \zeta(t)) = d(\xi(t), \zeta(t))$ for any $t \geq 0$ because f is an isometry. Hence

$$d_{\partial X}^{r_0}(\bar{f}(\alpha), \bar{f}(\beta)) = \sum_{i=1}^{\infty} \min\{d(f \circ \xi(i), f \circ \zeta(i)), \frac{1}{2^i}\}$$

$$= \sum_{i=1}^{\infty} \min\{d(\xi(i), \zeta(i)), \frac{1}{2^i}\}$$

$$= d_{\partial X}^{r_0}(\alpha, \beta),$$

that is, \bar{f} is an isometry of $(\partial X, d_{\partial X}^{r_0})$.

For any $\epsilon > 0$, we take a point $\alpha \in \partial X$ and $\epsilon/4$-neighborhood U of α in $(\partial X, d_{\partial X}^{r_0})$. Then

$$\text{diam } \tilde{f}^i(U) = \text{diam } U < \epsilon$$

for any $i \in \mathbb{Z}$ because \tilde{f} is an isometry of $(\partial X, d_{\partial X}^{r_0})$. Hence \tilde{f} is a non-sensitive homeomorphism of ∂X. Here the non-sensitiveness of \tilde{f} is not dependent on the metric $d_{\partial X}^{r_0}$. In particular, it is independent of the point x_0'.
Since X is a proper cocompact $\text{CAT}(0)$ space with $|\partial X| > 2$, every point of the boundary ∂X is an accumulation point and ∂X has no isolated points by Proposition 2.1. Thus \bar{f} is also a non-expansive homeomorphism of ∂X. □

5. On Hyperbolic Spaces

In this section, we introduce hyperbolic $\text{CAT}(0)$ spaces.

We first introduce a definition of hyperbolic spaces. A geodesic space X is called a hyperbolic space, if there exists a number $\delta \geq 0$ such that every geodesic triangle in X is “δ-thin”. Here “δ-thin” is defined as follows: Let $x, y, z \in X$ and let $\triangle := \triangle xyz$ be a geodesic triangle in X. There exist unique non-negative numbers a, b, c such that

$$d(x, y) = a + b, \ d(y, z) = b + c, \ d(z, x) = c + a.$$

Then we can consider the metric tree T_\triangle that has three vertices of valence one, one vertex of valence three, and edges of length a, b and c. Let o be the vertex of valence three in T_\triangle and let v_x, v_y, v_z be the vertices of T_\triangle such that $d(o, v_x) = a, \ d(o, v_y) = b$ and $d(o, v_z) = c$. Then the map $\{x, y, z\} \rightarrow \{v_x, v_y, v_z\}$ extends uniquely to a map $f : \triangle \rightarrow T_\triangle$ whose restriction to each side of \triangle is an isometry. For some $\delta \geq 0$, the geodesic triangle \triangle is said to be δ-thin if $d(p, q) \leq \delta$ for each points $p, q \in \triangle$ with $f(p) = f(q)$.

It is known that a geodesic space X is hyperbolic if and only if there exists a number $\delta \geq 0$ such that every geodesic triangle in X is “δ-slim”. Here a geodesic triangle is said to be δ-slim if each of its sides is contained in the δ-neighborhood of the union of the other two sides.

For a proper hyperbolic space X, we can define the boundary ∂X of X, and if the space X is hyperbolic and $\text{CAT}(0)$, then these “boundaries” coincide.

Details and basic properties of hyperbolic spaces and their boundaries are found in [1], [2], [3] and [4].

It is known when a proper cocompact $\text{CAT}(0)$ space is hyperbolic.

Theorem 5.1 ([1, p.400, Theorem III.H.1.5]). A proper cocompact $\text{CAT}(0)$ space X is hyperbolic if and only if it does not contain a subspace which is isometric to the flat plane \mathbb{R}^2.
6. On Non-Hyperbolic CAT(0) Spaces

In this section, we consider the homeomorphism \bar{f} of the boundary ∂X induced by an isometry f of a proper cocompact non-hyperbolic CAT(0) space X.

We obtain the following theorem from Theorem 5.1 and the proof of [11, Theorem 4.3].

Theorem 6.1. Let X be a proper cocompact non-hyperbolic CAT(0) space with $|\partial X| > 2$ and let $f : X \to X$ be an isometry of X (need not to be semi-simple). Then the induced homeomorphism $\bar{f} : \partial X \to \partial X$ is non-expansive.

Proof. Since X is not hyperbolic, X contains some subspace Z which is isometric to the flat plane \mathbb{R}^2 by Theorem 5.1. To prove that the homeomorphism \bar{f} of the boundary ∂X is non-expansive, we show that for any $\epsilon > 0$, there exist $\alpha, \beta \in \partial Z \subset \partial X$ with $\alpha \neq \beta$ such that

$$d_{\partial X}^{\mathbb{R}^2}(\bar{f}^i(\alpha), \bar{f}^i(\beta)) < \epsilon$$

for any $i \in \mathbb{Z}$. Here the proof of [11, Theorem 4.3] implies that for any $\epsilon > 0$, we can take $\alpha, \beta \in \partial Z$ with $\alpha \neq \beta$ as the angle $\angle(\alpha, \beta)$ is small enough in Z and

$$d_{\partial X}^{\mathbb{R}^2}(\bar{g}(\alpha), \bar{g}(\beta)) < \epsilon$$

for any isometry g of X and the induced homeomorphism \bar{g} of ∂X. Therefore \bar{f} is a non-expansive homeomorphism of the boundary ∂X. □

7. On Hyperbolic CAT(0) Spaces

In this section, we investigate the homeomorphism \bar{f} of the boundary ∂X induced by an isometry f of a proper cocompact hyperbolic CAT(0) space X.

For a parabolic isometry of a hyperbolic space, the following remark is known.

Remark. Let f be a parabolic isometry of a proper hyperbolic space X. Then f induces a homeomorphism \bar{f} of the boundary ∂X, and there exists a unique fixed-point α_0 of \bar{f} on ∂X. Here, in this paper, we define
\(f^\infty := \alpha_0 \) and \(f^{-\infty} := \alpha_0 \). We note that for every point \(x \in X \), the sequence \(\{f^i(x)\}_i \) converges to \(f^\infty = \alpha_0 \) as \(i \to \infty \) in \(X \cup \partial X \), and the sequence \(\{f^i(x)\}_i \) converges to \(f^{-\infty} = \alpha_0 \) as \(i \to -\infty \) in \(X \cup \partial X \).

For a hyperbolic or parabolic isometry \(f \) of a proper hyperbolic space \(X \), we define \(\text{Fix}(\bar{f}) \) as the fixed-point set of the induced homeomorphism \(\bar{f} \) of the boundary \(\partial X \).

We obtain the following lemma from [3, Theorems 8.16 and 8.17] and [4, 8.1.F and 8.1.G].

Lemma 7.1. Let \(X \) be a proper hyperbolic \(\text{CAT}(0) \) space and let \(f: X \to X \) be a hyperbolic isometry or a parabolic isometry.

1. For any \(\alpha \in \partial X \setminus \text{Fix}(\bar{f}) \), the sequence \(\{\bar{f}^i(\alpha)\}_i \) converges to \(f^\infty \) as \(i \to \infty \) and converges to \(f^{-\infty} \) as \(i \to -\infty \) in \(\partial X \).

2. For any compact subset \(K \) of \(\partial X \setminus \text{Fix}(\bar{f}) \) and any neighborhood \(U^+ \) (resp. \(U^- \)) of \(f^\infty \) (resp. \(f^{-\infty} \)), there exists a number \(n \in \mathbb{N} \) such that \(\bar{f}^n(K) \subset U^+ \) (resp. \(\bar{f}^{-n}(K) \subset U^- \)).

Using Lemma 7.1, we show the following theorem.

Theorem 7.2. Let \(X \) be a proper cocompact hyperbolic \(\text{CAT}(0) \) space with \(|\partial X| > 2 \) and let \(f: X \to X \) be an isometry of \(X \). Then the induced homeomorphism \(\bar{f}: \partial X \to \partial X \) is non-sensitive.

Proof. The isometry \(f \) is either elliptic, hyperbolic or parabolic. If \(f \) is an elliptic isometry of \(X \), then the induced homeomorphism \(\bar{f} \) of \(\partial X \) is non-sensitive by Theorem 4.1. We suppose that \(f \) is a hyperbolic isometry or a parabolic isometry of \(X \).

Let \(\epsilon > 0 \) and let \(\alpha \in \partial X \setminus \text{Fix}(\bar{f}) \). Then we can take a sufficiently small closed neighborhood \(U_0 \) of \(\alpha \) in \(\partial X \) such that

\[
U_0 \cap \text{Fix}(\bar{f}) = \emptyset \quad \text{and} \quad \text{diam } U_0 < \epsilon.
\]

Here, by Lemma 7.1 (2), we obtain that

\[
\text{diam } \bar{f}^i(U_0) \to 0 \quad \text{as } i \to \infty \quad \text{and} \quad \text{diam } \bar{f}^i(U_0) \to 0 \quad \text{as } i \to -\infty.
\]
Hence the set
\[A_0 = \{ i \in \mathbb{Z} \mid \text{diam} \, \tilde{f}^i(U_0) \geq \epsilon \} \]
is finite.

If \(A_0 \) is empty, then \(\text{diam} \, \tilde{f}^i(U_0) < \epsilon \) for any \(i \in \mathbb{Z} \), i.e., \(\tilde{f} \) is non-sensitive.

We suppose that \(A_0 \) is non-empty. Let \(i_0 \in A_0 \). Then \(\text{diam} \, \tilde{f}^{i_0}(U_0) \geq \epsilon \). Here we note that \(\tilde{f}^{i_0}(U_0) \) is a neighborhood of \(\tilde{f}^{i_0}(\alpha) \). Then we can take a small closed neighborhood \(V_1 \) of \(\tilde{f}^{i_0}(\alpha) \) such that \(V_1 \subset \tilde{f}^{i_0}(U_0) \) and \(\text{diam} \, V_1 < \epsilon \). Let \(U_1 := \tilde{f}^{-i_0}(V_1) \). Then \(U_1 \) is a closed neighborhood of \(\alpha \), \(U_1 \nsubseteq U_0 \) and \(\text{diam} \, U_1 \leq \text{diam} \, U_0 < \epsilon \). Here we consider the set
\[A_1 = \{ i \in \mathbb{Z} \mid \text{diam} \, \tilde{f}^i(U_1) \geq \epsilon \} \].

We note that \(A_1 \nsubseteq A_0 \) because \(U_1 \nsubseteq U_0 \) and \(i_0 \in A_0 \setminus A_1 \).

If \(A_1 \) is empty, then \(\text{diam} \, \tilde{f}^i(U_1) < \epsilon \) for any \(i \in \mathbb{Z} \), i.e., \(\tilde{f} \) is non-sensitive.

If \(A_1 \) is non-empty, then we take \(i_1 \in A_1 \) and by the same argument as above, we obtain a small closed neighborhood \(V_2 \) of \(\tilde{f}^{i_1}(\alpha) \) and \(U_2 = \tilde{f}^{-i_1}(V_1) \) as \(U_2 \) is a closed neighborhood of \(\alpha \), \(U_2 \nsubseteq U_1 \) and \(\text{diam} \, U_2 \leq \text{diam} \, U_1 \leq \text{diam} \, U_0 < \epsilon \). Also we consider the set
\[A_2 = \{ i \in \mathbb{Z} \mid \text{diam} \, \tilde{f}^i(U_2) \geq \epsilon \} \].

Here \(A_2 \nsubseteq A_1 \nsubseteq A_0 \).

By iterating this argument, we obtain a sequence
\[A_k \nsubseteq \cdots \nsubseteq A_2 \nsubseteq A_1 \nsubseteq A_0 \].

Here there exists a number \(k \) such that \(A_k \) is empty since \(A_0 \) is a finite set. Then \(\text{diam} \, \tilde{f}^i(U_k) < \epsilon \) for any \(i \in \mathbb{Z} \).

Therefore \(\tilde{f} \) is a non-sensitive homeomorphism of the boundary \(\partial X \). □

8. On Sensitiveness of the Induced Homeomorphisms with Respect to Neighborhoods of a Point of the Boundary

In this section, we investigate sensitiveness of the homeomorphisms of the boundary induced by an isometry of a proper cocompact CAT(0) space with respect to neighborhoods of a point of the boundary.

In this paper, a homeomorphism \(g : Y \to Y \) is said to be sensitive with respect to neighborhoods of a point \(y \) of \(Y \) if there exists a number \(\epsilon > 0 \) such
that for any neighborhood U of y in Y, the diameter $\text{diam} \, g^i(U) \geq \epsilon$ for some $i \in \mathbb{Z}$. Also a homeomorphism $g : Y \rightarrow Y$ is said to be non-sensitive with respect to neighborhoods of a point y of Y if for any $\epsilon > 0$ there exist a neighborhood U of y in Y such that $\text{diam} \, g^i(U) < \epsilon$ for any $i \in \mathbb{Z}$.

We obtain the following theorem from the arguments in Sections 4–7.

Theorem 8.1. Let X be a proper cocompact CAT(0) space with $|\partial X| > 2$. Suppose that $f : X \rightarrow X$ is an isometry and $\bar{f} : \partial X \rightarrow \partial X$ is the homeomorphism induced by f.

1. If f is an elliptic isometry, then \bar{f} is non-sensitive with respect to neighborhoods of any point of the boundary ∂X.

2. If the CAT(0) space X is hyperbolic and f is a hyperbolic isometry or a parabolic isometry, then \bar{f} is non-sensitive with respect to neighborhoods of any point of $\partial X \setminus \text{Fix}(\bar{f})$.

3. If the CAT(0) space X is hyperbolic and f is a hyperbolic isometry or a parabolic isometry, then \bar{f} is sensitive with respect to neighborhoods of the points f^∞ and $f^{-\infty}$.

Proof. Theorem 4.1 implies that (1) holds and the proof of Theorem 7.2 implies that (2) holds.

We show that (3) holds. We suppose that X is hyperbolic and f is a hyperbolic isometry. For any neighborhood U of $f^{-\infty}$ in the boundary ∂X, there exists $\alpha \in U$ with $\alpha \neq f^{-\infty}$ since ∂X has no isolated points. Then the sequence $\{\bar{f}^i(\alpha)\}_i$ converges to f^∞ as $i \rightarrow \infty$ by Lemma 7.1 (1). Also $\bar{f}^i(f^{-\infty}) = f^{-\infty}$ for any $i \in \mathbb{Z}$. Hence $\text{diam} \, \bar{f}^i(U) \geq d_{\partial X}^{\infty}(\bar{f}^i(f^{-\infty}), \bar{f}^i(\alpha)) = d_{\partial X}^{\infty}(f^{-\infty}, \bar{f}^i(\alpha))$, where $d_{\partial X}^{\infty}(f^{-\infty}, \bar{f}^i(\alpha))$ converges to $d_{\partial X}^{\infty}(f^{-\infty}, f^\infty)$ as $i \rightarrow \infty$. Therefore \bar{f} is sensitive with respect to neighborhoods of the point $f^{-\infty}$. We also obtain that \bar{f} is sensitive with respect to neighborhoods of the point f^∞ by the same argument.

We suppose that X is hyperbolic and f is a parabolic isometry. Let $\alpha \in \partial X \setminus \{f^\infty\}$ and let $\epsilon_0 = d_{\partial X}^{\infty}(\alpha, f^\infty)$. Then for any neighborhood U of
\[f^\infty = f^{-\infty} \text{ in the boundary } \partial X, \text{ there exists a number } i_0 \in \mathbb{N} \text{ such that } \bar{f}^{i_0}(\alpha) \in U \text{ by Lemma } 7.1 \text{ (1). Hence } \alpha \in \bar{f}^{-i_0}(U) \text{ and } \]

\[\text{diam } \bar{f}^{-i_0}(U) \geq d_{\partial X}^{\infty}(\alpha, f^\infty) = \epsilon_0. \]

Therefore \(\bar{f} \) is sensitive with respect to neighborhoods of the point \(f^\infty = f^{-\infty} \). □

9. Remarks

We introduce an example of an isometry of a proper cocompact CAT(0) space which is not hyperbolic.

Example 9.1. Let \(G = (\mathbb{Z} \times \mathbb{Z}) * \mathbb{Z} \) and let \(X \) be a proper CAT(0) space on which \(G \) acts properly and cocompactly by isometries. Here we denote \(G = \langle \{a, b, c\} \mid ab = ba \rangle \), i.e., \(G = (\langle a \rangle \times \langle b \rangle) * \langle c \rangle \). Also, for example, we can suppose that \(X \) is the CAT(0) complex whose 1-skeleton is the Cayley graph of \(G \) with respect to the generating set \(\{a, b, c\} \). Then we consider the hyperbolic isometry \(f := a \) of \(X \).

We first note that if \(Z \) is the flat plane in \(X \) on which \(\langle a \rangle \times \langle b \rangle \) acts, then \(\bar{f}(\alpha) = \alpha \) for any \(\alpha \in \partial Z \). In particular, \(\bar{f}(b^\infty) = b^\infty \).

Next, we note that the sequence \(\{\bar{f}^i(c^\infty)\}_i \) converges to \(a^\infty \) as \(i \to \infty \) and converges to \(a^{-\infty} \) as \(i \to -\infty \). Also, in fact, for any \(\alpha \in \partial X \setminus \partial Z \), the sequence \(\{\bar{f}^i(\alpha)\}_i \) converges to \(a^\infty \) as \(i \to \infty \) and converges to \(a^{-\infty} \) as \(i \to -\infty \).

For any neighborhood \(U \) of \(b^\infty \) in \(\partial X \), there exists \(\alpha \in U \setminus \partial Z \) and the sequence \(\{\bar{f}^i(\alpha)\}_i \) converges to \(a^\infty \) as \(i \to \infty \). Here \(\bar{f}^i(b^\infty) = b^\infty \) for any \(i \in \mathbb{Z} \). Hence we obtain that \(\bar{f} \) is sensitive with respect to neighborhoods of the point \(b^\infty \).

On the other hand, for any small neighborhood \(U \) of \(c^\infty \) in \(\partial X \) with \(U \cap \partial Z = \emptyset \),

\[\text{diam } \bar{f}^i(U) \to 0 \text{ as } i \to \infty \text{ and } \]

\[\text{diam } \bar{f}^i(U) \to 0 \text{ as } i \to -\infty. \]

Hence we obtain that \(\bar{f} \) is non-sensitive with respect to neighborhoods of the point \(c^\infty \).
Thus there exist points $\beta, \gamma \in \partial X$ such that \bar{f} is sensitive with respect to neighborhoods of the point β and \bar{f} is non-sensitive with respect to neighborhoods of the point γ.

On a hyperbolic isometry of a proper cocompact CAT(0) space which is not hyperbolic, Theorem 6.1 implies that the induced homeomorphism of the boundary is non-expansive. On the other hand, we do not know whether the induced homeomorphism of the boundary is non-sensitive.

The author has the following question.

Question 9.2. Let X be a proper cocompact non-hyperbolic CAT(0) space with $|\partial X| > 2$ and let $f : X \to X$ be a hyperbolic isometry or a parabolic isometry of X. Then is it the case that the induced homeomorphism $\bar{f} : \partial X \to \partial X$ is non-sensitive?

References

[10] Hosaka, T., CAT(0) groups and Coxeter groups whose boundaries are scrambled sets, J. Pure Appl. Algebra 214 (2010), 919–936.
[12] Ontaneda, P., Cocompact CAT(0) spaces are almost geodesically complete, Topology 44 (2005), 47–62.

(Received June 29, 2011)
(Revised February 21, 2012)

Department of Mathematics
Shizuoka University
Suruga-ku, Shizuoka 422-8529
Japan
E-mail: sthosak@ipc.shizuoka.ac.jp