Uniform Estimate for Distributions of the Sum of i.i.d. Random Variables with Fat Tail

By Hirotaka Fushiya and Shigeo Kusuoka∗

Abstract. The research on asymptotic behavior of distributions of the sum of i.i.d random variables has a long history and a lot of facts are known. The authors consider the case where the distribution of a random variable has the second moment but has a fat tail, and they show a new limit theorem for large deviations.

1. Introduction

Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(X_n, n = 1, 2, \ldots\), be independent identically distributed random variables with the same probability law \(\mu\).

In the present paper we assume that

(A-1) \(E[X_1^2] = 1\) and \(E[X_1] = 0\).

Let \(F : \mathbb{R} \to [0, 1]\) and \(\bar{F} : \mathbb{R} \to [0, 1]\) be given by

\[
F(x) = \mu((-\infty, x]) = P(X_1 \leq x) \quad \text{and} \quad \bar{F}(x) = \mu((x, \infty)) = P(X_1 > x), \quad x \in \mathbb{R}.
\]

We also assume the following.

(A-2) \(\bar{F}(x)\) is a regularly varying function of index \(-\alpha\) for some \(\alpha > 2\), as \(x \to \infty\), i.e., if we let

\[
L(x) = x^\alpha \bar{F}(x), \quad x \geq 1,
\]

then \(L(x) > 0\) for any \(x \geq 1\), and for any \(a > 0\)

\[
\frac{L(ax)}{L(x)} \to 1, \quad x \to \infty.
\]

∗Research supported by the 21st century COE project, Graduate School of Mathematical Sciences, The University of Tokyo.

2000 Mathematics Subject Classification. 60F05, 62E20.
(A-3) $|x|^\alpha + 2 F(x) \to 0, \quad x \to -\infty$.

Recently people in finance are interested in computing the quantile of the distribution of $\sum_{k=1}^n X_k$ for the purpose of measuring market risk.

There are many works on this topic. In particular, there are many results on large deviation results (e.g. Borovkov-Borovkov [1], also see books, Borovkov-Borovkov [2] and Petrov [7]). However, there are not so many results on uniform estimates. Nagaev [5] and [6] proved the following theorem (also see Linnik [4]), and this is the best result so far to our best knowledge.

Theorem 1 (Nagaev). Assume (A-1)-(A-3). Then we have

$$\sup_{s \in [1, \infty)} \left| \frac{P(\sum_{k=1}^n X_k > sn^{1/2})}{\Phi_0(s) + nF(sn^{1/2})} - 1 \right| \to 0, \quad n \to \infty.$$

Here $\Phi_0 : \mathbb{R} \to \mathbb{R}$ is given by

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp\left(-\frac{y^2}{2}\right) dy, \quad x \in \mathbb{R}.$$

In this paper, we show two theorems. Combining them, we can improve Nagaev’s result a little bit.

Let us explain our results. We assume the following assumption furthermore.

(A-4) The probability law μ is absolutely continuous and has a density function $\rho : \mathbb{R} \to [0, \infty)$ which is right continuous and has a finite total variation.

To state our theorem (Theorem 2), we need some preparations.

Let K be an integer such that $K - 1 < \alpha \leq K$. Then $K \geq 3$. From the assumptions (A-2) and (A-3), we see that the probability law μ has $(K - 1)$-th moment. So let $\eta_k, k = 1, \ldots, K - 1$, be given by

$$\eta_k = \int_\mathbb{R} x^k \mu(dx).$$

Then we see that $\eta_1 = 0$ and $\eta_2 = 1$. Also, let us define $\Phi_k : \mathbb{R} \to \mathbb{R}, \quad k = 1, 2, \ldots$, by

$$\Phi_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = -\frac{d}{dx}\Phi_0(x),$$

$$\Phi_k(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp\left(-\frac{y^2}{2}\right) dy, \quad x \in \mathbb{R}.$$
and

\[\Phi_k(x) = (-1)^{k-1} \frac{d^{k-1}}{dx^{k-1}} \Phi_1(x), \quad k = 2, 3, \ldots. \]

Theorem 2. Assume (A-1)-(A-4). Then there are \(\delta > 0 \) and \(C > 0 \) such that

\[\sup_{s \in [1, \infty)} |P(\sum_{k=1}^{n} X_k > sn^{1/2}) - G(n, s)| \leq Cn^{-(\alpha-2)/2-\delta}, \quad n = 3, 4, \ldots. \]

Here

\[G(n, s) \]

\[= \Phi_0(s) + \int_{-\infty}^{s} \bar{F}((s-x)n^{1/2}) \Phi_1(x) dx - \sum_{k=1}^{K-1} \frac{n^{-(k-2)/2}}{k!} \Phi_k(s) \int_{0}^{\infty} x^k \mu(dx) \]

\[+ \frac{n^{-(K-2)/2}}{K!} \Phi_K(s) \int_{-\infty}^{0} x^K \mu(dx) + \sum_{k=3}^{K-1} n^{-k/6} q_k(n^{-1/3}, \eta_2, \ldots, \eta_k) \Phi_k(s) \]

\[+ \sum_{k=K}^{3(K-1)} n^{-k/6} q_k(n^{-1/3}, \eta_2, \ldots, \eta_{K-1}, 0, \ldots, 0) \Phi_k(s), \]

and \(q_k \)'s are polynomials defined in the next section.

For the next theorem we assume the following also.

(A-5) There is an \(x_0 > 0 \) such that \(\bar{F} \) is twice continuously differentiable on \((x_0, \infty)\) and that

\[x^2 \frac{d^2}{dx^2} \log \bar{F}(x) \to \alpha, \quad x \to \infty. \]

Then we have the following.

Theorem 3. Assume the assumptions (A-1)-(A-5) and let \(\beta : N \to (0, \infty) \) be such that

\[\frac{\beta(n)}{(\log n)^{1/2}} \to \infty, \quad n \to \infty. \]
Then we have
\[
\sup_{s \geq n^{1/2} \beta(n)} \frac{s^2}{n} \left| \frac{P(\sum_{k=1}^{n} X_k > s)}{nF(s)} - (1 + \frac{\alpha(\alpha + 1)n}{2s^2}) \right| \to 0, \quad n \to \infty.
\]

Let
\[
H(n, s) = \Phi_0(s) + n \int_{-\infty}^{s} \tilde{F}((s-x)n^{1/2}) \Phi_1(x) dx - \sum_{k=1}^{2} \frac{n^{-(k-2)/2}}{k!} \Phi_k(s) \int_{0}^{\infty} x^k \mu(dx)
\]
for \(s \geq 1 \), and \(n \geq 1 \).

Then we also show the following.

Theorem 4. Assume (A-1)-(A-5). Then there exist a \(C > 0 \), \(\delta > 0 \) and \(n_0 \geq 1 \) such that
\[
\sup_{s \in [1, \infty)} \left| \frac{P(\sum_{k=1}^{n} X_k > sn^{1/2})}{H(n, s)} - 1 \right| \leq Cn^{-\delta}, \quad n \geq n_0.
\]

Note that by Theorem 3, we see that
\[
2(\log n)^2 \left(\frac{P(\sum_{k=1}^{n} X_k > (\log n)n^{1/2})}{\Phi_0(\log n) + n\tilde{F}((\log n)n^{1/2})} - 1 \right) \to \alpha(\alpha + 1) \quad n \to \infty.
\]

Therefore we see that \(H(n, s) \) is a better approximation for \(P(\sum_{k=1}^{n} X_k > sn^{1/2}) \) than \(\Phi_0(s) + n\tilde{F}(sn^{1/2}) \).

The authors thank the referee for useful comments.

2. **Algebraic Preparation**

In this section, we think of formal power series in \(z \). First, we think of the following formal power series in \(z \).

(1) \[
\log(1 + \sum_{k=2}^{\infty} \frac{a_k}{k!} z^k) = \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell-1}}{\ell} \left(\sum_{k=2}^{\infty} \frac{a_k}{k!} z^k \right)^{\ell} = \sum_{\ell=2}^{\infty} c_\ell(a_2, \ldots, a_\ell) z^{\ell-1} \frac{z^\ell}{\ell!}
\]

Then we see that \(c_\ell(a_2, \ldots, a_\ell) \), \(\ell \geq 2 \), are polynomials in \(a_2, \ldots, a_\ell \), and
\[
c_\ell(t^2a_2, \ldots, t^\ell a_\ell) = t^\ell c_\ell(a_1, \ldots, a_\ell)
\]
for any $t, a_1, \ldots, a_\ell \in \mathbb{R}$. Moreover, we see that

$$c_2(a_2) = a_2 \quad \text{and} \quad c_\ell(a_2, \ldots, a_{\ell-1}, a_\ell) = c_\ell(a_2, \ldots, a_{\ell-1}, 0) + a_\ell, \quad \ell \geq 2.$$

We also think of the following formal power series in z.

$$\exp(y^{-3} \sum_{\ell=3}^{\infty} c_\ell(a_2, \ldots, a_\ell) \frac{(yz)^\ell}{\ell!})$$

(2) \quad = 1 + \sum_{k=1}^{\infty} \frac{1}{k!} \left(\sum_{\ell=3}^{\infty} c_\ell(a_2, \ldots, a_\ell) \frac{y^{\ell-3} z^\ell}{\ell!} \right)^k = 1 + \sum_{k=3}^{\infty} q_k(y, a_2, \ldots, a_k) z^k.$$

Then we see that $q_k(y, a_2, \ldots, a_k), \quad k \geq 3,$ are polynomials in y, a_2, \ldots, a_ℓ. Note that

$$q_k(y, t^2 a_2 \ldots, t^k a_k) = t^k q_k(y, a_2, \ldots, a_k)$$

and that

$$q_k(y, a_2, \ldots, a_k) = q_k(y, a_2, \ldots, a_{k-1}, 0) + \frac{y^{k-3}}{k!} a_k, \quad k \geq 3.$$

Also we have

$$\exp(y^{-6} \sum_{\ell=3}^{\infty} c_\ell(a_2, \ldots, a_\ell) \frac{(y^3 z)^\ell}{\ell!})$$

$$= \exp((y^2)^{-3} \sum_{\ell=3}^{\infty} c_\ell(y^2 a_2, \ldots, y^\ell a_\ell) \frac{(y^2 z)^\ell}{\ell!})$$

(3) \quad = 1 + \sum_{k=3}^{\infty} q_k(y^2, y^2 a_2, \ldots, y^k a_k) z^k = 1 + \sum_{k=3}^{\infty} y^k q_k(y^2, a_2, \ldots, a_k) z^k$$

as a formal power series in z.
3. Property of the Function L

Proposition 5. We have

$$\sup_{1/2 \leq a \leq 2} \frac{L(ax)}{L(x)} \to 1, \quad x \to \infty,$$

and

$$\inf_{1/2 \leq a \leq 2} \frac{L(ax)}{L(x)} \to 1, \quad x \to \infty.$$

Proof. Since the proof is similar, we prove the first equation only. If not, there are $\varepsilon > 0$, $\{a_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ such that $1/2 \leq a_n \leq 2$, $x_n \geq 1$, $n = 1, 2, \ldots$, $x_n \to \infty$, $n \to \infty$, and that

$$\frac{L(a_n x_n)}{L(x_n)} > 1 + \varepsilon, \quad n = 1, 2, \ldots.$$

Then taking a subsequence if necessary, we may assume that there is an $a \in [1/2, 2]$ such that $a_n \to a$, $n \to \infty$. Then we see that for any $m \geq 3$ there is a $n(m) \geq 1$ such that

$$(a - \frac{1}{m})^{-\alpha} L((a - \frac{1}{m})x_n) = \bar{F}((a - \frac{1}{m})x_n) \geq \bar{F}(a_n x_n)$$

$$= a_n^{-\alpha} L(a_n x_n), \quad n \geq n(m).$$

So we have

$$(1 - \frac{1}{ma})^{-\alpha} \geq \lim_{n \to \infty} \frac{L(a_n x_n)}{L((a - 1/m)x_n)} \geq 1 + \varepsilon, \quad m \geq 3.$$

Since m is arbitrary, this implies a contradiction. □

Proposition 6. For any $\varepsilon \in (0, 1)$, there is an $M \geq 1$ such that

$$M^{-1} y^{-\varepsilon} \leq \frac{L(yx)}{L(x)} \leq M y^\varepsilon \quad x, y \geq 1.$$

Proof. For any $\varepsilon \in (0, 1)$ there is an $m \geq 1$ such that

$$|\frac{L(ex)}{L(x)} - 1| \leq \varepsilon \quad x \geq e^m.$$
Let

\[C = \sup_{x \in [1, e^m]} \left(\frac{L(ex)}{L(x)} + \frac{L(x)}{L(ex)} \right) < \infty. \]

Then we have

\[C^{-m}(1 - \varepsilon)^n \leq \frac{L(e^n x)}{L(x)} \leq C^m (1 + \varepsilon)^n, \quad x \geq 1, \ n \geq 0. \]

For any \(y \geq 1 \), there is an \(n \geq 1 \) such that \(e^{n-1} \leq y \leq e^n \). Then we have

\[\bar{F}(e^{n-1} x) \geq \bar{F}(y x) \geq \bar{F}(e^n x). \]

So we have for any \(x, y \geq 1 \)

\[(e^{-1} y x)^{-\alpha} L(e^{n-1} x) \geq (e^{n-1} x)^{-\alpha} L(e^{n-1} x) \geq (y x)^{-\alpha} L(y x) \]

\[\geq (e^n x)^{-\alpha} L(e^n x) \geq (e y x)^{-\alpha} L(e^n x), \]

which implies

\[C^{-m} e^{-\alpha} (1 - \varepsilon)^n \leq \frac{L(y x)}{L(x)} \leq C^m e^{\alpha} (1 + \varepsilon)^{n-1}. \]

Therefore we have

\[C^{-m} e^{-\alpha} (1 - \varepsilon)^{y \log(1 - \varepsilon)} \leq \frac{L(y x)}{L(x)} \leq C^m e^{\alpha} y^{\log(1 + \varepsilon)}, \quad x \geq 1, \ y \geq 1. \]

This implies our assertion. □

The following is known as Karamata’s theorem (c.f.[3] Appendix), but we give a proof.

PROPOSITION 7. (1) For any \(\beta < -1 \),

\[\frac{1}{t^{\beta+1} L(t)} \int_t^\infty x^\beta L(x) dx \to -\frac{1}{\beta + 1}, \quad t \to \infty. \]

(2) For any \(\beta > -1 \),

\[\frac{1}{t^{\beta+1} L(t)} \int_1^t x^\beta L(x) dx \to \frac{1}{\beta + 1}, \quad t \to \infty. \]
(3) Let \(f : [1, \infty) \to (0, \infty) \) be given by
\[
f(t) = \int_1^t x^{-1} L(x) dx \quad t \geq 1.
\]
Then \(f \) is slowly varying.

Proof. Note that for \(t > 1 \)
\[
\frac{1}{t^{\beta+1} L(t)} \int_t^\infty x^\beta L(x) dx = \int_1^\infty x^\beta \frac{L(tx)}{L(t)} dx, \text{ if } \beta < -1
\]
and
\[
\frac{1}{t^{\beta+1} L(t)} \int_1^t x^\beta L(x) dx = \int_1^1 x^\beta \left(\frac{L(t)}{L(tx)} \right)^{-1} dx \text{ if } \beta > -1.
\]
Then the assertions (1) and (2) follow from this equation and Proposition 5.

Let us prove (3). If \(\lim_{t \to \infty} f(t) < \infty \), the assertion is obvious. So we assume that \(\lim_{t \to \infty} f(t) = \infty \). Then for any \(a > 0 \) and \(t_0 > 1 \)
\[
f(at) = \int_{1/a}^t x^{-1} L(ax) dx = \int_{1/a}^{t_0} x^{-1} L(ax) dx + \int_{t_0}^t x^{-1} L(x) \frac{L(ax)}{L(x)} dx.
\]
So we have
\[
\inf_{x \geq t_0} \frac{L(ax)}{L(x)} \leq \lim_{t \to \infty} \frac{f(at)}{f(t)} \leq \lim_{t \to \infty} \frac{f(at)}{f(t)} \leq \sup_{x \geq t_0} \frac{L(ax)}{L(x)}.
\]
Therefore by Proposition 6 and Lebesgue’s convergence theorem, we have our assertion. \(\square \)

4. **Estimate for Moments and Characteristic Functions**

Remind that \(K \) is an integer such that \(K - 1 < \alpha \leq K \) and
\[
\eta_k = \int_{-\infty}^\infty x^k \mu(dx), \quad k = 1, 2, \ldots, K - 1.
\]
Then by the assumption (A4) we have \(\eta_1 = 0 \) and \(\eta_2 = 1 \). Note that
\[
1 - \bar{F}(t) \geq 1 - \int_2^\infty \frac{x^2}{4} \mu(dx) \geq \frac{3}{4}.
\]
for any $t \geq 2$. Let
\[\eta_k(t) = \int_{(-\infty,t]} x^k \mu(dx), \quad t > 0, \; k = 1, 2, \ldots, K + 1, \]
and
\[\bar{\eta}_k(t) = \int_{(t,\infty)} x^k \mu(dx), \quad t > 0, \; k = 0, 1, 2, \ldots, K - 1. \]
Then we have
\[\eta_k(t) = \int_{(-\infty,0)} x^k \mu(dx) + k \int_0^t x^{k-1} \bar{F}(x)dx - t^k \bar{F}(t), \quad t > 0, \; k = 1, 2, \ldots, K + 1, \]
and
\[\bar{\eta}_k(t) = k \int_t^\infty x^{k-1} \bar{F}(x)dx + t^k \bar{F}(t) \quad t > 0, \; k = 0, 1, 2, \ldots, K - 1. \]
Then by Propositions 6 and 7 we have the following.

Proposition 8. For any $\varepsilon > 0$, there is a $C(\varepsilon) > 0$ such that
\[L(t) \leq C(\varepsilon)t^\varepsilon, \]
\[|\eta_K(t)| \leq C(\varepsilon)t^{-\alpha + K + \varepsilon}, \]
\[|\bar{\eta}_k(t)| \leq C(\varepsilon)t^{-\alpha + k + \varepsilon}, \quad k = 0, 1, 2, \ldots, K - 1, \]
and
\[\int_{(-\infty,t]} |x|^{K+1} \mu(dx) \leq C(\varepsilon)t^{-\alpha + K + 1 + \varepsilon} \]
for any $t \geq 1$.

The following is well known.

Proposition 9. (1) For any $m \geq 0$, let $r_{e,m} : \mathbb{R} \to \mathbb{C}$ be given by
\[r_{e,m}(t) = \exp(it) - (1 + \sum_{k=1}^m \frac{(it)^k}{k!}), \quad t \in \mathbb{R}. \]
Then we have
\[|r_{c,m}(t)| \leq \frac{|t|^{m+1}}{(m+1)!} \quad t \in \mathbb{R}. \]

(2) For any \(m \geq 1 \), let \(r_{l,m} : \{ z \in \mathbb{C}; |z| \leq 1/2 \} \to \mathbb{C} \) be given by
\[r_{l,m}(z) = \log(1 + z) - \sum_{k=1}^{m} \frac{(-1)^{k-1}}{k} z^k, \quad z \in \mathbb{C}, \ |z| \leq 1/2. \]

Then we have
\[|r_{l,m}(z)| \leq 2|z|^{m+1}, \quad z \in \mathbb{C}, \ |z| \leq 1/2. \]

Let \(\mu(t), t > 0 \), be a probability measure on \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \) given by
\[\mu(t)(A) = (1 - \bar{F}(t))^{-1} \mu(A \cap (-\infty, t]), \]
for any \(A \in \mathcal{B}(\mathbb{R}) \).

Let \(\varphi(\cdot; \mu(t)), t > 0 \), be the characteristic function of the probability measure \(\mu(t) \), i.e.,
\[\varphi(\xi; \mu(t)) = \int_{\mathbb{R}} \exp(ix\xi) \mu(t)(dx), \quad \xi \in \mathbb{R}. \]

By the assumption (A3), we see that the density function \(\rho(x) \to 0 \) as \(|x| \to \infty \). Also we see that the probability measure \(\mu(t), t \geq 2 \), is absolutely continuous and its density function is \((1 - \bar{F}(t))^{-1} \rho(x) 1_{(-\infty,t]}(x) \), whose total variation is dominated by twice of that of \(\rho \).

Therefore we have the following.

Proposition 10. (1) For any \(t \geq 2 \) and \(\xi \in \mathbb{R} \),
\[i\xi \varphi(\xi; \mu(t)) = (1 - \bar{F}(t))^{-1} \int_{\mathbb{R}} i\xi e^{ix} \rho(x) 1_{(-\infty,t]}(x) dx \]
\[= -(1 - \bar{F}(t))^{-1} \int_{\mathbb{R}} e^{ix} d(\rho(x) 1_{(-\infty,t]}(x)). \]

(2) There is a \(C > 0 \) such that
\[|\varphi(\xi, \mu(t))| \leq C(1 + |\xi|)^{-1} \quad \text{for any } t \geq 2 \text{ and } \xi \in \mathbb{R}. \]
Then we have the following.

Proposition 11. (1) There is a $c_0 > 0$ such that

$$|\varphi(\xi, \mu(t))| \leq (1 + c_0|\xi|^2)^{-1/4} \text{ for any } t \geq 2 \text{ and } \xi \in \mathbb{R}.$$

(2) For any $t \geq 2$, $\xi \in \mathbb{R}$, and integers n, m with $n \geq m$,

$$|\varphi(n^{-1/2}\xi, \mu(t))|^n \leq (1 + \frac{c_0}{m}|\xi|^2)^{-m/4}.$$

Proof. Let $g(x) = \rho(x)1_{(-2,2)}(x), x \in \mathbb{R}$. Then we have

$$p = \int_{\mathbb{R}} g(x)dx \geq 1 - \int_{\mathbb{R}} \frac{x^2}{4} \rho(x)dx \geq 3/4.$$

Note that

$$|\varphi(\xi, \mu(t))|^2$$

$$= (1 - \bar{F}(t))^{-2} \int_{\mathbb{R}} \int_{\mathbb{R}} \exp(i\xi(x - y))\rho(x)1_{(-\infty, t]}(x)\rho(y)1_{(\infty, t]}(y)dxdy$$

$$\leq (1 - p^2) + \int_{\mathbb{R}} \int_{\mathbb{R}} \exp(i\xi(x - y))g(x)g(y)dxdy = 1 - f(\xi),$$

where

$$f(\xi) = \int_{\mathbb{R}} \int_{\mathbb{R}} (1 - \cos(\xi(x - y)))g(x)g(y)dxdy.$$

So we see that

$$\lim_{\xi \to 0} |\xi|^{-2} f(\xi) = \frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} (x - y)^2 g(x)g(y)dxdy > 0.$$

Also, it is easy to see that $f(\xi) > 0$, for all $\xi \in \mathbb{R} \setminus \{0\}$, and so we see that

$$a(r) = \inf_{|\xi| \leq r} |\xi|^{-2} f(\xi) > 0 \quad \text{for all } r > 0.$$

Therefore we see that

$$|\varphi(\xi, \mu(t))| \leq (1 - a(r)|\xi|^2)^{1/2} \leq (1 + a(r)|\xi|^2)^{-1/4}, \quad |\xi| \leq r.$$
Also by Proposition 10(2), we see that there is an \(r_0 > 0 \) such that
\[
|\varphi(\xi, \mu(t))| \leq (1 + |\xi|^2)^{-1/4}, \quad |\xi| \geq r_0
\]
So we have the assertion (1).

It is easy to check that \((1 + x/\beta)^\beta \geq 1 + x \) for any \(\beta \geq 1 \) and \(x \geq 0 \). Therefore if \(n \geq m \), we have
\[
(1 + c_0 n^{-1/2}|\xi|^2)^{n/m} \geq 1 + \frac{c_0}{m}|\xi|^2.
\]
This implies the assertion (2). \(\Box \)

5. Asymptotic Expansion of Characteristic Functions

Let
\[
\varphi_1(\xi, t) = -\sum_{k=1}^{K-1} \frac{(i\xi)^k}{k!} \tilde{\eta}_k(t) + \frac{(i\xi)^K}{K!} \eta_K(t)
\]
and
\[
\psi_0(n, \xi) = \sum_{k=3}^{K-1} n^{-k/6} q_k(n^{-1/3}, \eta_2, \ldots, \eta_k)(i\xi)^k
\]
\[
+ \sum_{k=K}^{3(K-1)} n^{-k/6} q_k(n^{-1/3}, \eta_2, \ldots, \eta_{K-1}, 0, \ldots, 0)(i\xi)^k
\]
for \(t \geq 2, n \geq 1 \) and \(\xi \in \mathbb{R} \). Let \(\delta = ((\alpha-2)\wedge 1)/(4(K+2)) \), \(\delta' = \delta/(4(K+2)) \), and \(t_n = n^{1/2-\delta}, n = 1, 2, 3, \ldots \). Then \(t_n \geq 2 \) for any \(n \geq 8 \).

In this section, we prove the following.

Lemma 12. Let
\[
R_{n,0}(\xi) = \exp\left(\frac{1}{2} \xi^2\right) \varphi(n^{-1/2}\xi, \mu(t_n))^n - (1 + \psi_0(n, \xi) + n\varphi_1(n^{-1/2}\xi, t_n))
\]
\[
R_{n,1}(\xi) = \exp\left(\frac{1}{2} \xi^2\right) \varphi(n^{-1/2}\xi, \mu(t_n))^n - 1
\]
\[
R_{n,2}(\xi) = \exp\left(\frac{1}{2} \xi^2\right) \varphi(n^{-1/2}\xi, \mu(t_n))^{n-1} - 1
\]
Then there is a $C > 0$ such that
\[|R_{n,0}(\xi)| \leq C n^{-(\alpha-2)/2-\delta/4} |\xi| \]
and
\[|R_{n,1}(\xi)| + |R_{n,2}(\xi)| \leq C n^{-2K\delta} |\xi| \]
for any $n \geq 8$ and $\xi \in \mathbb{R}$ with $|\xi| \leq n^{\delta'}$.

We make some preparations to prove this lemma. First we prove the following.

Proposition 13. Let
\[\varphi_0(\xi) = \sum_{k=2}^{K-1} \frac{(i\xi)^k}{k!} \eta_k, \]
and
\[R_0(\xi, t) = \varphi(\xi; \mu(t)) - (1 + \varphi_0(\xi) + \varphi_1(\xi, t)). \]

Then we have for any $n \geq 8$, and $\xi \in \mathbb{R}$ with $|\xi| \leq n^{\delta'}$,
\[|\varphi(n^{-1/2} \xi; \mu(t_n)) - 1| \leq \frac{2\sqrt{3}}{3} n^{-1/2} |\xi|, \]
\[|\varphi_1(n^{-1/2} \xi, t_n)| \leq K C(\delta) n^{-\alpha/2+(K+1)\delta} |\xi| \]
and
\[|R_0(n^{-1/2} \xi, t_n)| \leq 3C(\delta) n^{-\alpha/2-\delta/4} |\xi|. \]

Here $C(\delta)$ is as in Proposition 8.

Proof. We can easily see that
\[\varphi(\xi; \mu(t)) = \int_{\mathbb{R}} \exp(ix\xi) \mu(t)(dx) \]
\[= 1 + \sum_{k=1}^{K} \frac{(i\xi)^k}{k!} \eta_k(t) + \int_{(-\infty, t]} r_{e,K}(x\xi) \mu(dx) \]
\[+ \tilde{F}(t)(1 - \tilde{F}(t))^{-1} \int_{(-\infty, 0]} r_{e,0}(x\xi) \mu(dx) \]
So we see that

\[R_0(\xi, t) = \bar{F}(t)(1 - \bar{F}(t))^{-1} \int_{(-\infty,t]} r_{e,0}(x\xi)\mu(dx) + \int_{(-\infty,t]} r_{e,K}(x\xi)\mu(dx). \]

By Propositions 8 and 9 we have

\[|\varphi_1(\xi, t)| \leq C(\delta) \sum_{k=1}^{K} \frac{|\xi|^k}{k!} t^{-\alpha+k+\delta}, \quad \xi \in \mathbb{R}, \ t \geq 2, \]

and

\[|R_0(\xi, t)| \leq C(\delta)|\xi|^{t-\alpha+\delta} \int_{\mathbb{R}} |x|\mu(t)(dx) + C(\delta)|\xi|^K t^{-\alpha+K+1+\delta}, \quad \xi \in \mathbb{R}, \ t \geq 2. \]

Also, we have

\[|\varphi(\xi; \mu(t)) - 1| \leq |\xi| \int_{\mathbb{R}} |x|\mu(t)(dx) \leq (1 - \bar{F}(t))^{-1/2} |\xi| \leq \frac{2\sqrt{3}}{3} |\xi|, \quad \xi \in \mathbb{R}, \ t \geq 2. \]

Note that

\[(n^{-1/2+\delta'})^k (n^{1/2-\delta})^{-\alpha+k+\delta} = n^{-\alpha/2+(\alpha+1/2)\delta - k(\delta-\delta')-\delta^2}. \]

So we have our assertion. □

Proposition 14. Let

\[\psi_1(\xi) = \sum_{k=3}^{K} \frac{(i\xi)^k}{k!} c_k(\eta_2, \ldots, \eta_k) + \frac{(i\xi)^K}{K!} c_K(\eta_2, \ldots, \eta_K-1, 0), \quad \xi \in \mathbb{R}. \]

Also, for any \(n \geq 8, \) and \(\xi \in \mathbb{R} \) with \(|\xi| \leq n^{\delta'}, \) let

\[R_1(n, \xi) = \log(\varphi(n^{-1/2}\xi, \mu(t_n))) - \left\{ -\frac{1}{2n} \xi^2 + \psi_1(n^{-1/2}\xi) + \varphi_1(n^{-1/2}\xi, t_n) \right\}. \]

Then there is a constant \(C > 0 \) such that

\[|R_1(n, \xi)| \leq C n^{-\alpha/2-\delta/4} |\xi|. \]
for any $n \geq 8$, and $\xi \in \mathbb{R}$ with $|\xi| \leq n^{\delta'}$.

Proof. Let

$$R_{1,1}(\xi) = \sum_{k=1}^{K} \frac{(-1)^{k-1}}{k} (\varphi_0(\xi))^{k} + \frac{1}{2}\xi^2 - \psi_1(\xi).$$

Note that

$$\log(1 + \sum_{k=2}^{K-1} \eta_k z^k) = \sum_{k=2}^{K-1} c_k(\eta_2, \ldots, \eta_k) z^k + \sum_{k=K}^{\infty} c_k(\eta_2, \ldots, \eta_{K-1}, 0, \ldots, 0) z^k$$

as a formal power series of z. So we see that there is a constant $C > 0$ such that

$$|R_{1,1}(\xi)| \leq C|\xi|^{K+1}$$

for any $\xi \in \mathbb{R}$ with $|\xi| \leq 1$.

We can easily see that

$$R_1(n, \xi) = \log(1 + \varphi_0(n^{-1/2}\xi) + \varphi_1(n^{-1/2}\xi, t_n) + R_0(n^{-1/2}\xi, t_n))$$

$$-\{-\frac{1}{2n}\xi^2 + \psi_1(n^{-1/2}\xi) + \varphi_1(n^{-1/2}\xi, t_n)\}$$

$$= R_{1,1}(n^{-1/2}\xi) + r_{l,K}(\varphi(n^{-1/2}\xi, \mu(t_n)) - 1) + R_0(n^{-1/2}\xi, t_n)$$

$$+ \sum_{k=2}^{K} (-1)^{k-1}(\varphi_0(n^{-1/2}\xi))^{k-1}(\varphi_1(n^{-1/2}\xi, t_n) + R_0(n^{-1/2}\xi, t_n))$$

$$+ \sum_{k=1}^{K} \frac{(-1)^{k-1}}{k} \sum_{j=2}^{k} \binom{k}{j} (\varphi_0(n^{-1/2}\xi))^{k-j}(\varphi_1(n^{-1/2}\xi, t_n) + R_0(n^{-1/2}\xi, t_n))^j.$$

Then we have our assertion from Equation (4) and Proposition 13.

Proposition 15. Let

$$R_2(n, \xi) = \exp(n\psi_1(n^{-1/2}\xi)) - (1 + \psi_0(n, \xi)).$$
Then there is a constant $C > 0$ such that
\[|R_2(n, \xi)| \leq C n^{-(\alpha-2)/2-1/4} |\xi| \]
for any $n \geq 8$, and $\xi \in \mathbb{R}$ with $|\xi| \leq n^{\delta'}$.

Proof. Note that
\[
\exp\left(y^{-6} \left(\sum_{k=3}^{K-1} \frac{y^3 z^k}{k!} c_k(\eta_2, \ldots, \eta_k) + \sum_{k=K}^{\infty} \frac{(y^3 z)^k}{k!} c_k(\eta_2, \ldots, \eta_{K-1}, 0, \ldots, 0) \right) \right)
= 1 + \sum_{k=3}^{K-1} y^k q_k(y^2, \eta_2, \ldots, \eta_k) z^k + \sum_{k=K}^{\infty} y^k q_k(\eta_2, \ldots, \eta_{K-1}, 0, \ldots, 0)) z^k
\]
as a formal power series in z. This implies our assertion. □

Now let us prove Lemma 12.
Note that for any $n \geq 8$, and $\xi \in \mathbb{R}$ with $|\xi| \leq n^{\delta'}$,
\[
\exp\left(\frac{1}{2} \xi^2 \varphi(n^{-1/2} \xi; \mu(t_n))\right) = \exp(n \varphi_1(n^{-1/2} \xi, t_n) + n \psi_1(n^{-1/2} \xi) + n R_1(n, \xi))
= (1 + n \varphi_1(n^{-1/2} \xi, t_n) + r_{e,1}(n \varphi_1(n^{-1/2} \xi, t_n)))
\times (1 + \psi_0(n, \xi) + R_2(n, \xi))(1 + r_{e,0}(n R_1(n, \xi))).
\]
So we see that
\[
R_{n,0}(n, \xi) = r_{e,0}(n R_1(n, \xi)) \exp(n \varphi_1(n^{-1/2} \xi, t_n) + n \psi_1(n^{-1/2} \xi))
+ R_2(n, \xi) \exp(n \varphi_1(n^{-1/2} \xi, t_n))
+ r_{e,1}(n \varphi_1(n^{-1/2} \xi, t_n)) + \psi_0(n, \xi)(n \varphi_1(n^{-1/2} \xi, t_n) + r_{e,1}(n \varphi_1(n^{-1/2} \xi, t_n))).
\]
Thus we have the first equation from Propositions 13, 14, 15.

Also, we have
\[
R_{n,1}(n, \xi) = \exp(n \varphi_1(n^{-1/2} \xi, t_n) + n \psi_1(n^{-1/2} \xi) + n R_1(n, \xi))) - 1,
\]
and
\[
R_{n,2}(n, \xi) = \exp((n - 1) \varphi_1(n^{-1/2} \xi, t_n) + (n - 1) \psi_1(n^{-1/2} \xi)
+ (n - 1) R_1(n, \xi)) - \frac{\xi^2}{n}) - 1.
\]
So, again from Propositions 13, 14, 15 we have the second equation.
6. Proof of Theorem 2

First, we prove the following.

Lemma 16. Let \(\nu \) be a probability measure on \((\mathbb{R}, \mathcal{B}(\mathbb{R}))\) such that \(\int_{\mathbb{R}} x^2 \nu(dx) < \infty \). Also, assume that there is a constant \(C > 0 \) such that the characteristic function \(\varphi(\cdot, \nu) : \mathbb{R} \to \mathbb{C} \) satisfies
\[
|\varphi(\xi; \nu)| \leq C(1 + |\xi|)^{-2}, \quad \xi \in \mathbb{R}.
\]

Then for any \(x \in \mathbb{R} \)
\[
\nu((x, \infty)) = \Phi_0(x) + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-ix\xi}}{i\xi} (\varphi(\xi, \nu) - \exp(-\frac{\xi^2}{2})) d\xi.
\]

Proof. From the assumption, \(\nu \) has a continuous density function \(\beta \) and
\[
\beta(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ix\xi} \varphi(\xi, \nu) d\xi.
\]
So we have
\[
\nu((x, x+n]) = \Phi_0(x) - \Phi_0(x+n) + \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_x^{x+n} e^{-iz\xi} dz \right) (\varphi(\xi, \nu) - \exp(-\frac{\xi^2}{2})) d\xi.
\]
\[
= \Phi_0(x) - \Phi_0(x+n) + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-ix\xi} - e^{-i(x+n)\xi}}{i\xi} (\varphi(\xi, \nu) - \exp(-\frac{\xi^2}{2})) d\xi.
\]
Since
\[
\int_{\mathbb{R}} \frac{1}{|\xi|} |\varphi(\xi, \nu) - \exp(-\frac{\xi^2}{2})| d\xi < \infty,
\]
letting \(n \to \infty \), we have the assertion. \(\Box \)

Note that
\[
P(\sum_{k=1}^{n} X_k > sn^{1/2}) = \sum_{m=0}^{n} I_m(n, s),
\]
where
\[
I_m(n, s) = P(\sum_{k=1}^{n} X_k > sn^{1/2}, \sum_{k=1}^{n} 1\{X_k > t_n\} = m), \quad m = 0, 1, \ldots, n.
\]
Then we have

\[I_m(n, s) = \binom{n}{m} P(\sum_{k=1}^{n} X_k > sn^{1/2}, X_i > t_n, i = 1, \ldots, m, \]

\[X_j \leq t_n, j = m + 1, \ldots, n), \]

for \(m = 0, 1, \ldots, n \).

Proposition 17. There is a \(C > 0 \) such that

\[\sum_{m=2}^{n} I_m(n, s) \leq C n^{-(\alpha-2)/2-\delta} \]

for any \(s \geq 1 \) and \(n \geq 8 \).

Proof. We see that by Proposition 8

\[
\sum_{m=2}^{n} I_m(n, s) \leq \sum_{m=2}^{n} \frac{n(n-1)}{m(m-1)} \left(\frac{n-2}{m-2} \right) \tilde{F}(t_n)^m (1 - \tilde{F}(t_n))^{n-m} \\
\leq \frac{n(n-1)}{2} \tilde{F}(t_n)^2 \leq C(\delta)^2 n^{-(\alpha-2)/2-\delta}.
\]

This implies our assertion. \(\square \)

Proposition 18. There is a \(C > 0 \) such that

\[
\sup_{s \in [1, \log n]} |I_0(n, s) - \{(1 - nF(t_n))\Phi_0(s) - \sum_{k=1}^{K-1} \frac{n^{-(k-2)/2}}{k!} \eta_k(t_n)\Phi_k(s) \\
+ \frac{n^{1/2}K-2}{K!} \eta_K(t_n)\Phi_K(s) + g(n, s)}| \leq C n^{-(\alpha-2)/2-\delta/4}
\]

for any \(n \geq 8 \). Here

\[
g(n, s) = \sum_{k=3}^{K-1} n^{-k/6} q_k(n^{-1/3}, \eta_2, \ldots, \eta_k)\Phi_k(s) \\
+ \sum_{k=K}^{3(K-1)} n^{-k/6} q_k(n^{-1/3}, \eta_2, \ldots, \eta_{K-1}, 0, \ldots, 0)\Phi_k(s).
\]
Proof. Note that
\[I_0(n, s) = (1 - \bar{F}(t_n))^n \mu(t_n)^n((sn^{1/2}, \infty)) \]
\[= I_{0,0}(n, s) + I_{0,1}(n, s) + I_{0,2}(n, s), \]
where
\[I_{0,0}(n, s) = \mu(t_n)^n((sn^{1/2}, \infty)), \]
\[I_{0,1}(n, s) = -n\bar{F}(t_n)\mu(t_n)^n((sn^{1/2}, \infty)), \]
\[I_{0,2}(n, s) = ((1 - \bar{F}(t_n))^n - 1 + n\bar{F}(t_n))\mu(t_n)^n((sn^{1/2}, \infty)). \]

We remark that
\[\Phi_k(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (i\xi)^{k-1} \exp(-i\xi x - \frac{\xi^2}{2}) d\xi, \quad k = 1, 2, \ldots. \]

By Proposition 11 and Lemma 16, we have
\[I_{0,0}(n, s) \]
\[= \Phi_0(s) + \frac{1}{2\pi} \int_{\mathbb{R}} e^{-is\xi} \left(\varphi(n^{-1/2}\xi, \mu(t_n))^n - \exp\left(-\frac{\xi^2}{2}\right) \right) d\xi. \]

Let
\[\tilde{R}_{0,0}(n, s) = I_{0,0}(n, s) \]
\[- \{ \Phi_0(s) + \frac{1}{2\pi} \int_{\mathbb{R}} e^{-is\xi} \left(\psi_0(n, \xi) + n\varphi_1(n^{-1/2}\xi, t_n) \right) e^{-\xi^2/2} d\xi \} \]

Then by Lemma 12 we have
\[|\tilde{R}_{0,0}(n, s)| \]
\[\leq \int_{|\xi| \leq n^{\sigma'}} \frac{|R_{n,0}(\xi)|}{|\xi|} \exp\left(-\frac{\xi^2}{2}\right) d\xi \]
\[+ \int_{|\xi| > n^{\sigma'}} \frac{1}{|\xi|} \left(|\varphi(n^{-1/2}\xi, \mu(t_n))|^n + \exp\left(-\frac{\xi^2}{2}\right) \right) d\xi \]
\[+ \int_{|\xi| > n^{\sigma'}} \left(|\psi_0(n, \xi)| + n|\varphi_1(n^{-1/2}\xi, t_n)| \right) e^{-\xi^2/2} d\xi \]
So by Proposition 11 and Lemma 12, we see that there is a $C_0 > 0$ such that

$$(5) \quad \left| \tilde{R}_{0,0}(n, s) \right| \leq C_0 n^{-(\alpha - 2)/2 - \delta/4}, \quad n \geq 8, \ s \geq 1.$$

Also, we see that

$$\frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} n\varphi_1(n^{-1/2} \xi, t_n) \exp\left(-\frac{1}{2} \xi^2\right) d\xi$$

$$= -\sum_{k=1}^{K-1} \frac{(n^{-1/2})^{k-2}}{k!} \eta_k(t_n) \Phi_k(s) + \frac{(n^{-1/2})^{K-2}}{K!} \eta_K(t_n) \Phi_K(s),$$

and

$$\frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} \psi_0(n, \xi) \exp\left(-\frac{1}{2} \xi^2\right) d\xi = g(n, s).$$

Similarly by Lemma 12, we see that there is a $C_1 > 0$ such that

$$(6) \quad \sup_{s \in [1, \log n]} \left| I_{0,1}(n, s) - n \bar{F}(t_n) \Phi_0(s) \right| \leq C_1 n^{-(\alpha - 2)/2 - \delta}, \quad n \geq 8.$$

Note that $|(1 - x)^n - (1 - nx)| \leq n^2 x^2$ for any $x \in [0, 1], \ n \geq 1$. So we have

$$\left| I_{0,2}(n, s) \right| \leq n^2 \bar{F}(t_n)^2 \leq C(\delta)^2 n^{-(\alpha - 2)/2 - \delta}.$$

This and Equations 5, 6 imply our assertion. □

Proposition 19. There is a $C > 0$ such that

$$\sup_{s \in [1, \log n]} \left| I_1(n, s) - \{n \int_{-\infty}^{s} \bar{F}((s-x)n^{1/2}) \Phi_1(x) dx + n \bar{F}(t_n) \Phi_0(s) \right.$$

$$- \sum_{k=1}^{K} \frac{n^{-(k-2)/2}}{k!} \Phi_k(s) \int_{0}^{t_n} x^k \mu(dx) \left| \right| \leq C n^{-(\alpha - 2)/2 - \delta/4}.$$

Proof. We see that

$$I_1(n, s) = n(1 - \bar{F}(t_n))^{n-1} \int_{\mathbb{R}} P(X_1 + x > sn^{1/2}, \ X_1 > t_n) \mu(t_n)^{(n-1)}(dx)$$
= n(1 - \bar{F}(t_n))^{n-1} \int_{-\infty}^{\infty} \bar{F}((sn^{1/2} - x) \vee t_n) \mu(t_n)^{*(n-1)}(dx)
= nJ_0(n, s) + nJ_1(n, s) + nJ_2(n, s),
where

(7) J_0(n, s) = \int_{-\infty}^{\infty} \bar{F}((s - x)n^{1/2} \vee t_n)\Phi_1(x)dx,

(8) J_1(n, s) = \int_{-\infty}^{\infty} \bar{F}((sn^{1/2} - x) \vee t_n)(\mu(t_n)^{*(n-1)}(dx) - n^{-1/2}\Phi_1(xn^{1/2})dx),

and

(9) J_2(n, s) = -(1 - (1 - \bar{F}(t_n))^{n-1})I_1(n, s).

Note that

J_0(n, s) = J_{0,0}(n, s) + J_{0,1}(n, s) + J_{0,2}(n, s),

where

J_{0,0}(n, s) = \int_{-\infty}^{s} \bar{F}((s - x)n^{1/2})\Phi_1(x)dx,

J_{0,1}(n, s) = -\int_{s-n^{-\delta}}^{s} \bar{F}((s - x)n^{1/2})\Phi_1(x)dx
= -\int_{0}^{n^{-\delta}} \bar{F}(xn^{1/2})\Phi_1(s - x)dx,

and

J_{0,2}(n, s) = \bar{F}(t_n) \int_{s-n^{-\delta}}^{\infty} \Phi_1(x)dx = \bar{F}(t_n)\Phi_0(s - n^{-\delta}).

We see that

J_{0,1}(n, s) = -\sum_{k=1}^{K} \frac{1}{(k-1)!} \Phi_k(s) \int_{0}^{n^{-\delta}} \bar{F}(xn^{1/2})x^{k-1}dx + R_{J,1}(n, s),

where

R_{J,1}(n, s) = -\int_{0}^{n^{-\delta}} \bar{F}(xn^{1/2})(\Phi_1(s - x) - \sum_{k=1}^{K} \frac{x^{k-1}}{(k-1)!} \Phi_k(s))dx.
Then

\[|R_{J,1}(n, s)| \]

\[\leq \sup_{x \in [0, n^{-\delta}]} |\Phi_{K+1}(s-x)| \left(\int_{n^{-1/2}}^{n^{-\delta}} x^K (xn^{1/2})^{-\alpha} L(xn^{1/2}) \, dx + \int_0^{n^{-1/2}} x^K \, dx \right). \]

\[\leq \sup_{x \in \mathbb{R}} |\Phi_{K+1}(x)| (C(\delta)n^{-\alpha/2+\delta/2} \int_0^{n^{-\delta}} x^{\delta+(K-\alpha)} \, dx + n^{-(K+1)/2}) \]

(10)

\[\leq \sup_{x \in \mathbb{R}} |\Phi_{K+1}(x)| (C(\delta) + 1)n^{-\alpha/2-\delta/2}. \]

Also, we see that

\[J_{0,2}(n, s) \]

\[= \bar{F}(t_n) \Phi_0(s) + \sum_{k=1}^{K} \bar{F}(t_n) \frac{(n^{-\delta})^k}{k!} \Phi_k(s) + R_{J,2}(n, s), \]

where

\[R_{J,2}(n, s) = \bar{F}(t_n)(\Phi_0(s-n^{-\delta}) - \sum_{k=0}^{K} \frac{(-n^{-\delta})^k}{k!} \frac{d^k \Phi_0}{dx^k}(s)). \]

We see that

\[|R_{J,2}(n, s)| \leq \bar{F}(t_n)n^{-(K+1)\delta} \sup_{x \in \mathbb{R}} |\Phi_{K+1}(x)| \]

(11)

\[\leq C(\delta) \sup_{x \in \mathbb{R}} |\Phi_{K+1}(x)| n^{-\alpha/2-\delta/4}. \]

It is easy to see that

\[\int_0^{n^{-\delta}} \bar{F}(xn^{1/2})x^{k-1} \, dx = n^{-k/2} \int_0^{t_n} \bar{F}(x)x^{k-1} \, dx \]

\[= n^{-k/2} \left(-\frac{1}{k} \int_0^{t_n} x^k \mu(dx) + \frac{n^{\delta k}}{k} \bar{F}(t_n) \right), \quad k = 1, \ldots, K. \]

So we have

\[J_{0,1}(n, s) + J_{0,2}(n, s) = \bar{F}(t_n) \Phi_0(s) \]
\[-\sum_{k=1}^{K} \frac{n^{-k/2}}{k!} \Phi_k(s) \int_{0}^{t_n} x^k \mu(dx) + R_{J,1}(n,s) + R_{J,2}(n,s) \]

Also, we have
\[J_1(n,s) = J_{1,1}(n,s) + J_{1,2}(n,s) \]

where
\[J_{1,1}(n,s) = \bar{F}(t_n)(\mu(t_n)^{(n-1)}((s-n^{-\delta})n^{1/2}, \infty)) - \Phi_0(s-n^{-\delta}) \]

and
\[J_{1,2}(n,s) = \int_{-\infty}^{s-n^{-\delta}} dx \bar{F}((s-x)n^{1/2}) \]
\[\times \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ix\xi}(\varphi(n^{-1/2}\xi; \mu(t_n)))^{n-1} - \exp(-\frac{\xi^2}{2})d\xi \]

By Proposition 11 and Lemma 16, we see that there is a \(C_1 > 0 \) such that
\[|\mu(t_n)^{(n-1)}((xn^{1/2}, \infty)) - \Phi_0(x)| \]
\[\leq |\int_{-\infty}^{\infty} \frac{e^{-ix\xi}}{\xi} \varphi(n^{-1/2}\xi; \mu(t_n))^{n-1} - \exp(-\frac{\xi^2}{2})d\xi| \]
\[\\
\leq \int_{|\xi| > n^{\delta'}} \frac{1}{|\xi|} |\varphi(\xi; \mu(t_n))|^{n-1} + \exp(-\frac{\xi^2}{2})d\xi \]
\[+ \int_{|\xi| < n^{\delta'}} \frac{1}{|\xi|} |R_{n,2}(\xi)| \exp(-\frac{\xi^2}{2})d\xi \]
\[\leq C_1 n^{-2K\delta}, \text{ for any } x \in \mathbb{R} \text{ and } n \geq 8. \]

Therefore we have
\[|J_{1,1}(n,s)| \leq C_1 \bar{F}(t_n)n^{-2K\delta} \leq C(\delta)C_1 n^{-\alpha/2-\delta}. \]

Similarly by Lemma 16, we see that there is a \(C_2 > 0 \) such that
\[|\int_{\mathbb{R}} e^{-ix\xi}(\varphi(n^{-1/2}\xi; \mu(t_n))^{n-1} - \exp(-\frac{\xi^2}{2})d\xi| \]
\[\leq C_2 n^{-2K\delta}, \text{ for any } x \in \mathbb{R} \text{ and } n \geq 8. \]
Then we have
\[|J_{1,2}(n, s)| \leq C_2 n^{-2K\delta} C(\delta) \int_{n^{-\delta}}^\infty (xn^{1/2})^{-\alpha+\delta} dx \leq C_2 C(\delta)n^{-\alpha/2-\delta} \]

So we see that there is a \(C > 0 \) such that
\[\sup_{s \in [1, \log n]} |J_1(n, s)| \leq Cn^{-(\alpha-2)/2-\delta} \quad \text{(13)}\]

Note that
\[|J_2(n, s)| \leq n^2 \bar{F}(t_n)^2 \quad \text{(14)} \]

So Equations (7) - (14) imply our assertion. □

Proposition 20. Then there is a \(C > 0 \) such that
\[\sup_{s \in [1, \log n]} |P(\sum_{k=1}^n X_k > sn^{1/2}) - G(n, s)| \leq Cn^{-(\alpha-2)/2-\delta/4}, \quad n = 3, 4, \ldots . \]

Proof. Note that
\[\bar{\eta}_k(t_n) + \int_0^{t_n} x^k \mu(dx) = \int_0^{\infty} x^k \mu(dx), \quad k = 1, 2, \ldots, K-1, \]
and
\[\eta_K(t_n) - \int_0^{t_n} x^K \mu(dx) = \int_{-\infty}^0 x^K \mu(dx) . \]

So our assertion is an easy consequence of Propositions 17, 18, 19. □

Proposition 21. There is a \(C > 0 \) such that
\[\sup_{s \in [\log n, \infty)} I_0(n, s) \leq Cn^{-(\alpha-2)/2-\delta/4}, \quad n = 3, 4, \ldots . \]

Proof. We have
\[I_0(n, s) \leq \mu(t_n)^*n((sn^{1/2}, \infty)) \]
Sum of i.i.d. Random Variables with Fat Tail

\[= \Phi_0(s) + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} (\varphi(n^{-1/2} \xi, \mu(t_n))^n - \exp(-\frac{\xi^2}{2})) d\xi. \]

\[= \Phi_0(s) + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} (\varphi(n^{-1/2} \xi, \mu(t_n))^n - \exp(-\frac{\xi^2}{2})) d\xi. \]

\[\leq \Phi_0(s) + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} (\psi_0(n, \xi) + n\varphi_1(n^{-1/2} \xi, t_n) \exp(-\frac{\xi^2}{2})) d\xi. \]

\[+ \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} R_{n,0}(\xi) \exp(-\frac{\xi^2}{2})) d\xi. \]

Since \(\sup_{s \geq \log n} |\Phi_k(s)| \) is of \(O(n^{-M}) \) for any \(M \geq 1 \), we have our assertion similar to the proof of Proposition 18.

Proposition 22. There is a \(C > 0 \) such that

\[\sup_{s \in [\log n, \infty)} |I_1(n, s) - n \int_{-\infty}^{s} \tilde{F}((s - x)n^{1/2}) \Phi_1(x) dx| \leq Cn^{-(\alpha-2)/2-\delta/4}. \]

Proof. Remind that

\[I_1(n, s) = n(1 - \tilde{F}(t_n))^{n-1} \int_{-\infty}^{\infty} \tilde{F}((sn^{1/2} - x) \vee t_n) \mu(t_n)^{n-1}(dx) \]

\[= n(1 - \tilde{F}(t_n))^{n-1} \left\{ \int_{-\infty}^{\infty} \tilde{F}(((s - x)n^{1/2}) \vee t_n) \Phi_1(x) dx \]

\[+ \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(((s - x)n^{1/2}) \vee t_n) \]

\[\times \left(\int_{\mathbb{R}} \frac{e^{-is\xi}}{i\xi} (\varphi(n^{-1/2} \xi, \mu(t_n))^{n-1} - \exp(-\frac{\xi^2}{2})) d\xi \right). \]

Then similarly to the proof of Propositions 19 and 21, we have our assertion. \(\square \)

Now Theorem 2 is a consequence of Propositions 20 and 22.
7. Preliminary for Theorem 3

Proposition 23. Let Y be a random variable, and assume that
\[E[|Y|^2] < \infty \quad \text{and} \quad E[Y] = 0. \]
Then for any $s \in \mathbb{R} \setminus \{0\}$ and $b > 0$
\[E[\exp(sY1_{\{|Y| \leq b\}})] \leq 1 + s^2(1 + \frac{1}{|s|b})\exp(|s|b)E[|Y|^2]. \]

Proof. First, note that
\[|\exp(x) - 1| \leq 1 \lor \exp(x), \]
and
\[|\exp(x) - 1| = \left| \int_{0}^{x} e^y dy \right| \leq |x|(1 \lor \exp(x)), \quad x \in \mathbb{R}. \]
So we have
\[|\exp(x) - (1 + x)| = \left| \int_{0}^{x} (e^y - 1) dy \right| \leq (|x| \land |x|^2)(1 \lor \exp(x)) \]
for any $x \in \mathbb{R}$. Therefore we see that
\[|\exp(x) - (1 + x)| \leq |x|^2 \exp(|x|), \quad x \in \mathbb{R}. \]
This implies that
\[|E[\exp(sY1_{\{|Y| \leq b\}})] - (1 + E[sY1_{\{|Y| \leq b\}}])| \leq s^2 \exp(|s|b)E[|Y|^2]. \]
Since
\[|E[sY1_{\{|Y| \leq b\}}]| = |sE[Y, |Y| > b]| \leq |s|b^{-1}E[|Y|^2], \]
we have our assertion. \(\square \)

Proposition 24. Let X be a random variable and assume that
\[E[|X|^2] < \infty \quad \text{and} \quad E[X] = 0. \]
Then for any \(t > 0 \) and \(n \geq 1 \)

\[
n \log E[\exp(\pm \frac{1}{tn^{1/2}} X_1 \mathbb{1}_{|X| \leq tn^{1/2}})] \leq \frac{6}{t^2} E[|X|^2].
\]

Proof. Let \(Y = (1/t)X \), \(s = \pm n^{-1/2} \), \(b = n^{1/2} \), and apply Proposition 23. Since \(\log(1 + x) \leq x \), \(x \geq 0 \), we have our assertion. \(\square \)

Now let \(X_n, n = 1, 2, \ldots \), be independent identically distributed random variables. Throughout this section we assume that

\[
E[|X_1|^2] < \infty \text{ and } E[X_1] = 0.
\]

Proposition 25. For any \(s, t > 0 \) and \(\varepsilon > 0 \)

\[
P(\left| \sum_{k=1}^{n} X_k \mathbb{1}_{|X_k| \leq tn^{1/2}} \right| \geq sn^{1/2}) \leq 2 \exp(\frac{6}{t^2} E[|X_1|^2]) \exp(-\frac{s}{t}).
\]

Proof. We see that

\[
P(\pm \sum_{k=1}^{n} X_k \mathbb{1}_{|X_k| \leq tn^{1/2}} \geq sn^{1/2})
\]

\[
\leq \exp(-\frac{s}{t}) E[\exp(\frac{1}{tn^{1/2}} \sum_{k=1}^{n} X_k \mathbb{1}_{|X_k| \leq tn^{1/2}})]
\]

\[
\leq \exp(-\frac{s}{t}) E[\exp(\frac{1}{tn^{1/2}} X_1 \mathbb{1}_{|X| \leq tn^{1/2}})]^n.
\]

Then by Proposition 24 we have our assertion.

Let \(F : \mathbb{R} \rightarrow [0, 1] \) and \(\bar{F} : \mathbb{R} \rightarrow [0, 1] \) be given by

\[
F(x) = P(X_1 \leq x), \quad x \in \mathbb{R}
\]

and

\[
\bar{F}(x) = P(X_1 > x), \quad x \in \mathbb{R}.
\]
Then we have the following.

Proposition 26. (1) For any $t, s > 0$, and $n \geq 2$,

$$P\left(\left|\sum_{k=2}^{n} X_k 1_{\{|X_k| \leq tn^{1/2}\}}\right| > sn^{1/2}\right) \leq 2 \exp\left(\frac{6}{t^2} E[|X_1|^2]\right) \exp\left(-\frac{s}{t}\right).$$

(2) For any $s, t > 0$, $\varepsilon \in (0, 1)$ with $t < (1 - \varepsilon)s$,

$$|P\left(\sum_{k=1}^{n} X_k > sn^{1/2}\right) - nP(X_1 + \sum_{k=2}^{n} X_k 1_{\{|X_k| \leq tn^{1/2}\}} > sn^{1/2},$$

$$\left|\sum_{k=2}^{n} X_k 1_{\{|X_k| \leq tn^{1/2}\}}\right| \leq \varepsilon sn^{1/2})| \leq 2n(n-1)(F(-tn^{1/2}) + \bar{F}(tn^{1/2}))^2 + 2 \exp\left(\frac{6}{t^2} E[|X_1|^2]\right) \exp\left(-\frac{s}{t}\right)$$

$$+ 2n(F(-tn^{1/2}) + \bar{F}(tn^{1/2})) \exp\left(\frac{6}{t^2} E[|X_1|^2]\right) \exp\left(-\frac{\varepsilon s}{2t}\right).$$

Proof. Note that

$$P\left(\left|\sum_{k=2}^{n} X_k 1_{\{|X_k| \leq tn^{1/2}\}}\right| > sn^{1/2}\right)$$

$$= P\left(\left|\sum_{k=1}^{n-1} X_k 1_{\{|X_k| \leq \tilde{t}(n-1)^{1/2}\}}\right| > \tilde{s}(n-1)^{1/2}\right),$$

where

$$\tilde{t} = t\left(\frac{n}{n-1}\right)^{1/2}, \quad \tilde{s} = s\left(\frac{n}{n-1}\right)^{1/2}. $$

So we have the assertion (1) from Proposition 25.

Let us denote

$$\tilde{F}(x) = P(|X_1| > x) \leq F(-x) + \bar{F}(x), \quad x > 0.$$

Note that

$$P\left(\sum_{k=1}^{n} X_k > sn^{1/2}\right) = \sum_{m=0}^{n} I_m,$$
where

\[I_m = P(\sum_{k=1}^{n} X_k > sn^{1/2}, \sum_{k=1}^{\min\{m, n\}} 1_{|X_k| > t} = m), \quad m = 0, 1, \ldots, n. \]

Then we have

\[I_m = \binom{n}{m} P(\sum_{k=1}^{n} X_k > sn^{1/2}, |X_i| > t, i = 1, \ldots, m, |X_j| \leq t, j = m + 1, \ldots, n), \]

for \(m = 0, 1, \ldots, n \). So we see that

\[
\sum_{m=2}^{n} I_m \leq \sum_{m=2}^{n} \frac{n(n-1)}{m(m-1)} \left(\frac{n-2}{m-2} \right) \tilde{F}(tn^{1/2})^m (1 - \tilde{F}(tn^{1/2}))^{n-m} \leq \frac{n(n-1)}{2} \tilde{F}(tn^{1/2})^2.
\]

(15)

Also, by Proposition 25, we have

\[
I_0 \leq 2 \exp\left(-\frac{s}{t}\right) \exp\left(\frac{6}{t^2} E[|X_1|^2]\right).
\]

(16)

Let

\[
A_1 = \{|X_1| > tn^{1/2}\}, \quad A_2 = \{|X_k| \leq tn^{1/2}, k = 2, 3, \ldots, n\},
\]

\[
B_1 = \{X_1 + \sum_{k=2}^{\min\{m, n\}} X_k 1_{|X_k| \leq tn^{1/2}} > sn^{1/2}\},
\]

and

\[
B_2 = \{|\sum_{k=2}^{\min\{m, n\}} X_k 1_{|X_k| \leq tn^{1/2}}| \leq \varepsilon sn^{1/2}\}.
\]

Note that \(B_1 \cap B_2 \subset A_1 \), since \(t < (1 - \varepsilon)s \). So we see that

\[
|P(B_1 \cap A_1 \cap A_2) - P(B_1 \cap B_2)| \leq P(B_1 \cap B_2^c \cap A_1 \cap A_2) + P(B_1 \cap B_2 \cap A_1 \cap A_2^c)
\]

(17)

\[
\leq P(A_1) P(B_2^c) + P(A_1) P(A_2^c).
\]
Note that
\[P(A_2^c) \leq \sum_{k=2}^{n} P(|X_k| > tn^{1/2}) = (n - 1)\bar{F}(tn^{1/2}). \]

Also, by the assertion (1) we have
\[P(B_2^c) \leq 2 \exp\left(\frac{6t^2 \mathbb{E}[|X_1|^2]}{\varepsilon s} \right) \exp\left(-\frac{\varepsilon s}{2t}\right). \]

Since \(I_1 = nP(B_1 \cap A_1 \cap A_2) \), we have the assertion from Equations (15), (16) and (17).

This completes the proof. □

8. Some Estimates

In this section, we assume that (A-1) and (A-5).

Let \(g : (x_0, \infty) \to \mathbb{R} \), \(H : [-1/2, 1/2] \times (2x_0, \infty) \to (0, \infty) \) and \(R : [-1/2, 1/2] \times (2x_0, \infty) \to (0, \infty) \) be given by
\[
g(x) = x^2 \frac{d^2}{dx^2} \left(\log \bar{F}(x) \right) - \alpha, \quad x > x_0,
\]
\[
H(y; x) = \frac{\bar{F}(x(1 + y))}{\bar{F}(x)}, \quad y \in [-1/2, 1/2], \quad x > 2x_0,
\]
and
\[
R(y; x) = H(y; x) - \left\{ 1 - \alpha y + \frac{\alpha(\alpha + 1)y^2}{2} \right\}, \quad y \in [-1/2, 1/2], \quad x > 2x_0,
\]

We prove the following in this section.

Proposition 27. There are functions \(a : (2x_0, \infty) \to \mathbb{R} \), \(c : (2x_0, \infty) \to [0, \infty) \) and a constant \(C > 0 \) such that \(a(x) \to 0 \) and \(c(x) \to 0 \), as \(x \to \infty \), and that
\[|R(y; x) - a(x)y| \leq C(c(x)y^2 + |y|^3), \quad y \in [-1/2, 1/2], \quad x > 2x_0. \]

First we prove the following.
Proposition 28. (1) For any $x > x_0$,
\[
\frac{d}{dx} \log(x^\alpha \bar{F}(x)) = -\int_x^\infty \frac{g(z)}{z^2} dz.
\]
(2) For any $y \in [-1/2, 1/2]$ and $x > 2x_0$,
\[
H(y; x) = (1 + y)^{-\alpha} \exp\left(-\int_{1+y}^y dy' \int_{1+y}^\infty \frac{g(xz)}{z^2} dz\right).
\]
Proof. Note that
\[
g(x) = x^2 \frac{d^2}{dx^2} (\log(x^\alpha \bar{F}(x)))
\]
and $g(x) \to 0$ as $x \to \infty$. Then we see that
\[
\frac{d}{dy} (\log(y^\alpha \bar{F}(y))) - \frac{d}{dx} (\log(x^\alpha \bar{F}(x))) = \int_x^y \frac{g(z)}{z^2} dz,
\]
and so we see that
\[
c_0 = \lim_{y \to \infty} \frac{d}{dy} (\log(y^\alpha \bar{F}(y)))
\]
even exists. Note that
\[
\exp\left(\int_x^{2x} \frac{d}{dy} (\log(y^\alpha \bar{F}(y)))dy\right) = \frac{L(2x)}{L(x)} \to 1, \quad x \to \infty.
\]
So we see that $c_0 = 0$. Therefore letting $y \to \infty$ in Equation (18) we have the assertion (1).

By the assertion (1), we have
\[
\frac{d}{dy} \log((1 + y)^\alpha H(y; x)) = -x \int_{x(1+y)}^\infty \frac{g(z)}{z^2} dz = -\int_{1+y}^\infty \frac{g(xz)}{z^2} dz.
\]
Since $H(0; x) = 1$, we have the assertion (2). \(\square\)

Proposition 29. Let $\tilde{a} : (2x_0, \infty) \to \mathbb{R}$ and $\tilde{c} : (2x_0, \infty) \to \mathbb{R}$ be given by
\[
\tilde{a}(x) = \frac{d}{dy}((1 + y)^\alpha H(y, x))|_{y=0},
\]
and

\[
\tilde{c}(x) = \sup_{y \in [-1/2, 1/2]} \left| \frac{d^2}{dy^2}((1 + y)^\alpha H(y, x)) \right|.
\]

Then \(\tilde{a}(x) \to 0\) and \(\tilde{c}(x) \to 0\), as \(x \to \infty\), and that

\[
|H(y; x) - (1 + y)^{-\alpha} - \tilde{a}(x)y(1 + y)^{-\alpha}| \leq 2^\alpha \tilde{c}(x)y^2,
\]

\(y \in [-1/2, 1/2], \ x > 2x_0\).

Proof. By Proposition 11 We have

\[
\frac{d}{dy}((1 + y)^\alpha H(y; x)) = -(1 + y)^\alpha H(y; x) \int_{1+y}^\infty \frac{g(xz)}{z^2} dz
\]

and so

\[
\tilde{a}(x) = -\int_1^\infty \frac{g(xz)}{z^2} dz
\]

Similarly, we have

\[
\frac{d^2}{dy^2}((1 + y)^\alpha H(y; x)) = (1 + y)^\alpha H(y; x) \{ (\int_{1+y}^\infty \frac{g(xz)}{z^2} \, dz)^2 - (1 + y)^{-2} g(x(1 + y)) \}
\]

Therefore we have

\[
\tilde{c}(x) \leq 2^\alpha \{(\int_{1/2}^\infty \frac{|g(xz)|}{z^2} \, dz)^2 + 4 \sup_{y \in [-1/2, 1/2]} |g(x(1 + y))| \}
\]

\times \exp(\int_{1/2}^\infty \frac{|g(xz)|}{z^2} \, dz)
\]

These imply that \(\tilde{a}(x) \to 0, \) \(\tilde{c}(x) \to 0,\) as \(x \to \infty.\) Also we have

\[
|(1 + y)^\alpha H(y; x) - (1 + \tilde{a}(x))| \leq \tilde{c}(x)y^2, \quad x \geq 2x_0, \ y \in [-1/2, 1/2].
\]

This implies our assertion. \(\square\)

Now Proposition 27 is an easy corollary to Proposition 29.

In this section, we assume that X_n, $n = 1, 2, \ldots$, are i.i.d. random variables, $\alpha > 2$ and (A-1) - (A-5) are satisfied. Let $p = (\alpha + 2)/2$ and $\beta = (\alpha + p)/2$. Then we see that $E[|X_1|^p] < \infty$ and there is a $C_0 > 1$ such that

$$F(-x) + \bar{F}(x) \leq C_0 x^{-\beta}, \quad x \geq 1.$$

Proposition 30. Let $b(x) = E[X_1, |X_1| \leq x] = -E[X_1, |X_1| > x]$, $x > 0$. Then we have the following.

(1) $|b(x)| \leq E[|X_1|^p]^{1/p}(F(-x) + \bar{F}(x))^{1-1/p} \leq C_0 x^{-\beta(p-1)/p} E[|X_1|^p]^{1/p}$, $x \geq 1$.

(2) There is a constant $C_1 > 1$ only dependent on p such that

$$E[\sum_{k=1}^{n} X_k 1_{|X_k| \leq x}]^{p/2} \leq C_1 n^{1/2} (E[|X_1|^p]^{1/p} + |b(x)|) + n|b(x)|$$

$$\leq C_1 E[|X_1|^p]^{1/p} (1 + C_0)(n^{1/2} + nx^{-\beta(p-1)/p})$$

for any $n = 1, 2, \ldots$, and $x \geq 1$.

Proof. The assertion (1) is an easy consequence of Hölder’s inequality. So we prove the assertion (2). Since $E[X_k 1_{|X_k| \leq x} - b(x)] = 0$, $k = 1, 2, \ldots$, we see by Burkholder-Davis-Gundy’s theorem that there is a constant $C_1 > 0$ depending on p only such that

$$E[\sum_{k=1}^{n} (X_k 1_{|X_k| \leq x} - b(x))]^{p/2} \leq C_1 E[\sum_{k=1}^{n} (X_k 1_{|X_k| \leq x} - b(x))]^{2/p}$$

Then by Hölder’s inequality, we have

$$E[\sum_{k=1}^{n} (X_k 1_{|X_k| \leq x} - b(x))]^{p/2} \leq C_1 E[n^{p/2-1} \sum_{k=1}^{n} |X_k 1_{|X_k| \leq x} - b(x)|^{p}]^{1/p}$$

$$= C_1 n^{1/2} E[|X_1 1_{|X_1| \leq x} - b(x)|^{p}]^{1/p} \leq C_1 n^{1/2} (E[|X_1 1_{|X_1| \leq x}|^p]^{1/p} + |b(x)|)$$

This implies our assertion. □
Let \(a : (2x_0, \infty) \to \mathbb{R} \) and \(c : (2x_0, \infty) \to [0, \infty) \) be as in Proposition 27. Also, let
\[
Y_n(t) = \sum_{k=1}^{n} X_k 1_{|X_k| \leq tn^{1/2}}, \quad n \geq 2, \ t > 0.
\]

Then we have the following.

Proposition 31. Let \(r \in ((\alpha + 2)/(2\alpha), 1) \). Then for any \(\varepsilon \in (0, 1/2) \)
\[
\lim_{n \to \infty} \sup \{ s^2 E[|H(-\frac{1}{sn^{1/2}} Y_n(t), sn^{1/2})|, |Y_n(t)| \leq \varepsilon sn^{1/2}] - (1 + \frac{\alpha(\alpha + 1)}{2s^2})
\]
\[
\geq (\log n)^{1/2}, \ t \geq (\log n)^{-1}s^{(1+r)/2} \} = 0.
\]

Proof. Let \(s \geq (\log n)^{1/2}, \ t \geq (\log n)^{-1}s^{(1+r)/2}, \) and \(n \geq 3 \). Then \(tn^{1/2} \geq 1 \). Note that
\[
r\beta(p-1)/p > 1 + \frac{3(\alpha - 2)}{8} > 1.
\]

We see that
\[
E[H(-\frac{1}{sn^{1/2}} Y_n(t), sn^{1/2})|, |Y_n(t)| \leq \varepsilon sn^{1/2}] - (1 + \frac{\alpha(\alpha + 1)}{2s^2})
\]
\[
= a(sn^{1/2} - \alpha) E[Y_n(t)] + \frac{\alpha(\alpha + 1)}{2s^2 n} (E[Y_n(t)^2] - n)
\]
\[
- E[1 + \frac{a(sn^{1/2} - \alpha)}{sn^{1/2}} Y_n(t) + \frac{\alpha(\alpha + 1)}{2s^2 n} Y_n(t)^2, |(sn^{1/2})^{-1} Y_n(t)| \geq \varepsilon]
\]
\[
+ E[R(-\frac{1}{sn^{1/2}} Y_n(t), sn^{1/2}), |(sn^{1/2})^{-1} Y_n(t)| \leq \varepsilon].
\]

Note that
\[
s|E[Y_n(t)]| = ns|b(tn^{1/2})| \leq C_0 E[|X_1|^p]^{1/p} s(tn^{1/2})^{-\beta(p-1)/p}
\]
\[
\leq C_0 E[|X_1|^p]^{1/p} (sn^{1/2})^{-\beta(p-1)/p} s^{-1}(1+r)\beta(p-1)/2p,
\]
\[
E[Y_n(t)^2] - n = n(E[(X_1 |X_1| \leq tn^{1/2})^2] - b(tn^{1/2})^2) + E[Y_n(t)]^2 - n
\]
Then we have the following:

\[-nE[X_1^2, |X_1| > tn^{1/2}] + n(n - 1)b(tn^{1/2})^2, \]

and

\[n^{-p/2}E[|Y_n(t)|^p] \leq C_1^p(1 + C_0^pE[|X_1|^p](1 + t^{-\beta(p-1)/p}n^{1/2(1-\beta(p-1)/p)})^p. \]

So we see that

\[
\frac{1}{n}|E[Y_k(t)^2] - n| \leq E[X_1^2, |X_1| > tn^{1/2}] \\
+ C_0(n - 1)n^{-\beta(p-1)/p}(\log n)^{2\beta(p-1)/p}E[|X_1|^p]^{2/p},
\]

\[
s^2(sn^{1/2})^{-k}E[|Y_n(t)|^k, |(sn^{1/2})^{-1}Y_n(t)| > \varepsilon] \\
\leq s^{2-p}e^{-p+k}n^{-p/2}E[|Y_n(t)|^p], \quad k = 0, 1, 2,
\]

and

\[
s^2E[|R(-\frac{1}{sn^{1/2}}Y_n(t), sn^{1/2})|, |(sn^{1/2})^{-1}Y_n(t)| \leq \varepsilon],
\]

\[
\leq C_2(|c(sn^{1/2})n^{-1}E[Y_n(t)^2] + \varepsilon^{-p}s^{2-p}n^{-p/2}E[|Y_n(t)|^p]).
\]

Combining them, we have our assertion. \(\square\)

Now we prove Theorem 3. Let \(\beta : \mathbb{N} \to (0, \infty)\) be such that

\[
\frac{\beta(n)}{(\log n)^{1/2}} \to \infty, \quad n \to \infty.
\]

Assume that Theorem 3 is not valid. Then there is a sequence of positive numbers \(\{s'_n\}_{n=1}^\infty\) such that \(s'_n \geq n^{1/2}\beta(n), n = 1, 2, \ldots, \) and

\[
\lim_{n \to \infty} \left(s'_n \right)^2 \frac{P(\sum_{k=1}^n X_k > s'_n)}{nF(s'_n)} - (1 + \frac{\alpha(\alpha+1)\varepsilon n}{(s'_n)^2}) > 0.
\]

Let \(s_n = n^{-1/2}s'_n \geq \beta(n).\) Let us take an \(r \in ((\alpha + 2)/(2\alpha), 1)\) and fix it. Let \(t_n, n = 1, 2, \ldots,\) be a sequence of positive numbers given by

\[
t_n = (\log n)^{-1/2} + (\log n)^{-1}s_n^{(1+r)/2}, \quad n \geq 2.
\]

Then we have the following.

\[
t_n s_n \geq \frac{\beta(n)}{(\log n)^{1/2}} \to \infty, \quad n \to \infty,
\]
\[
\frac{2s_n}{t_n} \geq ((\log n)^{1/2}s_n) \land ((\log n)s_n^{(1-r)/2}), \quad n \geq 2,
\]
(20)

\[
\frac{2s_n}{(\log n)t_n} \geq \left(\frac{\beta(n)}{(\log n)^{1/2}} \right) \land (s_n^{(1-r)/2}) \to \infty, \quad n \to \infty,
\]
(21)

and

\[
\frac{(t_n^{1/2})^2}{(s_n^{1+r})} \geq \frac{(\log n)^{-2}s_n^{1+r}}{s_n^{1+r}n^{(1+r)/2}} \to \infty, \quad n \to \infty.
\]
(22)

Therefore by Equation (22), we have

\[
\frac{(F(-t_n^{1/2}) + \bar{F}(t_n^{1/2}))^2}{F(s_n^{2r})} \to 0, \quad n \to \infty.
\]

Since \(2r - 1 > 2/\alpha\), we have

\[
(ns_n')^m \exp\left(\frac{m}{t_n^2} - \frac{1}{m} \frac{s_n}{t_n}\right)
\]

\[
= \exp\left(\frac{m}{t_n^2} (1 - \frac{1}{3m^2} t_n s_n) \right) n^{3m/2} \exp\left(-\frac{1}{3m} \frac{s_n}{(\log n)t_n}\right)
\]

\[
\times (s_n)^m \exp\left(-\frac{1}{3m} \frac{s_n}{t_n}\right) \to 0, \quad n \to \infty.
\]

Also, by Equations (19), (20) and (21) we see that for any \(m \geq 1\)

\[
(n s_n')^m \exp\left(\frac{m}{t_n^2} - \frac{1}{m} \frac{s_n}{t_n}\right) \to 0, \quad n \to \infty.
\]

Note that

\[
(n + 1)P(X_{n+1} + Y_n(t_{n+1}) > s_{n+1}(n + 1)^{1/2}, \ |Y_n(t_{n+1})| \leq \varepsilon s_{n+1}(n + 1)^{1/2})
\]

\[
= E[H(-\frac{1}{s_{n+1}(n + 1)^{1/2}} Y_n(t_{n+1}), s_{n+1}(n + 1)^{1/2}), \ |Y_n(t_{n+1})| \leq \varepsilon s_{n+1}(n + 1)^{1/2}].
\]

From Proposition 31, we see that

\[
s_{n+1}^2 E[H(-\frac{1}{s_{n+1}(n + 1)^{1/2}} Y_n(t_{n+1}), s_{n+1}(n + 1)^{1/2}),
\]

\[
|Y_n(t_{n+1})| \leq \varepsilon s_{n+1}(n + 1)^{1/2}
\]

\[
- (1 + \frac{\alpha(\alpha + 1)(n + 1)}{s_{n+1}^2(n + 1)})] \to 0
\]
as $n \to \infty$, by letting $s = s_{n+1}(1 + 1/n)^{1/2}$, $t = t_{n+1}$. Then from this, Proposition 26(2), Equations (19), (20), (21), (22) and (23), we have

$$\frac{(s'_n)^2}{n} \left| \frac{P(\sum_{k=1}^n X_k > s'_n)}{nF(s'_n)} - (1 + \frac{\alpha(\alpha + 1)n}{s'^2_n}) \right| \to 0$$

as $n \to \infty$. This is a contradiction.

This proves Theorem 3.

10. Proof of Theorem 4

Let $\hat{F}_n : [1, \infty) \to [0, 1], n \geq 1$, be given by

$$\hat{F}_n(s) = \int_{-\infty}^{s} \hat{F}((s - x)n^{1/2})\Phi_1(x)dx.$$

Then we have the following.

Proposition 32. Let $\beta : \mathbb{N} \to (0, \infty)$ be such that

$$\frac{\beta(n)}{(\log n)^{1/2}} \to \infty, \quad n \to \infty.$$

Then

$$\sup_{s \geq \beta(n)} s^2 \left| \frac{\hat{F}_n(s)}{F(sn^{1/2})} - (1 + \frac{\alpha(\alpha + 1)n}{s^2}) \right| \to 0, \quad n \to \infty.$$

Proof. By Proposition 27, we see that

$$| \frac{\hat{F}_n(s)}{F(sn^{1/2})} - (1 + \frac{\alpha(\alpha + 1)n}{s^2}) |$$

$$\leq \int_{[-s/2,s/2]} |R(y/s; sn^{1/2}) - a(sn^{1/2})(y/s)|\Phi_1(y)dy$$

$$+ \int_{[-s/2,s/2]} 4(1 + (a(sn^{1/2}) + \alpha(\alpha + 1))(\frac{y}{s^2})\Phi_1(y)dy.$$

This and Proposition 27 imply our assertion. □
It is well known (e.g. Williams [8]) that there is a $C_0 > 0$ such that

\begin{align}
|\Phi_k(x)| &\leq C_0(1 + x)^{k-1}\Phi_1(x), \quad x \geq 0, \ k = 1, \ldots, 3K, \tag{24}
\end{align}

and

\begin{align}
C_0^{-1}\Phi_1(x) &\leq x\Phi_0(x) \leq C_0\Phi_1(x), \quad x \geq 1. \tag{25}
\end{align}

Let

\begin{align*}
H_0(n, s) &= \Phi_0(s) + n\tilde{F}_n(s), \\
A_1(n, s) &= \sum_{k=1}^{2} \frac{n^{-(k-2)/2}}{k!} \Phi_k(s) \int_{0}^{\infty} x^k \mu(dx),
\end{align*}

and

\begin{align}
A(n, s) &= n\tilde{F}_n(s) - A_1(n, s).
\end{align}

First we prove the following.

Proposition 33.

\[
\sup_{s \in [1, \log n]} \left| \frac{A(n, s) - n\tilde{F}(n^{1/2} s)}{H_0(n, s)} \right| \to 0, \quad n \to \infty.
\]

Proof. Let us take a $\gamma \in (0, (\alpha - 2)/(4\alpha))$ and fix it. Let $s \geq 0$ and $n \geq 3$. Note that

\[
\tilde{F}_n(s) = \sum_{k=1}^{4} I_k(n, s),
\]

where

\begin{align*}
I_1(n, s) &= \int_{s-n^{-\gamma}}^{s} \tilde{F}((s - x)n^{1/2})\Phi_1(x)dx, \\
I_2(n, s) &= \int_{-s}^{s-n^{-\gamma}} \tilde{F}((s - x)n^{1/2})\Phi_1(x)dx, \\
I_3(n, s) &= \int_{s-n^{-\gamma}}^{s} \tilde{F}((s - x)n^{1/2})\Phi_1(x)dx, \\
I_4(n, s) &= \int_{-\infty}^{-s} \tilde{F}((s - x)n^{1/2})\Phi_1(x)dx.
\end{align*}
It is easy to see that

\[
I_1(n, s) = n^{-1/2} \int_0^{n^{1/2 - \gamma}} \bar{F}(y) \Phi_1(s - n^{-1/2}y)dy.
\]

Let

\[
R(n, s, y) = \Phi_1(s - n^{-1/2}y) - (\Phi_1(s) + n^{-1/2}y \Phi_2(s))
\]

Then for \(y \in [0, sn^{1/2 - \gamma}]\)

\[
|R(n, s, y)| \leq n^{-1}y^2 \sup_{z \in [s - n^{1-\gamma}, s]} |\Phi_3(z)|
\]

\[
\leq C_0 n^{-1}y^2(1 + s)^2 \Phi_1(s - n^{-1}) = C_0 n^{-1}y^2(1 + s)^2 \Phi_1(s) \exp(sn^{-\gamma} - n^{-2\gamma}/2)
\]

\[
\leq C_0^2 n^{-1}y^2(1 + s)^3 \exp(n^{-\gamma}s) \Phi_0(s).
\]

So we see that

\[
n|I_1(n, s) - \sum_{k=1}^{2} \frac{n^{-k/2}}{k!} \Phi_k(s) \int_0^{\infty} x^k \mu(dx)|
\]

\[
\leq C_0^2(1 + s)^3 n^{-1/2} \exp(n^{-\gamma}s)\int_0^{n^{1/2 - \gamma}} y^2 \bar{F}(y)dy \Phi_0(s)
\]

\[
+ C_0^2 (1 + s)n^{1/2}(\int_{n^{1/2 - \gamma}}^{\infty} \bar{F}(y)dy) \Phi_0(s) + C_0^2(1 + s)^2(\int_{n^{1/2 - \gamma}}^{\infty} y \bar{F}(y)dy) \Phi_0(s)
\]

This implies that

\[
(26) \sup_{s \in [1, \log n]} \Phi_0(s)^{-1} |nI_1(n, s) - \sum_{k=1}^{2} \frac{n^{-(k-2)/2}}{k!} \Phi_k(s) \int_0^{\infty} x^k \mu(dx)| \to 0,
\]

\[
n \to \infty.
\]

Note that

\[
I_2(n, s) = \bar{F}(sn^{1/2}) \int_{-s}^{7s/8} (1 - \frac{x}{s})^{-\alpha} \frac{L((s - x)n^{1/2})}{L(sn^{1/2})} \Phi_1(x)dx
\]
It is easy to see that
\[
\sup_{s \in [(\log n)^{1/4}, \log n]} \left| \int_{-s}^{7s/8} (1 - \frac{x}{s})^{-\alpha} \frac{L((s-x)n^{1/2})}{L(sn^{1/2})} \Phi_1(x)dx - 1 \right| \to 0, \quad n \to \infty
\]

Also we see that
\[
n|I_2(n, s)| \leq n \tilde{F}(sn^{1/2})8^\alpha \int_{-s}^{7s/8} \frac{L((s-x)n^{1/2})}{L(sn^{1/2})} \Phi_1(x)dx
\]

Therefore we have
\[
\sup_{s \in [1, (\log n)^{1/4}]} \Phi_0(s)^{-1}(n|I_2(n, s)| + n \tilde{F}(sn^{1/2})) \to 0, \quad n \to \infty.
\]

Thus we have
\[
(27) \quad \sup_{s \in [1, \log n]} H_0(n, s)^{-1}|nI_2(n, s)| - n \tilde{F}(sn^{1/2})| \to 0, \quad n \to \infty.
\]

Note that \(\sqrt{3}/2 \leq 7/8\). Then we have
\[
\Phi_1(7s/8) \leq (\Phi_1(s))^{3/4},
\]
and so we have
\[
nI_3(n, s) \leq ns \tilde{F}(n^{1/2-\gamma})\Phi_1(7s/8)
\]
\[
\leq (n \tilde{F}(n^{1/2 \log n}))^{1/2}(s \Phi_1(s))^{3/4} \frac{n^{1/4} \tilde{F}(n^{1/2-\gamma})}{(n \tilde{F}(n^{1/2 \log n}))^{1/2}}.
\]

Since
\[
\sup_{n \geq 3} \sup_{s \in [1, \log n]} \frac{n^{1/4} \tilde{F}(n^{1/2-\gamma})}{(n \tilde{F}(n^{1/2 \log n}))^{1/2}} < \infty,
\]
we see that there is a constant \(C > 0\) such that
\[
nI_3(n, s) \leq C(n \tilde{F}(sn^{1/2}))^{1/2} \Phi_0(s)^{3/4} \leq C(n \tilde{F}(sn^{1/2}))^{1/4} H_0(n, s), \quad n \geq 3, \ s \in [1, \log n].
\]

So we have
\[
(28) \quad \sup_{s \in [1, \log n]} H_0(n, s)^{-1}|nI_3(n, s)| \to 0, \quad n \to \infty.
\]
Also we have
\[
n|I_4(n, s)| \leq n\bar{F}(2sn^{1/2})\Phi_0(s).
\]
So this equation, Equations (26) (27) and (28) imply our assertion. □

Proposition 34. (1) There is a \(C > 0\) such that
\[
\Phi_0(s) + |A_1(n, s)| \leq Cn^{-2}\bar{F}(n^{1/2}s), \quad n \geq 2, \ s \geq \log n.
\]

(2)
\[
\sup_{s \in [1, \infty)} \frac{|A(n, s) - n\bar{F}(n^{1/2}s)|}{H_0(n, s)} \to 0, \quad n \to \infty.
\]

Proof. The assertion (1) is obvious from Equations (24) and (25). To prove the assertion (2), because of Proposition 33, it is sufficient to prove
\[
\sup_{s \in [\log n, \infty)} \frac{|A(n, s) - n\bar{F}(n^{1/2}s)|}{H_0(n, s)} \to 0, \quad n \to \infty.
\]
However, by Theorem 3 and Proposition 32, we see that
\[
\sup_{s \in [\log n, \infty)} \left| \frac{n\hat{F}(n^{1/2}s)}{n\bar{F}(n^{1/2}s)} - 1 \right| \to 0, \quad n \to \infty.
\]
Therefore, combining this with the assertion (1), we have the assertion (2). □

Now let us prove Theorem 4.

By Proposition 34(2), we see that
\[
\sup_{s \in [1, \infty)} \left| \frac{H(n, s)}{H_0(n, s)} - 1 \right| \to 0, \quad n \to \infty.
\]
Therefore there is an \(n_0\) such that
\[
H(n, s) \geq \frac{1}{2}H_0(n, s), \quad n \geq n_0, \ s \geq 1.
\]

By Equation (24), we see that there is a \(C > 0\) such that
\[
\sup_{s \in [1, n^{1/12}]} |G(n, s) - H(n, s)| \leq Cn^{-1/12}, \quad n \geq 1
\]
Then combining this with Theorem 2, we see that there are $C > 0$ and \(\delta_0 \in (0, 1/12) \) such that

\[
\sup_{s \in [1,n^{\delta_0}]} \left| \frac{P(\sum_{k=1}^{n} X_k > n^{1/2} s)}{H(n,s)} - 1 \right| \leq C n^{-\delta_0}, \quad n \geq n_0.
\]

On the other hand, by Theorem 3 and Proposition 32 we see that there is a $C > 0$ such that

\[
\sup_{s \in [n^{\delta_0}, \infty)} \left| \frac{P(\sum_{k=1}^{n} X_k > n^{1/2} s)}{n F_n(s)} - 1 \right| \leq C n^{-2\delta_0}, \quad n \geq n_0.
\]

So we see by Proposition 34 that we see that there is a $C > 0$ such that

\[
\sup_{s \in [n^{\delta_0}, \infty)} \left| \frac{P(\sum_{k=1}^{n} X_k > n^{1/2} s)}{H(n,s)} - 1 \right| \leq C n^{-2\delta_0}, \quad n \geq n_0.
\]

These imply Theorem 4.

References

(Received June 25, 2009)
(Revised April 22, 2010)

Hirotaka FUSHIYA
School of Social Informatics
Aoyama Gakuin University
Japan

Shigeo KUSUOKA
Graduate School of Mathematical Sciences
The University of Tokyo
Komaba 3-8-1, Meguro-ku
Tokyo 153-8914, Japan