Remarks on Traces of H^{1}-functions Defined in a Domain with Corners

By Norikazu Saito* and Hiroshi Fujita ${ }^{\dagger}$

Abstract

The set of traces of $H^{1}(\Omega)$-functions on a part γ of the boundary $\partial \Omega$ is considered, where Ω is a bounded domain in \mathbb{R}^{2} with a certain singularity, particularly, with corners at the end points of γ. The aim of the present paper is to show that the set of all traces of functions in $H^{1}(\Omega)$ is equal algebraically and topologically to the domain of a certain fractional power of minus Laplacian on γ with the zero boundary condition. The result is expected to be of use for the mathematical analysis of the DDM (domain decomposition method) applied to such Ω.

1. Introduction and Main Results

The present paper is concerned with the relationship between the set of boundary values of functions of a certain Sobolev class defined in a twodimensional domain Ω and fractional powers of an elliptic partial differential operator on a part of the boundary of Ω. Although a considerable part of our result may be said to be a new version of the known result (cf. Grisvard [8]), our method of analysis, which is a combination of the spectral approach and elementary transformations of Ω, could give a better prospect for some generalizations, for instance, to the case of solenoidal vector fields mentioned in Section 4. We also note that our result plays some foundational role in analysis of the domain decomposition method ([4], [5], [12], [13]). We shall later give a remark about this issue (Remark 1.4), which clarifies our motivation.

[^0]

Figure 1(a). Example of Ω.

Figure 1(b). Example of Ω.

In order to present the result and our approach as clearly as possible, we restrict our attention to a simple situation. We consider a bounded domain Ω in \mathbb{R}^{2}, the $x y$-plane, and assume that a part γ of the boundary $\partial \Omega$ is a line segment. Without loss of generality, we suppose that $\gamma=\{(x, y) ;|x|<$ $1, y=0\}$. In addition, we put $\Gamma=\partial \Omega \backslash \gamma$ and assume that Γ is a piecewise smooth curve. Our interest lies in the case where Γ intersects $\bar{\gamma}$ transversally. Admissible geometries of Ω are exemplified in Figure 1.

As for function spaces and their norms, we follow the notation of LionsMagenes [11]. The trace operator from $H^{1}(\Omega)$ to $H^{1 / 2}(\gamma)$ is denoted by γ_{0}, and the boundary value (trace) $\gamma_{0} v$ of $v \in H^{1}(\Omega)$ will be written conveniently as $\left.v\right|_{\gamma}$. The meaning of $\left.v\right|_{\Gamma}$ is similar. Then we introduce a closed subspace of $H^{1}(\Omega)$ by setting

$$
K^{1}(\Omega)=\left\{v \in H^{1}(\Omega) ;\left.v\right|_{\Gamma}=0\right\}
$$

We recall that the usual $H^{1}(\Omega)$-norm is equivalent to the Dirichlet norm

$$
\|\nabla v\|_{L^{2}(\Omega)}^{2}=\left\{\iint_{\Omega}|\nabla v|^{2} d x d y\right\}^{1 / 2}=\left\{\iint_{\Omega}\left(v_{x}^{2}+v_{y}^{2}\right) d x d y\right\}^{1 / 2}
$$

in $K^{1}(\Omega)$ by virtue of the Poincaré inequality. Here subscripts mean partial derivatives. The focus of the present paper is on the set of boundary values $\left.v\right|_{\gamma}$ of $v \in K^{1}(\Omega)$.

The basic Hilbert space in our consideration is $L^{2}(\gamma)$. The usual $L^{2}(\gamma)$ inner product and norm are written as (\cdot, \cdot) and $\|\cdot\|$, respectively. The symbol L denotes the minus Laplacian on γ with the zero Dirichlet boundary condition. More precisely, L is the Friedrichs extension in $L^{2}(\gamma)$ of the
symmetric operator $-d^{2} / d x^{2}$ defined in $C_{0}^{\infty}(\gamma)$. The domain $\mathfrak{D}(L)$ of L is $H^{2}(\gamma) \cap H_{0}^{1}(\gamma)$. Since, as is well-known, L is a positive-definite, self-adjoint operator, its fractional power L^{α}, for $0<\alpha<1$, can be defined in a standard way by the spectral resolution. The domain $\mathfrak{D}\left(L^{\alpha}\right)$ of L^{α} forms a Hilbert space equipped with the graph norm

$$
\|f\|_{\mathfrak{D}\left(L^{\alpha}\right)}=\left\{\|f\|^{2}+\left\|L^{\alpha} f\right\|^{2}\right\}^{1 / 2}
$$

The purpose of this paper is to show that the set $\left\{\left.v\right|_{\gamma} ; v \in K^{1}(\Omega)\right\}$ is equal to $\mathfrak{D}\left(L^{1 / 4}\right)$ algebraically and topologically. That is, we are going to prove

Theorem 1.1. The following two claims hold true:
A. (Trace). Let $v \in K^{1}(\Omega)$ and put $f=\left.v\right|_{\gamma}$. Then we have $f \in \mathfrak{D}\left(L^{1 / 4}\right)$ and

$$
\begin{equation*}
\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} \leq C\|v\|_{H^{1}(\Omega)} \tag{1.1}
\end{equation*}
$$

where C is a positive constant depending only on Ω.
B. (Extension). Let $f \in \mathfrak{D}\left(L^{1 / 4}\right)$. Then there exists a function $v \in K^{1}(\Omega)$ such that $\left.v\right|_{\gamma}=f$ and

$$
\begin{equation*}
\|v\|_{H^{1}(\Omega)} \leq C^{\prime}\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} \tag{1.2}
\end{equation*}
$$

where C^{\prime} is a positive constant depending only on Ω.
At this stage, we recall the following result due to Fujiwara [6] which gives a concrete characterization of $\mathfrak{D}\left(L^{1 / 4}\right)$:

$$
\begin{equation*}
\mathfrak{D}\left(L^{1 / 4}\right)=\left\{f \in H^{1 / 2}(\gamma) ; \int_{\gamma} \rho^{-1} f^{2} d x<\infty\right\} \tag{1.3}
\end{equation*}
$$

where $\rho=\rho(x)$ stands for the distance from the end points of γ (i.e., $\rho(x)=1-|x|)$. Let V denote the function space of the right-hand side of (1.3). Then, in view of the closed graph theorem (e.g. Kato [10] or Yosida [14]), the V-norm defined by

$$
\|f\|_{V}=\left\{\|f\|_{H^{1 / 2}(\gamma)}^{2}+\int_{\gamma} \rho^{-1} f^{2} d x\right\}^{1 / 2}
$$

is equivalent to $\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)}$ in V. Combining Theorem 1.1 with Fujirawa's result, we have

Corollary 1.1. There exist positive constants \tilde{C} and \tilde{C}^{\prime} depending only on Ω such that the following two assertions hold true:
(i) For every $v \in K^{1}(\Omega)$, we have $f=\left.v\right|_{\gamma} \in V$ and $\|f\|_{V} \leq \tilde{C}\|v\|_{H^{1}(\Omega)}$,
(ii) For every $f \in V$, there exists $v \in K^{1}(\Omega)$ such that $\left.v\right|_{\gamma}=f$ and $\|v\|_{H^{1}(\Omega)} \leq \tilde{C}^{\prime}\|f\|_{V}$.

Remark 1.1. Theorem 1.1 (therefore Corollary 1.1) remains true if L is replaced by a more general elliptic partial differential operator of the second order. In fact, our theorem is still valid with an arbitrary regularly accretive operator L whose domain is $\mathfrak{D}(L)=H^{2}(\gamma) \cap H_{0}^{1}(\gamma)$ (Fujiwara [6]). Concerning the definition of such operator, we refer to Kato [9].

REMARK 1.2. Other characterizations of the space V are possible, which are useful in some contexts. For instance,

- V is equal to the real interpolation space $\left[H_{0}^{1}(\gamma), L^{2}(\gamma)\right]_{1 / 2}$, which is denoted by $H_{00}^{1 / 2}(\gamma)$ in Lions-Magenes [11],
- $V=\left\{f \in H^{1 / 2}(\gamma) ; \tilde{f} \in H^{1 / 2}(\partial \Omega)\right\}$, where \tilde{f} is the zero extension of f onto $\partial \Omega$ (Grisvard [8]).

REmark 1.3. It should be noted that Corollary 1.1 is a particular case of Theorem 1.5.2.3 in Grisvard [8]. Conversely, combining Grisvard's result with Fujiwara's one, we can derive Theorem 1.1. However, as we mentioned previously, our objective of this paper is to clarify a direct relationship between the space $\left\{\left.v\right|_{\gamma} ; v \in K^{1}(\Omega)\right\}$ and $\mathfrak{D}\left(L^{1 / 4}\right)$.

REMARK 1.4. As was described above, results of this paper are of importance in analysis of the domain decomposition method. Here we explain this matter with the aid of an example. We consider the Poisson equation

$$
\begin{equation*}
-\triangle u=g \tag{1.4}
\end{equation*}
$$

in a two-dimensional bounded domain D with the boundary condition

$$
\begin{equation*}
u=0 \text { on } \partial D . \tag{1.5}
\end{equation*}
$$

We divide the whole domain D into two disjoint subdomains D_{1} and D_{2} by a line segment γ which we call the artificial boundary. Then, under a certain regularity assumption, the problem $(1.4)(1.5)$ is equivalent to the transmission problem:

$$
\left\{\begin{array}{lll}
-\triangle u_{1}=g \text { in } D_{1}, & u_{1}=0 \text { on } \partial D_{1} \backslash \gamma, & u_{1}=\mu \text { on } \gamma, \\
-\triangle u_{2}=g \text { in } D_{2}, & u_{2}=0 \text { on } \partial D_{2} \backslash \gamma, & u_{2}=\mu \text { on } \gamma,
\end{array}\right.
$$

where μ is chosen such that $\partial u_{1} / \partial n_{1}=-\partial u_{2} / \partial n_{2}\left(n_{j}\right.$ is the unit normal to γ outgoing from $\left.D_{j}, j=1,2\right)$. Several iterative algorithms to obtain such μ are proposed by several authors. See, for more detail, the monograph [12] by A. Quarteroni and A. Valli. Consequently, the problem

$$
\begin{equation*}
\triangle w=0 \text { in } D_{j}, w=0 \text { on } \partial D_{j} \backslash \gamma, w=\xi \text { on } \gamma, \quad(j=1,2) \tag{1.6}
\end{equation*}
$$

appears. As is well-known, if we are going to deal with this problem in the framework of the $H^{1}\left(\Omega_{j}\right)$-space, we must regard ξ as an element of V. However, in view of Theorem 1.1, we can also regard ξ as an element of $\mathfrak{D}\left(L^{1 / 4}\right)$. This allows us to apply some properties or materials related to L, for example the eigenvalues and the eigenfunctions of L, to the domain decomposition analysis. Furthermore, we believe that an analysis carried out in this paper gives a better view of the domain decomposition analysis.

The proof of Theorem 1.1 is established in Sections 2 and 3. In Section 4, we present a corresponding result concerning the solenoidal vector fields. The final section 5 is devoted to a remark on higher dimensional cases.

Acknowledgment. The authors wish to express their heartfelt thanks to Professor Hisashi Okamoto for his valuable advise.

2. Proof of Theorem 1.1

2.1. Plan of the proof

First of all, we show Theorem 1.1 in the case where Ω is a rectangle $Q_{T}=\gamma \times(0, T)$ with T a parameter. Theorem 1.1 in this case is easily proved by the Fourier expansion.

Next, the case of a trapezoid $E_{T, b}, T$ and b being parameters, is considered in Subsection 2.3. The results obtained there are used in Subsection
2.4. The key point of analysis is to introduce a certain transformation from $E_{T, b}$ to Q_{T}. This allows us to reduce the problem to the case of Q_{T}.

Subsection 2.4 is devoted to the situation that Ω lies in the upper half plane. Namely, we shall prove Theorem 1.1 under this additional assumption. In fact, the claim A, which appears shortly, concerning traces of $K^{1}(\Omega)$-functions can be proved by taking a trapezoid $E_{T, b}$ including Ω. On the other hand, the proof of the claim B below concerning $K^{1}(\Omega)$-extensions of functions of $\mathfrak{D}\left(L^{1 / 4}\right)$ can be accomplished by taking a trapezoid $E_{T, b}$ which is included in Ω.

The general case which is exemplified in Figure 1(b) will be considered in Section 3.

2.2. The case of a rectangle

Let T be an arbitrary positive constant and Q_{T} be a rectangular domain defined by $Q_{T}=\{(x, y) ;-1<x<1,0<y<T\}$. In this subsection, we are going to show

Lemma 2.1. Theorem 1.1 is true if $\Omega=Q_{T}$. In particular, we can take C as unity.

Before proving this lemma, we review a characterization of $L^{\alpha}, 0<\alpha<$ 1 , in terms of the eigenvalues and the eigenfunctions of L. Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be the set of eigenvalues of L and $\phi_{n}=\phi_{n}(x)$ be the eigenfunction corresponding to λ_{n} which is normalized as $\left\|\phi_{n}\right\|=1$. In the present case, we actually have $\lambda_{n}=n^{2} \pi^{2} / 4, \phi_{n}(x)=\sin n \pi(x-1) / 2$. However, we use the generic symbols λ_{n} and ϕ_{n} since it is convenient when we consider higher dimensional cases. Then L^{α} can be expressed as

$$
\left\{\begin{array}{l}
\mathfrak{D}\left(L^{\alpha}\right)=\left\{f=\sum_{n=1}^{\infty} c_{n} \phi_{n} \in L^{2}(\gamma) ; \quad \sum_{n=1}^{\infty} c_{n}^{2} \lambda_{n}^{2 \alpha}<\infty\right\} \\
L^{\alpha} f=\sum_{n=1}^{\infty} c_{n} \lambda_{n}^{\alpha} \phi_{n}, \quad \text { for } f=\sum_{n=1}^{\infty} c_{n} \phi_{n} \in \mathfrak{D}\left(L^{\alpha}\right) \text { with } c_{n} \in \mathbb{R}
\end{array}\right.
$$

and the following equality holds good

$$
\left\|L^{\alpha} f\right\|=\left(\sum_{n=1}^{\infty} c_{n}^{2} \lambda_{n}^{2 \alpha}\right)^{1 / 2}, \quad \text { for } f=\sum_{n=1}^{\infty} c_{n} \phi_{n} \in \mathfrak{D}\left(L^{\alpha}\right) \text { with } c_{n} \in \mathbb{R}
$$

Proof of Lemma 2.1 A. (Trace). Let $v \in K^{1}\left(Q_{T}\right)$. By the density argument, we may assume that v is continuous in $\overline{Q_{T}}$. According to this, we can write v by using the Fourier series as follows

$$
v(x, y)=\sum_{n=1}^{\infty} a_{n}(y) \phi_{n}(x), \quad a_{n}(y)=\int_{-1}^{1} v(x, y) \phi_{n}(x) d x
$$

Thanks to this expression, we get

$$
\begin{aligned}
\int_{0}^{T} \int_{-1}^{1} \frac{\partial v}{\partial x}(x, y)^{2} d x d y & =\sum_{n=1}^{\infty} \lambda_{n} \int_{0}^{T} a_{n}(y)^{2} d y \\
\int_{0}^{T} \int_{-1}^{1} \frac{\partial v}{\partial y}(x, y)^{2} d x d y & =\sum_{n=1}^{\infty} \int_{0}^{T} a_{n}^{\prime}(y)^{2} d y
\end{aligned}
$$

where $a_{n}^{\prime}(y)$ denotes $d a_{n}(y) / d y$. These yield

$$
\begin{equation*}
\|\nabla v\|_{L^{2}\left(Q_{T}\right)}^{2}=\sum_{n=1}^{\infty} \lambda_{n} \int_{0}^{T} a_{n}(y)^{2} d y+\sum_{n=1}^{\infty} \int_{0}^{T} a_{n}^{\prime}(y)^{2} d y \tag{2.1}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\lambda_{n}^{1 / 2} a_{n}(0)^{2} & =-\lambda_{n}^{1 / 2} \int_{0}^{T} \frac{d}{d y}\left\{a_{n}(y)^{2}\right\} d y \tag{2.2}\\
& =-\int_{0}^{T} 2 \lambda_{n}^{1 / 2} a_{n}(y) a_{n}^{\prime}(y) d y \\
& \leq \int_{0}^{T}\left\{\lambda_{n} a_{n}(y)^{2}+a_{n}^{\prime}(y)^{2}\right\} d y
\end{align*}
$$

Then noting that $\left.v\right|_{\gamma}=f=\sum_{n=1}^{\infty} a_{n}(0) \phi_{n}$, by virtue of (2.1) and (2.2), we deduce

$$
\left\|L^{1 / 4} f\right\|^{2}=\sum_{n=1}^{\infty} \lambda_{n}^{1 / 2} a_{n}(0)^{2} \leq\|\nabla v\|_{L^{2}\left(Q_{T}\right)}^{2}
$$

Thus we arrive at

$$
\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} \leq\|v\|_{H^{1}\left(Q_{T}\right)}
$$

B. (Extension). Let $f=\sum_{n=1}^{\infty} c_{n} \phi_{n} \in \mathfrak{D}\left(L^{1 / 4}\right)$ with $c_{n} \in \mathbb{R}$. First we put

$$
\begin{equation*}
w(x, y)=\sum_{n=1}^{\infty} c_{n} e^{-\sqrt{\lambda_{n}} y} \phi_{n}(x) \tag{2.3}
\end{equation*}
$$

Then, by elementary calculations, we get

$$
\begin{aligned}
& \int_{0}^{T} \int_{-1}^{1} \frac{\partial w}{\partial x}(x, y)^{2} d x d y \leq \frac{1}{2} \sum_{n=1}^{\infty} c_{n}^{2} \sqrt{\lambda_{n}} \\
& \int_{0}^{T} \int_{-1}^{1} \frac{\partial w}{\partial y}(x, y)^{2} d x d y \leq \frac{1}{2} \sum_{n=1}^{\infty} c_{n}^{2} \sqrt{\lambda_{n}}
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\|\nabla w\|_{L^{2}\left(Q_{T}\right)}^{2} \leq \sum_{n=1}^{\infty} c_{n}^{2} \sqrt{\lambda_{n}}=\left\|L^{1 / 4} f\right\|^{2} \tag{2.4}
\end{equation*}
$$

On the other hand, it is easy to verify that $w(\pm 1, y)=0, y>0$, holds.
Therefore, the function w satisfies all requested properties except for the boundary condition on $y=T$.

Take a smooth function $\zeta=\zeta(y), 0 \leq y \leq T$, such that $0 \leq \zeta \leq 1$ and

$$
\zeta(y)= \begin{cases}1 & (0 \leq y \leq T / 4) \\ 0 & (T / 2 \leq y \leq T)\end{cases}
$$

Then the function $v=\zeta w \in K^{1}\left(Q_{T}\right)$ satisfies $\left.v\right|_{\gamma}=\left.\zeta(0) w\right|_{\gamma}=\left.w\right|_{\gamma}=f$ and

$$
\begin{aligned}
\|\nabla v\|_{L^{2}\left(Q_{T}\right)}^{2} & =\iint_{Q_{T}}\left(\zeta^{\prime} w\right)^{2} d x d y+\iint_{Q_{T}} \zeta^{2}|\nabla w|^{2} d x d y \\
& \leq \max \left\{\max _{0 \leq y \leq T} \zeta^{\prime}(y)^{2}, 1\right\}\|w\|_{H^{1}\left(Q_{T}\right)}^{2}
\end{aligned}
$$

This proves the lemma.

We conclude this subsection with another proof of the latter half of Lemma 2.1 which adopts the semi-group generated by $-L^{1 / 2}$.

Another Proof of Lemma 2.1 B. (Extension). By using the semigroup $\left\{e^{-y \sqrt{L}}\right\}_{y \geq 0}$, the function $w=w(x, y)$ defined in (2.3) can be written as

$$
w(y)=e^{-y \sqrt{L}} f, \quad(y>0)
$$

Here $y \mapsto w(y)$ is regarded as an element in $L^{2}\left((0, \infty) ; L^{2}(\gamma)\right)$. Now we are going to derive the inequality (2.4) with the aid of this expression. Noting that $w(y) \in \mathfrak{D}\left(L^{1 / 2}\right)$ for $y>0$ and $f \in \mathfrak{D}\left(L^{1 / 4}\right)$, we can calculate as

$$
\begin{align*}
\left\|L^{1 / 2} w(y)\right\|^{2} & =\left(L^{1 / 4} e^{-y \sqrt{L}} L^{1 / 4} f, L^{1 / 4} e^{-y \sqrt{L}} L^{1 / 4} f\right) \tag{2.5}\\
& =\left(L^{1 / 2} e^{-y \sqrt{L}} L^{1 / 4} f, e^{-y \sqrt{L}} L^{1 / 4} f\right) \\
& =-\frac{1}{2} \frac{d}{d y}\left\|e^{-y \sqrt{L}} L^{1 / 4} f\right\|^{2}
\end{align*}
$$

Here we have made use of the fundamental property of the semi-group

$$
\begin{equation*}
\frac{d}{d y} e^{-y \sqrt{L}} f=-L^{1 / 2} e^{-y \sqrt{L}} f, \quad\left(f \in L^{2}(\gamma)\right) \tag{2.6}
\end{equation*}
$$

Integrating (2.5) over $(0, T)$, we obtain

$$
\int_{0}^{T}\left\|L^{1 / 2} w(y)\right\|^{2} d y=\frac{1}{2}\left(\left\|L^{1 / 4} f\right\|^{2}-\left\|e^{-T \sqrt{L}} L^{1 / 4} f\right\|^{2}\right) \leq \frac{1}{2}\left\|L^{1 / 4} f\right\|^{2}
$$

This, together with (2.6), gives

$$
\begin{equation*}
\iint_{Q_{T}}\left(\frac{\partial w}{\partial y}\right)^{2} d x d y=\int_{0}^{T}\left\|L^{1 / 2} w(y)\right\|^{2} d y \leq \frac{1}{2}\left\|L^{1 / 4} f\right\|^{2} \tag{2.7}
\end{equation*}
$$

On the other hand, it is immediate to see from the definition of $L^{1 / 2}$ that

$$
\left\|L^{1 / 2} w(y)\right\|^{2}=\int_{-1}^{1}\left(\frac{\partial w}{\partial x}\right)^{2} d x
$$

Therefore we have

$$
\begin{equation*}
\iint_{Q_{T}}\left(\frac{\partial w}{\partial x}\right)^{2} d x d y \leq \frac{1}{2}\left\|L^{1 / 4} f\right\|^{2} \tag{2.8}
\end{equation*}
$$

By virtue of (2.7) and (2.8), we deduce

$$
\|\nabla w\|_{L^{2}\left(Q_{T}\right)}^{2} \leq\left\|L^{1 / 4} f\right\|^{2}
$$

Figure 2(a). Example of $E_{T, b}(b>1)$.

Figure 2(b). Example of $E_{T, b}(b<1)$.

2.3. The case of a trapezoid

Our next geometry of Ω is a trapezoid defined by

$$
\begin{equation*}
E_{T, b}=\bigcup_{0<\eta<T}\{(x, y) ;|x|<\theta(\eta), y=\eta\}, \tag{2.9}
\end{equation*}
$$

where T, b are arbitrary positive constants and

$$
\theta=\theta_{T, b}(\eta)=1+\frac{(b-1)}{T} \eta
$$

See Figure 2. We note that $E_{T, 1}=Q_{T}$ holds.
The goal of this subsection is to prove
Lemma 2.2. Theorem 1.1 is true if $\Omega=E_{T, b}$.
Remark 2.1. In what follows, $C_{p_{1}, \cdots, p_{m}}$ denote positive constants depending only on parameters p_{1}, \cdots, p_{m}. The value of $C_{p_{1}, \cdots, p_{m}}$ may change in the same context.

Proof of Lemma 2.2 A. (Trace). Let $v \in K^{1}\left(E_{T, b}\right)$, and put $f=$ $\left.v\right|_{\gamma}$. We consider the transformation Φ from Q_{T} onto $E_{T, b}$ defined by

$$
\Phi:(x, y) \mapsto(\theta(y) x, y)
$$

Obviously, Φ is bijective, and by putting $\xi=\theta(y) x$ and $\eta=y$, we have

$$
d x d y=\theta(y)^{-1} d \xi d \eta \leq \max \left(1, b^{-1}\right) d \xi d \eta
$$

We introduce the function $\tilde{v} \in K^{1}\left(Q_{T}\right)$ as the pullback of v by Φ, that is,

$$
\tilde{v}(x, y)=(v \circ \Phi)(x, y)=v(\theta(y) x, y), \quad(x, y) \in Q_{T}
$$

Then, we can calculate as

$$
\begin{align*}
& \|\nabla \tilde{v}\|_{L^{2}\left(Q_{T}\right)}^{2} \tag{2.10}\\
= & \iint_{Q_{T}}\left\{\left(\frac{\partial \tilde{v}}{\partial x}\right)^{2}+\left(\frac{\partial \tilde{v}}{\partial y}\right)^{2}\right\} d x d y \\
= & \iint_{Q_{T}}\left\{\theta(y)^{2} v_{\xi}(\theta(y) x, y)^{2}\right. \\
& \left.\quad+\left[x \theta^{\prime}(y) v_{\xi}(\theta(y) x, y)+v_{\eta}(\theta(y) x, y)\right]^{2}\right\} d x d y \\
\leq & C_{T, b} \iint_{E_{T, b}}\left[v_{\xi}(\xi, \eta)^{2}+v_{\eta}(\xi, \eta)^{2}\right] d \xi d \eta=C_{T, b}\|\nabla v\|_{L^{2}\left(E_{T, b}\right)}^{2} .
\end{align*}
$$

On the other hand, since $\theta(0)=1$, we have $f=\left.\tilde{v}\right|_{\gamma}$. Therefore, on account of Lemma 2.1 A, $\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} \leq\|\tilde{v}\|_{H^{1}\left(Q_{T}\right)}$ holds. This, together with (2.10), yields

$$
\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} \leq C_{T, b}\|v\|_{H^{1}\left(E_{T, b}\right)}
$$

B. (Extension). Let $f \in \mathfrak{D}\left(L^{1 / 4}\right)$. Suppose that $\tilde{v} \in K^{1}\left(Q_{T}\right)$ is an extension of f into Q_{T} as Lemma 2.1 B . Then, we introduce the function $v \in K^{1}\left(E_{T, b}\right)$ as the pullback of \tilde{v} by Ψ;

$$
v(x, y)=(\tilde{v} \circ \Psi)(x, y)=\tilde{v}\left(\theta(y)^{-1} x, y\right), \quad(x, y) \in E_{T, b}
$$

where Ψ is the inverse of Φ and is defined by

$$
\Psi: \quad(x, y) \mapsto\left(\theta(y)^{-1} x, y\right)
$$

Since Ψ is bijective and

$$
d x d y=\theta(y) d \xi d \eta \leq \max (1, b) d \xi d \eta \quad \text { with } \xi=\theta(y) x, \eta=y
$$

in the same manner as in the derivation of the inequality (2.10), we can get

$$
\|\nabla v\|_{L^{2}\left(E_{T, b}\right)} \leq C_{T, b}\|\nabla \tilde{v}\|_{L^{2}\left(Q_{T}\right)}
$$

This leads to

$$
\|v\|_{H^{1}\left(E_{T, b}\right)} \leq C_{T, b}\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)}
$$

Moreover it is clear from the definition that $\left.v\right|_{\gamma}=f$. Hence we completes the proof.

2.4. The case where Ω lies in the upper half plane

In this subsection, we consider the case in which

$$
\left\{\begin{array}{l}
\Omega \subset \mathbb{R}_{+}^{2}=\{(x, y) ; y>0\} \text { and } \tag{2.11}\\
\Gamma \text { intersects the } x \text {-axis transversally. }
\end{array}\right.
$$

By virtue of results proved in the preceding two subsections, we can prove the following lemma.

Lemma 2.3. Under the additional assumption (2.11), Theorem 1.1 is true.

Proof A. (Trace). Let $v \in K^{1}(\Omega)$ and take a trapezoid which includes Ω, specifically, choose positive constants T and b subject to $\Omega \subseteq E_{T, b}$, where $E_{T, b}$ is the trapezoid defined by (2.9). Then the zero extension \tilde{v} of v into $E_{T, b}$ belongs to $K^{1}\left(E_{T, b}\right)$, and $\|\tilde{v}\|_{H^{1}\left(E_{T, b}\right)}=\|v\|_{H^{1}(\Omega)}$ holds. Therefore, by virtue of Lemma 2.2 A, we deduce $\left.v\right|_{\gamma}=\left.\tilde{v}\right|_{\gamma} \in \mathfrak{D}\left(L^{1 / 4}\right)$ and (1.1).
B. (Extension). Let $f \in \mathfrak{D}\left(L^{1 / 4}\right)$. We then take a trapezoid $E_{T, b}$ which is included in Ω. Firstly, we consider the extension $\tilde{v} \in K^{1}\left(E_{T, b}\right)$ of f into $E_{T, b}$ subject to $\left.\tilde{v}\right|_{\gamma}=f$ and $\|\tilde{v}\|_{H^{1}\left(E_{T, b}\right)} \leq C_{T, b}\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)}$. Such a function \tilde{v} can be chosen by Lemma 2.2 B . Next, let v denote the zero extension of \tilde{v} into Ω. Then v is the desired function.

3. Proof of Theorem 1.1 (continued)

3.1. General cases

In this section, the proof of Theorem 1.1 in the general case is presented. Firstly, we consider the claim B concerning extensions. We note that the proof of Lemma 2.3 B in the preceding subsection remains to be valid without the assumption (2.11). This means that we have already compeleted the proof of the claim B.

We proceed to prove the claim A concerning traces. In doing so, we introduce an auxiliary domain $S_{T, b, \beta_{1}, \beta_{2}} \supset \Omega$, where T, b are parameters and β_{1}, β_{2} are some suitable functions. Specifically, we introduce smooth functions $\beta_{1}=\beta_{1}(y)$ and $\beta_{2}=\beta_{2}(y),-T \leq y \leq 0$, satisfying

$$
\left\{\begin{array}{l}
\beta_{1}(0)=1, \quad \beta_{2}(0)=-1, \quad-\infty<\beta_{1}^{\prime}(0)<0, \quad 0<\beta_{2}^{\prime}(0)<\infty \\
-1<\beta_{2}(y)<\beta_{1}(y)<1, \quad(-T \leq y \leq 0)
\end{array}\right.
$$

Figure 3. Example of $S_{T, b, \beta_{1}, \beta_{2}}$.

Then put

$$
\begin{equation*}
S_{T, b, \beta_{1}, \beta_{2}}=\{(x, y) ;|x|<b,|y|<T\} \backslash \overline{S_{T, b, \beta_{1}, \beta_{2}}^{C}} \tag{3.1}
\end{equation*}
$$

where

$$
\overline{S_{T, b, \beta_{1}, \beta_{2}}^{C}}=\bigcup_{-T \leq \eta \leq 0}\left\{(x, y) ; \beta_{2}(\eta) \leq x \leq \beta_{1}(\eta), y=\eta\right\}
$$

See Figure 3. Then we have
Lemma 3.1. The claim A of Theorem 1.1 is true if $\Omega=S_{T, b, \beta_{1}, \beta_{2}}$.
The claim A of Theorem 1.1 immediately follows from the above lemma. In fact, since T, b, β_{1} and β_{2} can be so taken that $\Omega \subset S_{T, b, \beta_{1}, \beta_{2}}$ holds, the same proof of Lemma 2.3 A works. Therefore it remains to prove Lemma 3.1.

3.2. Proof of Lemma 3.1

The proof is done in the following four steps, I)-IV).
I) Let $v \in K^{1}\left(S_{T, b, \beta_{1}, \beta_{2}}\right)$. Assume that there exists a function $h \in$ $K^{1}\left(Q_{T}\right)$ satisfying $\left.h\right|_{\gamma}=\left.v\right|_{\gamma}$ and

$$
\begin{equation*}
\|h\|_{H^{1}\left(Q_{T}\right)} \leq C_{T, b, \beta_{1}, \beta_{2}}\|v\|_{H^{1}\left(S_{T, b, \beta_{1}, \beta_{2}}\right)} . \tag{3.2}
\end{equation*}
$$

Figure 4. Example of $F_{T, b}$.

Then, in view of Lemma 2.1 A, we establish the proof. Hence it is enough to show the existence of the function h above. Actually, in the similar manner as in the proof of Lemma 2.2 A , we would like to construct h as the pullback v by some suitable transformation from Q_{T} to $S_{T, b, \beta_{1}, \beta_{2}}$. However, a direct construction of h seems troublesome, and we prefer to take a detour. Namely, we shall intermediately introduce functions h_{1} and h_{2} which are defined in special classes $F_{T, b}$ and $G_{T, b}$, respectively, and then define h in terms of h_{2}. Specifically, the remainder of the proof is the following:
II) definition of h_{1} as the pullback of v;
III) definition of h_{2} as the pullback of h_{1};
IV) definition of h as the pullback of h_{2}.
II) Set $\sigma(y)=1-(\varepsilon / T) y$ with $\varepsilon=(b-1) / 2$. Then we introduce

$$
\begin{equation*}
F_{T, b}=\{(x, y) ;|x|<b,|y|<T\} \backslash \overline{F_{T, b}^{C}} \tag{3.3}
\end{equation*}
$$

where

$$
\overline{F_{T, b}^{C}}=\{(x, y) ;|x| \leq \sigma(y),-T \leq y \leq 0\}
$$

See Figure 4. We consider the transformation Φ_{1} of $F_{T, b} \rightarrow S_{T, b, \beta_{1}, \beta_{2}}$ defined by

$$
\Phi_{1}:(x, y) \mapsto(\phi(x, y), y), \quad(x, y) \in F_{T, b}
$$

Here we have put

$$
\phi(x, y)= \begin{cases}\frac{b-\beta_{1}(y)}{b-1}(x-\sigma(y))+b & (x>0, y<0) \\ \frac{b-\beta_{2}(y)}{b-1}(x-\sigma(y))+b & (x<0, y<0) \\ x & (y \geq 0)\end{cases}
$$

Note that, for a fixed y_{0} in $-T<y_{0}<0$, the line segment $I\left(y_{0}\right)=$ $\left\{\left(x, y_{0}\right) ; \sigma\left(y_{0}\right)<x<b\right\}$ is mapped onto the line segment $\left\{\left(x, y_{0}\right) ; \beta_{1}\left(y_{0}\right)<\right.$ $x<b\}$ by the restriction of Φ_{1} on $I\left(y_{0}\right)$, and this mapping is bijective. The corresponding fact is also true for the left hand side of $F_{T, b}$. Therefore, Φ_{1} is bijective. On the other hand, noting that

$$
1 \leq \frac{\partial \phi}{\partial x}(x, y) \leq C_{T, b}, \quad(x, y) \in F_{T, b}
$$

it is easy to verify that

$$
\begin{equation*}
d x d y=\left(\frac{\partial \phi}{\partial x}\right)^{-1} d \xi d \eta \leq d \xi d \eta \quad \text { with } \xi=\phi(x, y), \eta=y \tag{3.4}
\end{equation*}
$$

Now the function $h_{1} \in K^{1}\left(F_{T, b}\right)$ is defined as the pullback of v by Φ_{1} as follows:

$$
h_{1}(x, y)=\left(v \circ \Phi_{1}\right)(x, y)=v(\phi(x, y), y), \quad(x, y) \in F_{T, b}
$$

Then, taking (3.4) in mind, in the same way as in the derivation of (2.10), we can obtain

$$
\begin{equation*}
\left\|\nabla h_{1}\right\|_{L^{2}\left(F_{T, b}\right)} \leq C_{T, b, \beta_{1}, \beta_{2}}\|\nabla v\|_{L^{2}\left(S_{T, b, \beta_{1}, \beta_{2}}\right)} \tag{3.5}
\end{equation*}
$$

Moreover $\left.h_{1}\right|_{\gamma}=\left.v\right|_{\gamma}$ is obvious by the definition.
III) Next we deal with the following domain

$$
\begin{equation*}
G_{T, b}=\bigcup_{0<\eta<T}\{(x, y) ;|x|<\kappa(\eta), y=\eta\} \tag{3.6}
\end{equation*}
$$

with

$$
\kappa(\eta)= \begin{cases}\frac{2(b-1)}{T} \eta+1 & (0<\eta<T / 2) \\ b & (T / 2 \leq \eta<T)\end{cases}
$$

Figure 5. Example of $G_{T, b}$.

See Figure 5. We introduce the transformation Φ_{2} of $G_{T, b} \rightarrow F_{T, b}$ by

$$
\Phi_{2}:(x, y) \mapsto(x, \psi(x, y)), \quad(x, y) \in G_{T, b}
$$

Here we have put

$$
\psi(x, y)= \begin{cases}\frac{2 T}{T-\tau(x)}(y-T)+T & (1+\varepsilon<x<b) \\ \frac{T-\omega(x)}{T-\tau(x)}(y-T)+T & (1<x \leq 1+\varepsilon) \\ y & (-1 \leq x \leq 1) \\ \frac{T-\omega(-x)}{T-\tau(-x)}(y-T)+T & (-1-\varepsilon \leq x<-1) \\ \frac{2 T}{T-\tau(-x)}(y-T)+T & (-b<x<-1-\varepsilon)\end{cases}
$$

where

$$
\omega(x)=\frac{T}{\varepsilon}(1-x), \quad \tau(x)=\frac{T}{2(b-1)}(x-1)
$$

We note that Φ_{2} is continuous and bijective. In fact, for a fixed x_{0} in $1+\varepsilon<x_{0}<b$, the line segment $J\left(x_{0}\right)=\left\{\left(x_{0}, y\right) ; \tau\left(x_{0}\right)<y<T\right\}$ is mapped onto the line segment $\left\{\left(x_{0}, y\right) ; \omega\left(x_{0}\right)<y<T\right\}$ and this mapping is bijective. The same is true if $1<x_{0}<1+\varepsilon$. We define the function $h_{2} \in K^{1}\left(G_{T, b}\right)$ as the pullback of h_{1} by Φ_{2};

$$
h_{2}(x, y)=\left(h_{1} \circ \Phi_{2}\right)(x, y)=h_{1}(x, \psi(x, y)), \quad(x, y) \in G_{T, b}
$$

Then, in the same way as in the derivation of (2.10), we can deduce

$$
\begin{equation*}
\left\|\nabla h_{2}\right\|_{L^{2}\left(G_{T, b}\right)} \leq C_{T, b}\left\|\nabla h_{1}\right\|_{L^{2}\left(F_{T, b}\right)} \tag{3.7}
\end{equation*}
$$

In order to derive this inequality, we have made use of

$$
\left|\frac{\partial \psi}{\partial x}(x, y)\right| \leq C_{T, b}, \quad 1 \leq \frac{\partial \psi}{\partial y}(x, y)<C_{T, b}, \quad(x, y) \in G_{T, b}
$$

and

$$
d x d y=\left(\frac{\partial \psi}{\partial y}\right)^{-1} d \xi d \eta \leq d \xi d \eta \quad \text { with } \xi=x, \eta=\psi(x, y)
$$

Moreover, by the definition, we have $\left.h_{2}\right|_{\gamma}=\left.h_{1}\right|_{\gamma}$.
IV) We now define $h \in K^{1}\left(Q_{T}\right)$ by

$$
h(x, y)=\left(h_{2} \circ \Phi_{0}\right)(x, y)=h_{2}(\Theta(y) x, y), \quad(x, y) \in Q_{T}
$$

where Φ_{0} is defined in an obvious way and

$$
\Theta(y)= \begin{cases}2 \frac{b-1}{T} y+1 & (0<y<T / 2) \\ b & (T / 2 \leq y<T)\end{cases}
$$

Then we have

$$
\begin{equation*}
\|\nabla h\|_{L^{2}\left(Q_{T}\right)} \leq C_{T, b}\left\|\nabla h_{2}\right\|_{L^{2}\left(G_{T, b}\right)} \tag{3.8}
\end{equation*}
$$

and $\left.h_{2}\right|_{\gamma}=\left.h\right|_{\gamma}$. Then, evidently, h is the function that we want to get. In fact, it follows from the definitions of h_{1}, h_{2} and h that $\left.v\right|_{\gamma}=\left.h\right|_{\gamma}$ and, by virtue of (3.5), (3.7) and (3.8), we have (3.2). This completes the proof.

4. The Case of Solenoidal Vector Fields

In this section, we present corresponding results for the space of solenoidal vector functions. The facts described here are of use in analysis of the domain decomposition method for the Stokes equations (for instance, see Saito [13]). We are concerned with the following function spaces:

$$
\begin{aligned}
\mathbf{V} & =\mathfrak{D}\left(L^{1 / 4}\right) \times \mathfrak{D}\left(L^{1 / 4}\right) \\
\mathbf{V}_{\sigma} & =\left\{\mathbf{f} \in \mathbf{V} ; \int_{\gamma} \mathbf{f} \cdot \mathbf{n} d x=0\right\} \\
\mathbf{H}^{1}(\Omega) & =H^{1}(\Omega) \times H^{1}(\Omega) \\
\mathbf{H}_{0}^{1}(\Omega) & =\left\{\mathbf{v} \in \mathbf{H}^{1}(\Omega) ; \mathbf{v}=\mathbf{0} \text { on } \partial \Omega\right\} \\
\mathbf{K}^{1}(\Omega) & =\left\{\mathbf{v} \in \mathbf{H}^{1}(\Omega) ; \mathbf{v}=\mathbf{0} \text { on } \Gamma\right\} \\
\mathbf{K}_{\sigma}^{1}(\Omega) & =\left\{\mathbf{v} \in \mathbf{K}^{1}(\Omega) ; \operatorname{div} \mathbf{v}=\mathbf{0} \text { in } \Omega\right\}
\end{aligned}
$$

where \mathbf{n} stands for the unit outward normal to γ, i.e., $\mathbf{n}=\{0,-1\}$, and $\mathbf{f} \cdot \mathbf{n}$ means the usual inner product of \mathbf{f} and \mathbf{n} in \mathbb{R}^{2}. The following notation is employed

$$
\begin{aligned}
\|\mathbf{f}\|_{\mathbf{V}} & =\left\{\left\|f_{1}\right\|_{\mathfrak{D}\left(L^{1 / 4}\right)}^{2}+\left\|f_{2}\right\|_{\mathfrak{D}\left(L^{1 / 4}\right)}^{2}\right\}^{1 / 2}, \quad \text { for } \mathbf{f}=\left\{f_{1}, f_{2}\right\} \in \mathbf{V} \\
\|\mathbf{v}\|_{\mathbf{H}^{1}} & =\left\{\left\|v_{1}\right\|_{H^{1}(\Omega)}^{2}+\left\|v_{2}\right\|_{H^{1}(\Omega)}^{2}\right\}^{1 / 2}, \quad \text { for } \mathbf{v}=\left\{v_{1}, v_{2}\right\} \in \mathbf{H}^{1}(\Omega)
\end{aligned}
$$

Theorem 4.1. The following two claims hold true:
A. (Trace). Let $\mathbf{v} \in \mathbf{K}_{\sigma}^{1}(\Omega)$ and put $\mathbf{f}=\left.\mathbf{v}\right|_{\gamma}$. Then we have $\mathbf{f} \in \mathbf{V}_{\sigma}$ and

$$
\begin{equation*}
\|\mathbf{f}\|_{\mathbf{V}} \leq C_{\Omega}\|\mathbf{v}\|_{\mathbf{H}^{1}} \tag{4.1}
\end{equation*}
$$

B. (Extension). Let $\mathbf{f} \in \mathbf{V}_{\sigma}$. Then there exists $a \mathbf{v} \in \mathbf{K}_{\sigma}^{1}(\Omega)$ such that $\left.\mathbf{v}\right|_{\gamma}=\mathbf{f}$ and

$$
\begin{equation*}
\|\mathbf{v}\|_{\mathbf{H}^{1}} \leq C_{\Omega}\|\mathbf{f}\|_{\mathbf{v}} \tag{4.2}
\end{equation*}
$$

The claim A is a direst consequence of Theorem 1.1 A and the Gauss divergence theorem

$$
0=\iint_{\Omega} \operatorname{div} \mathbf{v} d x d y=\int_{\gamma} \mathbf{v} \cdot \mathbf{n} d x
$$

On the other hand, we can prove the claim B by the standard device ${ }^{1}$ which apply the following lemma due to I. Babuška and A.K. Aziz ([2]):

Lemma 4.1. For any $F \in L^{2}(\Omega)$ satisfying

$$
\iint_{\Omega} F d x d y=0
$$

there is a vector function $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega)$ such that $\operatorname{div} \mathbf{u}=F$ in Ω and

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbf{H}^{1}} \leq C_{\Omega}\|F\|_{L^{2}(\Omega)} \tag{4.3}
\end{equation*}
$$

[^1]Remark 4.1. Babuška and Aziz [2] proved this lemma when the boudary $\partial \Omega$ is smooth. However, it is easy to extend it to the case of a piecewise smooth boundary. For exmaple, we refer to Girault and Raviart [7].

The claim B is proved as follows: Let $\mathbf{f} \in \mathbf{V}_{\sigma}$. Take a vector function $\mathbf{w} \in \mathbf{K}^{1}(\Omega)$ such that $\left.\mathbf{w}\right|_{\gamma}=\mathbf{f}$ and

$$
\|\mathbf{w}\|_{\mathbf{H}^{1}} \leq C_{\Omega}\|\mathbf{f}\|_{\mathbf{V}}
$$

Putting $F=-\operatorname{div} \mathbf{w}$, we have

$$
\iint_{\Omega} F d x d y=-\iint_{\Omega} \operatorname{div} \mathbf{w} d x d y=-\int_{\gamma} \mathbf{f} \cdot \mathbf{n} d x=0
$$

Therefore, by virtue of Lemma 4.1, there is a $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega)$ such that div $\mathbf{u}=F$ in Ω and (4.3). We then put $\mathbf{v}=\mathbf{w}+\mathbf{u}$. This is the desired function.

5. A Remark on the Case of $\Omega \subset \mathbb{R}^{N}$

When Ω is a domain in $\mathbb{R}^{N}, N \geq 3$, similar results hold true. Here we shall state only a result about a simple geometry. Let γ be a bounded domain in \mathbb{R}^{N-1} whose boundary $\partial \gamma$ is sufficiently smooth, and let L be an operator defined by

$$
\begin{align*}
L=-\triangle= & -\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{N-1}^{2}}\right) \tag{5.1}\\
& \text { with } \mathfrak{D}(L)=H^{2}(\gamma) \cap H_{0}^{1}(\gamma) .
\end{align*}
$$

We consider a finite cylinder

$$
\Omega_{T}=\left\{\left(x_{1}, \cdots, x_{N}\right) ;\left(x_{1}, \cdots, x_{N-1}\right) \in \gamma, 0<x_{N}<T\right\}
$$

with $T>0$. Then the same proof as of Lemma 2.1 still remains valid for this case. Namely, we have

Theorem 5.1. The following two claims hold good:
A. (Trace). Let $v \in K^{1}\left(\Omega_{T}\right)$ and put $f=\left.v\right|_{\gamma}$. Then we have $f \in \mathfrak{D}\left(L^{1 / 4}\right)$ and

$$
\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} \leq C_{T, \gamma}\|v\|_{H^{1}\left(\Omega_{T}\right)}
$$

B. (Extension). Let $f \in \mathfrak{D}\left(L^{1 / 4}\right)$. Then there exists a function $u \in$ $K^{1}\left(\Omega_{T}\right)$ such that $\left.u\right|_{\gamma}=f$ and

$$
\|v\|_{H^{1}(\Omega)} \leq C_{T, \gamma}\|f\|_{\mathfrak{D}\left(L^{1 / 4}\right)} .
$$

REMARK 5.1. If γ is not smooth, as long as the operator L in (5.1) can be defined, Theorem 5.1 remains true. This is, for example, the case where γ is a two-dimensional convex polygon (Grisvard [8]). Moreover, in this case, we know the concrete characterization of $\mathfrak{D}\left(L^{1 / 4}\right)$; if γ is a two-dimensional convex polygon, we have

$$
\begin{equation*}
\mathfrak{D}\left(L^{1 / 4}\right)=\left\{\xi \in H^{1 / 2}(\gamma) ; \int_{\gamma} \rho_{j}^{-1} \xi^{2} d \gamma<\infty(j=1, \cdots, m)\right\} \tag{5.2}
\end{equation*}
$$

where the boundary $\partial \gamma$ is written as $\partial \gamma=\cup_{j=1}^{m} G_{j}$ with the line segment G_{j} and ρ_{j} stands for the distance from G_{j}. In fact, Zolesio [15] proved that the real interpolation space $\left[K^{2}(\gamma), L^{2}(\gamma)\right]_{3 / 4}$ coincides with the space of the right-hand side of (5.2). Here we have put $K^{2}(\gamma)=\left\{f \in H^{2}(\gamma) ;\left.f\right|_{\partial \gamma}=0\right\}$. This, together with the well-known relation $\mathfrak{D}\left(L^{1 / 4}\right)=\left[K^{2}(\gamma), L^{2}(\gamma)\right]_{3 / 4}$, implies (5.2). However, the concrete characterization of $\mathfrak{D}\left(L^{1 / 4}\right)$ in a higher dimensional domain γ with the non-smooth boundary seems to have room for further study.

References

[1] Arnold, D. N., Scott, L. R. and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. della Scuo. Norm. Super. di Pisa XV(2) (1988), 169-192.
[2] Babuška, I. and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), with the collaboration of G. Fix and R. B. Kellogg, Academic Press, 1972, 1-359.
[3] Banasiak, J., Domains of fractional powers of operators arising in mixed boundary value problems in non-smooth domains and applications, Appl. Anal. 55 (1994), 79-89.
[4] Fujita, H., Fukuhara, M. and N. Saito, On the rate of convergence of iterations in the domain decomposition methods, Proceedings of third ChinaJapan seminar on numerical mathematics, Science Press, 1998, 30-43.
[5] Fujita, H. and N. Saito, An analytical study of optimal speed of convergence of iterations in DDM under certain shape assumptions of domains, Computational Science for the 21st Century, John Wiley \& Sons, 1997, 139-149.
[6] Fujiwara, D., Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. 43 (1967), 82-86.
[7] Girault, V. and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986.
[8] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
[9] Kato, T., Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246-274.
[10] Kato, T., Perturbation Theory for Linear Operators, Second Edition, Springer-Verlag, 1976.
[11] Lions, J. L. and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, I, Springer-Verlag, 1972.
[12] Quarteroni, A. and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, 1999.
[13] Saito, N., On the domain-dependence of convergence rate in a domain decomposition method for the Stokes equations, to appear in the East-West J. of Numer. Math.
[14] Yosida, K., Functional Analysis, Sixth Edition, Springer-Verlag, 1980.
[15] Zolesio, J. L., Interpolation d'espaces de Sobolev avec conditions aux limites de type mêlé, C. R. Acad. Sc. Paris, Série A 285 (1977), 621-624.
(Received May 10, 1999)
Norikazu Saito
International Institute for Advanced Studies
9-3 Kizugawadai, Kizu-cho
Soraku-gun, Kyoto 619-0225
Hiroshi Fujita
The Research Institute of Educational Development Tokai University, 2-28-4 Tomigaya
Shibuya-ku, Tokyo 151-0063

[^0]: 1991 Mathematics Subject Classification. 46E35, 46C15.
 Key words: trace theorem, non-smooth domain, fractional power of operator, domain decomposition method.
 *International Institute for Advanced Studies, 9-3 Kizugawadai, Kizu-cho, Sorakugun, Kyoto 619-0225, Japan.
 ${ }^{\dagger}$ The Research Institute of Educational Development, Tokai University, 2-28-4 Tomigaya, Shibuya-ku, Tokyo 151-0063, Japan.

[^1]: ${ }^{1}$ For example, we refer to Arnold et al. [1].

