On Gross’s Refined Class Number Formula for Elementary Abelian Extensions

By Joongul Lee

Abstract. In this paper we consider the conjecture of Gross on the special values of abelian L-functions when the Galois group G is an elementary abelian l-group. Under some restrictions, we prove that the conjecture holds when the class number of the base field is prime to l.

1. Introduction

Suppose L/K is an abelian extension of global fields and let $G = \text{Gal}(L/K)$. In [3], B. Gross has conjectured a congruence relation involving the Stickelberger element in $\mathbb{Z}[G]$, class number of K and the generalized regulator. The relation can be thought of as a generalization of the classical class number formula which describes the leading term of the Taylor expansion of $\zeta_K(s)$ at $s = 0$ in terms of the class number and the regulator of K. In this paper we consider the case when G is an elementary abelian l-group. Our main result is Theorem 3, which states that the conjecture holds when the class number of K is prime to l and (when K contains a primitive l-th root of unity) T contains a place whose degree is prime to l. This improves the result that Gross obtained when G is cyclic of prime order (see [3]).

I would like to thank Benedict Gross, Ki-Seng Tan and Felipe Voloch for helpful discussions and suggestions, and especially my teacher John Tate for continuous support and encouragement. I would also like to thank the referee for valuable comments.

2. The conjecture of Gross

Let L/K be an abelian extension of global fields with Galois group G. Let S be a finite non-empty set of places of K which contains all archimedean places and places ramified in L, and let T be a finite non-empty set of places

1991 Mathematics Subject Classification. Primary 11S40; Secondary 11R29, 11R37.
of K which is disjoint from S. Let $n = |S| - 1$. For a finite place v of K, let \mathbb{F}_v be the residue field of v.

For a complex character $\chi \in \hat{G} = \text{Hom}(G, \mathbb{C}^*)$, the associated modified L-function is defined as

\[
L_{S,T}(\chi, s) = \prod_{v \in T} (1 - \chi(g_v)N_v^{1-s}) \prod_{v \notin S} (1 - \chi(g_v)N_v^{-s})^{-1},
\]

where $g_v \in G$ is the Frobenius element for v.

The Fourier inversion formula tells us that there is a unique element $\theta_G \in \mathbb{C}[G]$ which satisfies

\[
\chi(\theta_G) = L_{S,T}(\chi, 0)
\]

for all $\chi \in \hat{G}$. In fact, $\theta_G \in \mathbb{Z}[G]$ by works of Weil, Siegel, Deligne-Ribet and Cassou-Noguès (see [3] for more information).

Let Y be the free \mathbb{Z}-module generated by the places $v \in S$ and $X = \{ \sum_{v \in S} a_v \cdot v \mid \sum a_v = 0 \}$ the subgroup of elements of degree zero in Y. Let U_T denote the group of S-units which are congruent to 1 (mod T) (in other words, S-units which are congruent to 1 (mod v) for all $v \in T$). Then U_T is a free \mathbb{Z}-module of rank n if K is a function field, and to ensure that the same is true if K is a number field we require that T either contains places of different residue characteristics or contains a place v whose absolute ramification index e_v is strictly less than $(p - 1)$, where p is the characteristic of \mathbb{F}_v. This assumption makes U_T a free \mathbb{Z}-module.

Let J denote the idele group of K, and $f : J \to G$ be the Artin reciprocity map. Let λ_G be the homomorphism

\[
\lambda_G : U_T \longrightarrow \quad G \otimes X
\[
\varepsilon \quad \mapsto \quad \sum_{S} f(1,1,\ldots,\varepsilon_v,\ldots,1) \cdot v.
\]

We choose bases $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ and $\langle x_1, \ldots, x_n \rangle$ for U_T and X. With respect to the chosen bases, we obtain an $n \times n$ matrix $((g_{ij}))$ for λ_G with entries in G.

Let $I \subset \mathbb{Z}[G]$ be the augmentation ideal, which is defined as the kernel of the ring homomorphism

\[
\mathbb{Z}[G] \quad \longrightarrow \quad \mathbb{Z}
\[
\quad g \quad \mapsto \quad 1.
\]
It is well known that the map \(g \mapsto g - 1 \pmod{I^2} \) gives an isomorphism \(G \cong I/I^2 \) of abelian groups. We may therefore consider the matrix for \(\lambda_G \) as having entries \(\eta_{ij} = g_{ij} - 1 \) in \(I/I^2 \). We define

\[
\det \lambda_G = \sum_{\sigma \in \text{Sym}(n)} \text{sign}(\sigma) \eta_{\sigma(1)} \eta_{\sigma(2)} \cdots \eta_{\sigma(n)}
\in I^n/I^{n+1}.
\]

Now we can state the main conjecture.

Conjecture 1 (Gross). \(\theta_G \equiv m \cdot \det \lambda_G \pmod{I^{n+1}} \).

Here \(m = \pm h_{S,T} \) is the modified class number of the \(S \)-integers of \(K \) and the sign depends on the choice of ordered bases of \(X \) and \(U_T \) (see [3]). We summarize some basic facts on Conjecture 1.

Proposition 2.

(a) Suppose \(S \subset S' \) and \(T \subset T' \). If Conjecture 1 holds for the set \(S \) and \(T \), it holds for \(S' \) and \(T' \).

(b) Suppose \(H \) is a subgroup of \(G \). The natural map \(\mathbb{Z}[G] \rightarrow \mathbb{Z}[G/H] \) maps \(\theta_G \) and \(\det \lambda_G \) to \(\theta_{G/H} \) and \(\det \lambda_{G/H} \) respectively. Hence Conjecture 1 holds for \(G/H \) if it holds for \(G \).

(c) Conjecture 1 holds for \(G \) if and only if it holds for all its \(p \)-Sylow quotients.

(d) If \(S \) contains a place \(v \) that splits completely in \(L \), then \(\theta_G \equiv m \cdot \det \lambda_G \equiv 0 \pmod{I^{n+1}} \).

(e) If \(n = 0 \) then \(\det \lambda_G = 1, m = h_{S,T}, I^n/I^{n+1} = \mathbb{Z} \), and conjecture 1 holds because it is equivalent to the classical class number formula.

See [3, 8] for (a) and (b). (c) was pointed out by J. Tate. For (d) we note that the Euler factor for \(v \) is zero, so \(\theta_G = 0 \), and also the row of the matrix of \(\lambda_G \) which correspond to \(v \) is zero and hence \(\det \lambda_G \equiv 0 \pmod{I^{n+1}} \). (e) follows from the definitions of the related quantities.

In [3], B. Gross proved that the Conjecture 1 holds when \(S \) consists of the archimedean places of \(K \). He also treated the case when \(G \cong \mathbb{Z}/l\mathbb{Z} \) is cyclic of prime order. In this case, \(I^n/I^{n+1} \cong \mathbb{Z}/l\mathbb{Z} \) for \(n \geq 1 \), and Gross proved that his conjecture is true up to an element of \((\mathbb{Z}/l\mathbb{Z})^* \), in the sense that \(\theta_G \) always belongs to \(I^n \) (hence we are comparing two elements in \(I^n/I^{n+1} \)) and that \(\theta_G \in I^{n+1} \) if and only if \(m \cdot \det \lambda_G \in I^{n+1} \). In [9],
M. Yamagishi treated the case when $K = \mathbb{Q}$ and got some partial result, and N. Aoki proved that the conjecture is true for $K = \mathbb{Q}$ in [1]. D. Hayes proved a refined version of the Stark conjecture (conjectured by Gross) for function fields in [4], which implies Conjecture 1 for $n = 1$. In [6], K.-S. Tan proved the case when K is a function field of characteristic p and G is a p-group.

3. The main theorem

Let l be a prime. Our goal is to prove the following theorem.

Theorem 3. Suppose G is an elementary abelian l-group. If K is a function field suppose also that h_K, the number of divisor classes of degree 0 of K, is prime to l, and, in case K contains a primitive l-th root of unity, T contains a place whose degree is prime to l. Then conjecture 1 holds.

If K is a number field, the existence of the archimedean places assures that Conjecture 1 is true when $l \geq 3$ since the archimedean places split completely in L, and when $l = 2$ Conjecture 1 follows from the work of Gross and corollary 5 below. Therefore we may assume that K is a function field. Also, since Tan proved Conjecture 1 for p-groups ([6]), we may assume that l is different from the characteristic of K. Hence we will be dealing only with tame ramification. Also we may assume that T consists of a single place whose degree is prime to l if K contains a primitive l-th root of unity, via proposition 2.

Let $S = \{v_0, v_1, \ldots, v_n\}$, $n = |S| - 1$, and $T = \{v_T\}$. Let K_S be the maximal extension of K unramified outside of S whose Galois group is an elementary abelian l-group. Let $G_S = \text{Gal}(K_S/K)$, and for $i = 0, \ldots, n$, let $I_i \subset G_S$ be the inertia group of v_i. Let D_T be the decomposition group of v_T. Notice that I_i is cyclic because K_S/K has only tame ramification, and that D_T is also cyclic because v_T is unramified in K_S and its residue field is finite. It follows from proposition 2 that we may assume that $n \geq 1$. We can also assume without loss of generality that $L = K_S$, and that all the places in S are ramified in K_S.

Here is our strategy for proving Theorem 3. We first discuss the structure of I^n/I^{n+1}, and we find a homogeneous polynomial f of degree n with
coefficients in \(\mathbb{F}_l \) which may be viewed as a function on \(\hat{G}_S \) with values in \(\mathbb{F}_l \), such that the validity of the conjecture is equivalent to the vanishing of \(f \) on \(\hat{G}_S \). Next we study the structure of \(G_S \) in section 5., and we show that \(I_0, \ldots, I_n \) generate a subgroup of \(G_S \) of rank \(n \) or \(n + 1 \), depending on whether \(K \) contains a primitive \(l \)-th root of unity or not. We also show that \(I_0, \ldots, I_n, D_T \) generate a subgroup of \(G_S \) of rank \(n + 1 \) when \(K \) contains a primitive \(l \)-th root of unity. In section 6. we prove that if a polynomial function on \(\hat{G}_S \) vanishes on \(n + 1 \) linearly independent subspaces of codimension 1 and its degree is bounded by \(n \), then it must vanish on \(\hat{G}_S \). It turns out that this is exactly what we need in order to make the induction on \(n = |S| - 1 \) work, and the induction is carried out in section 7.

4. The structure of \(I^n/I^{n+1} \)

Choose a primitive \(l \)-th root of unity \(\zeta \in \mathbb{C}^* \), and let \(\lambda = \zeta l - 1 \). \((\lambda)\) is a prime ideal in \(\mathbb{Z}[\zeta] \) whose residue field is isomorphic to \(\mathbb{Z}/l\mathbb{Z} \), and we have \((l) = (\lambda)^{l-1}\). Also note that a character \(\chi \in \hat{G} \) can be extended by linearity to a ring homomorphism \(\chi : \mathbb{Z}[G] \longrightarrow \mathbb{C} \).

Lemma 4 (Passi-Vermani). *Suppose \(G \) is an elementary abelian \(l \)-group. If \(\xi \in I \), then, for each integer \(k \geq 1 \), \(\xi \in I^k \) if and only if \(\lambda^k \mid \chi(\xi) \) for every complex character \(\chi \in \hat{G} \).*

Proof. See [3] for the case when \(G \cong \mathbb{Z}/l\mathbb{Z} \), and [5, 7] for elementary abelian case. \(\square \)

As we discussed in section 2., Gross proved that both \(\theta_G \) and \(m \cdot \det \lambda_G \) are in \(I^n \) when \(G \) is cyclic of prime order, which, together with Lemma 4, implies that both \(\theta_G \) and \(m \cdot \det \lambda_G \) are in \(I^n \) when \(G \) is an elementary abelian group.

Corollary 5. *Suppose \(G = \text{Gal}(L/K) \) is an elementary abelian \(l \)-group. Then the conjecture holds for \(L/K \) if and only if it holds for \(L'/K \) for all cyclic subextensions \(L'/K \) of \(L/K \).*

Proof. Set \(\xi = \theta_G - m \cdot \det \lambda_G \) and apply lemma 4. \(\square \)
Let $N = \dim_{\mathbb{F}_l} \hat{G} - 1$ and choose a basis $\{\chi_0, \ldots, \chi_N\}$ of \hat{G}. In general, we have

$$\zeta^m_l - 1 = (\zeta_l - 1)(\zeta_l^{m-1} + \ldots + 1) \equiv m(\zeta_l - 1) \pmod{\lambda^2}. \quad (6)$$

Hence, given $\chi = \prod_{i=0}^{N} \chi_i^{m_i} \in \hat{G}$ and $\sigma \in G$, we may write

$$\chi(\sigma - 1) = \zeta^{\sum a_i m_i}_l - 1 \equiv \sum a_i m_i \cdot \lambda \pmod{\lambda^2}, \quad (7)$$

where $a_i \in \mathbb{F}_l$ is defined by $\chi_i(\sigma) = \zeta_l^{a_i}$. If $\xi \in I^n$, then since χ_i can be written as a linear combination of $\prod_{j=1}^{n} (\tau_j - 1)$ where $\tau_j \in G$ for all j, we have

$$\chi(\xi) \equiv p(m_0, \ldots, m_N) \cdot \lambda^n \pmod{\lambda^{n+1}}, \quad (8)$$

where $p(X_0, \ldots, X_N) \in \mathbb{F}_l[X_0, \ldots, X_N]$ is a homogeneous polynomial of degree n. We can see from Lemma 4 that $\xi \in I^{n+1}$ if and only if $p = 0$ as a function on \hat{G}.

For $\chi \in \hat{G}$, define

$$f(\chi) = \frac{\chi(\theta_G - m \cdot \det \lambda_G)}{\lambda^n} \pmod{\lambda}. \quad (9)$$

The above argument shows that f can be represented by a homogeneous polynomial of degree n. Let K_χ be the fixed field of $\ker \chi$. Then $f(\chi) = 0$ if and only if the conjecture holds for K_χ/K with respect to S and T.

We also note that if K contains an l-th root of unity and T contains a place v that splits completely in L, then the modifying Euler factor for v is $(1 - Nv)$ which is divisible by l. Since $l \cdot \xi \in I^{m+(l-1)}$ whenever $\xi \in I^m$, which follows from lemma 4, θ_G will be in I^{n+1}. With the work of Gross, that implies $m \cdot \det \lambda_G \in I^{n+1}$. As a result, Conjecture 1 holds trivially (in the sense that the conjecture becomes $0 = 0$) when K contains an l-th root of unity and T contains a place that splits completely in L.

5. The structure of G_S

In this section, we study the structure of G_S and the inertia groups of S in G_S using class field theory. (reference:[2])
Let \mathbb{F}_q be the exact field of constants of K. For each place v of K, let K_v be the completion of K at v, U_v the set of local units in K_v, and $U_v^1 \subset U_v$ the local units which are congruent to 1 (mod v).

Let J_0 be the set of ideles of degree 0. It is easy to see that J is (non-canonically) isomorphic to $\mathbb{Z} \times J_0$, because K is known to have a divisor (not necessarily prime) of degree 1.

There is an exact sequence

\begin{equation}
0 \to (\prod_{v \in S} \mathbb{F}_v^*)/\mathbb{F}_q^* \to J/K^* \cdot \prod_{v \notin S} U_v \cdot \prod_{v \in S} U_v^1 \to J/K^* \cdot \prod_v U_v \to 0.
\end{equation}

If we let K_{unr} be the maximal unramified abelian extension of K, and K'_S the maximal abelian extension of K unramified outside of S and tamely ramified in S, then $J/K^* \cdot \prod_{v \notin S} U_v \cdot \prod_{v \in S} U_v$ and $J/K^* \cdot \prod_v U_v$ have dense images in $\text{Gal}(K'_S/K)$ and $\text{Gal}(K_{\text{unr}}/K)$ respectively, via the Artin reciprocity map.

Observe that $J/K^* \cdot \prod_v U_v$ is isomorphic to $\mathbb{Z} \times H$, where $H = J_0/K^* \cdot \prod_v U_v$ and since we assume that $h_K = |H|$ is not divisible by l, we have $(\mathbb{Z} \times H) \otimes \mathbb{Z}/l\mathbb{Z} = \mathbb{Z}/l\mathbb{Z}$ and $\text{Tor}(\mathbb{Z} \times H, \mathbb{Z}/l\mathbb{Z}) = 0$. Hence tensoring the exact sequence with $\mathbb{Z}/l\mathbb{Z}$ preserves the exactness;

\begin{equation}
0 \to (\prod_{v \in S} \mathbb{F}_v^*)/\mathbb{F}_q^* \to J/J^1 \cdot K^* \cdot \prod_{v \notin S} U_v \cdot \prod_{v \in S} U_v^1 \to \mathbb{Z}/l\mathbb{Z} \to 0,
\end{equation}

where \mathbb{F}_q^* is the image of \mathbb{F}_q^* in $\prod_{v \in S} \mathbb{F}_v^*/\mathbb{F}_v^{*l}$. Class field theory tells us that G_S is isomorphic to the middle term of the exact sequence, hence G_S is isomorphic to $\mathbb{Z}/l\mathbb{Z} \times (\prod_{v \in S} \mathbb{F}_v^*/\mathbb{F}_v^{*l})/\mathbb{F}_q^*$ and I_i is the image of $\mathbb{F}_v^*/\mathbb{F}_v^{*l}$ in G_S.

If we look at the map

\begin{equation}
\mathbb{F}_q^* \to \prod_{v \in S} \mathbb{F}_v^* \to \prod_{v \in S} \mathbb{F}_v^*/\mathbb{F}_v^{*l},
\end{equation}

then since \mathbb{F}_q^* is cyclic and $\prod_{v \in S} \mathbb{F}_v^*/\mathbb{F}_v^{*l}$ is killed by l, \mathbb{F}_q^* is either 0 or cyclic of order l. It is clear that $\hat{\mathbb{F}}_q^* = 0$ when $q \equiv 1$ (mod l). When $q \equiv 1$ (mod l), we can see, for example by using Kummer theory, that \mathbb{F}_q^* is contained in $(\mathbb{F}_v^*)^l$ if and only if deg v is divisible by l. Hence \mathbb{F}_q^* is non-trivial only when $q \equiv 1$ (mod l) and there is a place $v \in S$ such that l does not divide deg v.

Gross Class Number Formula

379
For each $i = 0, \ldots, n$, let $\sigma_i \in G_S$ be a generator of I_i, and σ_T a generator of D_T. When $\mathbb{F}_q^* = 0$, $\{\sigma_i\}_{i=0}^n$ are linearly independent, viewing G_S as a vector space over \mathbb{F}_q, and $\dim_{\mathbb{F}_q} G_S = n + 2$. On the other hand, when $\mathbb{F}_q^* \neq 0$, it gives a non-trivial linear relation among σ_j's for j such that $l \nmid \deg v_j$, and hence $\dim_{\mathbb{F}_q} G_S = n + 1$. As we have seen before, this case happens only when K contains a primitive l-th root of unity and there is a place in S whose degree is prime to l. In that case, we may assume that l does not divide $\deg v_0$, then $\{\sigma_i\}_{i=1}^n$ are linearly independent. Furthermore, with the assumption $l \nmid \deg v_T$, v_T does not split completely in $K \cdot \mathbb{F}_{q^l}$, which is the maximal unramified extension in K_S by class field theory and the assumption $l \nmid h$. Hence $\sigma_T \notin \langle \sigma_0, \ldots, \sigma_n \rangle$, which implies that $\{\sigma_T, \sigma_1, \ldots, \sigma_n\}$ are linearly independent. Hence we have proved the following theorem.

Theorem 6. (a) If K does not contain a primitive l-th root of unity, then the inertia groups of places in S are linearly independent in G_S. (b) If K contains a primitive l-th root of unity, then the inertia groups of places in S generate a subgroup of G_S of rank at least n, and the decomposition group of v_T is not contained in the subgroup as long as $\deg v_T$ is prime to l.

Remark. This argument shows that the assumption on T is necessary only when \mathbb{F}_q^* is non-trivial, i.e. when K contains an l-th root of unity and S contains a place whose degree is prime to l.

6. **Functions on the \mathbb{F}_l-vector space**

Let V be a \mathbb{F}_l-vector space of dimension $N + 1$. Choose a basis $\{w_0, \ldots, w_N\}$ of V, and for $i = 0, \ldots, N$ define $X_i \in \text{Hom}(V, \mathbb{F}_l)$ by $X_i(w_j) = \delta_{ij}$. We may view a polynomial $f \in \mathbb{F}_l[X_0, \ldots, X_N]$ as a function on V via the above identification.

The goal of this section is to prove the following theorem, which will be used in proving Theorem 3.

Theorem 7. Suppose $f \in \mathbb{F}_l[X_0, \ldots, X_N]$ is a polynomial of degree $\leq n$, which we view as a function on V, and $\{V_i\}_{i=0}^n$ are $n + 1$ linearly independent subspaces of codimension 1 in V. If f vanishes on V_i for all i, then f vanishes on V.
Definition. We say that a polynomial \(p(X_0, \ldots, X_N) \in \mathbb{F}_l[X_0, \ldots, X_N] \) is reduced if for each \(X_i \), \(\deg_{X_i} p(X_0, \ldots, X_N) < l \).

Lemma 8. Every function on \(V \) with values in \(\mathbb{F}_l \) can be uniquely expressed as a reduced polynomial in \(\mathbb{F}_l[X_0, \ldots, X_N] \).

Proof. This is a well-known result, and we give a short proof here. Observe that for \(a_i \in \mathbb{F}_l \), \(i = 0, \ldots, N \), we have

\[
\prod_{i=0}^{N} (1 - (x_i - a_i)^{l-1}) = \begin{cases}
1 & \text{if } x_i = a_i \text{ for all } i, \\
0 & \text{otherwise.}
\end{cases}
\]

By taking linear combination, we see that any function on \(V \) can be represented by a reduced polynomial. Uniqueness follows from counting such polynomials. \(\square \)

For each polynomial \(p(X_0, \ldots, X_N) \in \mathbb{F}_l[X_0, \ldots, X_N] \), we can associate the reduced polynomial \(p_r(X_0, \ldots, X_N) \) of \(p(X_0, \ldots, X_N) \), which is reduced and defines the same function on \(V \) as \(p(X_0, \ldots, X_N) \). We can get \(p_r(X_0, \ldots, X_N) \) from \(p(X_0, \ldots, X_N) \) by using the relations \(X_i^l = X_i \) for all \(i \) to replace \(X_i^m \) by \(X_i^{m-(l-1)} \) until \(m < l \). Notice that for each \(i \), \(\deg_{X_i} p_r \leq \deg_{X_i} p \), and hence \(\deg p_r \leq \deg p \).

Lemma 9. Suppose \(p(X_0, \ldots, X_N) \) is a reduced polynomial. If \(p(0, x_1, \ldots, x_N) = 0 \) for all \((x_1, \ldots, x_N) \in \mathbb{F}_l^N \), then \(X_0 \mid p(X_0, \ldots, X_N) \).

Proof. Write \(p(X_0, \ldots, X_N) = X_0 \cdot q(X_0, \ldots, X_N) + r(X_1, \ldots, X_N) \). For all \((x_1, \ldots, x_N) \in \mathbb{F}_l^N \), \(r(x_1, \ldots, x_N) = p(0, x_1, \ldots, x_N) - 0 \cdot q(0, x_1, \ldots, x_N) = 0 \). Since \(r \) is also reduced, we conclude that \(r = 0 \). \(\square \)

Proof of Theorem 7. By change of coordinates, we may assume that for each \(i = 0, \ldots, n \), \(V_i \) is given by the equation \(X_i = 0 \). Let \(f_r \) be the reduced polynomial of \(f \). According to Lemma 9, \(f_r \) is divisible by \(X_i \) for all \(i \) and since we have unique factorization, it follows that \(f_r \) is divisible by \(\prod_{i=0}^{n} X_i \). Since we have \(\deg f_r \leq \deg f \leq n \), it follows that \(f_r = 0 \), and hence \(f \) vanishes on \(V \). \(\square \)
7. The induction step

We prove Theorem 3 by induction on n. When $n = 0$, the conjecture holds as noted in Proposition 2.

Suppose $n \geq 2$. For each $i = 0, \ldots, n$, let $S_i = S \setminus \{v_i\}$. Then $\widehat{G_{S_i}}$ is the orthogonal of I_i, hence is a subspace of codimension 1 in $\widehat{G_S}$ since we assumed that v_i is ramified in K_S. Note that v_i is unramified in K_{S_i}.

By induction we can assume that for all $i = 0, \ldots, n$, Conjecture 1 holds for K_{S_i}/K with respect to S_i and T. Then Proposition 2 shows that Conjecture 1 holds for K_{S_i}/K with respect to S and T. Hence $f|_{\widehat{G_{S_i}}} = 0$. When K does not contain a primitive l-th root of unity, it follows from Theorem 6 and Theorem 7 that $f = 0$ on $\widehat{G_S}$.

If K contains a primitive l-th root of unity, we let $G_T = G_S/D_T$. Then the place v_T will split completely in K_χ for all $\chi \in \widehat{G_T}$ which implies, as we discussed at the end of section 4., that we have $f|_{\widehat{G_T}} = 0$. Again, it follows from Theorem 6 and Theorem 7 that $f = 0$ on $\widehat{G_S}$, and hence $\theta_{G_S} \equiv m \cdot \det \lambda_{G_S} \pmod{I^{n+1}}$ in all cases. □

References

(Received July 18, 1996)

Department of Mathematics
The Ohio State University
Columbus, OH 43210
U.S.A.
E-mail: jlee@math.ohio-state.edu