On the maximum value of the first coefficients of Kazhdan-Lusztig polynomials for symmetric groups

By Hiroyuki Tagawa

Abstract. In this article, we show that \(\max \{ c^{-}(w); w \in S_n \} = \left\lfloor \frac{n^2}{4} \right\rfloor \), where \(c^{-}(w) \) is the number of elements covered by \(w \in S_n \) in the Bruhat order. Using this result, we can see that the maximum value of the first coefficients of Kazhdan-Lusztig polynomials for \(S_n \) equals \(\left\lfloor \frac{n^2}{4} \right\rfloor - n + 1 \).

0. Introduction

Let \((W, S)\) be a Coxeter system and \(\leq_B \) denote the Bruhat order on \(W \). We put

\[
c^{-}(w) = \# \{ y \in W; w \text{ covers } y \text{ in the Bruhat order} \},
\]

\[
g(w) = \# \{ s \in S; s \leq_B w \}.
\]

The purpose of this article is to show that, if \(W \) is the symmetric group \(S_n \) of degree \(n \), the maximum value of \(c^{-}(w) \) (resp. \(c^{-}(w) - g(w) \)) over \(w \in S_n \) is equal to \(\left\lfloor \frac{n^2}{4} \right\rfloor \) (resp. \(\left\lfloor \frac{n^2}{4} \right\rfloor - n + 1 \)), where \([x] \) denotes the Gaussian symbol, i.e. the greatest integer not exceeding \(x \).

The maximum value of \(c^{-}(w) \) plays a role in solving problems concerning with the Bruhat order with help of computers. Also, by results of Dyer [D] and Irving [I], the maximum value of \(c^{-}(w) - g(w) \) gives the maximum value of the coefficient \(p_1(x, y) \) of \(q \) in the Kazhdan-Lusztig polynomial \(P_{x,y}(q) = \sum_{i \geq 0} p_i(x, y)q^i \).

This article is organized as follows: In Section 1, we associate a poset \(P_x \) to each permutation \(x \in S_n \) and show that \(c^{-}(x) \) (resp. \(c^{-}(x) - g(x) \)) is

1991 Mathematics Subject Classification. Primary 06A07; Secondary 20B30.
equal to the number of edges of the Hasse diagram of P_x (resp. $n - \text{comp}(P_x)$, where $\text{comp}(P_x)$ is the number of the connected components of the Hasse diagram of P_x). In Section 2, we use the Turán’s theorem in the graph theory to evaluate the maximum values of $c^{-}(x)$ and $c^{-}(x) - g(x)$ (Theorem A and B). In Section 3, we combine Theorem A, B with results of Dyer [D] and Irving [I] and prove that the maximum value of the first coefficients of Kazhdan-Lusztig polynomials is given by $[n^2/4] - n + 1$ (Theorem C).

1. **Poset P_x associated to a permutation x**

First, we define a poset P_x for $x \in \mathfrak{S}_n$.

Definition 1.1. For each integer $n \geq 1$, we put $[n] := \{1, 2, \cdots, n\}$. For $x \in \mathfrak{S}_n$, we define a poset (P_x, \leq_x) as follows:

$$P_x = \{\tilde{i} ; i \in [n]\} \text{ as a set, } \tilde{j} \leq_x \tilde{i} \iff i \leq j \text{ and } x(i) \geq x(j).$$

Example 1.2. Let $x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix} \in \mathfrak{S}_5$. Then the Hasse diagram of (P_x, \leq_x) is the following.

$$\begin{array}{ccc}
\tilde{1} & \tilde{3} \\
/ & / \\
2 & 4 & \tilde{5}
\end{array}$$

Remarks 1.3.

(i) When $n \leq 5$, for any poset P with n elements, there exists $x \in \mathfrak{S}_n$ such that $P_x \simeq P$, where $P \simeq Q$ means that there exists a bijection f from P to Q satisfying $x \leq y$ in $P \iff f(x) \leq f(y)$ in Q.

(ii) When $n \geq 6$, the above statement is incorrect. For example, we cannot find $x \in \mathfrak{S}_6$ such that $P_x \simeq P$, where P is a poset with the following Hasse diagram.

(iii) It is easy to check that if $P_x = P_y$, then $x = y$.

Let us recall the definition of the Bruhat order on \mathfrak{S}_n and we define some notations.
Definition 1.4. Let a, b be elements in S_n. We write $a <' b$ if there exist i,j such that $i < j$, $b(i) > b(j)$ and $a = b(i,j)$, where (i, j) is the permutation switching the number i and j and leaving the other numbers fixed. Then the Bruhat order denoted by \leq_B is defined as follows:

$$x \leq_B y \iff \text{there exist } z_0, z_1, \cdots, z_k \in S_n \text{ such that } x = z_0 <' z_1 <' \cdots <' z_k = y.$$

For $x, y \in S_n$, we put $\langle x, y \rangle := \{z \in S_n; x \leq_B z \leq_B y\}$, $c^-(x) := \sharp\{z \in [e, x]; \ell(z) = \ell(x) - 1\}$, $G(x) := \{s \in [e, x]; \ell(s) = 1\}$, $g(x) := \sharp G(x)$, where e is the identity element and ℓ is the length function (cf. [Hu]). In other words, $c^-(x)$ (resp. $g(x)$) is the number of the coatoms (resp. atoms) of the interval $[e, x]$.

We define some more notations.

Definition 1.5. Let (P, \leq_P) and (Q, \leq_Q) be posets. We write $x <_P y$ if y covers x in P (i.e. $x <_P z \leq_P y \Rightarrow z = y$). If $P \cap Q = \emptyset$, then we define a new poset $(P + Q, \leq_{P+Q})$ as follows: $P + Q = P \cup Q$ as a set and $x \leq_{P+Q} y$ if and only if (i) $x, y \in P$ and $x \leq_P y$ or (ii) $x, y \in Q$ and $x \leq_Q y$. Also we define a new poset $(P \oplus Q, \leq_{P\oplus Q})$ as follows: $P \oplus Q = P \cup Q$ as a set and $x \leq_{P\oplus Q} y$ if and only if (i) $x, y \in P$ and $x \leq_P y$, (ii) $x, y \in Q$ and $x \leq_Q y$ or (iii) $x \in P$ and $y \in Q$. We put

$$h(P) := \sharp\{(x, y) \in P^2; y <_P x\},$$

$$\text{comp}(P) := \text{the number of the connected components of the Hasse diagram of } P.$$

In other words, $h(P)$ is the number of edges of the Hasse diagram of P. We say that P is connected if and only if $\text{comp}(P) = 1$.

Remark 1.6. For $x, y \in S_n$, it is well known that $y <_B x$ if and only if there exist i,j such that $y = x(i,j)$, $i < j$, $x(i) > x(j)$ and $x(k) \leq x(j)$ or $x(i) \leq x(k)$ for any $k \in [i, j]$, where $[i, j] := \{i, i + 1, \cdots, j\}$.

Then we have the following.

Proposition 1.7. For $x \in S_n$, we have

(i) $c^-(x) = h(P_x),$

(ii) $g(x) = n - \text{comp}(P_x).$

Before the proof of Proposition 1.7, we prepare some more notations.
Definition 1.8. For $x \in S_n$, we put
\[
C(x) := \{(i, j) ; i < j, x(i, j) \leq_B x\}; \\
H(x) := \{\tilde{(i, j)} ; \tilde{j} \in P_x^2 ; \tilde{j} \prec_x \tilde{i}\}.
\]

Remark 1.9. We can check that $\ell(x) = \#\{\tilde{(i, j)} \in P_x^2 ; \tilde{j} \prec_x \tilde{i}\}$ for any $x \in S_n$.

Proof of Proposition 1.7 (i). We define the map η from $C(x)$ to $H(x)$ by $\eta(i, j) := (\tilde{i}, \tilde{j})$. Then, by Remark 1.6 and the definition of \leq_x, we have
\[
(i, j) \in C(x) \iff i < j, x(i, j) \leq_B x \\
\iff i < j, x(i) > x(j), x(k) \leq x(j) \text{ or } x(i) \leq x(k) \text{ for any } k \in [i, j] \\
\iff \tilde{j} \prec_x \tilde{i}, x(k) \leq x(j) \text{ or } x(i) \leq x(k) \text{ for any } k \in [i, j] \\
\iff \tilde{j} \leq_x \tilde{i} \\
\iff (\tilde{i}, \tilde{j}) \in H(x).
\]

Hence, η is a bijection. It is easy to check that $\#C(x) = c^-(x)$ and $\#H(x) = h(P_x)$. So, we obtain $c^-(x) = h(P_x)$. \square

Before the proof of Proposition 1.7 (ii), we will show a lemma.

Lemma 1.10. For $x \in S_n$, we have the following.
(i) If P_x is connected, then $g(x) = n - 1$.
(ii) Let P_1 be the connected component of P_x containing $\tilde{1}$. Then $P_1 = \{\tilde{1}, \tilde{2}, \ldots, \tilde{m}\}$ for some m and $x([m]) = [m]$.

Proof. (i) Suppose that $g(x) \neq n - 1$. Then there exists $k \in [n - 1]$ such that $s_1, s_2, \ldots, s_{k-1} \in G(x)$ and $s_k \notin G(x)$, where $s_i := (i, i + 1)$ for each $i \in [n-1]$. If there exist \tilde{r}, \tilde{m} such that $r \in [k], m \in [n] \setminus [k]$ and \tilde{r} and \tilde{m} are comparable, then we have $\tilde{m} <_x \tilde{r}$ (i.e. $r < m$ and $x(r) > x(m)$). On the other hand, since $r \leq k, k + 1 \leq m$ and $s_k \notin G(x)$, we can see that $x(r) \leq k$ and $k + 1 \leq x(m)$. This is a contradiction. So, we can get that every element in $\{\tilde{1}, \tilde{2}, \ldots, \tilde{k}\}$ is incomparable to every element in $\{k + 1, k + 2, \ldots, \tilde{n}\}$. This contradicts the assumption that P_x is connected. Hence, we have
$g(x) = n - 1$. (ii) First, we will show that $P_1 = \{\tilde{1}, \tilde{2}, \ldots, \tilde{m}\}$ as a set. Let $P_1 = \{\tilde{i}_1, \tilde{i}_2, \ldots, \tilde{i}_m\}$, where $1 = i_1 < i_2 < \cdots < i_m$, as a set. Suppose that there exists $k \in [m]$ such that $i_p = p$ for any $p \in [k - 1]$ and $i_k > k$. Then we can see that $\tilde{k} \not\in P_1$ and every element of P_1 is incomparable to \tilde{k}. Hence, by the inequality $i_1 < i_2 < \cdots < i_{k-1} < k < i_k < \cdots < i_m$, we have $x(i_p) < x(k) < x(i_r)$ for any $p \in [k - 1]$ and for any $r \in [m] \setminus [k - 1]$. This means that every element in $\{\tilde{i}_1, \tilde{i}_2, \ldots, \tilde{i}_{k-1}\}$ is incomparable to every element in $\{\tilde{i}_k, \tilde{i}_{k+1}, \ldots, \tilde{i}_m\}$. This contradicts the assumption that P_1 is connected. Next, we will show that $x([m]) = [m]$. Suppose that there exists $k \in [m]$ such that $x(p) \leq m$ for any $p \in [k - 1]$ and $x(k) > m$. Then it follows from $x(k) > m$ that
\[
\#\{\tilde{j}; \tilde{j} \leq x \tilde{k}\} \geq \#\{j; j \geq k, x(j) \leq m\} + 1 = m - k + 2.
\]
On the other hand, we have
\[
\tilde{1}, \tilde{2}, \ldots, \tilde{k} - 1 \not\in \{\tilde{j}; \tilde{j} \leq x \tilde{k}\},
\]
here we use the inequality that $x(p) \leq m < x(k)$ for any $p \in [k - 1]$. Since P_1 is connected and $\tilde{k} \in P_1$, we have
\[
P_1 \supset \{\tilde{1}, \tilde{2}, \ldots, \tilde{k} - 1\} \cup \{\tilde{j}; \tilde{j} \leq x \tilde{k}\} \text{ (disjoint union)}.
\]
It follows that we get $\#P_1 \geq m + 1$. This is a contradiction. So, we obtain $x([m]) = [m]$. \square

Proof of Proposition 1.7 (ii). Let $P_x = P_1 + P_2 + \cdots + P_k$ be the decomposition into connected components, and put $\#P_i = m_i \geq 1$ and $P_i = \{\tilde{p}_{i,1}, \tilde{p}_{i,2}, \ldots, \tilde{p}_{i,m_i}\}$, where $p_{i,1} < p_{i,2} < \cdots < p_{i,m_i}$. We may assume that $p_{1,1} < p_{2,1} < \cdots < p_{k,1}$. Then, for each $i \in [k]$, it follows from Lemma 1.10 (ii) that there exists $x_i \in \mathfrak{S}_{m_i}$ such that P_i is isomorphic to P_{x_i}. Hence, by Lemma 1.10 (i), we have
\[
g(x) = g(x_1) + g(x_2) + \cdots + g(x_k)
= (m_1 - 1) + (m_2 - 1) + \cdots + (m_k - 1)
= m_1 + m_2 + \cdots + m_k - k
= n - \text{comp}(P_x). \square
2. The maximum values of $c^-(w)$ and $c^-(w) - g(w)$

In this section, by the Turán’s theorem, we evaluate the maximum values of $c^-(x)$ and $c^-(x) - g(x)$.

Theorem (Turán). The maximum number of the edges in n-vertex graphs which has no triangles is $[n^2/4]$.

By the Turán’s theorem, we can easily see the following.

Corollary 2.1. If P is a poset with n elements, then we have $h(P) \leq [n^2/4]$.

Hence, we have

Theorem A.

$$\max\{c^-(x); x \in S_n\} = [n^2/4].$$

Proof. By Proposition 1.7 (i) and Corollary 2.1, we have

$$\max\{c^-(x); x \in S_n\} = \max\{h(P_x); x \in S_n\} \leq [n^2/4].$$

We define $z_n \in S_n$ as follows:

$$(z_n(1), z_n(2), \cdots, z_n(n)) := \begin{cases} (m+1, m+2, \cdots, 2m, 1, 2, \cdots, m) & \text{if } n = 2m, \\ (m+1, m+2, \cdots, 2m+1, 1, 2, \cdots, m) & \text{if } n = 2m+1. \end{cases}$$

Then we can see that $c^-(z_n) = [n^2/4]$. Hence, we obtained this theorem. □

Also, we have the following.

Proposition 2.2. For a poset P with n elements, we have

$$h(P) - (n - \text{comp}(P)) \leq [n^2/4] - n + 1.$$
Lemma 2.3. Let P be a poset with n elements. If $P = P_1 + P_2 + \cdots + P_k$ is the decomposition into the connected components, then we have

$$h(P) - (n - \text{comp}(P)) \leq h(P') - (n - \text{comp}(P')),$$

where $P' = (P_1 \oplus P_2) + \cdots + P_k$.

Proof. Since $P_1, P_2 \neq \emptyset$, we have $h(P_1 + P_2) + 1 \leq h(P_1 \oplus P_2)$. Hence, we can see $h(P) + 1 \leq h(P')$. So, by the equality $n - \text{comp}(P) = n - \text{comp}(P') - 1$, we obtained this lemma. □

Proof of Proposition 2.2. Let $P = P_1 + P_2 + \cdots + P_k$ be the decomposition into the connected components. Then, by Corollary 2.1 and Lemma 2.3, we have

$$h(P) - (n - \text{comp}(P)) = h(P_1 + P_2 + \cdots + P_k) - (n - k) \leq h((P_1 \oplus P_2) + \cdots + P_k) - (n - k + 1) \leq h((P_1 \oplus P_2 \oplus P_3) + \cdots + P_k) - (n - k + 2) \leq h(P_1 \oplus P_2 \oplus \cdots \oplus P_k) - (n - 1) \leq \lfloor n^2/4 \rfloor - n + 1.$$

Hence, we have the following.

Theorem B.

$$\max\{c^-(x) - g(x); x \in \mathfrak{S}_n\} = \lfloor n^2/4 \rfloor - n + 1.$$

Proof. By Proposition 1.7 and Proposition 2.2, we have

$$\max\{c^-(x) - g(x); x \in \mathfrak{S}_n\} = \max\{h(P_x) - (n - \text{comp}(P_x)); x \in \mathfrak{S}_n\} \leq \lfloor n^2/4 \rfloor - n + 1.$$

On the other hand, for z_n defined in the proof of Theorem A, we can see that

$$c^-(z_n) - g(z_n) = \lfloor n^2/4 \rfloor - n + 1.$$

Hence, we proved Theorem B. □
3. The maximum value of the first coefficient of Kazhdan-Lusztig polynomials

Here, we combine Theorem A, B with results of Dyer [D] and Irving [I] and prove that the maximum value of the first coefficients of Kazhdan-Lusztig polynomials is given by $\lfloor n^2/4 \rfloor - n + 1$.

First, we define Kazhdan-Lusztig polynomials.

Definition 3.1. Let (W, S) be a Coxeter system. For $x, w \in W$, we define the Kazhdan-Lusztig polynomial for x, w denoted by $P_{x, w}(q) = \sum_{i \geq 0} p_i(x, w)q^i \in \mathbb{Z}[q]$ as follows:

$$P_{x, x}(q) = 1 \text{ for all } x \in W, \quad P_{x, w}(q) = 0 \text{ if } x \nleq w.$$

If $x < w$, then choose $s \in S$ satisfying $\ell(sw) < \ell(w)$ and set

$$c := \begin{cases}
0 & \text{if } x < sx, \\
1 & \text{if } sx < x.
\end{cases}$$

Then $P_{x, w}(q)$ is defined inductively as follows:

$$P_{x, w}(q) = q^{1-c}P_{sx, sw}(q) + q^c P_{x, sw}(q) - \sum_{sz < z < sw} \mu(z, sw)q^{(\ell(w)-\ell(z))/2}P_{x, z}(q),$$

where $\mu(z, sw)$ is the coefficient of $q^{(\ell(sw)-\ell(z)-1)/2}$ of $P_{z, sw}(q)$.

Remark 3.2. This definition is independent of the choice of s and is equivalent to the original definition in [KL]. See [Hu].

We can obtain the following.

Theorem C.

$$\max\{p_1(x, w); x, w \in \mathfrak{S}_n\} = \lfloor n^2/4 \rfloor - n + 1.$$
First coefficients of Kazhdan-Lusztig polynomials

Proof. First, the following statements are valid. $p_1(e, w) = c^-(w) - g(w)$ for any $w \in \mathfrak{S}_n([D])$. $P_{x,z}(q) - P_{y,z}(q)$ has non-negative coefficients for any $x, y, z \in \mathfrak{S}_n$ with $x \leq_B y \leq_B z([I])$. Hence, by virtue of Theorem B, we have

$$\max\{p_1(x, w); x, w \in \mathfrak{S}_n\} \leq \max\{p_1(e, w); w \in \mathfrak{S}_n\}$$
$$= \max\{c^-(w) - g(w); w \in \mathfrak{S}_n\}$$

In particular, for z_n defined in the proof of Theorem A, we have

$$p_1(e, z_n) = [n^2/4] - n + 1. \quad \square$$

Acknowledgements. The author wishes to express his deep gratitude to Professor M. Dyer for many valuable suggestions. Without his advice, this article wouldn’t be written.

References

(Received December 7, 1993)

Department of Mathematical Sciences
University of Tokyo
Hongo, Tokyo
113 Japan