Galois rigidity of pure sphere braid groups
and profinite calculus

By Hiroaki Nakamura

Abstract. Let \mathcal{C} be a class of finite groups closed under the formation of subgroups, quotients, and group extensions. For an algebraic variety X over a number field k, let $\pi_1^\mathcal{C}(X)$ denote the (\mathcal{C}-modified) profinite fundamental group of X having the absolute Galois group $\text{Gal}(\bar{k}/k)$ as a quotient with kernel $\pi_1^\mathcal{C}(X_{\bar{k}})$ the maximal pro-\mathcal{C} quotient of the geometric fundamental group of X. The purpose of this paper is to show certain rigidity properties of $\pi_1^\mathcal{C}(X)$ for X of hyperbolic type through the study of outer automorphism group $\text{Out}\pi_1^\mathcal{C}(X)$ of $\pi_1^\mathcal{C}(X)$. In particular, we show finiteness of $\text{Out}\pi_1^\mathcal{C}(X)$ when X is a certain typical hyperbolic variety and \mathcal{C} is the class of finite l-groups (l: odd prime).

Indeed, we have a criterion of Gottlieb type for center-triviality of $\pi_1^\mathcal{C}(X_{\bar{k}})$ under certain good hyperbolicity condition on X. Then our question on finiteness of $\text{Out}\pi_1^\mathcal{C}(X)$ for such X is reduced to the study of the exterior Galois representation $\varphi_X^\mathcal{C} : \text{Gal}(\bar{k}/k) \to \text{Out}\pi_1^\mathcal{C}(X_{\bar{k}})$, especially to the estimation of the centralizer of the Galois image of $\varphi_X^\mathcal{C}$ (§1.6). In §2, we study the case where X is an algebraic curve of hyperbolic type, and give fundamental tools and basic results. We devote §3, §4 and Appendix to detailed studies of the special case $X = M_{0,n}$, the moduli space of the n-point punctured projective lines ($n \geq 3$), which are closely related with topological work of N. V. Ivanov, arithmetic work of P. Deligne, Y. Ihara, and categorical work of V. G. Drinfeld. Section 4 deal with a Lie variant suggested by P. Deligne.

§0. Introduction

In this paper, we shall study some special algebraic varieties whose prof-
finite fundamental groups possess certain “rigidity” properties under the Galois group operation.

Let X be an algebraic variety defined over a number field k, and $\text{Aut}_k X$ the group of all the k-automorphisms of X. Suppose that we have a good homotopy theory in which there is a canonical homomorphism

$$\Phi_X : \text{Aut}_k X \to E_k(X),$$

where $E_k(X)$ is the group of the classes of self-homotopy equivalences of X compatible with hypothetical Galois actions. Any “continuous” parameter in $\text{Aut}_k X$ should be mapped trivially into the target homotopy set $E_k(X)$ by Φ_X. Suppose that some suitable hyperbolicity condition is imposed on X, so that the finiteness of $\text{Aut}_k X$ eliminates such continuous parameters, and the map Φ_X approaches injectivity. Then at that stage, our basic question is to what extent one can expect $\text{Aut}_k X$ to be reflected faithfully or precisely in $E_k(X)$ via Φ_X. Especially, can one expect $E_k(X)$ to be finite?

The purpose of this paper is to provide some positively directed case studies around these questions, in the situation where X is $K(\pi,1)$ and $E_k(X)$ is defined in the continuous outer automorphism group of the profinite fundamental group of $X_{\bar{k}} = X \otimes \bar{k}$.

To be more precise, let \mathcal{C} be a class of finite groups closed under the formation of subgroups, quotients and group extensions. We denote by $\pi_1^\mathcal{C}(X_{\bar{k}})$ the maximal pro-\mathcal{C} quotient of the etale profinite fundamental group $\pi_1(X_{\bar{k}})$, and let $\pi_1^\mathcal{C}(X)$ be the quotient of $\pi_1(X)$ divided by the kernel of $\pi_1(X_{\bar{k}}) \to \pi_1^\mathcal{C}(X_{\bar{k}})$. If G_k denotes the absolute Galois group of k, then there is an exact sequence

$$1 \longrightarrow \pi_1^\mathcal{C}(X_{\bar{k}}) \longrightarrow \pi_1^\mathcal{C}(X) \overset{p_{X/k}^\mathcal{C}}{\longrightarrow} G_k \longrightarrow 1,$$

together with a canonical exterior Galois representation

$$\varphi_X^\mathcal{C} : G_k \to \text{Out}\pi_1^\mathcal{C}(X_{\bar{k}}).$$

We shall say that a continuous group automorphism f of $\pi_1^\mathcal{C}(X)$ is G_k-compatible, if it satisfies the condition $p_{X/k}^\mathcal{C} \circ f = p_{X/k}^\mathcal{C}$, and denote the
group of all the G_k-compatible automorphisms of $\pi_1^c(X)$ by $\text{Aut}_{G_k} \pi_1^c(X)$. Moreover, we put

$$E_k^c(X) = \text{Aut}_{G_k} \pi_1^c(X) / \text{Inn} \pi_1^c(X_k),$$

where $\text{Inn} \pi_1^c(X_k)$ is the subgroup formed by the inner automorphisms of $\pi_1^c(X)$ induced by the elements of $\pi_1^c(X_k)$. It follows from the functoriality of etale fundamental groups ([13]) that there is a canonical homomorphism

$$\Phi_X^c : \text{Aut}_k X \rightarrow E_k^c(X),$$

whose image is not necessarily a normal subgroup of $E_k^c(X)$. This paper will provide several examples of (X, \mathcal{C}) with $E_k^c(X)$ finite or Φ_X^c bijective, in the case where

$$\mathcal{C} = \mathcal{C}_l = \{ \text{all finite } l\text{-groups} \} \quad (l : \text{a prime}).$$

In this pro-l case, we shall also write as

$$E_k^c(X) = E_k^{(l)}(X), \quad \Phi_X^c = \Phi_X^{(l)}, \quad \pi_1^c(X) = \pi_1^{(l)}(X).$$

Let us here introduce our central basic object: the moduli space of ordered n-pointed projective lines $M_{0,n}$ defined by

$$M_{0,n} = (\mathbb{P}^1)^n - \{ \text{week diagonals} \} / \text{PGL}_2 \quad (n \geq 3).$$

For example, $M_{0,3}$ is a point, $M_{0,4}$ is $\mathbb{P}^1 - \{0,1,\infty\}$, and $M_{0,5}$ is \mathbb{P}^2 minus 6 lines (complete quadrangle). The topological fundamental group $\pi_1(M_{0,n}(\mathbb{C}))$ is isomorphic to the Teichmüller modular group of type $(0,n)$, denoted by Γ_0^n. Fixing a number field k of finite degree over \mathbb{Q}, we consider $M_{0,n}$ to be defined over k.

Theorem A. Let l be an odd prime. Then $\text{Out}\pi_1^{(l)}(M_{0,n})$ is finite, and the homomorphism

$$\Phi_{M_{0,n}}^{(l)} : \text{Aut}_k M_{0,n} \rightarrow E_k^{(l)}(M_{0,n})$$
Hiroaki Nakamura gives a bijection \((n \geq 4)\). Moreover, if \(\Gamma_0^{n,\text{pro-}l}\) denotes the pro-\(l\) completion of \(\Gamma_0^n\), then the canonical exterior representation \(\varphi^{(l)}_{0,n} : G_k \to \text{Out}\Gamma_0^{n,\text{pro-}l}\)

induced from the variety \(M_{0,n}\) over \(k\) has image whose centralizer is isomorphic to \(S_3\) when \(n = 4\), and to \(S_n\) when \(n \geq 5\).

It is known that the automorphism group of \(M_{0,n}\) is just the symmetric group \(S_n\) when \(n \geq 5\), while the action of \(S_4\) on \(M_{0,4}\) factors through \(S_3\) ([45], [29]; see also [34] §5). Actually, for more general \(\mathcal{C}\) satisfying certain admissibility condition for \(\Gamma_0^n\) (1.2.2), we show that \(\Phi^{\mathcal{C}}_{M_{0,n}}\) has an inverse \(\Psi^{\mathcal{C}}_n : E^k_{\mathcal{C}}(M_{0,n}) \to \text{Aut}_k M_{0,n}\) with \(\Psi^{\mathcal{C}}_n \circ \Phi^{\mathcal{C}}_{M_{0,n}} = 1\) (Theorem (3.1.13)). Moreover, if \(U^\mathcal{C}_k(M_{0,n})\) denotes the kernel of \(\Psi^{\mathcal{C}}_n\), then we can construct an embedding \(U^\mathcal{C}_k(M_{0,n}) \hookrightarrow U^\mathcal{C}_k(M_{0,n-1}) \times U^\mathcal{C}_k(M_{0,n-1})\) \((n \geq 5)\) (Corollary (3.2.3)). Therefore for proving the bijectivity of \(\Phi^{\mathcal{C}}_{M_{0,n}}\) \((n \geq 5)\), we are reduced to the case of \(M_{0,4} = P^1 - \{0, 1, \infty\}\) (“le premier étage”). In particular, Theorem A follows from [31]. We remark that rough description of the proof of Theorem A was announced in [32].

There is a Lie variant of Theorem A suggested by P.Deligne. It is formulated in terms of \(l\)-adic realizations of the motivic fundamental groups of \(M_{0,n}\) \((n \geq 5)\) in the sense of [8].

Theorem B. Assume that \(l\) is an odd prime. Let \(\mathcal{L}_l(\Gamma^n_0)\) be the projective limit of the Lie algebras of \(l\)-adic analytic groups associated with nilpotent quotients of \(\Gamma^n_0\) (see 4.2.2 for the precise definition), and let

\[\varphi^{\text{Lie}}_n : G_k \to \text{Out}\mathcal{L}_l(\Gamma_0^n) \]

be the canonical Galois representation. Then the centralizer of the Galois image \(\varphi^{\text{Lie}}_n(G_k)\) in \(\text{Out}\mathcal{L}_l(\Gamma_0^n)\) is isomorphic to the symmetric group \(S_n\) when \(n \geq 5\).

Theorems A and B may be considered as profinite analogues of a topological theorem by N.V.Ivanov which asserts that the outer automorphism group of the discrete group \(\Gamma_0^n\) \((n \geq 5)\) is a finite group, an extension of \(S_n\) by \(\mathbb{Z}/2\mathbb{Z}\) ([21], see also [26]). It seems remarkable that Theorem A is valid even in the 1-dimensional case of \(n = 4\), while in this case the Lie variant
has not yet been assured. As $M_{0,4} = \mathbb{P}^1 - \{0, 1, \infty\}$ is a typical algebraic curve of hyperbolic type, we will be led to the following conjecture.

Conjecture C. Let C be a smooth hyperbolic curve over a number field k, and let l be a prime number. Then $\text{Out}_{\pi_1^l}(C)$ would be finite.

In this paper, Conjecture C will be verified for hyperbolic lines together with hyperbolic curves with special stable reductions and Jacobians (Theorems (2.2.5), (2.3.1)). Further examples supporting the Conjecture C will be obtained in a joint work with H. Tsunogai ([35]).

In §1, we prepare relatively general statements about pro-\mathcal{C} groups, and establish basic relations among three objects: $E_\mathcal{C}^\xi(X)$, $\text{Out}_{\pi_1^\mathcal{C}}(X)$, and the centralizers of the Galois image of $\varphi_X^\mathcal{C}$. As a result, we realize that the center-triviality of $\pi_1^\mathcal{C}(X_\bar{k})$ makes the situation quite clear. In §2, we study the case where X is a smooth hyperbolic curve. Weight characterization of inertia subgroups in 2.1 will give a technical key point in later parts of the present paper. In 2.2, 2.3, some examples supporting Conjecture C will be given. In §3, we study the case where $X = M_{0,n}$. Subsection 3.1 is devoted to showing that certain special inertia subgroups are invariant under the Galois-compatible automorphisms of $\pi_1^\mathcal{C}(M_{0,n})$. In 3.2, Theorem A is proved by inductive reduction to the case of $n = 4$ [31]. In §4, Lie variants are discussed. In 4.1, we compute the automorphism group of the graded Lie algebras associated with the lower central series of Γ_0^n (4.1.2). By applying it, we prove Theorem B in 4.2. The line of the proof of Theorem B is due to P. Deligne. In Appendix, we give another proof of Drinfeld’s pentagon formula [9] (which is reformulated by Y. Ihara [20] in the presented cyclic form) concerning the Galois image in the automorphism group of the fundamental group of $\mathbb{P}^1 - \{0, 1, \infty\}$. Our proof is purely group-theoretical, and is closely related with the technique developed in §3. A sketch of a more geometric proof of it can be found in Ihara’s article [20].

As explained in Drinfeld’s paper [9], consideration of the varieties $M_{0,n}$ as primitive examples of so-called “anabelian” varieties is recommended in Grothendieck’s mysterious note [14]. The present study of this paper also started from a desire to understand [14] more mathematically through concrete materials.

The author would like to express his sincere gratitude to Professors P. Deligne, Y. Ihara and Takayuki Oda. Professor Oda kindly inspired in the author various fundamental material including [12], [45], etc., and gave
warm encouragement and suggestions. Pioneer work and attitudes of Professor Ihara often indicated leading principle in the course of this study. Professor Deligne, after reading the original version of this paper, gave several comments on it, and especially suggested the possibility of the Lie variant of Theorem A through kind letters. Finally, the author also thanks Professors M. Asada and H. Konno for valuable discussion and communication.

Contents

§0. Introduction.

§1. Preliminaries.
 1.1. \(\mathcal{C} \)-good groups.
 1.2. Extension properties.
 1.3. Center-triviality of pro-\(\mathcal{C} \) groups
 1.4. Two remarks on profinite groups.
 1.5. Automorphisms of group extensions.
 1.6. Galois centralizers and outer automorphisms.

§2. Fundamental groups of algebraic curves.
 2.1. Weight characterization of inertia subgroups.
 2.2. Probraid calculus: genus 0 case.
 2.3. Curves with special stable reductions and Jacobians.

§3. Galois-braid groups.
 3.1. Some combinatorics in galois-braid groups.
 3.2. Reduction to \(\mathbb{P}^1 - \{0, 1, \infty\} \), Proof of Theorem A.

§4. Lie variants.
 4.1. Graded automorphisms.
 4.2. Pure sphere braid Lie algebras, Proof of Theorem B.

Appendix Generalization of the Belyi lifting to \(M_{0,5} \).

§1. Preliminaries

1.1. \(\mathcal{C} \)-good groups

A class \(\mathcal{C} \) of finite groups is said to be almost full, if it is closed under the formation of subgroups, quotients, and finite products. If it is further closed under the formation of group extensions, it is called a full class of finite groups. When \(\mathcal{C} \) is almost full, a pro-\(\mathcal{C} \) group is, by definition, a profinite group obtained as the limit of a projective system in \(\mathcal{C} \).
Given a discrete group Γ and an almost full class \mathcal{C} of finite groups, the set $\mathcal{N} = \mathcal{N}(\Gamma, \mathcal{C})$ of all the normal subgroups of Γ with quotients in \mathcal{C} forms a family such that

1. $N \in \mathcal{N}, N' \lhd \Gamma \Rightarrow N' \in \mathcal{N}$;
2. $N, N' \in \mathcal{N} \Rightarrow N \cap N' \in \mathcal{N}$.

From this, we see that $\{\Gamma/N | N \in \mathcal{N}\}$ forms naturally a projective system in \mathcal{C}, and we define the pro-\mathcal{C} completion $\hat{\Gamma} = \hat{\Gamma}(\mathcal{C})$ of Γ to be the projective limit $\lim_{\leftarrow N \in \mathcal{N}} \Gamma/N$. The canonical map $i : \Gamma \to \hat{\Gamma}$ has a dense image and satisfies the universal property: every homomorphism of Γ into a pro-\mathcal{C} group always factors through i.

The pro-\mathcal{C} completion of \mathbb{Z} is denoted by $\mathbb{Z}_\mathcal{C}$. If \mathcal{C} is a full class, then $\mathbb{Z}_\mathcal{C} = \prod_{p \in |\mathcal{C}|} \mathbb{Z}_p$. Here we define $|\mathcal{C}|$ to be the set of all primes p such that $\mathbb{Z}/p\mathbb{Z} \in \mathcal{C}$.

Let $\mathcal{S} = \mathcal{S}(\Gamma, \mathcal{C})$ be the family of subgroups of Γ containing some elements in $\mathcal{N}(\Gamma, \mathcal{C})$, and for each $\Pi \in \mathcal{S}$, denote by $\bar{\Pi}$ the closure of the image of Π by $i : \Gamma \to \hat{\Gamma}$. The map $\Pi \to \bar{\Pi}$ gives a bijection of $\mathcal{S}(\Gamma, \mathcal{C})$ into the set of open subgroups of $\hat{\Gamma}$ such that $(\Gamma : \Pi) = (\hat{\Gamma} : \bar{\Pi})$ ([10]15.14). Moreover, if \mathcal{C} is a full class, it is easy to see $\mathcal{S}(\Pi, \mathcal{C}) \subset \mathcal{S}(\Gamma, \mathcal{C})$ for every $\Pi \in \mathcal{S}(\Gamma, \mathcal{C})$. From this we see, in this case, that $\bar{\Pi}$ is isomorphic to the pro-\mathcal{C} completion of Π itself ([25]).

In what follows, \mathcal{C} is assumed to be a full class of finite groups. Let Γ be a discrete group, G the pro-\mathcal{C} completion of Γ, and $\mathcal{C}(G)$ the abelian category of (finite) continuous G-modules in \mathcal{C}. Each object M of $\mathcal{C}(G)$ can be considered as a Γ-module via $i : \Gamma \to \hat{\Gamma} = G$, and a finite Γ-module $M \in \mathcal{C}$ comes from $\mathcal{C}(G)$ if and only if the image of $\Gamma \to Aut(M)$ belongs to \mathcal{C}. Trivial G (or equivalently Γ)-modules are called constant. The restriction of the standard cochains induces a canonical homomorphism of the profinite group cohomology $H^q(G, M)$ into the discrete group cohomology $H^q(\Gamma, M)$ for every $M \in \mathcal{C}(G)$ and $q \geq 0$.

Definition (1.1.3) (Serre [41] I-36/Artin-Mazur [2] §6). Notations being as above, the discrete group Γ is called \mathcal{C}-good, if the canonical homomorphism $H^q(G, M) \to H^q(\Gamma, M)$ gives an isomorphism for every $q \geq 1$ and $M \in \mathcal{C}(G)$.

Definition (1.1.4) (Serre [42]). A discrete group Γ is said to be of
type FP, if the trivial \(\mathbb{Z}[\Gamma] \)-module \(\mathbb{Z} \) has a finite projective resolution:

\[
0 \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0,
\]

where \(P_i \) (\(0 \leq i \leq n \)) are finitely generated projective \(\mathbb{Z}[\Gamma] \)-modules. If we can take finitely generated free \(\mathbb{Z}[\Gamma] \)-modules for \(P_i \) (\(0 \leq i \leq n \)) above, then we say \(\Gamma \) is of type FL.

If \(\Pi \) varies in \(S(\Gamma, \mathcal{C}) \), the cohomology groups \(H^q(\Pi, M) \) form an inductive system with respect to the restriction maps, and the homology groups \(H_q(\Pi, M) \) form a projective system with respect to the corestriction maps.

Proposition (1.1.5). Let \(\Gamma \) be a discrete group, \(\mathcal{C} \) a full class of finite groups, and \(G \) the pro-\(\mathcal{C} \) completion of \(\Gamma \). Then the following conditions (1) and (2) are equivalent:

1. \(\Gamma \) is \(\mathcal{C} \)-good;
2. \(\lim_{\Pi \in S(\Gamma, \mathcal{C})} H^q(\Pi, M) = 0 \) for every (constant) \(M \in \mathcal{C}(G) \) and \(q \geq 1 \).

If furthermore \(\Gamma \) is of type FP, then the above conditions are also equivalent to

3. \(\lim_{\Pi \in S(\Gamma, \mathcal{C})} H_q(\Pi, M) = 0 \) for every (constant) \(M \in \mathcal{C}(G) \) and \(q \geq 1 \).

Proof. Observe first that, in (2) and (3), the limitation of \(M \in \mathcal{C}(G) \) running only over constant coefficients does not alter the conditions, because every \(M \in \mathcal{C}(G) \) becomes constant for sufficiently small \(\Pi \in S(\Gamma, \mathcal{C}) \). The equivalence \((1) \Leftrightarrow (2) \) is derived from [39] I-15/16. \((2) \Rightarrow (1) \): We shall prove \(i_q : H^q(G, M) \cong H^q(\Gamma, M) \) (\(M \in \mathcal{C}(G) \)) by induction on \(q \geq 1 \). If \(q = 1 \), we are reduced to the case of \(M \) being constant, by the Hochschild-Serre spectral sequence (5-exact sequence). Then the desired isomorphism is just \(\text{Hom}(G, M) \cong \text{Hom}(\Gamma, M) \). So let \(q \geq 2 \). For each \(\Pi \in \mathcal{N}(\Gamma, \mathcal{C}) \), the \(\Gamma \)-module \(M' \) coinduced from the \(\Pi \)-module \(M \) belongs also to \(\mathcal{C}(G) \), as \(\mathcal{C} \) is a full class. The canonical embedding \(M \hookrightarrow M' \) yields the commutative diagram of two long exact sequences

\[
\begin{array}{cccccc}
H^{q-1}(G, M') & \xrightarrow{f_{\Pi}} & H^{q-1}(G, M'/M) & \longrightarrow & H^q(G, M) & \xrightarrow{\text{res}} & H^q(\hat{\Pi}', M) \\
\downarrow i & & \downarrow i & & \downarrow i_q & & \downarrow \\
H^{q-1}(\Gamma, M') & \xrightarrow{f_\Pi} & H^{q-1}(\Gamma, M'/M) & \longrightarrow & H^q(\Gamma, M) & \xrightarrow{\text{res}} & H^q(\Pi', M)
\end{array}
\]

in which by induction hypothesis the left two vertical arrows are isomorphisms. When \(\Pi \) varies in \(\mathcal{N}(\Gamma, \mathcal{C}) \), the cokernels of \(f_{\Pi} \) cover the whole
$H^q(G, M)$ so that the injectivity of i_q follows. The assumption (2) implies that the cokernels of $f_{\Pi} (\Pi \in \mathcal{N}(\Gamma, \mathcal{C}))$ cover $H^q(\Gamma, M)$, from which we conclude the surjectivity of i_q. (1)\Rightarrow(2): Suppose Γ is \mathcal{C}-good. Then by Shapiro’s lemma, every $\Pi \in \mathcal{S}(\Gamma, \mathcal{C})$ is also \mathcal{C}-good. To prove (2), it suffices to show that for any $\Pi \in \mathcal{S}(\Gamma, \mathcal{C})$ and $x \in H^q(\Pi, M)$ ($q \geq 1, M \in \mathcal{C}(G))$, there exists $\Pi' \in \mathcal{S}(\Gamma, \mathcal{C})$ such that the image of x by the restriction map $res^{\Pi}_{\Pi'} : H^q(\Pi, M) \to H^q(\Pi', M)$ is 0. By assumption, x is represented by a continuous (i.e. locally constant) q-cochain $\xi : \hat{\Pi} \to M$. So we find an open subgroup U of $\hat{\Pi}(\mathcal{C})$ with $\xi|_U = 0$. If we take $\Pi' \in \mathcal{S}(\Pi, \mathcal{C})$ with $\hat{\Pi}' = U$, then we have a commutative diagram

$$
\begin{array}{ccc}
H^q(\hat{\Pi}, M) & \longrightarrow & H^q(\Pi, M) \\
\downarrow{res} & & \downarrow{res} \\
H^q(\hat{\Pi}', M) & \longrightarrow & H^q(\Pi', M),
\end{array}
$$

which shows $res^{\Pi}_{\Pi'}(x) = 0$. We next prove (2) \iff (3) under the assumption that Γ is of type FP with M being constant in $\mathcal{C}(G)$. Since a finite index subgroup of a FP group is also of type FP, $H^q(\Pi, M)$ is finite for every $q \geq 0$ and $\Pi \in \mathcal{S}(\Gamma, \mathcal{C})$. Therefore the condition (2) (resp. (3)) is equivalent to the assertion that for each $\Pi \in \mathcal{S}$ there exists $\Pi' \in \mathcal{S}$ such that the restriction map $res^{\Pi}_{\Pi'} : H^q(\Pi, M) \to H^q(\Pi', M)$ (resp. the corestriction map $cor^{\Pi}_{\Pi'} : H_q(\Pi', M) \to H_q(\Pi, M)$) is 0-mapping. By the universal coefficient theorem, we have two exact sequences

(1) $0 \to Ext^1_{\mathbb{Z}}(H_{q-1}(\Pi, \mathbb{Z}), M) \to H^q(\Pi, M) \to Hom(\mathbb{H}_q(\Pi, M), M) \to 0,$

(2) $0 \to H_q(\Pi, \mathbb{Z}) \otimes M \to H_q(\Pi, M) \to Tor^1_{\mathbb{Z}}(H_{q-1}(\Pi, \mathbb{Z}), M) \to 0,$

together with two isomorphisms

(3) $Hom(\mathbb{H}_q(\Pi, \mathbb{Z}), M^*) \cong H_q(\Pi, \mathbb{Z}) \otimes M^*$ \hspace{1cm} ([7] Chap.II, §5)),

(4) $Tor^1_{\mathbb{Z}}(M^*, H_{q-1}(\Pi, \mathbb{Z})) \cong Ext^1_{\mathbb{Z}}(H_{q-1}(\Pi, \mathbb{Z}), M)^*$ \hspace{1cm} ([7] Chap.VI, §5),

where X^* denotes $Hom(X, \mathbb{Q}/\mathbb{Z})$ for any module X. (We use finite generation of $H_{q-1}(\Pi, \mathbb{Z})$ to get (4).) As (1)-(4) are functorial in Π, and as $M^* \cong M$ for finite M, we see that $res^{\Pi}_{\Pi'} = 0$ if and only if $cor^{\Pi'}_{\Pi} = 0$ for any pair (Π, Π') of $\mathcal{S}(\Gamma, \mathcal{C})$ with $\Pi \supset \Pi'$. This completes the proof. \square
1.2. Extension properties

Let \mathcal{C} be a full class of finite groups. In this subsection, we review some standard facts about extension properties of the pro-\mathcal{C} completion functor $\hat{\cdot}(\mathcal{C})$ known by Serre [41], Friedlander [11] and Anderson [1].

Let $(\Gamma) : 1 \to \Pi \to \Gamma \to \Sigma \to 1$ be an exact sequence of discrete groups. In general, it is easy to see that the functor $\hat{\cdot}(\mathcal{C})$ is right exact so that $\hat{\Pi}(\mathcal{C}) \to \hat{\Gamma}(\mathcal{C}) \to \hat{\Sigma}(\mathcal{C}) \to 1$ is exact. For the injectivity of $\hat{\Pi}(\mathcal{C}) \to \hat{\Gamma}(\mathcal{C})$, it is necessary and sufficient that for each $N \in \mathcal{N}(\Pi, \mathcal{C})$ there exists $\Gamma' \in \mathcal{N}(\Gamma, \mathcal{C})$ such that $\Gamma' \cap \Pi \subset N$. If this is the case, the following weaker condition holds:

(1.2.1) For each $N \in \mathcal{N}(\Pi, \mathcal{C})$ with $N \triangleleft \Gamma$, the canonical map by conjugation

$$\Gamma \to Aut(\Pi/N)$$

has image belonging to \mathcal{C}.

Definition (1.2.2). We say a group extension (Γ) is \mathcal{C}-admissible if it satisfies the condition (1.2.1).

(1.2.3) If $\mathcal{C} = \mathcal{C}_{fin}$, i.e., \mathcal{C} is the class of all finite groups, then the condition (1.2.1) is obviously empty. In the case $\mathcal{C} = \mathcal{C}_l := \{\text{all finite } l\text{-groups}\}$ for a prime l, we have a simple criterion to satisfy (1.2.1) as follows. By a well known theorem of P.Hall, the group of automorphisms of a finite l-group G which act trivially on the quotient $G/[G,G]G^l$ form a l-group. So if Σ acts on $\Pi/[\Pi,\Pi]\Pi^l$ trivially by conjugation, then (1.2.1) holds for $\mathcal{C} = \mathcal{C}_l$. Convenient criteria for other classes \mathcal{C} do not seem to be known.

Proposition (1.2.4). Let $(\Gamma) : 1 \to \Pi \to \Gamma \to \Sigma \to 1$ be a group extension with Π finitely generated, and suppose that Σ is \mathcal{C}-good. Then the canonical map $\hat{\Pi}(\mathcal{C}) \to \hat{\Gamma}(\mathcal{C})$ is injective if and only if (Γ) is \mathcal{C}-admissible.

Proof. The ‘only if’ part is already mentioned. We shall prove the ‘if’ part. For an arbitrary $N \in \mathcal{N}(\Pi, \mathcal{C})$, it suffices to find $\Gamma' \in \mathcal{S}(\Gamma, \mathcal{C})$ with $\Pi \cap \Gamma' \subset N$. As Π is finitely generated, $X = Hom(\Pi, \Pi/N)$ is a finite set. Replacing N by $\bigcap_{x \in X} ker(x)$, we may assume that N is normal in Γ. Let I be the kernel of the map $\Gamma \to Aut(\Pi/N)$ induced by conjugation. Then the \mathcal{C}-admissibility insures $I \subset \mathcal{N}(\Gamma, \mathcal{C})$. Moreover, if we put $M = (I \cap \Pi)/N$, $\Delta = I/I \cap \Pi$, then we see that $M \in \mathcal{C}(\Delta(\mathcal{C}))$ by the conjugate action of
\(\Delta\) on \(M\). Since \(\Sigma\) is \(\mathcal{C}\)-good, by the natural inclusion \(\Delta \hookrightarrow \Sigma\), \(\Delta\) is also \(\mathcal{C}\)-good. Then by Proposition (1.1.5), \(\lim_{\Delta' \in \mathcal{N}(\Delta, \mathcal{C})} H^2(\Delta', M) = 0\). As the extension class of
\[
1 \longrightarrow M \longrightarrow I/N \overset{p}{\longrightarrow} \Delta \longrightarrow 1
\]
vanesishes in \(H^2(\Delta', M)\) for some \(\Delta' \in \mathcal{N}(\Delta, \mathcal{C})\), we obtain a complement \(\Gamma_0' \subset I/N\) with \(p(\Gamma_0') = \Delta'\). Take for \(\Gamma_0'\) the inverse image of \(\Gamma_0'\) via the canonical projection \(\Gamma \rightarrow \Gamma/N\). Then \(\Gamma' \in \mathcal{N}(I, \mathcal{C}) \subset S(\Gamma, \mathcal{C})\). Moreover, \(\Gamma_0' \cap M = 0\) leads to \(\Gamma \cap \Pi = N\) as desired. \(\square\)

(1.2.5) Let \(1 \rightarrow \Pi \rightarrow \Gamma \rightarrow \Sigma \rightarrow 1\) be an extension of discrete groups, and suppose that the pro-\(\mathcal{C}\) completion functor \(\wedge\) yields an exact sequence
\[
1 \rightarrow \hat{\Pi} \rightarrow \hat{\Gamma} \rightarrow \hat{\Sigma} \rightarrow 1,
\]
and that \(\Pi, \Sigma\) are \(\mathcal{C}\)-good with \(\Pi\) being of type FP. Then \(\Gamma\) is also \(\mathcal{C}\)-good.

Proof. Let \(M \in \mathcal{C}(\hat{\Gamma})\). The FP-ness of \(\Pi\) insures the finiteness of \(H^q(\Pi, M)\). Then, from the standard cochains description, we see \(H^q(\Pi, M) \in \mathcal{C}\). Therefore, the \(\mathcal{C}\)-goodness of \(\Pi\) and \(\Sigma\) implies that there are natural isomorphisms between \(E_2\)-terms of the Hochschild-Serre spectral sequences
\[
H^p(\hat{\Sigma}, H^q(\hat{\Pi}, M)) \simeq H^p(\Sigma, H^q(\Pi, M)).
\]
From this we obtain \(H^{p+q}(\hat{\Gamma}, M) \cong H^{p+q}(\Gamma, M)\) at \(E_\infty\). \(\square\)

1.3. Center-triviality of pro-\(\mathcal{C}\) groups

Let \(k\) be a commutative ring with unit, \(G\) a group, and \(kG\) the group algebra of \(G\) over \(k\). The (discrete) Hattori-Stallings space (cf.[43]) is by definition the quotient module of \(kG\) by the \(k\)-submodule generated by \(x−y\) (\(x, y\): conjugate in \(G\)). Let \(T : kG \rightarrow T(kG)\) denote the canonical projection. Each element of \(T(kG)\) can be identified with a \(k\)-valued function \(r\) on the set of conjugacy classes of \(G\), \(^cG\), which we write as \(\sum_{\tau \in ^cG} r(\tau) \tau\). We have
\[
T(\sum_{g} a_g \cdot g) = \sum_{\tau \in ^cG} (\sum_{g \in \tau} a_g) \tau.
\]
It is easy to see that for \(\alpha_1, \alpha_2 \in kG\), \(T(\alpha_1 + \alpha_2) = T(\alpha_1) + T(\alpha_2)\) and \(T(\alpha_1 \alpha_2) = T(\alpha_2 \alpha_1)\).
Given a pair of \((f, \bar{f})\) of a group homomorphism \(f : G \to G'\) and a ring homomorphism \(\bar{f} : k \to k'\), we have a commutative diagram:

\[
\begin{array}{c}
kG & \xrightarrow{\varphi} & k'G' \\
T(kG) & \xrightarrow{T\varphi} & T(k'G')
\end{array}
\]

where \(\varphi\) and \(T\varphi\) are defined by

\[
\varphi(\sum_{g \in G} a_g g) = \sum_{g \in G} \bar{f}(a_g) f(g),
\]

\[
T\varphi(\sum_{\tau \in cG} r(\tau)\tau) = \sum_{\tau' \in cG'} (\sum_{\tau \in cG, f(\tau) \subset \tau'} \bar{f}(r(\tau)))\tau'.
\]

Let \(G\) be a profinite group, and \(p\) a rational prime number. Recall that the completed group algebra \(\mathbb{Z}_p[[G]]\) is defined to be the limit of the projective system \(\{A_{n,N} := (\mathbb{Z}/p^n\mathbb{Z})[G/N]\}\) indexed by the pairs \((n, N)\) of positive integers \(n\) and open normal subgroups \(N\) of \(G\), with morphisms \(\varphi_{(m,M)} : A_{n,N} \to A_{m,M}\) for \(n \geq m\), \(N \subset M\) induced from the canonical projections \(f : G/N \to G/M\) and \(\bar{f} : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}\) as in the previous paragraph. For each level \(A_{n,N}\) of this projective system, we can associate a canonical surjection to its Hattori-Stallings space: \(T_{n,N} : A_{n,N} \to T(A_{n,N})\) to get the commutative diagram

\[
\begin{array}{c}
A_{n,N} & \xrightarrow{\varphi} & A_{m,M} \\
T_{n,N} \downarrow & & \downarrow T_{m,M} \\
T(A_{n,N}) & \xrightarrow{T\varphi} & T(A_{m,M})
\end{array}
\]

whenever \(n \geq m\), \(N \subset M\). Thus we define the profinite Hattori-Stallings space of \(G\) with respect to \(p\) by

\[
T(\mathbb{Z}_p[[G]]) := \lim_{\longrightarrow} T(A_{n,N}),
\]
We define the Hattori-Stallings trace characteristic χ sider two \mathbb{Z}-text. Suppose that we have a nontrivial central element $(\text{subgroups of } G)$ with basis λ, μ. The properties $T(\lambda + \mu) = T(\lambda) + T(\mu)$, $T(\lambda \mu) = T(\mu \lambda)$ for $\lambda, \mu \in \mathbb{Z}_p[[G]]$ are obviously inherited from those of the discrete level.

The set cG of the conjugacy classes of G has canonically a structure of a profinite space, as $^cG = \varprojlim_N ^c(G/N)$, where N runs over the open normal subgroups of G.

In general, a \mathbb{Z}_p-valued measure on a profinite set X is by definition a rule λ which associates with each compact open subset U of X a p-adic integer $\lambda(U)$ such that $\lambda(U \cup U') = \lambda(U) + \lambda(U')$ whenever $U \cap U' = \emptyset$. Each element $x \in X$ defines a Dirac measure δ_x on X which takes 1 for open compact $U \ni x$ of X, and 0 otherwise.

Since each element of $A_{n,N}$ (resp. $T(A_{n,N})$) is considered to be a $(\mathbb{Z}/p^n\mathbb{Z})$-valued function on G/N (resp. $^c(G/N)$), the elements of $\mathbb{Z}_p[[G]]$ (resp. $T(\mathbb{Z}_p[[G]])$) are interpreted as the \mathbb{Z}_p-valued measures on G (resp. cG). (See e.g. [28].) The projection $T : \mathbb{Z}_p[[G]] \rightarrow T(\mathbb{Z}_p[[G]])$ then in the usual sense sends a \mathbb{Z}_p-valued measure on G to a \mathbb{Z}_p-valued measure on cG with respect to the canonical map $G \rightarrow ^cG$ of profinite sets.

Definition (1.3.1). Let F be a finitely generated free $\mathbb{Z}_p[[G]]$-module with basis x_1, \ldots, x_r, and let $f : M \rightarrow M$ be a $\mathbb{Z}_p[[G]]$-linear endomorphism. We define the Hattori-Stallings trace $\text{tr}(f) \in T(\mathbb{Z}_p[[G]])$ of f to be the sum $\sum_{i=1}^{r} T(a_{ij})$, where $a_{ij} \in \mathbb{Z}_p[[G]]$ ($1 \leq i, j \leq r$) are defined by $f(x_i) = \sum_{j=1}^{r} a_{ij}x_j$.

In the definition, it is easy to see that $\text{tr}(f)$ does not depend on the choice of the basis x_1, \ldots, x_r of F, and that for two $\mathbb{Z}_p[[G]]$-endomorphisms f, g, we have $\text{tr}(f + g) = \text{tr}(f) + \text{tr}(g)$, $\text{tr}(fg) = \text{tr}(gf)$.

Theorem (1.3.2). Let G be a profinite group, and p be a prime number. Suppose that the trivial $\mathbb{Z}_p[[G]]$-module \mathbb{Z}_p has a finite free resolution

$$(F) : \quad 0 \rightarrow F_n \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow \mathbb{Z}_p \rightarrow 0,$$

where F_i ($1 \leq i \leq n$) are finitely generated free $\mathbb{Z}_p[[G]]$-modules, with Euler characteristic $\chi := \sum (-1)^i \text{rank}(F_i) \neq 0$. Then G has trivial center.

Proof. We follow the argument of Stallings [43] in our profinite context. Suppose that we have a nontrivial central element γ in G, and consider two $\mathbb{Z}_p[[G]]$-endomorphisms $(f_i), (g_i)$ of the complex (F) such that
$f_i =$ identity and $g_i =$ multiplication by γ on F_i for every $0 \leq i \leq n$. By standard argument in homology theory, we can construct a chain homotopy $d_i : F_i \to F_{i+1}$ with $f_i - g_i = \partial_{i+1} d_i + d_{i-1} \partial_i$ (0 $\leq i \leq n$). Here $\partial_i : F_i \to F_{i-1}$ ($i \geq 1$) denotes the boundary map of (F), and ∂_0 and d_{-1} are understood to be 0. Then

$$\sum (-1)^i tr(f_i) - \sum (-1)^i tr(g_i) = \sum (-1)^i \{ tr(\partial_{i+1} d_i) + tr(d_{i-1} \partial_i) \}$$

$$= \sum (-1)^i \{ tr(\partial_{i+1} d_i) - tr(d_i \partial_{i+1}) \}$$

$$= 0.$$

On the other hand, by the definition of trace, we have

$$tr(f_i) = rank(F_i) \delta_1, \quad tr(g_i) = rank(F_i) \delta_\gamma,$$

where δ_1 (resp. δ_γ) is the Dirac measure supported at the conjugacy class $\{1\}$ (resp. $\{\gamma\}$). Thus

$$\chi(\delta_1 - \delta_\gamma) = 0$$

in $T(\mathbb{Z}_p[[G]])$. But since $\delta_1 \neq \delta_\gamma$, for \mathcal{C} is a Hausdorff space, we get $\chi = 0$. This contradicts our assumption. \qed

In the remainder of this subsection, \mathcal{C} denotes a full class of finite groups.

Corollary (1.3.3) (The profinite Gottlieb theorem). If Γ is a \mathcal{C}-good group of type FL with Euler characteristic $\neq 0$, then the pro-\mathcal{C} completion $\hat{\Gamma}$ has trivial center.

Proof. By assumption, there is a finite free resolution

$$(F.) : \quad 0 \to F_n \to \cdots \to F_1 \to F_0 \to 0, \quad H_0(F.) \cong \mathbb{Z},$$

such that $F_i \cong \mathbb{Z}[\Gamma]^{\oplus r_i}$ with $\sum_i (-1)^i r_i \neq 0$. Fix a prime $p \in |\mathcal{C}|$, and define for each pair of $m \geq 1$ and $\Pi \in \mathcal{N}(\Gamma, \mathcal{C}),$

$$F_i(m, \Pi) : = (\mathbb{Z}/p^m \mathbb{Z})[\Gamma/\Pi] \otimes_{\mathbb{Z}[\Gamma]} F_i \quad (1 \leq i \leq n)$$

$$= (\mathbb{Z}/p^m \mathbb{Z}) \otimes_{\mathbb{Z}[\Pi]} F_i$$
Then $\hat{F}_i := \lim_{\leftarrow (m, \Pi)} F_i(m, \Pi) \cong \mathbb{Z}_p[[\hat{\Gamma}]]^{\oplus r_i}$. Since, for each i, the projective system $\{H_i(F(m, \Pi))\}_{(m, \Pi)}$ satisfies the Mittag-Leffler condition,

$$H_i(\lim_{\leftarrow} F(m, \Pi)) = \lim_{\leftarrow} H_i(F(m, \Pi)) = \lim_{\leftarrow} H_i(\Pi, \mathbb{Z}/p^m\mathbb{Z}).$$

The \mathcal{C}-goodness of Γ assures that $H_i(\lim_{\leftarrow} F(m, \Pi)) = 0$ for $i \geq 1$. For $i = 0$, we have $H_0(F(m, \Pi)) = H_0(\Pi, \mathbb{Z}/p^m\mathbb{Z}) = \mathbb{Z}/p^m\mathbb{Z}$. Hence $H_0(\lim_{\leftarrow} F(m, \Pi)) = \mathbb{Z}_p$. Thus we obtain the exact sequence

$$0 \to \hat{F}_n \to \cdots \to \hat{F}_1 \to \hat{F}_0 \to \mathbb{Z}_p \to 0$$

with $\text{rank}(\hat{F}_i) = \text{rank}(F_i)$ ($1 \leq i \leq n$). We may apply Theorem (1.3.2) to get the conclusion. □

It is easy to see that a free group of finite rank r, F_r, is a \mathcal{C}-good group of type FL. If Π_g denotes the surface group (i.e. the fundamental group of a compact Riemann surface) of genus g, then Π_g is also \mathcal{C}-good of type FL. In fact, the FL-ness follows from the fact that $K(\Pi_g, 1)$ has a homotopy type of a finite simplicial complex. Since each $\Pi \in \mathcal{N}(\Pi_g, \mathcal{C})$ is also a surface group, $H_2(\Pi, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z}$. If we take a normal subgroup Π' of Π such that $[\Pi : \Pi'] = n$, then the corestriction map $\text{cor}_{\Pi}^{\Pi'}$ is multiplication by n. This leads us to $\lim_{\leftarrow} H_2(\Pi, \mathbb{Z}/n\mathbb{Z}) = 0$ for $\mathbb{Z}/n\mathbb{Z} \in \mathcal{C}$. By (1.1.5), we conclude the \mathcal{C}-goodness of Π_g.

Considering the Euler characteristics of F_r and Π_g, we obtain

Corollary (1.3.4) ([1], [25]). The pro-\mathcal{C} completion of F_r ($r \geq 2$) and Π_g ($g \geq 2$) have trivial center.

Note We can also apply Theorem (1.3.2) to get “the pro-p Gottlieb theorem” which implies the centerfreeness of pro-p groups with nonzero Euler characteristics. The key point of the application lies in the fact that $\mathbb{Z}_p[[G]]$ is a pseudocompact local ring for any pro-p group G in the sense of A.Brumer. We discuss this topic in a separate paper [33]. For a number theoretic application for pro-p Galois groups, see Yamagishi [48].

1.4. Two remarks on profinite groups

The following proposition is useful and can be found in [23] (with small typographical errors).
Proposition (1.4.1). Let G be a profinite group, K a closed subgroup of G.

(i) For any open subgroup M of K, there exists an open subgroup L of G such that $L \cap K = M$.

(ii) If K is normal in G, then for any open normal subgroup M of K, there exists an open normal subgroup L of G such that $L \cap K \subset M$.

Proof. (i): Let $\{N_\alpha\}_{\alpha \in A}$ be the system of open normal subgroups of G, and put $M_\alpha = MN_\alpha$. Then, as G is a Hausdorff topological space, it is easy to see that $M = \bigcap_{\alpha \in A} (M_\alpha \cap K)$. By assumption, $K \setminus M$ is compact. So we find a finite subset A_0 of A such that $M = \bigcap_{\alpha \in A_0} (M_\alpha \cap K) = \bigcap_{\alpha \in A_0} M_\alpha \cap K$. We may take $\bigcap_{\alpha \in A_0} M_\alpha$ for L.

(ii): By (i), we have an open subgroup L of G with $L \cap K = M$. Replace L by $\bigcap_{g \in G} gLg^{-1}$, we get the desired one. □

(1.4.2) Notations: For a profinite group G, $[G,G]$ (or G') denotes the closure of the commutator subgroup of G, and $G^{ab} = G/[G,G]$. If p is a prime number, $\text{Syl}_p G$ means a p-Sylow subgroup of G. For a subset S of G, we denote by $\langle S \rangle$ the smallest closed subgroup containing S. Moreover, $N_G(S)$ (resp. $C_G(S)$) denotes the normalizer of $\langle S \rangle$ (resp. centralizer of S) in G.

Remark. In the above notations, it is easy to see that $C_G(S) = C_G(\langle S \rangle)$. Moreover we can show that $C_G(S)$ and $N_G(S)$ are closed subgroups of G. (Use the compactness of $\langle S \rangle$ for the latter.)

Proposition (1.4.3). Let \mathfrak{C} be a full class of finite groups, and let $G = \hat{F}_r$ be the pro-\mathfrak{C} completion of a free group of rank $r \geq 1$. Let $z \in G$ be an element such that there exist only finitely many primes p with $\text{Syl}_p(\langle z \rangle) \neq 1$. Then $[N_G(z) : C_G(z)] < \infty$.

Proof. We may assume $z \neq 1$. Let P be the set of primes p with $\text{Syl}_p(\langle z \rangle) \neq 1$. As P is finite, we can take an open normal subgroup N of G, such that the image of $\langle z \rangle$ in G/N has a nontrivial p-Sylow subgroup for each $p \in P$. Let $U = N \cdot \langle z \rangle$. Then U is a free pro-\mathfrak{C} group ([25](1.4)) and $\langle z \rangle$ is injectively mapped into U^{ab}. Any element $x \in U$ normalizing $\langle z \rangle$ centralizes $\langle z \rangle$. In fact, if we put $xzx^{-1} = z^a$ ($a \in \prod_{p \in P} \mathbb{Z}_p$), going to the abelianization of U, we get $a = 1$. Therefore the conjugate action of $N_G(z)$
on \langle z \rangle \) factors through \(N_G(z)/N_G(z) \cap U \) which is a finite group. □

Remark. In the case \(\mathcal{C} = \mathcal{C}_l \) (\(l \) an odd prime), the group \(N_G(z)/N_G(z) \cap U \) in the above proof is a finite \(l \)-group, therefore must be trivially mapped into \(Aut(z) \cong \mathbb{Z}_l^\times \). Thus, in this case, we have \(N_G(z) = C_G(z) \).

1.5. Automorphisms of group extensions

(1.5.1) For a profinite group \(G \), let \(AutG \) denote the group of all the continuous group automorphisms of \(G \). (We recall that a continuous bijection of a compact space onto a Hausdorff space is automatically bicontinuous.) If \(N \) is an open normal subgroup of \(G \), then

\[
A_N = \{ f \in AutG \mid f(x)x^{-1} \in N \ (x \in G) \}
\]

forms a subgroup of \(AutG \). We can introduce a topology in \(AutG \) by letting the family \(\{ A_N \mid N \triangleleft G \text{ open} \} \) be a fundamental system of neighborhoods of the identity. It is easy to see that \(AutG \) is a totally disconnected Hausdorff topological group which is in general not compact.

We consider \(AutG \) to be acting on \(G \) on the left. So, an inner automorphism by an element \(g \in G \) is written as

\[
inn(g) : x \rightarrow gxg^{-1} \quad (x \in G).
\]

The (normal closed) subgroup of inner automorphisms of \(G \) is denoted by \(InnG \) which has a topology as a subgroup of \(AutG \). If \(Z_G \) is the center of \(G \), the canonical homomorphism \(G/Z_G \rightarrow InnG \) gives a continuous bijection. By the above remark, this map is also bicontinuous. The outer automorphism group \(OutG \) of \(G \) is defined as the quotient group of \(AutG \) by \(InnG \). For each \(f \in AutG \), we denote by \(\bar{f} \) the image of \(f \) in \(OutG \).

(1.5.2) Let \(\pi \) be a profinite group, \(\pi_1 \) a closed normal subgroup of \(\pi \), and \(p : \pi \rightarrow G = \pi/\pi_1 \) the projection. By the cross section theorem of profinite groups ([41] I, Prop.1), there is a continuous map \(s : G \rightarrow \pi \) with \(p \circ s = id \). (Here \(s \) is not necessarily a homomorphism.) If \(\mu \) denotes a continuous map \(G \times G \rightarrow \pi_1 \) defined by

\[
s(\sigma)s(\tau) = \mu(\sigma, \tau)s(\sigma\tau) \quad (\sigma, \tau \in G),
\]

(1.5.2.1)
then it satisfies the property

\[(1.5.2.2) \quad \mu(\sigma, \tau)\mu(\sigma\tau, \rho) = s(\sigma)\mu(\tau, \rho)s(\sigma)^{-1}\mu(\sigma, \tau\rho) \quad (\sigma, \tau, \rho \in G).\]

Recall that we can recover the group \(\pi\), if we are given \(\pi_1\) and \(G\) together with the data \(s, \mu\).

(1.5.3) We have two basic representations of \(G\) which actually do not depend on the choice of \(s\). The first one is in the center \(Z\) of \(\pi_1\). The action of \(G\) on \(Z\) is given by

\[\sigma \cdot m = s(\sigma)ms(\sigma)^{-1} \quad (\sigma \in G, m \in Z).\]

By this action, \(Z\) is a topological \(G\)-module, and the continuous cochain cohomology groups \(H^*_{\text{cont}}(G, Z)\) are defined (Tate [44]).

The second one is an associated exterior representation

\[\varphi : G \rightarrow \text{Out}\pi_1,\]

where for each \(\sigma \in G\), \(\varphi(\sigma)\) is the class of the restriction of the inner automorphism by \(s(\sigma)\) to \(\pi_1\).

(1.5.4) Our first task in this subsection is to study the group \(\text{Aut}(\pi, \pi_1)\) of all the continuous group automorphisms \(f\) of \(\pi\) with \(f(\pi_1) = \pi_1\). Following Wells [47], we shall say a pair \((f_0, f_1) \in \text{Aut}G \times \text{Aut}\pi_1\) is compatible if the following two conditions hold:

1) \(f_0(ker(\varphi)) = ker(\varphi);\)
2) \(f_1\varphi(\sigma)f_1^{-1} = \varphi(f_0(\sigma))\) in \(\text{Out}\pi_1 (\sigma \in G)\).

The compatible pairs naturally form a subgroup of \(\text{Aut}G \times \text{Aut}\pi_1\) which we denote by \(C\).

A profinite version of Wells’ exact sequence [47] is described as follows:

Lemma (1.5.5). There is a canonical exact sequence

\[0 \rightarrow Z^1_{\text{cont}}(G, Z) \rightarrow \text{Aut}(\pi, \pi_1) \rightarrow C \rightarrow H^2_{\text{cont}}(G, Z).\]

The middle two maps are group homomorphisms, but the last map is in general not.
In the above lemma, $Z^1_{cont}(G, Z)$ is the group of the continuous 1-cochains $\gamma : G \to Z$ such that

\[(1.5.5.1) \quad \gamma(\sigma \tau) = \gamma(\sigma)s(\sigma)\gamma(\tau)s(\sigma)^{-1} \quad (\sigma, \tau \in G).\]

The second cohomology group $H^2_{cont}(G, Z)$ is by definition the quotient group $Z^2_{cont}(G, Z)/B^2_{cont}(G, Z)$, where $Z^2_{cont}(G, Z)$ is a collection of the continuous 2-cochains $h : G \times G \to Z$ such that

\[(1.5.5.2) \quad h(\sigma, \tau)h(\sigma \tau, \rho) = s(\sigma)h(\tau, \rho)s(\sigma)^{-1}h(\sigma, \tau \rho) \quad (\sigma, \tau, \rho \in G),\]

and $B^2_{cont}(G, Z)$ is a subgroup of $Z^2_{cont}(G, Z)$ consisting of the 2-cochains of the form

\[(1.5.5.3) \quad h(\sigma, \tau) = s(\sigma)v(\tau)s(\sigma)^{-1}v(\sigma \tau)^{-1}v(\sigma) \quad (\sigma, \tau \in G),\]

for some continuous maps $v : G \to Z$.

The second map in (1.5.5) sends $\gamma \in Z^1_{cont}(G, Z)$ to an automorphism $f \in Aut(\pi, \pi_1)$ such that

\[(1.5.5.4) \quad f(xs(\sigma)) = x\gamma(\sigma)s(\sigma) \quad (x \in \pi_1, \sigma \in G).\]

The exactness at $Z^1_{cont}(G, Z)$ is straightforward from the definition.

The third map in (1.5.5) associates with $f \in Aut(\pi, \pi_1)$ a compatible pair (f_0, f_1) in $AutG \times Aut\pi_1$ in an obvious way. For any element $f \in Aut(\pi, \pi_1)$ with associated pair (f_0, f_1), define $\beta : G \to \pi_1$ by

\[(1.5.5.5) \quad f(s(\sigma)) = \beta(\sigma)s(f_0(\sigma)).\]

Then we can deduce the following two formulae in which we understand $\sigma, \tau \in G, x \in \pi_1$:

\[(1.5.5.6) \quad \beta(\sigma \tau) = f_1(\mu(\sigma, \tau))^{-1}\beta(\sigma)s(f_0(\sigma))\beta(\tau)s(f_0(\sigma))^{-1}\mu(f_0(\sigma), f_0(\tau));\]
\[(1.5.5.7) \quad f_1(s(\sigma)xs(\sigma)^{-1}) = \beta(\sigma)s(f_0(\sigma))f_1(x)s(f_0(\sigma))^{-1}\beta(\sigma)^{-1}.\]

Conversely, if a pair $(f_0, f_1) \in AutG \times Aut\pi_1$ admits a map $\beta : G \to \pi_1$ with (1.5.5.6), (1.5.5.7), then (1.5.5.5) defines an automorphism $f \in Aut(\pi, \pi_1)$.
corresponding to the pair. The exactness at $Aut(\pi, \pi_1)$ follows from this observation: if f_0 and f_1 are trivial, then $\gamma = \beta$ gives a desired 1-cocycle.

To define the fourth map, we need some argument. Let $(f_0, f_1) \in C$. The compatibility condition assures the existence of a unique continuous map $\delta : G \to \text{Inn}\pi_1$ for which the formula

$$f_1 \circ \text{inn}(s(\sigma)) = \delta(\sigma) \circ \text{inn}(s(f_0(\sigma))) \circ f_1$$

holds in $\text{Aut}\pi_1$ for every $\sigma \in G$. Lifting back δ by the cross section theorem, we obtain a continuous map $\gamma : G \to \pi_1$ satisfying (1.5.5.7) (with $\beta = \gamma$). Define at first a function $k : G \times G \to \pi_1$ by

$$k(\sigma, \tau) = \mu(f_0(\sigma), f_0(\tau))^{-1}s(f_0(\sigma))\gamma(\tau)^{-1} \cdot s(f_0(\sigma))^{-1}\gamma(\sigma)^{-1}f_1(\mu(\sigma, \tau))\gamma(\sigma\tau)$$

for $\sigma, \tau \in G$. Eliminating x from (1.5.5.7) by $y = s(f_0(\sigma))f_1(x)s(f_0(\sigma))^{-1}$, and then replacing σ by $\sigma\tau$ there, we see that $k(\sigma, \tau)$ commutes with every $y \in \pi_1$, i.e., $k(\sigma, \tau) \in Z$ ($\sigma, \tau \in G$). Moreover if we apply (1.5.2.2), (1.5.5.7), (1.5.5.8)$\times 2$, and (1.5.2.1) to the middle portion of $k(\sigma\tau, \rho)k(\sigma, \tau\rho)^{-1}$ in this order, and independently apply (1.5.2.2) to the last two factors of it, we obtain

$$k(\sigma\tau, \rho)k(\sigma, \tau\rho)^{-1} = k(\sigma, \tau)^{-1}s(f_0(\sigma))k(\tau, \rho)s(f_0(\sigma))^{-1} \quad (\sigma, \tau, \rho \in G).$$

(We also use iteratedly the fact that $k(*,*)$ lies in the center of π_1.) From this together with (1.5.5.7), we see that $h : G \times G \to Z$ defined by

$$h(\sigma, \tau) = f_1^{-1}(k(\sigma, \tau)) \quad (\sigma, \tau \in G)$$

satisfies the 2-cocycle condition (1.5.5.2). If we change the lift γ of δ into another one γ', then we obtain another 2-cocycle h' in the same way. The difference of these two 2-cocycles comes from a 2-coboundary as follows:

$$h(\sigma, \tau)^{-1}h'(\sigma, \tau) = s(\sigma)v(\tau)s(\sigma)^{-1}v(\sigma\tau)^{-1}v(\sigma) \quad (\sigma, \tau \in G),$$

where $v(\sigma) = f_1^{-1}(\gamma(\sigma)\gamma'(\sigma)^{-1})$ which lies in Z ($\sigma \in G$). Therefore we can define the fourth map by letting the image of $(f_0, f_1) \in C$ be the class of h.
Finally, if \((f_0, f_1) \in C\) is mapped to a 2-coboundary (1.5.5.3), then the map \(\beta : G \to \pi_1\) defined by
\[
\beta(\sigma) = \gamma(\sigma)f_1(v(\sigma)) \quad (\sigma \in G)
\]
satisfies (1.5.5.6). This produces an automorphism \(f \in Aut(\pi, \pi_1)\) mapped to the \((f_0, f_1)\). Thus the exactness at \(C\) follows and the proof of Lemma (1.5.5) is completed. □

(1.5.6) We proceed with the situation in (1.5.2)-(1.5.3). An automorphism \(f \in Aut(\pi, \pi_1)\) is said to be \(G\)-compatible if the induced automorphism on \(G\) by \(f\) is identity. We denote the group of all the \(G\)-compatible automorphisms by \(Aut_G \pi\). The inner automorphisms of \(\pi\) by the elements of \(\pi_1\) form a subgroup of \(Aut_G \pi\) (denoted also \(Inn\pi_1\)). We put
\[
E_G(\pi) = Aut_G \pi / Inn\pi_1.
\]

Let \(Out_G(\pi_1)\) denote the centralizer of \(\varphi(G)\) in \(Out\pi_1\). Then it is easy to see that the restriction map \(Aut_G \pi \to Aut\pi_1\) gives a canonical homomorphism
\[
\mathcal{R} : E_G(\pi) \to Out_G(\pi_1).
\]

As an application of Lemma (1.5.5), we obtain

Corollary (1.5.7). Suppose that the center of \(\pi_1\) is trivial. Then the above homomorphism \(\mathcal{R} : E_G(\pi) \to Out_G(\pi_1)\) gives a group isomorphism. □

1.6. Galois centralizers and outer automorphisms of \(\pi_1\)

(1.6.1) Let \(X\) be an absolutely irreducible algebraic variety defined over a number field \(k\), and \(\mathcal{C}\) an almost full class of finite groups. As usual, we denote by \(\pi_1^\mathcal{C}(X_\bar{k})\) the maximal pro-\(\mathcal{C}\) quotient of the geometric fundamental group of \(X\), and by \(\pi_1^\mathcal{C}(X)\) the unique quotient of \(\pi_1(X)\) naturally fitting into the exact sequence
\[
1 \to \pi_1^\mathcal{C}(X_\bar{k}) \to \pi_1^\mathcal{C}(X) \to G_k \to 1.
\]

In this setting, we shall write \(E_k^\mathcal{C}(X)\) for \(E_{G_k}(\pi_1^\mathcal{C}(X))\) (1.5.6).
Lemma (1.6.2). The notations being as above, $\pi_1^c(X_\bar{k})$ is a characteristic subgroup of $\pi_1^c(X)$. If $\pi_1^c(X_\bar{k})$ has trivial center, then there is a canonical exact sequence of groups

$$1 \to E_k^c(X) \to \text{Out}\pi_1^c(X) \to \text{Out}(G_k).$$

Moreover if X has a descent model X_0 over a subfield k_0 of k, then the image of the third map above contains a subgroup isomorphic to $\text{Aut}(k/k_0)$.

Proof. It is known by [39] that $\pi_1^c(X_\bar{k})$ is always finitely generated. On the other hand, since k is hibribration, every nontrivial normal closed subgroup of G_k is not finitely generated ([10] Theorem 15.10; [46]). Thus $\pi_1^c(X_\bar{k})$ is maximum among the finitely generated closed normal subgroups of $\pi_1^c(X)$; hence it is characteristic in $\pi_1^c(X)$.

Let $\pi = \pi_1^c(X)$, $\pi_1 = \pi_1^c(X_\bar{k})$ and $G = G_k$. By the above, $\text{Aut}(\pi) = \text{Aut}(\pi, \pi_1)$. Since G_k has trivial center, $\text{Aut}_G \pi \cap \text{Inn} \pi = \text{Inn} \pi_1$. Hence, we have a canonical embedding

$$E_G(\pi) = \text{Aut}_G \pi / \text{Inn} \pi_1 \hookrightarrow \text{Aut} \pi / \text{Inn} \pi (= \text{Out} \pi).$$

The cokernel of this embedding is isomorphic to

$$D := \text{Aut} \pi / \text{Aut}_G \pi \cdot \text{Inn} \pi.$$

Let us identify $\text{Aut}(\pi, \pi_1)$ with the group of compatible pairs in $\text{Aut}G \times \text{Aut} \pi_1$ by Lemma (1.5.5), and consider the first projection p_G. Then $\ker(p_G) = \text{Aut}_G \pi$, and $p_G(\text{Inn} \pi) = \text{Inn} G$. Therefore D is embedded into $\text{Aut}G / \text{Inn} G = \text{Out} G$.

If X has a descent model X_0/k_0, then $\pi_1^c(X)$ is an open subgroup of $\pi_1^c(X_0)$. The inner automorphisms by elements of G_{k_0} is lifted to those by elements of $\pi_1^c(X_0)$. From this the last assertion follows. \square

By the Neukirch-Ikeda-Iwasawa-Uchida theorem [36], we know $\text{Out} G_k \cong \text{Aut}(k/Q)$ which is obviously a finite group. Therefore,

Corollary (1.6.3). Under the assumption that $\pi_1^c(X_\bar{k})$ is centerfree, finiteness of $\text{Out} \pi_1^c(X)$ is equivalent with finiteness of $E_k^c(X)$.

§2. Fundamental groups of algebraic curves

2.1. Weight characterization of inertia subgroups

Naively speaking, weight filtration in an l-adic cohomology group $H^\ast(X \otimes \bar{k}, \mathbb{Q}_l)$ gives a family of (linear) subspaces which are characterized by conditions on Frobenius eigenvalues. As introduced by Deligne [8], Oda-Kaneko [22] and other authors in Hodge theory, such weight filtration can also exist in the (Lie algebras of the) pronilpotent fundamental groups of algebraic varieties, in which filtered components form a system of subgroups (or Lie subalgebras).

In this subsection, we shall present an attempt to formulate another weight filtration in pro-\mathcal{C} fundamental groups of punctured smooth curves. This weight filtration characterizes the conjugacy union of the inertia subgroups in $\pi^\mathcal{C}_1(X \otimes \bar{k})$ which is therefore not closed under the group operation of the ambient space. For this reason, we want to say our weight filtration is ‘of nonlinear type’, or if it deserves, ‘of anabelian type’.

This type of weight filtration was firstly considered in the previous paper [30], and applied to show that the exterior Galois representations in the full profinite fundamental groups of punctured projective lines over fields finitely generated over the rationals determine the isomorphism classes of the lines themselves. We shall present the following exposition by adding some technical improvements to [30].

Let \mathcal{C} be a full class of finite groups, X a smooth noncomplete (absolutely irreducible) curve defined over a number field k, $X_\bar{k} = X \otimes \bar{k}$, and $\pi^\mathcal{C}_1(X)$ the quotient of the etale fundamental group of X divided by the kernel of $\pi_1(X_\bar{k})$ into the maximal pro-\mathcal{C} quotient $\pi^\mathcal{C}_1(X_\bar{k})$. Then we have an exact sequence of profinite groups

$$1 \longrightarrow \pi^\mathcal{C}_1(X_\bar{k}) \longrightarrow \pi^\mathcal{C}_1(X) \longrightarrow \pi_1(X) \longrightarrow G_k \longrightarrow 1.$$

By the Grothendieck comparison theorem, $\pi^\mathcal{C}_1(X_\bar{k})$ is isomorphic to the pro-\mathcal{C} completion of the discrete group

$$\Pi_{g,n} = \langle x_1, \ldots, x_{2g}, z_1, \ldots, z_n | [x_1, x_2] \cdots [x_{2g-1}, x_{2g}] z_1 \cdots z_n = 1 \rangle$$

where $[x,y] = xyx^{-1}y^{-1}$, g is the genus of the smooth compactification X^c of X with geometric complement $\{p_1, \ldots, p_n\}$ and each z_i generates an
inertia subgroup over p_i ($1 \leq i \leq n$). We shall assume $n \geq 1$, $2 - 2g - n < 0$ so that $\pi_1^C(X_{\bar{k}})$ is a free pro-\mathcal{C} group of rank $2g + n - 1$.

Definition. Let z be a nontrivial element of $\pi_1^C(X_{\bar{k}})$. A closed subgroup N of $\pi_1^C(X)$ is said to be a *cyclotomic normalizer* of z, if and only if the following conditions 1)-3) hold.
1) N normalizes $\langle z \rangle$.
2) $p_{X/k}(N)$ is open in G_k.
3) The conjugate action of N on $\langle z \rangle$ factors through $N/N \cap \pi_1^C(X_{\bar{k}})$ and the induced homomorphism

$$N/N \cap \pi_1^C(X_{\bar{k}}) \subset G_k \rightarrow Aut\langle z \rangle$$

gives the cyclotomic character.

Theorem (2.1.1) (‘Nonlinear’ weight filtration). Let \mathcal{C} be a full class of finite groups. Then a nontrivial element z in $\pi_1^C(X_{\bar{k}})$ is contained in an inertia group if and only if z has a cyclotomic normalizer in $\pi_1^C(X_{\bar{k}})$.

The ‘only if’ part of the above theorem follows from the classical branch cycle argument: We may assume that $\mathcal{C} = \mathcal{C}_{fin}$ and that each $p_i \in X^c \setminus X$ is a k-rational point ($1 \leq i \leq n$). After replacing z by its conjugate if necessary, we may furthermore assume that $z \in \langle z_i \rangle$ for some $1 \leq i \leq n$.

Let R be the completion of the local ring \mathcal{O}_{X^c, p_i} with field of fractions F. The canonical morphism $Spec R \rightarrow X^c$ induces $Spec F \rightarrow X$ together with $\rho_i : G_F = \pi_1(F) \rightarrow \pi_1(X)$. By [40] II, Th.2, F is isomorphic to $k((T))$ with a uniformizing parameter T, and the embedding $k \hookrightarrow k((T))$ gives the exact sequence

$$1 \rightarrow I \rightarrow G_F \rightarrow G_k \rightarrow 1,$$

where I is the absolute Galois group of $K = \bar{k}((T))$. Since the algebraic closure of K is the union of the Kummer extensions $K_n = \bar{k}((T^{1/n}))$ of K ([40] IV Prop.8, Puiseaux’s theorem), the Kummer character

$$Gal(K_n/K) \ni \sigma \rightarrow \sigma(T^{1/n})/T^{1/n} \in \mu_n(\bar{k})$$

yields a canonical isomorphism $I \cong \lim_{\leftarrow n} \mu_n(\bar{k})$. (Here μ_n denotes the group of n-th roots of unity.) From this, we can see that the conjugate action of
Galois rigidity

G_k on I is given by the cyclotomic character. As $\langle z_i \rangle$ is (conjugate to) the image of I by ρ_i, it suffices to take (a conjugate of) $\rho_i(G_F)$ for N.

Before going to the proof of the ‘if’ part, we shall prepare some lemmas, in which \mathcal{C} is assumed to be a full class of finite groups (1.1).

Lemma (2.1.2). Let \hat{F}_n be a free pro-\mathcal{C} group with free generators x_1, \ldots, x_n, and z an arbitrary element of $\langle x_1 \rangle \setminus \{1\}$. Then the centralizer of z is just $\langle x_1 \rangle$.

This lemma follows as a special case of [16] Theorem B′, in the proof of which the Kurosh subgroup theorem in free pro-\mathcal{C} products by Binz-Neukirch-Wenzel was used as a main tool. Here, we shall give a different and direct proof due to Akio Tamagawa. The author would like to thank him for communicating this elegant proof and permitting us to share it here.

Proof. Let y be in the centralizer of $\langle z \rangle$ in \hat{F}_n, and N an open normal subgroup of \hat{F}_n with projection $\pi : \hat{F}_n \to G = \hat{F}_n/N$. It suffices to show that $\pi(y) \in \langle \pi(x_1) \rangle$ in G. Let us write z as x_1^α ($\alpha \in \mathbb{Z}_C = \prod_{p \mid |C|} \mathbb{Z}_p$), and choose a prime p such that the p-component α_p of α is nontrivial. Then, we fix an embedding $G \hookrightarrow GL_r(\mathbb{Z}_p)$ for a sufficiently large $r \geq 1$ and consider the pro-\mathcal{C} group

$$G' = \{ X = \left(\begin{array}{cc} A & B \\ O & C \end{array} \right) \in GL_{2r}(\mathbb{Z}_p) | A \in G, C \in \langle \pi(x_1) \rangle \}$$

together with the surjection $\lambda : G' \ni X \to A \in G$. Since \hat{F}_n is free, it is possible to define a continuous homomorphism $\psi : \hat{F}_n \to G'$ by putting

$$\psi(x_1) = \begin{pmatrix} \pi(x_1) & \pi(x_1) \\ O & \pi(x_1) \end{pmatrix}, \quad \psi(x_i) = \begin{pmatrix} \pi(x_i) & O \\ O & 1_r \end{pmatrix} \quad (i \geq 2)$$

so that the lifting condition $\pi = \lambda \circ \psi$ holds. Then, letting g denote the cardinality of G, we have

$$\psi(z^g) = \psi(x_1^{g\alpha}) = \begin{pmatrix} 1_r & g\alpha_p 1_r \\ O & 1_r \end{pmatrix}.$$

If we put $\psi(y) = \begin{pmatrix} \pi(y) & B \\ O & C \end{pmatrix} \in G'$, then the commutativity of y and z^g gives $g\alpha_p C = g\alpha_p \pi(y)$. Therefore $\pi(y) = C \in \langle \pi(x_1) \rangle$ as desired. □
COROLLARY (2.1.3). Notations being as in Lemma (2.1.2), there exist no abelian subgroups $A \subset \hat{F}_n$ such that $A \cap \langle x_i \rangle \neq 1$, $A \cap \langle x_j \rangle \neq 1$ for $1 \leq i < j \leq n$. □

LEMMA (2.1.4). Let G be the pro-\mathfrak{C} completion of the surface group

$$\Pi_{g,n} = \langle x_1, \ldots, x_{2g}, z_1, \ldots, z_n | [x_1, x_2] \cdots [x_{2g-1}, x_{2g}] z_1 \cdots z_n = 1 \rangle$$

with $n \geq 1$, $2 - 2g - n < 0$, and define closed subsets $3, 3_i (1 \leq i \leq n)$ by

$$3 = \bigcup_{i=1}^{n} 3_i \quad 3_i = \{gz^ag^{-1} | g \in G, a \in \mathbb{Z}_\mathfrak{C} \}.$$

Then the following two conditions on $z \in G$ are equivalent.

(1) $z \in 3$.

(2) For every prime l in $|\mathfrak{C}|$ and for every open subgroup H containing z,

$$z \in [H, H]H^l(3 \cap H).$$

PROOF. It suffices to show that (2) implies (1). Let us first assume $n \geq 2$. Then z_1, \ldots, z_n can be members of a free generator system of the free pro-\mathfrak{C} group G. Suppose $z \notin 3$. Then by Lemma (2.1.2), we see $\langle z \rangle \cap 3 = \{1\}$. Let l be a prime with $\langle z \rangle \neq \langle z^l \rangle$ and B an open subgroup of G with $B \cap \langle z \rangle = \langle z^l \rangle$ (1.4.1). Since $3 \setminus B$ and $\langle z \rangle \setminus B$ are disjoint compact subsets in the Hausdorff space G, we can find an open normal subgroup $M(\subset B)$ of G such that $3 \setminus B$ and $\langle z \rangle \setminus B$ are disjoint still in the quotient G/M. This means in turn that $3 \cap M\langle z \rangle$ is contained in B. If H denotes $M\langle z \rangle$, then $H/M\langle z^l \rangle \cong \mathbb{Z}/l\mathbb{Z}$; hence $[H, H]H^l \subset M\langle z^l \rangle \subset B$. Thus we conclude $[H, H]H^l(3 \cap H) \subset B \not

Next we consider the case $n = 1$. Let l be a prime in $|\mathfrak{C}|$. Then the open normal subgroup $N = [G, G]G^l\langle 3 \rangle$ corresponds to the fundamental group of a certain unramified covering of degree l^{2g} over the Riemann surface with fundamental group $\Pi_{g,1}$. Therefore we may do the same argument as above after replacing G by N. □

Now we are in a position to give the proof of the ‘if’ part of Theorem (2.1.1). Let z be in $\pi^F_1(X_k)$ with a cyclotomic normalizer N in $\pi^F_1(X)$, and
let \mathfrak{S} be the total subset of the inertia subgroups in $\pi_1^G(X_\bar{k})$. If z is not contained in \mathfrak{S}, then by Lemma (2.1.4), we have an open subgroup $H(\ni z)$ and a prime l in $|\mathcal{C}|$ such that

\[(*) \quad z \notin [H,H]H^l(\mathfrak{S} \cap H).\]

Choose an open subgroup $H' \subset \pi_1^G(X)$ with $H' \cap \pi_1^G(X_\bar{k}) = H$, and let Y be the finite etale cover of X with $\pi_1^G(Y) \cong H'$. Since $p_{X/k}(H' \cap N)$ is open in G_k, there exists a finite extension K of k in \bar{k} such that Y is defined over K with $p_{Y/K} : \pi_1^G(Y) \to G_K$ sending $N \cap \pi_1^G(Y)$ onto G_K. It is known that the target of the pro-l abelianization map

$$\pi^{ab} : \pi_1^G(Y_\bar{k})(= H) \to H^1_1(Y_\bar{k}, \mathbb{Z}_l)$$

has a G_K-module structure by conjugation with torsion free weight filtration in the ordinary sense:

$$W_{-1} = H^1_1(Y_\bar{k}, \mathbb{Z}_l),$$
$$W_{-2} = \pi^{ab}(\langle \mathfrak{S} \cap H \rangle),$$
$$W_{-3} = 0.$$

Since the image of $\langle z \rangle$ in $H^1_1(Y_\bar{k}, \mathbb{Z}_l)$ is acted on by G_K via the cyclotomic character, z must lie in (W_{-2})-part. (By the Riemann-Weil hypothesis, the complex absolute value of a Frobenius image in W_{-1}/W_{-2} of an unramified prime p of K must be the half square of the absolute norm of p.) This contradicts the condition $(*)$.

2.2. Probrad calculus: genus 0 case

In this subsection, generalizing [31], we shall discuss the finiteness of $E_k^{(l)}(X)$ for hyperbolic lines X over number fields k. The main statement is Theorem(2.2.5).

(2.2.1) Let l be a prime, and $\hat{\Pi}_{0,n}$ the free pro-l group with free generators x_1, \ldots, x_{n-1} ($n \geq 3$). Put $x_n = (x_1 \cdots x_{n-1})^{-1}$. The abelianization Λ of $\hat{\Pi}_{0,n}$ is a free \mathbb{Z}_l-module of rank $n - 1$ generated by the images of x_i (denoted X_i) ($1 \leq i \leq n - 1$). We define Λ_i ($1 \leq i \leq n - 1$) to be the
\mathbb{Z}_l-submodule of Λ generated by $X_1, \ldots, \tilde{X}_i, \ldots, X_{n-1}$ (X_i: omitted), and $\Lambda^*_n \subset \Lambda_{n-1}$ by

$$\Lambda^*_n = \begin{cases} \langle X_1, \ldots, X_{n-3} \rangle, & \text{if } n \geq 4, \\ 0, & \text{if } n = 3. \end{cases}$$

(2.2.2) A continuous group automorphism f of $\hat{\Pi}_{0,n}$ is called braid-like, if there exist $a \in \mathbb{Z}_l^\times$ and $t_i \in \hat{\Pi}_{0,n}$ ($1 \leq i \leq n$) such that $f(x_i) = t_i x_i^a t_i^{-1} (1 \leq i \leq n)$. The constant $a \in \mathbb{Z}_l^\times$ is determined uniquely by f, hence is denoted by a_f. If we impose on t_i the condition $t_i (\text{mod } \hat{\Pi}'_{0,n}) \in \Lambda_i (1 \leq i \leq n - 1)$, then we see that t_i is also determined uniquely by f. (Use e.g. (2.1.2).) We will write such t_i as $t_i(f)$ for each $i \in \{1, \ldots, n-1\}$.

The group of all the braid-like automorphisms is denoted by $\text{Aut}^b(\hat{\Pi}_{0,n})$. Further we put $\text{Out}^b(\hat{\Pi}_{0,n}) = \text{Aut}^b(\hat{\Pi}_{0,n}) / \text{Inn}(\hat{\Pi}_{0,n})$. It is easy to see that for $f, g \in \text{Aut}^b(\hat{\Pi}_{0,n})$,

(2.2.2.1) $a_{fg} = a_f a_g$,

(2.2.2.2) $t_i(fg) = f(t_i(g))t_i(f) \quad (1 \leq i \leq n - 1)$.

If a braid-like automorphism $f \in \hat{\Pi}_{0,n}$ satisfies further the condition $t_n(f) = 1$, $t_{n-1}(f)$ (mod $\hat{\Pi}'_{0,n}$) $\in \Lambda^*_{n-1}$, then f is called a normalized probraid. The normalized probraids form a subgroup of $\text{Aut}^b(\hat{\Pi}_{0,n})$, which is denoted by $\text{Brd}(\hat{\Pi}_{0,n})$. The following proposition is easy to see.

Proposition (2.2.3). The group $\text{Aut}^b(\hat{\Pi}_{0,n})$ is a semidirect product of $\text{Inn}\hat{\Pi}_{0,n}$ with $\text{Brd}(\hat{\Pi}_{0,n})$. In particular, $\text{Out}^b(\hat{\Pi}_{0,n}) \cong \text{Brd}(\hat{\Pi}_{0,n})$. \square

Now we shall generalize Lemma 2 of [31]. Let $\hat{\Pi}_{0,n} = \Pi(1) \supset \Pi(2) \supset \cdots$ be the lower central series of $\hat{\Pi}_{0,n}$, and set

$$A[m] = \{ f \in \text{Aut}^b(\hat{\Pi}_{0,n}) \mid a_f = 1, t_i(f) \in \Pi(m), 1 \leq i \leq n - 1 \}.$$

for each $m \geq 1$. The mapping $f \mapsto a_f$ gives a homomorphism $a : \text{Aut}^b(\hat{\Pi}_{0,n}) \to \mathbb{Z}_l^\times$ with kernel $A[1]$.

Lemma (2.2.4). Let G be a subgroup of $\text{Aut}^b(\hat{\Pi}_{0,n})$ and assume that there exist an integer $m(\geq 1)$ and elements $g, h \in G$ such that
1) \(a_g \in \mathbb{Z}_l^\times \) is nontorsion;
2) \(h \in A[m] \setminus A[m + 1] \).

Then the centralizer of \(G \) in \(\text{Aut}^b(\tilde{\Pi}_0,n) \) is injectively mapped into the torsion subgroup of \(\mathbb{Z}_l^\times \) via \(a \).

Proof. Let \(f \) be an element of \(\text{Aut}^b(\tilde{\Pi}_0,n) \) centralizing \(G \). By using (2.2.2.2), we compute

\[
 t_i(fh^{-1}) = fh^{-1}(t_i(f)^{-1}) \cdot f(t_i(h)) \cdot t_i(f) \quad (1 \leq i \leq n - 1).
\]

Since the image of \(t_i(h) \) in \(\tilde{\Pi}_0,n/\Pi(m + 1) \) is central, and since \(h \) therefore acts trivially on \(\tilde{\Pi}_0,n/\Pi(m + 1) \), we obtain

\[
 t_i(fh^{-1}) \equiv f(t_i(h)) \mod \Pi(m + 1) \quad (1 \leq i \leq n - 1).
\]

Moreover, since \(f \) acts on \(\Pi(m)/\Pi(m + 1) \) by multiplication by \(a_f^m \), it follows that

\[
 t_i(fh^{-1}) \equiv a_f^m t_i(h) \mod \Pi(m + 1).
\]

By assumption, there exists at least one \(i \in \{1, \ldots, n - 1\} \) such that \(t_i(h) \notin \Pi(m + 1) \). Therefore we get \(a_f^m = 1 \). It remains to show that \(f = 1 \) under the assumption \(f \in A[1] \). Suppose that there exists \(N \geq 1 \) with \(f \in A[N] \setminus A[N + 1] \). Then by the similar argument as above, we see

\[
 t_i(gfg^{-1}) \equiv a_g^N t_i(f) \mod \Pi(N + 1) \quad (1 \leq i \leq n - 1).
\]

Since \(f \) commutes with \(g \), and since there exists \(1 \leq i \leq n - 1 \) with \(t_i(f) \notin \Pi(N + 1) \) by assumption, we get \(a_g^N = 1 \); contradiction. Thus \(f \in \bigcap_{N \geq 1} A[N] = \{1\} \). This completes the proof of Lemma (2.2.4). □

Theorem (2.2.5). Let \(n \geq 3 \), \(X \) an \(n \)-point punctured projective line defined over a number field \(k \), and \(l \) an odd prime. If \(\pi_1(X_k)^{\text{pro-}l} \) denotes the maximal pro-\(l \) quotient of \(\pi_1(X_k) \), then the centralizer of the image of the canonical Galois representation

\[
 \varphi_X : G_k \to \text{Out}\pi_1(X_k)^{\text{pro-}l},
\]
or equivalently $E_k^{(l)}(X)$ by (1.5.7), is a finite group isomorphic to a subgroup of S_n. In particular, $\text{Out}_{\pi_1^{(l)}}(X)$ is finite.

Proof. Let us identify $\pi_1(X_{\bar{k}})^{\text{pro-}l}$ with $\hat{\Pi}_{0,n}$ so that x_i generates an inertia subgroup of the former group ($1 \leq i \leq n$). By Corollary (1.5.7), $\text{Out}_{G_k}\hat{\Pi}_{0,n}$ is isomorphic to $E_k^{(l)}(X)$. Then, it follows from the nonlinear weight filtration (2.1.1), that each G_k-compatible automorphism of $\pi_1^{(l)}(X)$ permutes the conjugacy unions of the inertia subgroups over the deleted points on P^1. Thus we have a canonical map $E_k^{(l)}(X) \rightarrow S_n$. The kernel E_1 of this map is contained in $\text{Out}^b(\hat{\Pi}_{0,n}) \cong \text{Brd}(\hat{\Pi}_{0,n})$ (2.2.3). It remains to show that $E_1 = \{1\}$. Let $\phi_n : G_k \rightarrow \text{Brd}(\hat{\Pi}_{0,n})$ be the unique lift of φ_X, and consider the canonical map $p : \text{Brd}(\hat{\Pi}_{0,n}) \rightarrow \text{Brd}(\hat{\Pi}_{0,3})$ obtained by setting $x_1 = \cdots = x_{n-3} = 1$. Let f be an arbitrary element of $E_1 \subset \text{Brd}(\hat{\Pi}_{0,n})$. Then, since $p(f)$ commutes with $\phi_3(G_k)$, we obtain $1 = a_{p(f)} = a_f$ from [31]. In particular, we see $f \in A[1]$. On the other hand, since there is a nontrivial Galois image σ lying in $\phi_3(G_k)$ with $a_\sigma = 1$ ([31] §4), there exists also an element $h \in \phi_n(G_k)$ which satisfies the condition 2) of (2.2.4) for some $m \geq 1$. Thus we can apply Lemma (2.2.4) for $G = \phi_n(G_k)$ to conclude $f = 1$. The last statement follows from (1.6.3) and the proof of Theorem (2.2.5) is completed. □

2.3. Curves with special stable reductions and Jacobians

Let k be a number field with absolute Galois group G_k, C a complete nonsingular (absolutely irreducible) curve of genus $g \geq 2$ defined over k. For a prime l, we denote the maximal pro-l quotient of the geometric fundamental group of C simply by π_1. Let $\varphi : G_k \rightarrow \text{Out}_1$ be the canonical exterior representation.

In this subsection, we shall show the following theorem (2.3.1) which suggests that $E_k^{(l)}(C)$ should be finite for a wide class of hyperbolic curves C over number fields. In a crucial step of the proof, we make use of a recent result of Takayuki Oda [37].

Theorem (2.3.1). Let J be the Jacobian variety of C, and suppose that
(1) $\text{End}_k(J) \cong \mathbb{Z}$;
(2) there exists a prime $p \nmid l$ of k such that J has good reduction at p but
C has stable bad reduction at p.
Then the centralizer of the Galois image $\varphi(G_k)$ in $Out\pi_1$, or equivalently $E_k^{(l)}(C)$ by (1.5.7), is a finite group of order at most 2. In particular, $Out\pi_1^{(l)}(C)$ is finite (1.6.3).

Before going to the proof, we shall briefly review some results of Asada-Kaneko [4]. Let $\Gamma' = Aut\pi_1$, $\Gamma = Out\pi_1$, and let $\pi_1 = \pi_1(1) \supset \pi_1(2) \supset \cdots$ denote the lower central series of π_1. We choose a standard generator system x_1, \ldots, x_{2g} of π_1 with the defining relation $[x_1, x_2] \cdots [x_{2g-1}, x_{2g}] = 1$. For each i ($1 \leq i \leq 2g$) and $f \in \Gamma'$, let $s_i(f) = f(x_i)x_i^{-1}$, and define the filtration of Γ' (resp. Γ) by

$$\Gamma'[m] = \{ f \in \Gamma' \mid s_i(f) \in \pi_1(m + 1) ; 1 \leq i \leq 2g \}$$

(resp. $\Gamma[m] = \Gamma'[m] \cdot Inn\pi_1 / Inn\pi_1$) for $m \geq 1$. It is shown that $\Gamma[m] = \Gamma'[m]/Inn\pi_1(m)$. So the homomorphism

$$(2.3.2) \quad i'_m : \Gamma'[m] \rightarrow (gr_{m+1}\pi_1)^{\oplus 2g}, \quad f \mapsto (s_i(f) \mod \pi_1(m + 2))_{1 \leq i \leq 2g}$$

induces a canonical injection

$$(2.3.3.) \quad i_m : gr_m\Gamma \rightarrow (gr_{m+1}\pi_1)^{\oplus 2g}/H_m$$

for $m \geq 1$, where H_m is the image of $Inn\pi_1(m)$ by i'_m. As the target space of i_m is shown to have no torsion, $gr_m\Gamma$ turns out to be a torsion free \mathbb{Z}_l-module [3]. Every element of Γ' acts canonically on $\pi_1/\pi_1(2)$ so that we have a surjective homomorphism $\lambda : \Gamma \rightarrow GSp(2g, \mathbb{Z}_l)$. Letting X_i denote the image of x_i in $\pi_1/\pi_1(2)$, we define the matrix $(\lambda_{ij}(f))_{1 \leq i,j \leq 2g}$ for $f \in \Gamma$ by $\lambda(f)(X_j) = \sum \lambda_{ij}(f)X_i$. We have a $GSp(2g, \mathbb{Z}_l)$-bimodule structure on $(gr_{m+1}\pi_1)^{\oplus 2g}$ as follows. The left action of $\lambda \in GSp(2g)$ is the diagonal one: λ acts componentwise on $gr_{m+1}\pi_1$ in a canonical way. The right action of $\lambda = (\lambda_{ij}) \in GSp(2g)$ on $(s_i) \in (gr_{m+1}\pi_1)^{\oplus 2g}$ is defined by

$$(2.3.4) \quad (s_1, \ldots, s_{2g}) \cdot \lambda = (\sum_{u=1}^{2g} \lambda_{ui} s_u)_{1 \leq i \leq 2g}. $$
The action of the inner automorphism by \(f \in \Gamma' \) on \(gr_m \Gamma' \) is calculated in the module \((gr_{m+1}\pi_1)^{\otimes 2g}\) by the following fundamental formula of [4]:

\[
(2.3.5) \quad (s_i(fh_{f^{-1}}))_{1 \leq i \leq 2g} = \lambda(f) \cdot (s_1(h), \ldots, s_{2g}(h)) \cdot \lambda(f^{-1}), \quad h \in \Gamma[m].
\]

(Here we write the formula via left action of \(Aut\pi_1 \) on \(\pi_1 \). This formula was described in [4] in a slightly different style via right action of \(Aut\pi_1 \) on \(\pi_1 \).)

Proof of the Theorem. Let \(f \) be an arbitrary element of \(\Gamma = Out\pi_1 \) centralizing \(\varphi(G_k) \). By the Tate conjecture proved by Faltings, we have

\[
\text{End}_{G_k} T_1(J(\overline{k})) \cong \text{End}_k(J) \otimes \mathbb{Z}_l \cong \mathbb{Z}_l.
\]

As the Tate module \(T_1(J(\overline{k})) \) is canonically isomorphic to \(\pi_1/\pi_1(2) \), we may assume that \(f \) acts on \(\pi_1/\pi_1(2) \) via \(a_f \)-multiplication for some \(a_f \in \mathbb{Z}_l^\times \).

Step 1. We first prove that \(a_f = \pm 1 \). Let \(I_p \subset G_k \) be an inertia subgroup over \(p \), and consider the restriction \(\varphi_p \) of \(\varphi : G_k \to \Gamma \) to \(I_p \). Then, by using the nonabelian Picard-Lefschetz formula, Takayuki Oda [37] proved under the condition (2) that \(\varphi_p \) has a nontrivial image \(\delta \) in \(\Gamma[2] \setminus \Gamma[3] \). Let \([\delta'] \in (gr_3\pi_1)^{\otimes 2g} \) be the image of a lift \(\delta \) of \(\delta \) in \(\Gamma'[2] \) via (2.3.2), and apply the formula (2.3.5) to \(h = \delta' \). Then, since \(\delta \) commutes with \(f \) in \(\Gamma \), we obtain \([\delta'] \equiv a_f^3[\delta']a_f^{-1} \mod H_m \). As the map (2.3.3) is injective, we obtain \(a_f^2 = 1 \), i.e., \(a_f = \pm 1 \).

Step 2. Assume \(a_f = 1 \). We may prove \(f = 1 \). If \(f \neq 1 \), there exists \(m \geq 1 \) such that \(f \in \Gamma[m] \setminus \Gamma[m+1] \). Let \(\sigma_p \in G_k \) represent a Frobenius class modulo \(I_p \), and put \(\phi_p = \varphi(\sigma_p) \). Then by the Riemann-Weil hypothesis, \(\lambda(\phi_p) \in GSp(2g) \) has algebraic eigenvalues with complex absolute values \(Np^{1/2} \) (\(Np \) is the absolute norm of \(p \)). From this and the formula (2.3.5), it follows that the inner automorphism by \(\phi_p \) acts on \(\Gamma[m]/\Gamma[m+1] \otimes \mathbb{Q}_l \) via the algebraic eigenvalues with complex absolute values \(Np^{m/2} \). In particular, since \(gr_m \Gamma \) is torsion free, no nontrivial elements of \(gr_m \Gamma \) are fixed by the conjugate action of \(\phi_p \). This contradicts the commutativity of \(f \) and \(\phi_p \). \(\Box \)

Remarks. 1) The author does not assure yet how to construct algebraic curves satisfying (1),(2) of the above theorem explicitly. We just notice here that (1) is generic condition for algebraic curves over \(\mathbb{C} \), and expect that (2) happens frequently around certain boundaries of the moduli space of curves.
2) Generalization of the theorem to the case of punctured curves will be studied in a joint work with H. Tsunogai. (See [35].)

§3. Galois-braid groups

3.1. Combinatorics in Galois-braid groups

(3.1.1) Let us begin our study of the case of the moduli variety $M_{0,n}$ introduced in §0 $(n \geq 3)$. We assume that it is defined over a fixed number field k. Each point of $M_{0,n}$ $(n \geq 3)$ corresponds to an isomorphism class of n-pointed projective lines $(\mathbb{P}^1; a_1, \ldots, a_n)$ where the a_i $(1 \leq i \leq n)$ are distinct points on \mathbb{P}^1. As in [12], adding the points of isomorphism classes of “stable n-pointed \mathbb{P}^1-trees”, we obtain a smooth compactification B_n of $M_{0,n}$. The complement $B_n - M_{0,n}$ consists of several irreducible divisors, each of which reflects a type of stable n-pointed \mathbb{P}^1-tree of two projective lines. The special irreducible divisor D_{ij} $(1 \leq i < j \leq n)$ is one of them such that each point of a dense open subset of D_{ij} represents an isomorphism class of $(C; a_1, \ldots, a_n)$ in which:
1) C is the union of two projective lines normally crossing at one point a;
2) a_i and a_j are distinct points on one component of $C - \{a\}$;
3) all other a_r $(r \neq i,j)$ are on another component of $C - \{a\}$ and distinct from each other.

We denote by Γ^0_n the (discrete) fundamental group of the analytic manifold $M_{0,n}(\mathbb{C})$. Fix a full class of finite groups \mathfrak{c}. The pro-\mathfrak{c} completion $\hat{\Gamma}^0_n(\mathfrak{c})$ of Γ^0_n is isomorphic to the maximal pro-\mathfrak{c} quotient of the geometric fundamental group $\pi_1(M_{0,n} \otimes \bar{k})$. If $\pi^\mathfrak{c}_1(M_{0,n})$ denotes the quotient of the profinite fundamental group $\pi_1(M_{0,n})$ divided by the kernel of $\pi_1(M_{0,n} \otimes \bar{k}) \to \hat{\Gamma}^0_n(\mathfrak{c})$, then the following exact sequence holds:

$$1 \to \hat{\Gamma}^0_n(\mathfrak{c}) \to \pi^\mathfrak{c}_1(M_{0,n}) \to G_k \to 1.$$

Each irreducible divisor D_{ij} gives in $\hat{\Gamma}^0_n(\mathfrak{c})$ a conjugacy union \mathfrak{x}_{ij} of the inertia groups of valuations lying over D_{ij}. We put conventionally $\mathfrak{x}_{ij} = \mathfrak{x}_{ji}$ and $\mathfrak{x}_{ii} = \{1\}$.

(3.1.2) Let $n \geq m \geq 3$ and S a subset of $\{1, \ldots, n\}$ with cardinality $n - m$. There is a canonical morphism $f_S : M_{0,n} \to M_{0,m}$ obtained by forgetting the points a_i $(i \in S)$ on \mathbb{P}^1 and renumbering the suffixes of the other a_k $(k \notin S)$ without change of order in a unique way. The homomorphism
\[\pi_1^\mathfrak{C}(M_{0,n}) \rightarrow \pi_1^\mathfrak{C}(M_{0,m}) \text{ (resp. } \Gamma_0^n \rightarrow \Gamma_0^m) \]
induced from \(f_S \) is denoted by \(p_S \) (resp. \(p_S^\mathfrak{cl} \)), and when \(S = \{ \nu \} \) \((1 \leq \nu \leq n)\) simply by \(p_\nu \) (resp. \(p_\nu^\mathfrak{cl} \)). We call \(p_S \) or \(p_S^\mathfrak{cl} \) the forgetful homomorphism associated to \(S \subset \{1, \ldots, n\} \).

Let \((\Gamma_0^n)\) denote the exact sequence of discrete groups:

\[1 \rightarrow \ker(p_\nu^\mathfrak{cl}) \rightarrow \Gamma_0^n \rightarrow \Gamma_0^{n-1} \rightarrow 1 \]

for some \(\nu \in \{1, \ldots, n\} \) \((n \geq 5)\). We notice that, by symmetry, the group extension is independent of the choice of \(\nu \) and that \(\ker(p_\nu^\mathfrak{cl}) \) is isomorphic to the fundamental group of an \((n - 1)\)-point punctured sphere denoted by \(\Pi_{0,n-1} \).

By using Propositions (1.2.4), (1.2.5) iteratively, we see that \(\Gamma_0^n \) is a \(\mathfrak{C} \)-good group (of type FL). Moreover, \(\ker(p_\nu) \) is isomorphic to the pro-\(\mathfrak{C} \) completion of \(\ker(p_\nu^\mathfrak{cl}) \cong \Pi_{0,n-1} \). Thus \(\Gamma_0^n(\mathfrak{C}) \) is a successive extension of free pro-\(\mathfrak{C} \) groups, hence has trivial center. (This last assertion also follows from Proposition (1.3.3).)

(3.1.3) Let \(D^1 \) be the unit disk on \(\mathbb{P}^1(\mathbb{C}) \) with boundary \(S^1 \) and choose \(n \) points \(a_1, \ldots, a_n \) on \(S^1 \) in the anticlockwise order around \(D^1 \). Let \(a \in M_{0,n}(\mathbb{C}) \) be the points corresponding to \((\mathbb{P}^1; a_1, \ldots, a_n)\). Then, for each \(i, j \) \((1 \leq i < j \leq n)\), we define \(A_{ij} \in \pi_1(M_{0,n}(\mathbb{C}), a) \) to be the homotopy class of the loop represented by the diagram in Fig.1, and put \(A_{ij} = A_{ji}, A_{ii} = 1 \) for all \(1 \leq i, j \leq n \).

It is known that \(\pi_1(M_{0,n}(\mathbb{C}), a) \) is generated by the \(A_{ij} \) \((1 \leq i, j \leq n)\) and that the defining relations are given by the following (3.1.3.1) \(\sim \) (3.1.3.7) (c.f. [27] §3.7, [5] §4.2), in which we shall say a sequence of natural numbers \((i_1, \ldots, i_m)\) is in fair order if \(a_{i_1}, \ldots, a_{i_m} \) are distinct from each other and lie on \(S^1 \) in the anticlockwise order around \(D^1 \).

(3.1.3.1) \(A_{ij} = A_{ji}, A_{ii} = 1 \) \((1 \leq i, j \leq n)\).
\(A_{rs}A_{ij}A_{rs}^{-1} = A_{ij}, \) if \((i, j, r, s)\) is in fair order.

\(A_{js}A_{ij}A_{js}^{-1} = A_{is}^{-1}A_{ij}A_{is}, \) if \((i, j, s)\) is in fair order.

\(A_{rj}A_{ij}A_{rj}^{-1} = A_{ir}^{-1}A_{is}A_{ir}^{-1}A_{ij}A_{ir}^{-1}A_{is}A_{ir}, \) if \((i, r, j, s)\) is in fair order.

\(A_{rs}A_{ij}A_{rs}^{-1} = A_{is}^{-1}A_{ir}A_{is}^{-1}A_{ir}A_{is}, \) if \((i, r, j, s)\) is in fair order.

\(A_{1i} \cdots A_{ni} = 1 \) for each \(1 \leq i \leq n\).

\((A_{12})(A_{13}A_{23}) \cdots (A_{1n}A_{2n} \cdots A_{n-1,n}) = 1.\)

\[\begin{cases}
\sigma_i \sigma_j = \sigma_j \sigma_i & (|i - j| \geq 2), \\
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & (1 \leq i \leq n-2)
\end{cases} \]

Remark. Let \(B_n \) be the Artin braid group with \(n \) strings, presented by the usual generators \(\sigma_1, \ldots, \sigma_{n-1} \) and by relations

Then the pure braid group \(P_n \) is generated by the \(A_{ij} = \sigma_i^{-1} \cdots \sigma_{j-2} \sigma_{j-1} \sigma_{j-2} \cdots \sigma_i \) \((1 \leq i < j \leq n)\). If \(y_i = \sigma_{i-1} \cdots \sigma_2 \sigma_1 \sigma_2 \cdots \sigma_{i-1} \) \((2 \leq i \leq n)\) and \(z_n = y_2 y_3 \cdots y_n \), then the center of \(B_n \) (and of \(P_n \)) is known to be an infinite cyclic group generated by the \(z_n \). Moreover we know the canonical isomorphisms

\[\Gamma_0^n \cong P_{n-1}/\langle z_{n-1} \rangle \cong P_n/\langle z_n, B_n\text{-conjugates of } y_n \rangle. \]

(3.1.4) In the following of this section, we fix the situation as follows. We let \(n \geq 5 \), and assume that the group extension \((\Gamma_0^n)\) is \(\mathcal{C} \)-admissible for a full class of finite groups \(\mathcal{C} \). (We see that \((\Gamma_0^n)\) is \(\mathcal{C} \)-admissible not only for \(\mathcal{C}_{fin} \).)
but also for \mathfrak{C}_l (l: any prime) by observing the relations (3.1.3.2)~(3.1.3.5).

See (1.2.3). We fix a k-rational point $a = (\mathbb{P}^1; a_1, \ldots, a_n) \in M_{0,n}$ and a geometric point \tilde{a} lying over it, together with an embedding of k into \mathbb{C}, so that the pro-\mathfrak{C} completion $\hat{\Gamma}^n_0$ of $\Gamma^m_0 = \pi_1(M_{0,n}(\mathbb{C}), a)$ is canonically identified with the maximal pro-\mathfrak{C} quotient of $\pi_1(M_{0,n}(\mathbb{C}), f_S(a))$. Let x_{ij} denote the image of A_{ij} ($1 \leq i, j \leq m$) in $\pi_1^\mathfrak{C}(M_{0,m})$ under this identification. Then, we have

$$X_{ij} = \{gx_{ij}g^{-1} \mid c \in \mathbb{Z}, g \in \hat{\Gamma}^n_0\}.$$

Given a forgetful homomorphism $p_S : \pi_1^\mathfrak{C}(M_{0,n}, \tilde{a}) \to \pi_1^\mathfrak{C}(M_{0,m}, f_S(\tilde{a}))$ associated to $S \subset \{1, \ldots, n\}$, we identify the geometric part of the target group with the pro-\mathfrak{C} completion of $\pi_1(M_{0,m}(\mathbb{C}), f_S(a))$. In the latter group, we introduce a generator system as in (3.1.3) by using the configuration obtained from Fig.1 by deleting the a_i ($i \in S$) from $S^1 \subset \mathbb{P}^1(\mathbb{C})$, and by renumbering the indices of the remaining a_j ($j \notin S$) without change of order in a unique way. We denote the image of A_{ij} ($1 \leq i, j \leq m$) in $\pi_1^\mathfrak{C}(M_{0,m})$ under the above identification by x_{ij} again. Then, if i or j ($1 \leq i < j \leq n$) belongs to S, then $p_S(x_{ij}) = 1$. Otherwise, $p_S(x_{ij})$ coincides with x_{rs} for some suitable $1 \leq r < s \leq m$. We remark that for $m < n$, the element $x_{ij} \in \pi_1^\mathfrak{C}(M_{0,m})$ is determined only up to conjugacy in $\hat{\Gamma}^n_0$, because it depends on the choice of S for which $M_{0,m}$ is regarded as the target space of f_S.

(3.1.5) Now, let us take an arbitrary G_k-compatible automorphism $f \in Aut_{G_k} \pi_1^\mathfrak{C}(M_{0,n})$.

The remainder of this subsection is devoted to considering how $X_{\lambda\mu}$ ($1 \leq \lambda, \mu \leq n, \lambda \neq \mu$) are mapped by f. In Theorem (3.1.13), we will obtain a conclusion that f permutes these $X_{\lambda\mu}$ among them in such a way that the action is induced from a permutation of the set of indices $\{1, \ldots, n\}$. Letting $m \geq 4$ and $\nu \in \{1, \ldots, m\}$, suppose that for a forgetful homomorphism $p_S : \pi_1^\mathfrak{C}(M_{0,n}) \to \pi_1^\mathfrak{C}(M_{0,m})$ associated to $S \subset \{1, \ldots, n\}$, the following two conditions hold:

(3.1.5.1) $p_S \circ f(X_{\lambda\mu}) \neq 1$;
(3.1.5.2) $p_\nu \circ p_S \circ f(X_{\lambda\mu}) = 1$.

Proposition (3.1.6). Let $z = p_S \circ f(x_{\lambda\mu})$ and assume $\bigcup_{1 \leq i \leq n} f(X_{\lambda i}) \subset ker(p_\nu \circ p_S)$. Then for each $g \in \hat{\Gamma}^m_0$ there exists $g_0 \in ker(p_\nu)$ such that $gzg^{-1} = g_0zg_0^{-1}$.
Proof. Since \(\hat{\Gamma}_0^m \) is generated by the centralizer of \(x_{\lambda \mu} \) and the \(x_{\lambda i} (1 \leq i \leq n) \), this is obvious from the assumption. (cf. [19] Proposition 2.3.1) \(\square \)

Let us choose a group section \(s_{\infty} : G_k \to \pi_1^\ell(M_{0,n}) \) of \(p_{0,n} \) (whose image is) normalizing the inertia subgroup \(\langle x_{\lambda \mu} \rangle \) (and acting on it by conjugation) via the cyclotomic character. Such a section can be constructed, for example, as follows. Consider the forgetful homomorphism \(p_\lambda : \pi_1^\ell(M_{0,n}) \to \pi_1^\ell(M_{0,n-1}) \) so that \(x_{\lambda \mu} \in \ker(p_\lambda) \). The rational point \(\alpha = f_\lambda(a) \) gives a morphism \(Spec k \to M_{0,n-1} \), and induces a group section \(s_\alpha : G_k \to \pi_1^\ell(M_{0,n-1}) \) of \(p_{0,n-1} \). If \(C_\alpha \) is the \((n-1)\)-point punctured projective line represented by \(\alpha \in M_{0,n-1}(k) \), then \(p_\lambda^{-1}(s_\alpha(G_k)) \) is canonically identified with \(\pi_1^\ell(C_\alpha) \) as \(G_k \)-augmented profinite groups. Then, by Belyi’s well-known method, we can construct a complement of \(\pi_1^\ell(C_\alpha \otimes k) \) in \(\pi_1^\ell(C_\alpha) \) normalizing \(\langle x_{\lambda \mu} \rangle \) via the cyclotomic character. [For example, define such a complement by

\[
\left\{ w \in \pi_1^\ell(C_\alpha) \mid wx_{\lambda \mu}w^{-1} = x_{\lambda \mu}^a, \quad wx_{\lambda \rho}w^{-1} = tx_{\lambda \rho}^a t^{-1}, \quad \exists a \in \mathbb{Z}_\ell^\times, \exists t \in (\ker(p_\lambda))^\prime \langle x_{\lambda i} \mid i \neq \lambda, \mu, \rho, \rho' \rangle \right\},
\]

for some \(\rho, \rho' \in \{1, \ldots, n\} \setminus \{\lambda, \mu\}, \rho \neq \rho' \). This gives desired \(s_\infty \). The Galois compatibility of \(f \) assures that \(p_S \circ f \circ s_\infty \) gives also a section \(G_k \to \pi_1^\ell(M_{0,m}) \) of \(p_{0,m} \) normalizing \(\langle p_S \circ f(x_{\lambda \mu}) \rangle \) via the cyclotomic character. Let \(\chi : \pi_1^\ell(M_{0,m}) \to \mathbb{Z}_\ell^\times \) denote the homomorphism obtained by composing \(p_{0,m} : \pi_1^\ell(M_{0,m}) \to G_k \) with the cyclotomic character of \(G_k \). Then since \(\pi_1^\ell(M_{0,m}) \) is a semidirect product of \(\hat{\Gamma}_0^m \) with \(p_S \circ f \circ s_\infty(G_k) \), we can generalize (3.1.6) to the following

Proposition (3.1.7). Let \(z = p_S \circ f(x_{\lambda \mu}) \) and assume \(\bigcup_{1 \leq i \leq n} f(X_{\lambda i}) \subset \ker(p_\nu \circ p_S) \). Then for each \(g \in \pi_1^\ell(M_{0,m}) \), there exists \(g_0 \in \ker(p_\nu) \) such that \(g z g^{-1} = g_0 z^{\chi(g)} g_0^{-1} \). \(\square \)

We proceed under the assumption of Proposition (3.1.7). Let \(x \) denote the rational point \(f_\nu \circ f_S(a) \in M_{0,m-1}(k) \), and \(C_x \) the \((m-1)\)-point punctured projective line over \(k \) represented by \(x \in M_{0,m-1}(k) \). Then, we see that \(\Pi = p_\nu^{-1}(s_x(G_k)) \) is isomorphic to \(\pi_1^\ell(C_x) \) with geometric part
\(\pi = \ker(p_\nu) \), and obtain the following commutative diagram:

\[
\begin{array}{cccccc}
1 & \longrightarrow & \pi & \longrightarrow & \Pi & \longrightarrow & s_x(G_k) & \longrightarrow & 1 \text{ (exact)} \\
\| & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & \ker(p_\nu) & \longrightarrow & \pi_1^\xi(M_{0,m}) & \xrightarrow{p_\nu} & \pi_1^\xi(M_{0,m-1}) & \longrightarrow & 1 \text{ (exact)}.
\end{array}
\]

Let \(l \) be a prime such that \(Syl_l(z) \neq 1 \), and \(z_l \) the \(l \)-component of \(z \). We notice that the same statement as Proposition (3.1.7) holds even if \(z \) is replaced by \(z_l \) there. From this, it follows that \(N_{\Pi(z_l)} \) is surjectively mapped onto \(s_x(G_k) \) by \(p_\nu \). Since \([N_{\pi(z_l)} : C_{\pi(z_l)}] < \infty \) by (1.4.3), Proposition (1.4.1) yields an open subgroup \(M \) of \(N_{\Pi(z_l)} \) such that \(M \cap \pi = C_{\pi(z_l)} \).

Let \(K \) be a finite extension of \(k \) in \(\bar{k} \) with \(p_\nu(M) = s_x(G_K) \). Then the conjugate action of \(M \) on \(\langle z_l \rangle \) gives a Galois character

\[
\psi : G_K \to \text{Aut}(\langle z_l \rangle) = \mathbb{Z}_l^\times.
\]

On the other hand, we have another Galois character \(\chi \) induced from the conjugate action of \(p_S \circ f \circ s_\infty(G_k) \) on \(\langle z_l \rangle \):

\[
\chi : G_K \to \text{Aut}(\langle z_l \rangle) = \mathbb{Z}_l^\times
\]

which apriori coincides with the cyclotomic character. To compare \(\psi \) and \(\chi \), let \(\mathfrak{N} \) be the normalizer of \(z_l \) in \(\pi_1^\xi(M_{0,m}) \). Then, by the construction, we see that for each \(\sigma \in G_K \) there exists \(g(\sigma) \in \mathfrak{N} \cap \hat{I}_0^m \) such that

\[
z_l^{\chi(\sigma)\psi(\sigma)^{-1}} = g(\sigma)z_lg(\sigma)^{-1}.
\]

Proposition (3.1.7) (on \(z_l \)) assures that these \(g(\sigma) \) may be taken from \(\pi = \ker(p_\nu) \). But since \([N_{\pi(z_l)} : C_{\pi(z_l)}] < \infty \), the image of the Galois character \(\chi \psi^{-1} \) is contained in the torsion of \(\mathbb{Z}_l^\times \). From this, we get a finite extension \(L \) of \(K \) in \(\bar{k} \) such that, on \(G_L \), \(\psi \equiv \chi \) (i.e. the cyclotomic character).

This means that \(N := M \cap p_\nu^{-1}(s_x(G_L)) \) gives a "cyclotomic normalizer" of \(z_l \) in \(\Pi \cong \pi_1^\xi(C_x) \) (see 2.1). It follows from the "nonlinear weight filtration" (2.1.1) that \(z_l \) is contained in an inertia group of \(\pi = \pi_1^\xi(C_x \otimes \bar{k}) \). Moreover, by Lemma (2.1.2), the same statement holds for \(z \) itself. Since the union of inertia groups in \(\pi = \ker(p_\nu) \) is \(\bigcup_{1 \leq j \leq m} \mathfrak{X}_{\nu j} \), we obtain
Lemma (3.1.8). Besides the hypothesis of (3.1.5), assume that \(\bigcup_{1 \leq i \leq n} f(\mathcal{X}_{\lambda i}) \subset \ker(p_\nu \circ p_S) \). Then \(p_S \circ f(\mathcal{X}_{\lambda j}) \) is contained in one of the \(\mathcal{X}_{\nu j} \) \((1 \leq j \leq m, j \neq \nu) \). \(\square \)

(3.1.9) Two special irreducible divisors \(D_{ij} \) and \(D_{rs} \) in \(B_n \) normally cross each other if and only if \(\{i, j\} \cap \{r, s\} = \emptyset \). [In fact, this latter condition is necessary and sufficient for \(D_{ij} \cap D_{rs} \neq \emptyset \) ([12] p.153). Assume \(s > i, j \) without loss of generality. The canonical morphism \(f_{\{s\}} : M_{0,n} \to M_{0,n-1} \) is extended naturally to a flat morphism \(\bar{f}_{\{s\}} : B_n \to B_{n-1} \) giving the universal family of stable \((n-1) \)-pointed \(P^1 \)-trees over \(B_{n-1} \) together with an isomorphism \(D_{rs} \sim B_{n-1} \) ([12]). Since \(D_{rs} \) has a neighborhood where \(\bar{f}_{\{s\}} \) is smooth, and since \(D_{ij} \subset B_n \) is a unique irreducible component of \(\bar{f}_{\{s\}}^{-1}(D_{ij}) \) intersecting \(D_{rs} \), they normally cross each other.] In this case, the local monodromy in \(M_{0,n} \) near a general point of \(D_{ij} \cap D_{rs} \) gives a homomorphism \(\rho : \mathbb{Z}_2^2 \to \hat{\Gamma}_{n0} \). The image \(A = \text{Im}(\rho) \) is an abelian subgroup such that

\[(*) \quad \mathcal{X}_{ij} \cap A \neq \{1\}, \quad \mathcal{X}_{rs} \cap A \neq \{1\}. \]

This can also be seen directly from the presentation described in (3.1.3), if we put \(A = \langle x_{ij}, x_{rs} \rangle \) when \((i, j, r, s) \) is in fair order, and \(A = \langle x_{ij}, x_{ir}^{-1}x_{rs}x_{ir} \rangle \) when \((i, r, j, s) \) is in fair order. (For the latter case, use (3.1.3.3) for \((i, r, s) \) together with (3.1.3.5).)

Definition. A closed abelian subgroup \(A \) of \(\hat{\Gamma}_{0n} \) satisfying the condition (*) is called a connecting abelian subgroup between \(\mathcal{X}_{ij} \) and \(\mathcal{X}_{rs} \).

Roughly speaking, we see in \(\hat{\Gamma}_{0n} \) a regular graph system of the special weight \((-2) \) subsets \(\mathcal{X}_{ij} \) \((1 \leq i, j \leq n) \) connected by “edges” of abelian subgroups. An arbitrary Galois compatible automorphism \(f \in Aut_G, \pi^G_\xi(M_{0,n}) \) preserves this graph structure, but we do not apriori know that the images \(f(\mathcal{X}_{ij}) \) actually coincide with the original \(\mathcal{X}_{ij} \) as subsets of \(\hat{\Gamma}_{0n} \). To verify this last assertion later in Theorem (3.1.13), we need two more lemmas. In the remainder of this section, we sometimes omit the symbol “\(\circ \)” making composition of homomorphisms.

Remark. In connection with Hyperbolicity Conjecture on sufficiently open varieties, F.A.Bogomolov suggested a somewhat related idea of rank-2 abelian subgroups. See [6] §3.

Lemma (3.1.10). Under the hypothesis of (3.1.5), either \(\bigcup_{1 \leq i \leq n} \).
Let us deny the conclusion of the lemma. Then \(T \in \bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\lambda i}) \) is contained in \(\ker(p_\nu \circ p_S) \).

Proof. Since the statement is obvious when \(m = 4 \), we may assume \(m \geq 5 \). Define three sets \(\mathfrak{T}, \mathfrak{T}_1, \mathfrak{T}_2 \) by

\[
\mathfrak{T} = \{ T \subset \{1, \ldots, m-1\} \mid 0 \leq |T| \leq m-5 \},
\]

\[
\mathfrak{T}_1 = \left\{ T \in \mathfrak{T} \mid \bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\lambda i}) \notin \ker(p_T p_\nu p_S) \right\},
\]

\[
\mathfrak{T}_2 = \left\{ (\tau, T) \mid \bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\lambda i}) \text{ or } \bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\mu i}) \in \ker(p_T p_\nu p_S) \right\}.
\]

Let us deny the conclusion of the lemma. Then \(\emptyset \in \mathfrak{T}_1 \). Observe that if \(T \in \mathfrak{T}_1 \), then there exists \((\tau, T') \in \mathfrak{T}_2 \) such that \(T \subset T' \).

We first claim that \(\mathfrak{T}_1 \) has an element with cardinality \(m-5 \). If \(m = 5 \), there is nothing to prove. So let \(m \geq 6 \) and suppose that we have \((\tau, T) \in \mathfrak{T}_2 \) with \(|T| < m-5 \). To prove the claim, it suffices to show that there exists \(T' \in \mathfrak{T}_1 \) with \(|T'| = |T| + 1 \). By symmetry, without loss of generality we may assume \(\bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\lambda i}) \subset \ker(p_T p_\nu p_S) \). As \(T \in \mathfrak{T}_1 \), we can choose \(i_0 \) such that \(f(\mathfrak{X}_{\lambda i_0}) \notin \ker(p_T p_\nu p_S) \). Then by Lemma (3.1.8), \(p_T p_\nu p_S f(\mathfrak{X}_{\lambda i_0}) \subset \mathfrak{X}_{\tau j_0} \) for some \(1 \leq j_0 \leq m-1 - |T| \). Let \(\varepsilon \) be such that \(1 \leq \varepsilon \leq m-1 - |T|, \varepsilon \notin \{ \tau, j_0 \} \), and define \(T'' \subset \{1, \ldots, m-1\} \) by \(p_\nu p_T = p_{T''} \). Then \(f(\mathfrak{X}_{\lambda i_0}) \notin \ker(p_{T''} p_\nu p_S) \). If \(\bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\mu i}) \notin \ker(p_{T''} p_\nu p_S) \), then we may take \(T'' \) as \(T' \). So let \(\bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\mu i}) \subset \ker(p_\varepsilon p_T p_\nu p_S) \) and choose \(r \) such that \(f(\mathfrak{X}_{\mu r}) \notin \ker(p_T p_\nu p_S) \). Then by Lemma (3.1.8) again, there exists \(1 \leq s \leq m-1 - |T| \) such that \(p_T p_\nu p_S(\mathfrak{X}_{\mu r}) \subset \mathfrak{X}_{\varepsilon s} \). Since \(m-1 - |T| \geq 5 \), we can choose \(1 \leq \delta \leq m-1 - |T| \) with \(\delta \notin \{ \tau, j_0, \varepsilon, s \} \). Then we may define our desired \(T' \) by \(p_\delta \circ p_T = p_{T'} \). Thus our claim follows.

By the claim, we obtain \(T \in \mathfrak{T}_1 \) with \(|T| = m-5 \). To deduce contradiction, consider the projection \(p = p_T p_\nu p_S : \pi^n(M_{0,n}) \to \pi^n(M_{0,4}) \). Then neither \(\bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\lambda i}) \) nor \(\bigcup_{1 \leq i \leq n} f(\mathfrak{X}_{\mu i}) \) is contained in \(\ker(p) \). As \(f(\mathfrak{X}_{\lambda i}) \subset \ker(p) \) by (3.1.5.2) and \(x_{\lambda 1} \cdots x_{\lambda n} = 1 \) (resp. \(x_{\mu 1} \cdots x_{\mu n} = 1 \)), there exist at least two \(i \)'s outside \(\{ \lambda, \mu \} \) such that \(f(\mathfrak{X}_{\lambda i}) \notin \ker(p) \) (resp. \(f(\mathfrak{X}_{\mu i}) \notin \ker(p) \)). Therefore we may assume \(f(\mathfrak{X}_{\lambda i}), f(\mathfrak{X}_{\mu i}) \notin \ker(p) \) for
some α, γ with $\{\alpha, \gamma\} \cap \{\lambda, \mu\} = \emptyset$, $\alpha \neq \gamma$. Let p_{ab} denote the composite of the restriction of p to \tilde{I}_0^n with the abelianization map $(\)^{ab}$ of \tilde{I}_0^n. Then, since there exists a connecting abelian subgroup between $X_{\lambda\gamma}$ and $X_{\mu\alpha}$, and since \tilde{I}_0^n admits no connecting abelian subgroups between any two of X_{14}, X_{24}, X_{34} (see Corollary (2.1.3)), we get $p_{ab} f(X_{\lambda\gamma})$ and $p_{ab} f(X_{\mu\alpha})$ are contained in the same line Z of either X_{14}^{ab}, X_{24}^{ab} or X_{34}^{ab}. For similar reason, all $p_{ab} f(X_{ij})$ with $\{i, j\} \neq \{\lambda, \mu\}$, $\{\lambda, \alpha\}, \{\mu, \gamma\}, \{\alpha, \gamma\}$ lie in the same image Z. But since $x_{\lambda_1} \cdots x_{\lambda_n} = 1$, $x_{\mu_1} \cdots x_{\mu_n} = 1$ and $f(X_{\lambda\mu}) \subset \ker(p)$ as above, we see that $p_{ab} f(X_{\lambda\alpha})$ and $p_{ab} f(X_{\mu\gamma})$ are also contained in Z. Finally follows that $p_{ab} f(X_{\alpha\gamma}) \subset Z$ from $x_{\alpha_1} \cdots x_{\alpha_n} = 1$, and thus we conclude that all $f(X_{ij}) (1 \leq i, j \leq n)$ are sent into Z by p_{ab}. As \tilde{I}_0^n is generated by these $X_{ij} (1 \leq i, j \leq n)$, this contradicts the surjectivity of p_{ab}. The proof of Lemma (3.1.10) is completed. \hfill \square

As a special case of Lemma (3.1.10) where $m = n$ and $S = \emptyset$, we obtain the following

Corollary (3.1.11). Let $f \in \text{Aut}_{G_k} \pi_1^G(M_{0,n})$, and $\lambda, \mu, \nu \in \{1, \ldots, n\}$ with $\lambda \neq \mu$. Assume $f(X_{\lambda\mu}) \subset \ker(p_\nu)$. Then either $\bigcup_{1 \leq i \leq n} f(X_{\lambda i})$ or $\bigcup_{1 \leq i \leq n} f(X_{\mu i})$ is contained in $\ker(p_\nu)$. \hfill \square

Lemma (3.1.12). Let $f \in \text{Aut}_{G_k} \pi_1^G(M_{0,n})$ and $\nu \in \{1, \ldots, n\}$. Then there exists at least one $X_{ij} (1 \leq i < j \leq n)$ such that $f(X_{ij})$ is contained in $\ker(p_\nu)$.

Proof. The statement is nontrivial when $n \geq 5$. Assume $f(X_{ij}) \not\subset \ker(p_\nu)$ for all $1 \leq i < j \leq n$. Then there exist $S \subset \{1, \ldots, n-1\}$, $\varepsilon \in \{1, \ldots, n-1 - |S|\}$ and $X_{\lambda\mu}$ with $1 \leq \lambda < \mu \leq n$ such that

\begin{align}
(3.1.12.1) & \quad f(X_{ij}) \not\subset \ker(p_{\varepsilon p_\nu}) \quad (1 \leq i < j \leq n), \\
(3.1.12.2) & \quad f(X_{\lambda\mu}) \subset \ker(p_{\varepsilon p_\nu}).
\end{align}

Put $m = n - 1 - |S|$. Then $m \geq 4$ by (3.1.12.1).

By (3.1.8) and (3.1.10), we may assume that each $p_{\varepsilon p_\nu} f(X_{\lambda i}) (1 \leq i \leq n, i \neq \lambda)$ is contained in some $X_{\varepsilon\alpha(i)} (1 \leq \alpha(i) \leq m, \alpha(i) \neq \varepsilon)$. If all $\alpha(i)$ are the same α, then since \tilde{I}_0^n is generated by the $x_{\lambda i} (1 \leq i \leq n)$ and their centralizers, \tilde{I}_0^n must be generated by conjugates of the centralizers of $x_{\varepsilon\alpha}$.

Galois rigidity

111
This is absurd as $m \geq 4$. So we obtain $r(\neq \mu)$ such that

$$p_S p_\nu f(\mathcal{X}_{\lambda r}) \subset \mathcal{X}_{\varepsilon \alpha(r)} \neq \mathcal{X}_{\varepsilon \alpha(\mu)} \supset p_S p_\nu f(\mathcal{X}_{\lambda \mu}).$$

Let $\delta = \alpha(\mu)$. Then $f(\mathcal{X}_{\lambda \mu}) \subset \ker (p_\delta p_S p_\nu)$, $f(\mathcal{X}_{\lambda r}) \not\subset \ker (p_\delta p_S p_\nu)$. Therefore by (3.1.8) and (3.1.10), each $p_S p_\nu f(\mathcal{X}_{\mu j}) (1 \leq j \leq n, j \neq \mu)$ must be contained in some $\mathcal{X}_{\delta \beta(j)} (1 \leq \beta(j) \leq m, \delta \neq \beta(j))$.

Thus we get to a situation where (3.1.12.1) holds and there are two maps

$$\alpha : \{1, \ldots, n\} \setminus \{\lambda\} \to \{1, \ldots, m\} \setminus \{\varepsilon\},$$
$$\beta : \{1, \ldots, n\} \setminus \{\mu\} \to \{1, \ldots, m\} \setminus \{\delta\},$$

with $\alpha(\mu) = \delta$, $\beta(\lambda) = \varepsilon$ such that

$$(3.1.12.3) \begin{cases} p_S p_\nu f(\mathcal{X}_{\lambda i}) \subset \mathcal{X}_{\varepsilon \alpha(i)} & (1 \leq i \leq n, i \neq \lambda), \\ p_S p_\nu f(\mathcal{X}_{\mu j}) \subset \mathcal{X}_{\delta \beta(j)} & (1 \leq j \leq n, j \neq \mu). \end{cases}$$

Claim. The above map α (resp. β) satisfies either of the following:

(i) α (resp. β) is surjective and at least one fibre has cardinality ≥ 2;
(ii) the image of α (resp. β) has cardinality ≥ 2, and each nonempty fibre has cardinality ≥ 2.

It suffices to prove the Claim in the case of α, because the argument can also be applied to the case of β in a parallel way by the symmetry of α and β. (Notice that (3.1.12.2) results from (3.1.12.3).) Let X_{ij} denote the image of $x_{ij} (1 \leq i, j \leq m)$ in the abelianization of $\hat{\Gamma}_m^0$. Then applying $p_S p_\nu f$ to $x_{\lambda 1} \cdots x_{\lambda n} = 1$, we obtain

$$\sum_{\substack{i \neq \lambda \\text{and} \\varepsilon \not\in \{i\}}} c_i X_{\varepsilon \alpha(i)} = 0 \quad (\exists c_i \in \mathbb{Z}_\mathcal{E} \setminus \{0\})$$

Rewrite this as

$$\sum_{\substack{j \neq \varepsilon \\text{and} \\alpha(i) = j \\text{for some} \\alpha(i)}} d_j X_{\varepsilon j} = 0 \quad (d_j = \sum_{\alpha(i) = j} c_i),$$
and compare it with the basic equation from (3.1.3.6): \(\sum_{1 \leq j \leq m} X_{\varepsilon j} = 0 \). Then either of the following holds.

Case (i): \(0 \neq \exists d = d_j \) \((1 \leq j \leq m, j \neq \varepsilon)\). In this case, the map \(\alpha \) must be surjective. Since \(n > m \), this case yields (i) of the Claim.

Case (ii): \(\forall d_j = 0 \) \((1 \leq j \leq m, j \neq \varepsilon)\). In this case, for each \(j \), \(\sum_{\alpha(i)=j} c_i = 0 \). Since \(c_i \neq 0 \), we have at least two \(i \)'s with \(\alpha(i) = j \) if \(\alpha^{-1}(j) \neq \emptyset \). As we already know \(\alpha(r) \neq \alpha(\mu) \), this case yields (ii) of the Claim.

Thus the Claim (3.1.12.4) follows.

Let us deduce contradiction by using this Claim. Assume first that \(|\beta^{-1}(\varepsilon)| \geq 2 \), i.e., there exists \(v \neq \lambda \) such that \(\beta(v) = \beta(\lambda) = \varepsilon \). If \(v \neq r \), then a connecting abelian subgroup between \(X_{\varepsilon \mu} \) and \(X_{\varepsilon \lambda} \) exists. But \(ps_{\nu} f(X_{\varepsilon \mu}) \subset X_{\varepsilon \delta} \) and \(ps_{\nu} f(X_{\varepsilon \lambda}) \subset X_{\varepsilon \alpha(r)} \) are both contained non-trivially in \(ker(p_{\varepsilon}) \) which is free of rank \(m - 2 \). This forces \(\delta = \alpha(r) \), hence contradiction. Therefore we may assume \(v = r \). We apply (3.1.8) and (3.1.10) to

\[
\begin{align*}
ps_{\nu} f(X_{\varepsilon \lambda r}) & \subset X_{\varepsilon \alpha(r)} \subset ker(p_{\alpha(r)}), \\
ps_{\nu} f(X_{\varepsilon \lambda \mu}) & \subset X_{\varepsilon \delta} \not\subset ker(p_{\alpha(r)}).
\end{align*}
\]

Then there exists \(q \) \((1 \leq q \leq m, q \neq \alpha(r))\) such that

\[ps_{\nu} f(X_{\varepsilon q \alpha(r)}) \subset X_{\varepsilon q \alpha(r)}. \]

But since \(ps_{\nu} f(X_{\varepsilon \mu r}) \subset X_{\varepsilon \delta \beta(r)} \) and \(\delta \neq \alpha(r) \), we obtain \(q = \delta \). On the other hand, when \(r = v \), we have

\[ps_{\nu} f(X_{\varepsilon \mu r}) = ps_{\nu} f(X_{\varepsilon \mu v}) \subset X_{\varepsilon \delta \beta(v)} = X_{\varepsilon \delta \varepsilon}. \]

Therefore we must conclude \(\alpha(r) = \varepsilon \). This is a contradiction.

By (3.1.12.4) and the symmetry of \(\alpha \) and \(\beta \), it remains to consider the case where \(|\beta^{-1}(\varepsilon)| = 1 \) and \(\alpha \) is surjective. But then, we can take \(\tau \not\in \{\varepsilon, \delta\} \) such that \(|\beta^{-1}(\tau)| \geq 2 \), and further \(u \in \alpha^{-1}(\tau) \) and \(v \in \beta^{-1}(\tau) \) such that \(u \neq v \). Then \(ps_{\nu} f(X_{\lambda u}) \subset X_{\varepsilon \tau} \) and \(ps_{\nu} f(X_{\mu v}) \subset X_{\delta \tau} \) are both contained in \(ker(p_{\tau}) \) which is free of rank \(m - 2 \). This contradicts the existence of a connecting abelian subgroup between \(X_{\lambda u} \) and \(X_{\mu v} \). Thus the proof of Lemma (3.1.12) is completed. \(\square \)

Now we are in a position to prove the following
THEOREM (3.1.13). Let f be a G_k-compatible automorphism of \(\pi_1^G(M_{0,n}) \) \((n \geq 4)\). Then, there exists a G_k-compatible automorphism h of it coming from $\text{Aut}_k(M_{0,n})$ such that $f \circ h$ maps each X_{ij} onto itself \((1 \leq i < j \leq n)\).

PROOF. The case of $n = 4$ follows from the weight filtration of non-linear type (Theorem (2.1.1)). We assume $n \geq 5$. Let f be an arbitrary element of $\text{Aut}_G \pi_1^G(M_{0,n})$, and $p_n : \pi_1^G(M_{0,n}) \to \pi_1^G(M_{0,n-1})$ the forgetful homomorphism defined in (3.1.2). By Lemma (3.1.12) there exists $X_{\lambda \mu}$ such that $f(X_{\lambda \mu}) \subset \ker(p_n)$. Applying Corollary (3.1.11) we may assume without loss of generality that

\[\bigcup_{1 \leq i \leq n} f(X_{\lambda i}) \subset \ker(p_n). \tag{3.1.13.1} \]

Then by Lemma (3.1.8), each of the $f(X_{\lambda i}) \ (1 \leq i \leq n, i \neq \lambda)$ coincides with one of the $X_{n j} \ (1 \leq j \leq n - 1)$ respectively. Therefore we can take an element h of $\text{Aut}_G \pi_1^G(M_{0,n})$ coming from $S_n (\cong \text{Aut}_k(M_{0,n}))$ such that

\[f \circ h(X_{n i}) = X_{n i} \quad (1 \leq i \leq n - 1). \tag{3.1.13.2} \]

Next, let us consider the other forgetful homomorphisms $p_\nu : \pi_1^G(M_{0,n}) \to \pi_1^G(M_{0,n-1}) \ (1 \leq \nu \leq n - 1)$. Since we already know $f \circ h(X_{n \nu}) \subset \ker(p_\nu)$ by (3.1.13.2), by applying (3.1.8), (3.1.11) and (3.1.13.2) again, we see that $f \circ h$ must induce a permutation of the set

\[\mathcal{X}^{(\nu)} = \{ X_{j \nu} \mid 1 \leq j \leq n - 1, j \neq \nu \} \]

for each ν. (Notice that $X_{n \nu}$ is preserved by $f \circ h$.) Then observing $\{ X_{ij} \} = \mathcal{X}^{(i)} \cap \mathcal{X}^{(j)}$, we conclude $f \circ h(X_{ij}) = X_{ij} \ (1 \leq i, j \leq n - 1)$. This completes the proof of Theorem (3.1.13). \(\square\)

3.2. Reduction to $\mathbb{P}^1 - \{0,1,\infty\}$, Proof of Theorem A

Let \mathcal{C} be a full class of finite groups, and $\hat{\Gamma}_0^n$ denote the pro-\mathcal{C} completion of $\Gamma_0^n \ (n \geq 4)$.

DEFINITION (3.2.1). A continuous automorphism f of $\hat{\Gamma}_0^n$ is said to be quasi-special if it satisfies

\[f(X_{ij}) = X_{ij} \]
for all $1 \leq i < j \leq n$. (See (3.1.1) or (3.1.4) for the definition of \mathfrak{x}_{ij}.) We denote by $\text{Aut}^b(\hat{\Gamma}_0^n)$ the group of all the quasi-special automorphisms of $\hat{\Gamma}_0^n$. Moreover we put $\text{Out}^b(\hat{\Gamma}_0^n) = \text{Aut}^b(\hat{\Gamma}_0^n)/\text{Inn}\hat{\Gamma}_0^n$. It is easy to see that each $f \in \text{Aut}^b(\hat{\Gamma}_0^n)$ acts on $\hat{\Gamma}_0^n/[\hat{\Gamma}_0^n, \hat{\Gamma}_0^n]$ by multiplication by a constant $a_f \in \mathbb{Z}_\bar{\xi}$. When $a_f = 1$, we say that f is a special automorphism of $\hat{\Gamma}_0^n$ (cf. [19]).

Let $n \geq 5$, and $p_\nu : \hat{\Gamma}_0^n \to \hat{\Gamma}_0^{n-1}$ the forgetful homomorphism associated to $\nu \in \{1, \ldots, n\}$. Since $\ker(p_\nu)$ is generated by the \mathfrak{x}_i ($1 \leq i \leq n$), there are canonical homomorphisms

$$q_\nu : \text{Aut}^b(\hat{\Gamma}_0^n) \to \text{Aut}^b(\hat{\Gamma}_0^{n-1}),$$

$$\bar{q}_\nu : \text{Out}^b(\hat{\Gamma}_0^n) \to \text{Out}^b(\hat{\Gamma}_0^{n-1})$$

induced by p_ν ($1 \leq \nu \leq n$).

Lemma (3.2.2). Let $n \geq 5$ and assume that the group extension (Γ_0^n) is \mathfrak{C}-admissible (3.1.2). Then for each pair of $\lambda, \mu \in \{1, \ldots, n\}$ with $\lambda \neq \mu$, the homomorphism

$$(\bar{q}_\lambda, \bar{q}_\mu) : \text{Out}^b(\hat{\Gamma}_0^n) \to \text{Out}^b(\hat{\Gamma}_0^{n-1}) \times \text{Out}^b(\hat{\Gamma}_0^{n-1}), \quad h \mapsto (\bar{q}_\lambda(h), \bar{q}_\mu(h))$$

is injective.

Proof. By symmetry, we may assume $\lambda = 1, \mu = n$. Let us introduce the generator system $\{x_{ij} \mid 1 \leq i < j \leq n\}$ of $\hat{\Gamma}_0^n$ as in (3.1.3). Suppose we are given an automorphism $f \in \text{Aut}^b(\hat{\Gamma}_0^n)$ such that $q_1(f)$ and $q_n(f)$ are inner automorphisms. Then $a_f = 1$. Since the centralizer of $x_{n-1,n}$ in $\hat{\Gamma}_0^n$ is mapped surjectively onto $\hat{\Gamma}_0^{n-1}$ via p_n, replacing f by a composition with an inner automorphism of $\hat{\Gamma}_0^n$, we may normalize f to satisfy

(3.2.2.1) $f(x_{n-1,n}) = x_{n-1,n}$;

(3.2.2.2) $f(x_{n-2,n}) = tx_{n-2,n}t^{-1}$, $\exists t \in (\ker(p_n))'\langle x_{1n}, \ldots, x_{n-4,n} \rangle$;

(3.2.2.3) $q_n(f) =$identity.

If \mathfrak{B} is a subgroup of $\hat{\Gamma}_0^n$ defined by

$$\mathfrak{B} = \left\{ g \in \hat{\Gamma}_0^n \mid gx_{n-1,n}g^{-1} = x_{n-1,n}, \quad gx_{n-2,n}g^{-1} = tx_{n-2,n}t^{-1}, \quad \exists t \in (\ker(p_n))'\langle x_{1n}, \ldots, x_{n-4,n} \rangle \right\},$$

then...
then (3.2.2.1)-(3.2.2.2) assures $f(\mathcal{B}) = \mathcal{B}$. Moreover, by (3.2.2.3), \mathcal{B} is pointwise fixed by f, for the restriction of p_n to \mathcal{B} gives an isomorphism of \mathcal{B} onto $\hat{\Gamma}_0^{m-1}$. We next define subgroups $\mathcal{B}' \subset \hat{\Gamma}_0^m, \mathcal{B}'_0 \subset \hat{\Gamma}_0^{m-1}$ by

$$
\mathcal{B}' = \left\{ g \in \hat{\Gamma}_0^m \mid gx_{12}g^{-1} = x_{12}, \quad gx_{13}g^{-1} = tx_{13}t^{-1}, \quad \exists t \in (\ker(p_1))'(x_{15}, \ldots, x_{1n}) \right\},
$$

$$
\mathcal{B}'_0 = \left\{ g \in \hat{\Gamma}_0^{m-1} \mid gx_{12}g^{-1} = x_{12}, \quad gx_{13}g^{-1} = tx_{13}t^{-1}, \quad \exists t \in (\ker(p_1))'(x_{15}, \ldots, x_{1,n-1}) \right\}.
$$

As $x_{12}, x_{13} \in \mathcal{B}$, we have $f(x_{12}) = x_{12}, f(x_{13}) = x_{13}$, from which we see $f(\mathcal{B}') = \mathcal{B}'$. Since p_1 gives an isomorphism $\mathcal{B}' \cong \hat{\Gamma}_0^{m-1}$, f acts on \mathcal{B}' as an inner automorphism by an element γ of \mathcal{B}'. Now there is a commutative diagram

$$
\begin{array}{ccc}
\hat{\Gamma}_0^m \supset \mathcal{B}' & \xrightarrow{\sim} & \hat{\Gamma}_0^{m-1} \\
p_n \downarrow & & \downarrow p_{n-1} \\
\hat{\Gamma}_0^{m-1} \supset \mathcal{B}'_0 & \xrightarrow{\sim} & \hat{\Gamma}_0^{m-2} \\
p_n \downarrow & & \downarrow p_{n-1} \\
\end{array}
$$

and by the definition of \mathcal{B}'_0, the restriction of p_n maps \mathcal{B}' into (hence onto) \mathcal{B}'_0. From this and (3.2.2.3) together with the center-triviality of \mathcal{B}', it follows that $\gamma \in \ker(p_n) \cap \mathcal{B}'$. Moreover, noticing that $x_{n-1,n}, x_{n-2,n} \in \mathcal{B}$, by (3.2.2.1)-(3.2.2.2), we conclude that $\gamma = 1$. Thus f acts trivially on \mathcal{B}', and hence $q_1(f) =$-identity. In particular, since $x_{in} \in \mathcal{B}' (3 \leq i \leq n - 1),$

(3.2.2.4) $$f(x_{in}) = x_{in} \quad (3 \leq i \leq n - 1).$$

Next we consider

$$
\mathcal{B}'' = \left\{ g \in \hat{\Gamma}_0^m \mid gx_{13}g^{-1} = x_{13}, \quad gx_{12}g^{-1} = tx_{12}t^{-1}, \quad \exists t \in (\ker(p_1))'(x_{15}, \ldots, x_{1n}) \right\}.
$$

Then, for the similar reason as for \mathcal{B}', f preserves setwise \mathcal{B}''. But since $q_1(f)$ is trivial, the action of f on it must be trivial. By (3.1.3), we compute

$$
x_{2n}x_{13}x_{2n}^{-1} = (x_{1n}^{-1}x_{12}^{-1}x_{ln}x_{12})x_{13}(x_{12}^{-1}x_{1n}^{-1}x_{12}x_{1n});$$

$$
x_{2n}x_{12}x_{2n}^{-1} = x_{1n}^{-1}x_{12}x_{1n}.$$
From this together with (3.1.3.4), we see that
\[(3.2.2.5) \quad x_{1n}x_{2n}x_{1n}^{-1} = (x_{1n}^{-1}x_{12}^{-1}x_{1n}x_{12})^{-1}x_{2n} \in \mathcal{B}'' \text{ is fixed by } f.\]

On the other hand, it follows from (3.2.2.4) and (3.1.3.6) that
\[(3.2.2.6) \quad x_{1n}x_{2n} = (x_{3n} \ldots x_{n-1,n})^{-1} \text{ is also fixed by } f.\]

Thus, by (3.2.2.4)-(3.2.2.6), we conclude that \(f\) acts trivially on \(\ker (p_n)\).

Since \(\hat{\Gamma}_0^n = \ker (p_n) \times \mathcal{B}\), this completes the proof of Lemma (3.2.2).

\[\square\]

Remark. When \(\mathfrak{C} = \mathfrak{C}_l\) (\(l\): a prime), Ihara [19] proved a stronger result that
\[\bar{q}_\nu : \text{Out}^\flat \hat{\Gamma}_0^n \to \text{Out}^\flat \hat{\Gamma}_0^{n-1}\]
is already injective \((1 \leq \nu \leq n)\).

We shall apply Lemma (3.2.2) to Galois compatible automorphisms of \(\pi_1(M_{0,n})\). Let
\[\Phi_n = \Phi_{M_{0,n}}^\mathfrak{C} : \text{Aut}_k(M_{0,n}) \to E_k^\mathfrak{C}(M_{0,n})\]
be the canonical homomorphism introduced in \(\S 0\). By Theorem (3.1.13), we have a homomorphism
\[\Psi_n : E_k^\mathfrak{C}(M_{0,n}) \to \text{Aut}_k(M_{0,n})\]
such that the restriction of any element of \(\ker (\Psi_n)\) to \(\hat{\Gamma}_0^n\) belongs to \(\text{Out}^\flat (\hat{\Gamma}_0^n)\). Let \(U_k^\mathfrak{C}(M_{0,n})\) denote the kernel of \(\Psi_n\). Then since \(E_k^\mathfrak{C}(M_{0,n})\) is identified with \(\text{Out}^\flat G_k \hat{\Gamma}_0^n\) by (1.5.7), \(U_k^\mathfrak{C}(M_{0,n})\) is isomorphic to the centralizer of the Galois image in \(\text{Out}^\flat (\hat{\Gamma}_0^n)\). On the other hand, the exterior Galois representation \(\varphi_{0,n} : G_k \to \text{Out}^\flat (\hat{\Gamma}_0^n)\) also has its image in \(\text{Out}^\flat (\hat{\Gamma}_0^n)\), and satisfies the compatibility condition \(\varphi_{0,n-1} = q_\nu \circ \varphi_{0,n}\) for every \(1 \leq \nu \leq n\). Therefore Lemma (3.2.2) implies the following

Corollary (3.2.3). Under the same assumption of Lemma (3.2.2), we have an injective homomorphism \(U_k^\mathfrak{C}(M_{0,n}) \to U_k^\mathfrak{C}(M_{0,n-1}) \times U_k^\mathfrak{C}(M_{0,n-1})\).
Remark. In the above discussion, the fact that $\text{Aut}_k(M_{0,n}) \cong S_n$ for $n \geq 5$ ([45],[29]) is not used yet. Using this fact, we can conclude at once that Ψ_n gives an inverse of Φ_n with $\Psi_n \circ \Phi_n = 1$ and that $\text{Aut}_k(M_{0,n})$ is embedded into $E_k^\xi(M_{0,n})$. In the proof of the following theorem, we will admit this fact as in §0, but actually we do not need it for the result that $E_k^{(l)}(M_{0,n}) \cong S_n$ for $n \geq 5$. In fact, from this latter result we can compute $\text{Aut}_k(M_{0,n})$ conversely as in [34] §5.

Now we are in a position to prove Theorem A.

Theorem A. If l is an odd prime, then $\text{Out}_{\pi_1^{(l)}}(M_{0,n})$ is finite, and the homomorphism

$$\Phi_{M_{0,n}}^{(l)} : \text{Aut}_k M_{0,n} \rightarrow E_k^{(l)}(M_{0,n})$$

gives a bijection ($n \geq 4$). Moreover, if $\Gamma_n^{\text{pro-l}}$ denotes the pro-l completion of Γ_0^n, then the canonical exterior representation

$$\varphi_{0,n}^{(l)} : G_k \rightarrow \text{Out}_{\Gamma_0^{\text{pro-l}}}$$

induced from the variety $M_{0,n}$ over k has image whose centralizer is isomorphic to S_3 when $n = 4$, and to S_n when $n \geq 5$.

Proof. By (1.5.7), (1.6.3), we have only to show the bijectivity of $\Phi_{M_{0,n}}^{(l)}$ for $n \geq 4$ (l: an odd prime). For this it suffices to show that $U_k^\xi(M_{0,n}) = \{1\}$ for $\xi = \xi_l$. But by Corollary (3.2.3), we are reduced to the case of $M_{0,4} = \mathbb{P}^1 - \{0,1,\infty\}$ which was dealt in [31]. (See also 2.2) □

§4. Lie variants

4.1. Graded automorphisms

We denote the lower central series of a group Γ by $\Gamma = \Gamma(1) \supset \Gamma(2) \supset \ldots$, and the associated graded Lie algebra by

$$\text{gr} \Gamma = \bigoplus_{i=1}^{\infty} \text{gr}_i \Gamma.$$
Each graded piece $gr_i\Gamma$ is the quotient abelian group $\Gamma(i)/\Gamma(i+1)$, and the Lie bracket $[X,Y] \in gr_{i+j}\Gamma$ of $X \in gr_i\Gamma$ and $Y \in gr_j\Gamma$ is defined by

$$[X,Y] = xyx^{-1}y^{-1} \mod \Gamma(i+j+1)$$

where $x \in \Gamma(i), y \in \Gamma(j)$ are representatives of X, Y respectively.

The notations being as in (3.1.1)~(3.1.3), we consider the discrete group $\Gamma_0^n = \pi_1(M_{0,n}(\mathbb{C}), a)$ for $n \geq 3$, and let X_{ij} denote the image of $A_{ij} \in \Gamma_0^n$ in $gr_1\Gamma_0^n$.

Proposition (4.1.1) (Kohno/Hain; in this form, see Ihara[19] 3.1). The Lie algebra $gr\Gamma_0^n$ has the following presentation:

- **generators**: X_{ij} (1 ≤ i, j ≤ n),

- **relations**:

\[
\begin{align*}
X_{ii} &= 0 \quad (1 \leq i \leq n), \\
X_{ij} &= X_{ji} \quad (1 \leq i, j \leq n), \\
\sum_{j=1}^{n} X_{ij} &= 0 \quad (1 \leq i \leq n), \\
[X_{ij}, X_{rs}] &= 0, \quad \text{if } \{i, j\} \cap \{r, s\} = \emptyset.
\end{align*}
\]

We shall denote by $p_S : \Gamma_0^n \rightarrow \Gamma_0^m$ the canonical homomorphism induced from the morphism $f_S : M_{0,n}(\mathbb{C}) \rightarrow M_{0,m}(\mathbb{C})$ (3.1.2), and call it the forgetful homomorphism associated to $S \subset \{1, \ldots, n\}$. Each p_S induces a graded Lie algebra homomorphism

$$grp_S \otimes K : gr\Gamma_0^n \otimes K \rightarrow gr\Gamma_0^m \otimes K$$

for any commutative ring K. It follows from Lemma 3.1.1 of [19] and the presentation in (3.1.3) that $ker(grp_S \otimes K) \cong gr(kerp_S) \otimes K$. In particular when $S = \{\nu\}$, $ker(grp_\nu \otimes K)$ is isomorphic to the free Lie algebra generated by $gr_1(zerp_\nu) \otimes K$.

Observe that the product group $S_n \times K^\times$ acts on $gr_1\Gamma_0^n \otimes K$ by

$$(\sigma, \lambda)(X_{ij}) = \lambda \cdot X_{\sigma(i)\sigma(j)} \quad (\sigma \in S_n, \lambda \in K^\times),$$
and that these operations extend naturally to graded automorphisms of the Lie algebra $gr\Gamma^n_0 \otimes K$. The purpose of this subsection is to verify the following lemma expected by P.Deligne.

Lemma (4.1.2). Let K be a field. Then the group of the graded automorphisms of the graded Lie algebra $gr\Gamma^n_0 \otimes K$ is isomorphic to $S_n \times K^\times$ when $n \geq 5$.

We can prove this lemma by modifying combinatorial arguments developed in §3 in a suitable way in the context. But in the present fully linearized situation, there is a more natural “characterization of infinity” due to P.Deligne which makes the proof of the lemma very simple. So, in the following, we shall take the latter line for the proof of Lemma (4.1.2).

Lemma (4.1.3) (P.Deligne). Let X be an element of $gr\Gamma^n_0 \otimes K$ ($n \geq 5$), $C(X)$ the centralizer of X in $gr\Gamma^n_0 \otimes K$, $C_1(X) = C(X) \cap gr\Gamma^n_0 \otimes K$. Then the following two conditions on X are equivalent:

(a) $\dim C_1(X) \geq \frac{(n-1)(n-4)}{2} + 1$;

(b) X is a scalar multiple of one of the X_{ij} (1 $\leq i < j \leq n$).

Proof. We first notice that $\dim gr\Gamma^n_0 \otimes K = n(n-3)/2$. As was proved by Ihara [19] Proposition 3.3.1(ii), (b) implies the equality in (a). So we let X satisfy (a), and argue by induction on $n \geq 5$. Let us denote $grp_\nu \otimes K : gr\Gamma^n_0 \otimes K \to gr\Gamma^{n-1}_0 \otimes K$ simply by p_ν. For $X \neq 0$, we can always find ν (1 $\leq \nu \leq n$) such that $p_\nu(X) \neq 0$. Therefore, by symmetry, we may assume $p_n(X) \neq 0$.

Step 1: $n = 5$. By assumption, we have $\dim C_1(X) \geq 3$ with $p_5(X) \neq 0$. Since $gr\Gamma^n_0$ is a free Lie algebra of rank 2, there are no rank 2 commutative subspaces in $gr\Gamma^n_0 \otimes K$. Therefore $\dim C_1(X) \cap ker p_5 = 2$. This means that the linear homomorphism $ad(X) : gr_1(\ker p_5) \to gr_2(\ker p_5)$ has exactly 2-dimensional kernel. Let

$$\mathfrak{B} = \{Y \in gr\Gamma^5_0 \otimes K | [Y, X_{45}] = 0, [Y, X_{35}] = [T, X_{35}] \exists T \in KX_{25}\}.$$

It is easy to see that $\mathfrak{B} \cap ker p_5 = 0$, and that p_5 gives an isomorphism $\mathfrak{B} \cong gr\Gamma^4_0 \otimes K$. We choose free generators (X_1, X_2, X_3) of $ker p_5$ and basis (Y_1, Y_2) of \mathfrak{B} as follows: $X_1 = X_{25}, X_2 = X_{35}, X_3 = X_{45}, Y_1 = X_{23}, Y_2 =$
\(X_{12} + X_{23}\). Then we have
\[
[Y_1, X_1] = [X_1, X_2], \quad [Y_1, X_2] = -[X_1, X_2], \quad [Y_1, X_3] = 0,
\]
\[
[Y_2, X_1] = [X_3, X_1], \quad [Y_2, X_2] = -[X_1, X_2], \quad [Y_2, X_3] = 0.
\]
\]

Put \(X = aY_1 + bY_2 + cX_1 + dX_2 + eX_3\) \((a, b, c, d, e \in K)\). Then the linear homomorphism \(ad(X): gr_1(\ker p_5) \to gr_2(\ker p_5)\) is expressed as follows:
\[
ad(X)(X_1, X_2, X_3)
= ([X_1, X_2], [X_2, X_3], [X_3, X_1])
\begin{pmatrix}
a - d & -a - b + c & 0 \\
0 & -e & d \\
b + e & 0 & -c
\end{pmatrix}.
\]

When \(a \neq 0\), we may assume \(a = 1\). Then the above condition on the degeneration of \(ad(X)\) gives four solutions:
\[
(a, b, c, d, e) = (1, 0, 0, 0, 0), (1, -1, 0, 0, 0), (1, 0, 1, 1, 0), (1, -1, 0, 1, 1),
\]
which correspond to \(X = X_{23}, -X_{12}, X_{14}, -X_{34}\) respectively. (In the computation, we use equations like \(X_{12} + X_{23} + X_{13} = X_{45}\) which are derived easily from (3.1.3.6) and (3.1.3.7).) When \(a = 0\), we may assume \(b = 1\) as \(p_5(X) \neq 0\). In this case we obtain two solutions:
\[
(a, b, c, d, e) = (0, 1, 1, 0, 0), (0, 1, 0, 0, -1),
\]
which give \(X = -X_{24}, -X_{13}\) respectively.

Step 2: \(n \geq 6\). We consider the exact sequence
\[
0 \to C_1(X) \cap \ker p_n \to C_1(X) \to C_1(p_n(X)).
\]

Case 1: \(\dim C_1(p_n(X)) \leq (n - 2)(n - 5)/2\).
In this case, \(\dim(C_1(X) \cap \ker p_n) \geq n - 2 = \dim(\ker p_n)\). Therefore \(C_1(X) \supset \ker p_n\). This is impossible: we may express \(X\) as \(\sum_{1 \leq i < j < n} a_{ij}X_{ij}\) \((a_{ij} \in K)\). Then \([X_{in}, \sum_{j \neq i, n} a_{ij}X_{jn}] = 0\). (Use \([X_{in}, X_{ij}] = [X_{jn}, X_{in}]\).) As \(gr(\ker p_n)\) is free of rank \(n - 2\), we get all \(a_{ij} = 0\), i.e., contradiction.

Case 2: \(\dim C_1(p_n(X)) > (n - 2)(n - 5)/2\).
In this case, we may apply the induction hypothesis to \(p_n(X)(\neq 0)\), and may
assume \(p_n(X) = X_{rs} \) for some \(1 \leq r < s \leq n - 1 \). Then \(\dim p_n(C_1(X)) \leq \dim C_1(p_n(X)) = 1 + (n - 2)(n - 5)/2 \). From this we get (*): \(\dim(C_1(X) \cap \ker p_n) \geq n - 3 \). Let us put \(X = X_{rs} + \sum_{k=1}^{n-1} a_k X_{kn} \) (\(a_k \in K \)), and choose three indices \(l_i \) (\(i = 1, 2, 3 \)) from \(\{1, ..., n - 1\} \setminus \{r, s\} \). By (*), there is a linear combination \(Y_{ij} \) of \(X_{ln} \) and \(X_{lj} \) contained in \(C_1(X) \setminus \{0\} \) for every \((i, j) = (1, 2), (2, 3), (3, 1) \). Then \([X, Y_{ij}] = (\sum_{k=1}^{n-1} a_k X_{kn}, Y_{ij}) = 0 \), from which it follows that \(\sum_{k=1}^{n-1} a_k X_{kn} \) is a scalar multiple of \(Y_{ij} \). Since \(KY_{12} \cap KY_{23} \cap KY_{31} = 0 \), we conclude \(X = X_{rs} \). □

We are now in a position to prove Lemma (4.1.2).

Proof of Lemma (4.1.2). Let \(f \) be an arbitrary graded Lie algebra automorphism of \(gr\Gamma^0_{n} \otimes K \) (\(n \geq 5 \)). By Lemma (4.1.3), \(f \) permutes the lines generated by \(X_{ij} \) (\(1 \leq i < j \leq n \)). Considering the commutation relations: \([X_{ij}, X_{rs}] = 0 \) (\(\{i, j\} \cap \{r, s\} = \emptyset \)), we find that there exists a permutation \(\sigma \in S_n \) such that \(f(X_{ij}) = \lambda_{ij} X_{\sigma(i)\sigma(j)} \) for some \(\lambda_{ij} \neq 0 \) (\(1 \leq i < j \leq n \)). But since \(f \) preserves the relations \(\sum_{1 \leq j \leq n} X_{ij} = 0 \) (\(1 \leq i \leq n \)), all \(\lambda_{ij} \) must coincide with a constant \(\lambda \in K^\times \). This completes our proof of the lemma. □

4.2. Pure sphere braid Lie algebras

In this subsection, we show that the pure sphere braid Lie algebras with \(n \) strings (\(n \geq 5 \)) have also Galois rigidity properties, along the lines suggested by P. Deligne. The synthetic reference for the formulation of this section is [8]. In the following, we fix a prime \(l \), and denote by \(\Gamma^{pro-l} \) the pro-\(l \) completion of a discrete group \(\Gamma \).

(4.2.1) Let us begin by considering the quotient nilpotent group \(\Gamma_0^n / \Gamma_0^n(N) \) for \(N \geq 1 \). This is obviously finitely generated, and has no torsion for \(gr\Gamma_0^n \) is torsion-free. Therefore \(\Gamma_0^n / \Gamma_0^n(N) \) is residually finite-\(l \) ([15] Theorem 2.1). It follows that the pro-\(l \) completion of \(\Gamma_0^n / \Gamma_0^n(N) \) is isomorphic to \(\Gamma_0^{n,pro-l} / \Gamma_0^{n,pro-l}(N) \), where \(\{\Gamma_0^{n,pro-l}(N)\}_{N=1}^{\infty} \) denotes the lower central series of the pro-\(l \) group \(\Gamma_0^{n,pro-l} \). Since \(\Gamma_0^{n,pro-l}(N) \) is a characteristic subgroup of \(\Gamma_0^{n,pro-l} \), we have a canonical representation

\[
\varphi_{n,N}^{(l)} : G_k \to Out(\Gamma_0^{n,pro-l} / \Gamma_0^{n,pro-l}(N)).
\]

As is well known, \((\Gamma_0^n / \Gamma_0^n(N))^{pro-l}\) is an \(l \)-adic analytic group (e.g. [24] Proposition 2.6), the Lie algebra of which we denote by \(\mathcal{L}_i^{[N]} \) (or \(\mathcal{L}_i^{[N]}(\Gamma_0^n) \)).
Then $\mathcal{L}_l^{[N]}$ is a nilpotent Lie algebra over \mathbb{Q}_l on which the exterior Galois action $\varphi_{n,N}^{(l)}$ defines a weight filtration $\{W.\}$ via the Frobenius eigenvalues.

(4.2.2) On the other hand, we have a rational mixed Hodge structure $\{W., F.\}$ on the Malcev Lie algebra $L_\mathbb{Q}^{[N]}$ of $\Gamma_0^n/\Gamma_0^n(N)$ and have a canonical isomorphism $\mathcal{L}_l^{[N]} \cong L_\mathbb{Q}^{[N]} \otimes \mathbb{Q}_l$ which preserves the weight filtration [8]. From this together with a result of D. Quillen ([38] Appendix A), we obtain

$$gr^W \mathcal{L}_l^{[N]} \cong gr^W L_\mathbb{Q}^{[N]} \otimes \mathbb{Q}_l \cong \bigoplus_{i=1}^N gr_i \Gamma_0^n \otimes \mathbb{Q}_l.$$

It follows from the Campbell-Baker-Hausdorff formula that the set

$$Int\mathcal{L}_l^{[N]} := \{\exp \text{ad}(X) \mid X \in \mathcal{L}_l^{[N]}\}$$

forms a group of automorphisms of $\mathcal{L}_l^{[N]}$. Moreover we see that $\{\mathcal{L}_l^{[N]}\}_{N=1}^\infty$ (resp. $\{Int\mathcal{L}_l^{[N]}\}_{N=1}^\infty$) gives a surjective projective system of Lie algebras (resp. of unipotent algebraic groups). Let $\mathcal{L}_l(=\mathcal{L}_l(\Gamma_0^n)) := \lim_{\leftarrow N} \mathcal{L}_l^{[N]}$ and $Int\mathcal{L}_l := \lim_{\leftarrow N} Int\mathcal{L}_l^{[N]}$. Then $Int\mathcal{L}_l$ forms a normal subgroup of $Aut\mathcal{L}_l$. If we denote the quotient group by $Out\mathcal{L}_l(\Gamma_0^n)$, we obtain a new Galois representation

$$\varphi_L^{\text{Lie}} : G_k \to Out\mathcal{L}_l(\Gamma_0^n).$$

induced from the family of $\varphi_{n,N}^{(l)}$ ($1 \leq N < \infty$).

The Lie version of our Galois rigidity can be stated as follows:

Theorem B. Assume that l is an odd prime. Then the centralizer of the Galois image $\varphi_L^{\text{Lie}}(G_k)$ in $Out\mathcal{L}_l(\Gamma_0^n)$ is isomorphic to the symmetric group S_n when $n \geq 5$.

Proof. We first take a system of Galois representations

$$\phi^n : G_k \to Aut\Gamma_0^n, \text{pro-}l \quad (n \geq 4)$$

such that

1) each ϕ^n is a lift of $\varphi_n^{(l)} : G_k \to Out\Gamma_0^n, \text{pro-}l \quad (n \geq 4)$ unramified outside l;
2) ϕ^n and ϕ^{n-1} are compatible with $p_n : \Gamma_0^n, \text{pro-}l \to \Gamma_0^{n-1}, \text{pro-}l \quad (n \geq 5)$,
i.e., \(\phi^{n-1}(\sigma) \circ p_n = p_n \circ \phi^n(\sigma) \) (\(\sigma \in G_k \));

3) the image of \(\phi^4 \) is contained in

\[
\left\{ g \in Aut\Gamma^4_{0,pro-l} \mid \exists s \in \Gamma^4_{0,pro-l}, \exists t \in \Gamma^4_{0,pro-l}(2), \exists c \in \mathbb{Z}_l^\times \text{s.t.} \right. \\
g(x_{14}) = sx_{14}c^{-1}, g(x_{24}) = tx_{24}c^{-1}, g(x_{34}) = x_{34}c \right\}.
\]

The existence of such a system is easy to see, for example by Belyi’s group theoretical method, or more directly by Deligne’s tangential base points. The Galois representation \(G_k \to Aut\mathcal{L}_l(\Gamma^n) \) induced from \(\phi^n \) is also denoted by the same symbol.

Fix a prime \(p \nmid l \) of \(k \) with absolute norm \(\mathfrak{N}_p \), and choose \(\sigma_p \in G_k \) with \(\phi^n(\sigma_p) \) a Frobenius image over \(p \). Let us denote \(\phi^n(\sigma_p) \) simply by \(\phi_p \) (for all \(n \geq 4 \)). Then \(\phi_p \) respects the weight filtration in \(\mathcal{L}_l(= \mathcal{L}_l(\Gamma^n)) \), and acts on graded pieces via multiplication by distinct positive powers of \(\mathfrak{N}_p \).

Therefore the action of \(\phi_p \) on \(\mathcal{L}_l \) is semisimple, and gives “the weight graduation by \(\phi_p \)” , i.e., if \(\mathcal{L}_{l,N}(= \mathcal{L}_{l,N}(\Gamma^n)) = \{ Z \in \mathcal{L}_l \mid \phi_p(Z) = (\mathfrak{N}_p)^N Z \} \), then \(\mathcal{L}_l = \bigoplus_{N=1}^\infty \mathcal{L}_{l,N} \) a dense Lie subalgebra of \(\mathcal{L}_l \) isomorphic to \(gr\Gamma^n \otimes \mathbb{Q}_l \).

We recall here a standard fact about linear unipotent algebraic groups.

Lemma (4.2.3) (A.Borel). Let \(U \) be a connected unipotent subgroup of a linear algebraic group \(G \), \(s \) a semisimple element of \(G \) normalizing \(U \) with trivial centralizer in \(U \). Then for each \(u' \in U \), there exists a unique \(u \in U \) such that \(su' = usu^{-1} \).

Proof. See [17] Theorem 18.3(b). \(\square \)

We continue the proof of Theorem B. Let us take an arbitrary automorphism \(f \) of \(\mathcal{L}_l(\Gamma^n) \) (\(n \geq 5 \)) whose image in \(Out\mathcal{L}_l \) centralizes \(\varphi_{n}^{\text{Lie}}(G_k) \).

Then there exists \(u' \in Int\mathcal{L}_l \) such that \(\phi_p f = f \phi_p u' \). If \(\phi_{p,N} \) and \(u'_N \) denote the operators on \(\mathcal{L}_l^{[N]} \) induced from \(\phi_p \) and \(u' \) respectively, then, applying the above fact to the unipotent subgroup \(Int\mathcal{L}_l^{[N]} \), we obtain a unique \(u_N \in Int\mathcal{L}_l^{[N]} \) such that \(\phi_{p,N} u'_N = u_N \phi_{p,N} u_N^{-1} \). The uniqueness assertion insures the compatibility of the sequence \((u_N)_{N=1}^\infty \); hence yields an element \(u \in Int\mathcal{L}_l \) with \(\phi_p u' = u \phi_p u^{-1} \). From this we obtain \(fu \phi_p = \phi_p fu \). Thus \(fu \) induces a graded automorphism of the graded Lie algebra \(\bigoplus_{N=1}^\infty \mathcal{L}_{l,N} \). Let \((\tau, a_f) \in S_n \times \mathbb{Q}_l^\times \) be the corresponding pair by Lemma (4.1.2) to \(fu \). Then,
it remains only to show that $a_f = 1$. Let $h_\tau \in \text{Aut} \mathcal{L}_l$ be a representative of an element of $\text{Out} \mathcal{L}_l(\Gamma_0^n)$ coming from a k-automorphism of $M_{0,n}$ corresponding to the permutation $\tau \in S_n$. Since apriori h_τ centralizes $\varphi_{n}^{\text{Lie}}(G_k)$ in $\text{Out} \mathcal{L}_l(\Gamma_0^n)$, we may apply the same argument above to h_τ (instead of f), and may assume after suitable replacement that h_τ commutes with ϕ_p in $\text{Out} \mathcal{L}_l(\Gamma_0^n)$. Put $f' = fh_{\tau}^{-1}$. Then f' acts on each $\mathcal{L}_{l,n} \subset \mathcal{L}_l(\Gamma_0^n)$ by multiplication by a_f^n, and therefore preserves every graded ideal of $\bigoplus_{n} \mathcal{L}_{l,n}$.

As the Galois equivariant homomorphism $\mathcal{L}_l(\Gamma_0^n) \rightarrow \mathcal{L}_l(\Gamma_0^4)$ respects the weight graduation by ϕ_p, f' induces a graded scalar automorphism f'_4 of $\mathcal{L}_l(\Gamma_0^4)$ by powers of a_f, with image in $\text{Out} \mathcal{L}_l(\Gamma_0^4)$ lying in the centralizer of the Galois image $\varphi_{4}^{\text{Lie}}(G_k)$.

On the other hand, we know that there exist many nontrivial unipotent elements u_4 in the Galois image $\phi^4(G_k) \subset \text{Aut} \mathcal{L}_l(\Gamma_0^4)$ coming from cyclotomic elements in K-theory. For any of such u_4, we have $f'_4 u_4 = u_4 f'_4 u'$ for some $u' \in \text{Int} \mathcal{L}_l(\Gamma_0^4)$. If $a_f \in \mathbb{Q}_l^\times$ is nontorsion, then the above Borel’s fact yields $u \in \text{Int} \mathcal{L}_l(\Gamma_0^4)$ with $f'_4(u_4 u) = (u_4 u) f'_4$. But since $\text{Int} \mathcal{L}_l(\Gamma_0^4) \cap \phi^4(G_k) = \{1\}$ (c.f. [De] 16.29), $u_4 u$ has to be a nontrivial unipotent element. From this, we see a_f is torsion, and get a contradiction.

To eliminate the possibility of a_f being nontrivial torsion, we need more refined argument. In the following, we denote $\mathcal{L}_l = \mathcal{L}_l(\Gamma_0^4)$, and let $\phi_{\sigma} = \phi^4(\sigma)$ for $\sigma \in G_k$. Choose an odd integer $m \geq 3$ prime to $l-1$, and let $\sigma \in G_k$ be such that $\phi_{\sigma} - 1$ conveys $\mathcal{L}_l(= W_{-2} \mathcal{L}_l)$ into $W_{-2m-2} \mathcal{L}_l$ but not into $W_{-2m-4} \mathcal{L}_l$. (The existence of such σ follows from the nonvanishing of the cyclotomic element in $H^1(\mathbb{Z}[1/l], \mathbb{Z}_l(m))$ due to Soule, Schneider. See e.g. [20],[8]) Then we have $U \in \mathcal{L}_l$ such that
\[
\phi_{\sigma} f'_4 = f'_4 \phi_{\sigma} \exp(ad U).
\]

If we consider this equation modulo $W_{-2m-2} \mathcal{L}_l$, we see $U \in W_{-2m} \mathcal{L}_l$. Next we consider it modulo $\mathcal{M} = W_{-2m-4} \mathcal{L}_l$, and apply it to any element Y of $\mathcal{L}_{l,1}(\Gamma_0^4)$. Then, noticing that the action of f'_4 on $\mathcal{L}_{l,N}$ is via a_f^N-multiplication, and observing that $\phi_{\sigma} - 1 \equiv \text{Log} \phi_{\sigma}$ on $\mathcal{L}_l/\mathcal{M}$, we obtain
\[
(a_f - a_f^{m+1}) \text{Log} \phi_{\sigma}(Y) \equiv a_f^{m+1}(ad U)(Y) \mod \mathcal{M}.
\]

Since $\mathcal{L}_l^{[m+2]} = \mathcal{L}_l/\mathcal{M}$ is generated by the image of $\mathcal{L}_{l,1}$ in $\mathcal{L}_l^{[m+2]}$, we conclude $(a_f - a_f^{m+1}) \text{Log} \phi_{\sigma}$ and $a_f^{m+1}(ad U)$ induce the same derivation on $\mathcal{L}_l^{[m+2]}$.
We recall here that $L[l]^{[m+2]}$ is the Malcev Lie algebra of $\Gamma_0^4/\Gamma_0^4(m+2)$ tensored by \mathbb{Q}_l, and has special generators $X_{34} = \log x_{34}, X_{24} = \log x_{24}$ such that

1. $\text{Log}_\phi \sigma(X_{34}) = 0$;
2. $\text{Log}_\phi \sigma(X_{24}) \not\equiv 0 \mod M$.

Since the centralizer of X_{34} in $L[l]^{[m+2]}$ is easily seen to be $\mathbb{Q}_l X_{34} \oplus W_{-2m-2}$, we obtain $ad(U) = 0$ on $L[l]^{[m+2]}$ by (1). Therefore $(a_f - a_{m+1}^f) \text{Log}_\phi \sigma$ is also zero derivation of $L[l]/M$. This together with (2) implies $a_f = 1$, as m is chosen to be prime to $l-1$. The proof of Theorem B is thus completed. \(\square\)

(4.2.4) Let $G_l[N](\Gamma_0^n)$ be the group of the group-like elements in the Hopf algebra associated with $L[l]^{[N]}(\Gamma_0^n)$ ($N \geq 1$), and let $G_l(\Gamma_0^n) = \lim \leftarrow N G_l[N](\Gamma_0^n)$ (See [36] Appendix A). Then, since $G_l[N](\Gamma_0^n)$ is isomorphic to the \mathbb{Q}_l-valued points of the unipotent algebraic envelope of $\Gamma_0^n/\Gamma_0^n(N)$ ([8] 9.5), $\Gamma_0^n, \text{pro}-l$ is identified with a subgroup of $G_l(\Gamma_0^n)$. In particular, there is a canonical embedding

$$\text{Aut} \Gamma_0^n, \text{pro}-l \hookrightarrow \text{Aut} G_l(\Gamma_0^n) (= \text{Aut} L[l](\Gamma_0^n)).$$

One can expect that if $\text{Inn} \Gamma_0^n, \text{pro}-l$ is not so different from $\text{Int} L[l](\Gamma_0^n) \cap \text{Aut} \Gamma_0^n, \text{pro}-l$, then Theorem A will follow from Theorem B when $n \geq 5$. We do not here try to estimate this possible gap directly. Instead, we shall sketch a method of deducing Theorem A for $n \geq 5$ from Theorem B with the help of Theorem (3.1.13). Let $\gamma \in G_l(\Gamma_0^n)$ be such that $\text{inn}(\gamma)$ preserves $\Gamma_0^n, \text{pro}-l \subset G_l(\Gamma_0^n)$, and assume that the image of $\text{inn}(\gamma)$ in $\text{Out} \Gamma_0^n, \text{pro}-l$ commutes with the image of G_k ($n \geq 5$). By Theorem C, it suffices to show that γ lies actually in $\Gamma_0^n, \text{pro}-l$. Since the group extension (Γ_0^n):

$$1 \to \Pi_{0,n-1} \to \Gamma_0^n \to \Gamma_0^{n-1} \to 1$$

has a splitting homomorphism $\Gamma_0^{n-1} \to \Gamma_0^n$, and since the action of Γ_0^{n-1} on $\Pi_{0,n-1}/[\Pi_{0,n-1}, \Pi_{0,n-1}, \Pi_{0,n-1}, \Pi_{0,n-1}]$ is trivial, we have an exact sequence

$$1 \to \Pi_{0,n-1}/\Pi_{0,n-1}(N) \to \Gamma_0^n/\Gamma_0^n(N) \to \Gamma_0^{n-1}/\Gamma_0^{n-1}(N) \to 1$$

for each $N \geq 1$ (cf. [19] Proposition 3.1.1). Then, by the exactness of the Malcev completion functor, we obtain from the above a surjective projective
system of exact sequences of Malcev Lie algebras over \(\mathbb{Q} \). Tensoring them with \(\mathbb{Q}_l \), and taking \(\lim_{\leftarrow N} \), we get the following two exact sequences

\[
0 \to \mathcal{L}_l(\Pi_{0,n-1}) \to \mathcal{L}_l(\Gamma_0^n) \to \mathcal{L}_l(\Gamma_0^{n-1}) \to 1,
\]

\[
0 \to \mathcal{G}_l(\Pi_{0,n-1}) \to \mathcal{G}_l(\Gamma_0^n) \to \mathcal{G}_l(\Gamma_0^{n-1}) \to 1,
\]

where \(\mathcal{L}_l(\Pi_{0,n-1}) \) is the projective limit of the Lie algebras \(\mathcal{L}_l^{[N]}(\Pi_{0,n-1}) \) associated with the \(l \)-adic analytic groups \(\Pi_{0,n-1}^{\pro-l}/\Pi_{0,n-1}^{\pro-l}(N) \) \((N \geq 1) \), and \(\mathcal{G}_l(\Pi_{0,n-1}) \) is the group of the group-like elements in the complete Hopf algebra associated with \(\mathcal{L}_l(\Pi_{0,n-1}) \). By Theorem (3.1.13), \(\text{inn}(\gamma) \) preserves \(\mathcal{X}_{ij} \) for each \(1 \leq i < j \leq n \). Therefore, (through some inductive arguments) we are reduced to the following simple

Proposition (4.2.5). Let \(\Pi_{0,n} \) be the free group with free generators \(x_1, \ldots, x_{n-1} \) \((n \geq 3) \), and let \(\gamma \in \mathcal{G}_l(\Pi_{0,n}) \) satisfy the following two conditions:

1. \(\text{inn}(\gamma) \) preserves \(\Pi_{0,n}^{\pro-l} \subset \mathcal{G}_l(\Pi_{0,n}) \);
2. \(\text{inn}(\gamma)(x_1) = \gamma x_1 \gamma^{-1} \) is conjugate to \(x_1 \) in \(\Pi_{0,n}^{\pro-l} \).

Then \(\gamma \in \Pi_{0,n}^{\pro-l} \).

Proof. Let \(\text{inn}(\gamma)(x_1) = tx_1t^{-1} \) \((t \in \Pi_{0,n}^{\pro-l}) \). Replacing \(\gamma \) by \(t^{-1}\gamma \), we may assume that \(\gamma \) commutes with \(x_1 \). Since the centralizer of \(\log x_1 \) in \(\mathcal{L}_l(\Pi_{0,n}) \) is \(\mathbb{Q}_l \log x_1 \), we get \(\log \gamma = a \log x_1 \) for some \(a \in \mathbb{Q}_l \). Then, from the Campbell-Baker-Hausdorff formula, it follows that

\[
\text{inn}(\gamma)(x_2)x_2^{-1} = [\gamma, x_2] = a \cdot [x_1, x_2]
\]

in \(\text{gr}_2 \mathcal{G}_l(\Pi_{0,n}) \). But since \([x_1, x_2] \) is a member of a \(\mathbb{Z}_l \)-basis of \(\text{gr}_2 \Pi_{0,n}^{\pro-l} \), we get \(a \in \mathbb{Z}_l \). Therefore \(\gamma = x_1^a \in \Pi_{0,n}^{\pro-l} \). \(\Box \)

Appendix. Generalization of the Belyi lifting to \(M_{0,5} \)

In this note, we shall follow the notations introduced in §3 with fixing a full class of finite groups \(\mathcal{C} \).

We first recall the case of \(M_{0,4} \). Let \(X = M_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\} \) be defined over a number field \(k \), and let \(p_{0,4} : \pi_k^*(X) \to G_k \) be the canonical
surjection. For convenience, we put $x = x_{14}, y = x_{24}, z = x_{34}$ to present $\hat{\Gamma}_0^4 = \langle x, y, z | xyz = 1 \rangle$. The Belyi lifting for $M_{0,4}$ is defined to be a homomorphism $\beta : G_k \to \pi_1^\Sigma(X)$ with $p_{0,4} \circ \beta = \text{id}$ characterized by the following properties of the images $\beta_\sigma = \beta(\sigma)$ for $\sigma \in G_k$:

(A1) $\beta_\sigma z \beta_\sigma^{-1} = z^{a_\sigma} \quad \exists a_\sigma \in \mathbb{Z}_2^\times$;

(A2) $\beta_\sigma y \beta_\sigma^{-1} = t_\sigma y^{a_\sigma} t_\sigma^{-1} \quad \exists t_\sigma \in [\hat{\Gamma}_0^4, \hat{\Gamma}_0^4]$;

(A3) $\beta_\sigma x \beta_\sigma^{-1} = s_\sigma x^{a_\sigma} s_\sigma^{-1} \quad \exists s_\sigma \in \hat{\Gamma}_0^4$.

It is easy to see that a_σ and $t_\sigma \in [\hat{\Gamma}_0^4, \hat{\Gamma}_0^4]$ are uniquely determined for $\sigma \in G_k$ by the above conditions (A1), (A2), and that if we impose the condition $s_\sigma \equiv y^{-a_\sigma^{-1}} \mod [\hat{\Gamma}_0^4, \hat{\Gamma}_0^4]$, then s_σ is also determined uniquely for $\sigma \in G_k$ by (A3) ([18] Proposition 4). In addition, we know a_σ is the cyclotomic character of $\sigma \in G_k$. As $\hat{\Gamma}_0^4$ is a free pro-\mathfrak{C} group with free generators y and z, t_σ and s_σ are considered to be “pro-words” in noncommutative indeterminates y and z, and written as $t_\sigma = t_\sigma(y, z), s_\sigma = s_\sigma(y, z)$.

Let

$$\Phi^\Sigma_X : \text{Aut}_k X \to \frac{\text{Aut}_{G_k} \pi_1^\Sigma(X)}{\text{Inn} \hat{\Gamma}_0^4}$$

be the canonical map introduced in §0. After suitably lifting the image of an involution (resp. a 3-cyclic) of $\text{Aut}_k X \cong S_3$, we obtain Galois compatible automorphisms $f, g \in \text{Aut}_{G_k} \pi_1^\Sigma(X)$ such that

(A4) $f(x) = z^{-1} y z, \quad f(y) = x, \quad f(z) = z$;

(A5) $g(x) = y, \quad g(y) = z, \quad g(z) = x$.

Applying f to (A1)-(A3), and making suitable transposition, we obtain

(A6) $z^{1-a_\sigma} f(\beta_\sigma) z f(\beta_\sigma)^{-1} z^{a_\sigma^{-1}} = z^{a_\sigma}$,

(A7) $z^{1-a_\sigma} f(\beta_\sigma) y f(\beta_\sigma)^{-1} z^{a_\sigma^{-1}}$

$$= (z^{1-a_\sigma} s_\sigma(x, z) z^{-1} y^{a_\sigma} z^{a_\sigma^{-1}}) y^{a_\sigma} (z^{1-a_\sigma} s_\sigma(x, z) z^{-1} y^{a_\sigma} z^{a_\sigma^{-1}})^{-1},$$
Comparing these with (A1)-(A3), we get the following formulae:

(A9) \[t_\sigma(y, z) = z^{\frac{a_\sigma + 1}{2}} s_\sigma(x, z) z^{-1} y^{\frac{a_\sigma - 1}{2}}, \]

(A10) \[s_\sigma(y, z) = z^{\frac{1 - a_\sigma}{2}} t_\sigma(x, z) x^{\frac{1 - a_\sigma}{2}} \]

(A11) \[\beta_\sigma = z^{\frac{1 - a_\sigma}{2}} f(\beta_\sigma) \]

Similarly, if we apply \(g \) to (A1)-(A3), we get

(A12) \[z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} g(\beta_\sigma) z g(\beta_\sigma)^{-1} t_\sigma(z, x) z^{\frac{a_\sigma - 1}{2}} = z^{a_\sigma}, \]

(A13) \[z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} g(\beta_\sigma) y g(\beta_\sigma)^{-1} t_\sigma(z, x) z^{\frac{a_\sigma - 1}{2}} = [z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} s_\sigma(z, x)] y^{a_\sigma} [z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} s_\sigma(z, x)]^{-1}, \]

(A14) \[z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} g(\beta_\sigma) x g(\beta_\sigma)^{-1} t_\sigma(z, x) z^{\frac{a_\sigma - 1}{2}} = [z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} x^{\frac{1 - a_\sigma}{2}}] x^{a_\sigma} [z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} x^{\frac{1 - a_\sigma}{2}}]^{-1}, \]

and obtain

(A15) \[t_\sigma(y, z) = z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} s_\sigma(z, x), \]

(A16) \[s_\sigma(y, z) = z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} x^{\frac{1 - a_\sigma}{2}}, \]

(A17) \[\beta_\sigma = z^{\frac{1 - a_\sigma}{2}} t_\sigma(z, x)^{-1} g(\beta_\sigma). \]

From (A10) and (A16), we see that \(t = t_\sigma \ (\sigma \in G_k) \) satisfies

(A18) \[t(y, z) = t(z, y)^{-1}. \]

If \(g^{-1} \) is applied to (A15), then \(t_\sigma(x, y) = y^{(1 - a_\sigma)/2} t_\sigma(y, z)^{-1} s_\sigma(y, z) \). Eliminating \(s_\sigma(y, z) \) from this and (A10), we obtain the following hexagon relation for \(a = a_\sigma \) and \(t = t_\sigma \ (\sigma \in G_k) \):

(A19) \[t(z, x) z^{\frac{a - 1}{2}} t(y, z) y^{\frac{a - 1}{2}} t(x, y) x^{\frac{a - 1}{2}} = 1. \]
The purpose of this note is to show the following

Theorem (A20). Let \(p_{0,5} : \pi_1^\epsilon(M_{0,5}) \to G_k \) be the canonical surjective homomorphism, and suppose that the group extension \((\Gamma_{0}^5)^{[5]}\) is \(C \)-admissible (3.1.2). Then there exists a unique group section \(\beta : G_k \to \pi_1^\epsilon(M_{0,5}) \) of \(p_{0,5} \) such that the images \(\beta_\sigma = \beta(\sigma) \) for \(\sigma \in G_k \) satisfy the following four conditions (A21)-(A24).

\[
\begin{align*}
(A21) & \quad \beta_\sigma x_{12} \beta_\sigma^{-1} = x_{12}^{a_{12}}, \\
(A22) & \quad \beta_\sigma x_{23} \beta_\sigma^{-1} = t_\sigma(x_{23}, x_{12}) x_{23}^{a_{23}} t_\sigma(x_{23}, x_{12})^{-1}, \\
(A23) & \quad \beta_\sigma x_{34} \beta_\sigma^{-1} = t_\sigma(x_{34}, x_{45}) x_{34}^{a_{34}} t_\sigma(x_{34}, x_{45})^{-1}, \\
(A24) & \quad \beta_\sigma x_{45} \beta_\sigma^{-1} = x_{45}.
\end{align*}
\]

Moreover, these \(\beta_\sigma \) satisfy also the following formula (A25):

\[
(A25) \quad \beta_\sigma x_{51} \beta_\sigma^{-1} = t_\sigma(x_{23}, x_{12}) t_\sigma(x_{51}, x_{45}) x_{51}^{a_{51}} t_\sigma(x_{51}, x_{45})^{-1} t_\sigma(x_{23}, x_{12})^{-1}.
\]

It is known that the universal covering space \(T_{0,5} \) of \(M_{0,5} \) over \(\mathbb{C} \) is the same as the Teichmüller space of type \((0,5)\), and that \(AutT_{0,5} \cong \Gamma_{0}^{[5]} \) (the full Teichmüller modular group). (See e.g. [29].) Here we have an exact sequence

\[
1 \to \Gamma_{0}^5 \to \Gamma_{0}^{[5]} \to S_5 \to 1,
\]

and \(\Gamma_{0}^{[5]} \) is the quotient of the Artin braid group \(B_5 \) by the normal closure generated by \(y_5 \) and \(z_5 \). (See Remark after (3.1.3).) From this it follows that the images of

\[
\Phi_{M_{0,5}}^\epsilon : Aut_k M_{0,5} \cong S_5 \to \frac{AutG_k \pi_1^\epsilon(M_{0,5})}{Inn\Gamma_{0}^5}.
\]

can be in principle calculated by seeing conjugacy actions of the standard generators \(\sigma_i \) (\(1 \leq i \leq 4 \)) on \(\Gamma_{0}^5 \).

Recall we have forgetful homomorphisms \(p_\nu : \pi_1^\epsilon(M_{0,5}) \to \pi_1^\epsilon(M_{0,4}) \) for \(\nu \in \{1, \ldots, 5\} \).
Proof of Theorem (A20). We begin by considering the following conditions on \(\beta \in \pi_1^\xi(M_{0,5}) \). (For a profinite group \(G, G' \) or \([G, G]\) denotes the closure of the commutator subgroup of \(G \).)

\begin{align*}
(A26) & \quad \beta x_{12}\beta^{-1} = x_{12}^a, \exists a \in \mathbb{Z}_q^\times, \\
(A27) & \quad \beta x_{23}\beta^{-1} = tx_{23}^a t^{-1}, \exists a \in \mathbb{Z}_q^\times, \exists t \in (\ker p_2)'\langle x_{24} \rangle, \\
(A28) & \quad \beta x_{45}\beta^{-1} = x_{45}^a, \exists a \in \mathbb{Z}_q^\times, \\
(A29) & \quad \beta x_{34}\beta^{-1} = sx_{34}^a s^{-1}, \exists a \in \mathbb{Z}_q^\times, \exists s \in \langle x_{34}, x_{45} \rangle', \\
(A30) & \quad \beta x_{34}\beta^{-1} = sx_{34}^a s^{-1}, \exists a \in \mathbb{Z}_q^\times, \exists s \in (\ker p_4)'\langle x_{24} \rangle, \\
(A31) & \quad \beta x_{23}\beta^{-1} = tx_{23}^a t^{-1}, \exists a \in \mathbb{Z}_q^\times, \exists t \in \langle x_{12}, x_{23} \rangle'.
\end{align*}

If we let \(\mathcal{L} = \{ \beta \mid (A26), (A27) \} \), then \(\mathcal{L} \) is a subgroup of \(\pi_1^\xi(M_{0,5}) \) isomorphic to \(\pi_1^\xi(M_{0,4}) \) via \(p_2 \). Therefore we may apply the Belyi lifting for \(M_{0,4} \) in the exact sequence

\[1 \to \langle x_{34}, x_{45} \rangle \to \mathcal{L} \to G_k \to 1, \]

and get

\[\mathcal{B} := \{ \beta \mid (A26), (A27), (A28), (A29) \} \cong G_k. \]

If we denote by \(\beta_\sigma \) the unique element of \(\mathcal{B} \) lying over \(\sigma \in G_k \), then we have \(\beta_\sigma x_{34}\beta_\sigma^{-1} = t_\sigma(x_{34}, x_{45}) x_{34} t_\sigma(x_{34}, x_{45})^{-1} \) by the definition of the pro-word \(t_\sigma \). Moreover, since \(\langle x_{34}, x_{45} \rangle' = \langle x_{34}, x_{45} \rangle \cap (\ker p_4)'\langle x_{24} \rangle \),

\[\mathcal{B} = \{ \beta \mid (A26), (A27), (A28), (A29) \} \]

\[= \{ \beta \mid (A26), (A27), (A28), (A30) \} \]

\[= \{ \beta \mid (A26), (A28), (A30), (A31) \} \text{ (by symmetry)} \]

\[= \{ \beta \mid (A26), (A28), (A29), (A31) \} \text{ (by existence and uniqueness).} \]

As \(\mathcal{L}' = \{ \beta \mid (A28), (A30) \} \) is an extension of \(G_k \) by \(\langle x_{12}, x_{23} \rangle \) and is isomorphic to \(\pi_1^\xi(M_{0,4}) \) via \(p_4 \), it follows that \(\beta_\sigma \in \mathcal{B} \) also satisfies (A23). Thus, we conclude that \(\beta_\sigma \in \mathcal{B} \) is characterized as a unique element in \(p_{0,5}^{-1}(\sigma) \) satisfying the properties (A21)-(A24).

Let \(g \) be a Galois compatible automorphism of \(\pi_1^\xi(M_{0,5}) \) induced from the conjugation by \((\sigma_1 \sigma_2 \sigma_3 \sigma_4)^3 \) (\(g \) sends \(x_{ij} \) to \(x_{\tau(i)\tau(j)} \) where \(\tau \) denotes the cyclic permutation \((14253) \)), and define

\[\mathcal{B}' = \{ t_\sigma(x_{23}, x_{12}) g(\beta_\sigma) | \sigma \in G_k \}. \]
Then it follows that \(\beta'_\sigma = t_\sigma(x_{23}, x_{12})g(\beta_\sigma) \) is characterized as a unique element of \(p_{0,5}^{-1}(\sigma) \) such that

\[
\begin{align*}
(A32) & \quad \beta'_\sigma x_{45} \beta'^{-1}_\sigma = x_{45}^{a_\sigma}; \\
(A33) & \quad \beta'_\sigma x_{51} \beta'^{-1}_\sigma = t_\sigma(x_{23}, x_{12})t_\sigma(x_{51}, x_{45})x_{51}^{a_\sigma}t_\sigma(x_{51}, x_{45})^{-1}t_\sigma(x_{23}, x_{12})^{-1}; \\
(A34) & \quad \beta'_\sigma x_{12} \beta'^{-1}_\sigma = x_{12}^{a_\sigma}; \\
(A35) & \quad \beta'_\sigma x_{23} \beta'^{-1}_\sigma = t_\sigma(x_{23}, x_{12})x_{23}^{a_\sigma}t_\sigma(x_{23}, x_{12})^{-1}.
\end{align*}
\]

From this we also see that \(\mathfrak{B}' \) forms a subgroup of \(\pi_1^C(M_{0,5}) \) and that \(\beta' \) gives a section of \(p_{0,5} \).

For the proof of Theorem (A20) it suffices to show \(\mathfrak{B} = \mathfrak{B}' \). As \(\langle x_{12}, x_{45} \rangle \) is selfnormalizing in \(\Gamma_0^5 \), after observing the conditions (A21), (A24), (A32), (A34) together with (A22) and (A35), we may put \(\beta'_\sigma = x_{45}^{\lambda_\sigma} \beta_\sigma \) for some \(\lambda_\sigma \in \mathbb{Z}_C \). Then, by (A35), we have

\[
\begin{align*}
(A36) & \quad \beta_\sigma x_{51} \beta^{-1}_\sigma = x_{45}^{-\lambda_\sigma}t_\sigma(x_{23}, x_{12})t_\sigma(x_{51}, x_{45})x_{51}^{a_\sigma}t_\sigma(x_{51}, x_{45})^{-1}t_\sigma(x_{23}, x_{12})^{-1}x_{45}^{\lambda_\sigma}.
\end{align*}
\]

Let \(f \) be a Galois compatible automorphism of \(\pi_1^C(M_{0,5}) \) induced from the conjugation by \(\sigma_4\sigma_1^{-1}\sigma_2\sigma_1 \). Then

\[
\begin{align*}
& f(x_{12}) = x_{12}^{-1}x_{23}x_{12}; \quad f(x_{23}) = x_{12}; \\
& f(x_{34}) = x_{13}x_{51}x_{13}^{-1}; \quad f(x_{45}) = x_{45}; \\
& f(x_{51}) = x_{45}x_{34}x_{45}^{-1}.
\end{align*}
\]

If we put \(\beta''_\sigma = t_\sigma(x_{23}, x_{12})x_{45}^{a_\sigma}x_{12}^{-1}f(\beta'_\sigma)x_{12}^{-1} \) for \(\sigma \in G_k \), then after some computations we see that \(\beta''_\sigma \) satisfies the same conditions as (A21)-(A24) for \(\beta'_\sigma \) together with

\[
\begin{align*}
(A37) & \quad \beta''_\sigma x_{51} \beta''^{-1}_\sigma = x_{45}^{\lambda_\sigma}t_\sigma(x_{23}, x_{12})t_\sigma(x_{51}, x_{45})x_{51}^{a_\sigma}t_\sigma(x_{51}, x_{45})^{-1}t_\sigma(x_{23}, x_{12})^{-1}x_{45}^{-\lambda_\sigma}.
\end{align*}
\]
The coincidence of the first four conditions assures that $\beta_\sigma = \beta_\sigma''$. We conclude then by comparing (A37) with (A36) that $\lambda_\sigma = 0$. This completes the proof of Theorem (A20). □

Corollary (Drinfeld [9]; in this form, see Ihara [20]). *The pro-word $t = t_\sigma$ ($\sigma \in G_k$) satisfies the following pentagon relation in $\hat{\Gamma}_0^5$:

$$t(x_{12}, x_{23})t(x_{34}, x_{45})t(x_{51}, x_{12})t(x_{23}, x_{34})t(x_{45}, x_{51}) = 1.$$**

Proof. Let β_σ be as in the theorem, and put $\beta'_\sigma = t_\sigma(x_{12}, x_{23})\beta_\sigma$, and $\beta''_\sigma = (\sigma_1 \sigma_2 \sigma_3 \sigma_4)^3 \beta_\sigma (\sigma_1 \sigma_2 \sigma_3 \sigma_4)^{-3}$. By observing the resulting first four conditions for β'_σ and β''_σ, we see $\beta'_\sigma = \beta''_\sigma$. Repeating this 5 times, we get the assertion. □

Lines of a more geometric proof of (A38) is illustrated in Ihara’s article [20]. In [9], Drinfeld considered the Grothendieck-Teichmüller group GT

$$GT = \{ (a, t) \in \mathbb{Z}_q^\times \times \langle y, z \rangle | (A18), (A19), (A38) \}^x$$

with group operation $(a, t)(a', t') = (aa', t(t(y, z)y^{a'} t'(y, z)^{-1}, z^{a'}))$, and asserted that GT operates on profinite Artin braid groups \hat{B}_n in a uniform way for $n \geq 4$. (Prof. Ihara showed a method to verify this assertion.) If we compose this operation with the map $G_k \ni \sigma \to (a_\sigma, t_\sigma) \in GT$, we obtain Galois representations in $Aut\hat{\Gamma}_0^n$ after suitable reduction $\hat{B}_n \supset \hat{P}_n \to \hat{\Gamma}_0^n$ ($n \geq 4$). It would be very plausible that this representation gives a lifting of the Galois representations $\varphi_{0,n}^C : G_k \to Out\hat{\Gamma}_0^n$ coming from the geometric object $M_{0,n}$. But the rigorous proof of this for $n \geq 6$ seems not to have appeared yet.

References

[44] Tate, J., Relations between K_2 and Galois Cohomology, Invent. math. 36 (1976), 257–274.
Notes added in proof. The main part §3 of this paper was written before [33,34,35] in 1991, so it would be appropriate here to explain some history of the present paper. After receiving comments from Prof. Deligne on the original version, the author wrote §4, and in the process of enlarging §3 to the pro-\mathbb{C} context, began to equip the paper with some technical tools §1–2 which were expected to suggest lines for future developments of the ‘anabelian’ world. This latter effort seemed more or less successful, as it clarified the importance of “universal center-triviality” of fundamental groups, and lead to the work [34]. The use of weights as in 2.3 occurred to the author when he examined lines of Deligne’s letter suggesting Lie variant §4. Combining the linear weights in 2.3 with non-linear weights in 2.1, we were lead to the construction of weight coordinate formalism in a joint work with H.Tsunogai [35]. The body of the present paper was thus established in 1992. Since then the problem of estimating the centralizers of Galois images in $\text{Out}\pi_1^{pro-l}$ has been developed, and our understanding of the problem has been gradually deepened. In particular, the author has realized that Theorem A can be deduced from Theorem B without help of (3.13.3), contrary to the discussion in (4.2.4). It comes from the observation that the Galois centralizer can act faithfully on the abelianization of π_1^{pro-l} by a suitable weight argument. This point of view was pursued further in a recent collaboration with N.Takao on the pro-l fundamental groups of braid configuration spaces of higher genus curves.

(Received March 10, 1992)

Department of Mathematical Sciences
University of Tokyo
7-3-1 Hongo
Bunkyoku, Tokyo
113 Japan