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Abundance of Nilpotent Orbits in Real Semisimple
Lie Algebras

By Takayuki OKUDA

Abstract. We formulate and prove that nilpotent orbits are
“abundant” in real semisimple Lie algebras, in the following sense.
If S denotes the collection of hyperbolic elements corresponding the
weighted Dynkin diagrams coming from nilpotent orbits, then S spans
the maximally expected space, namely, the (—1)-eigenspace of the
longest Weyl group element. The result is used to the study of funda-
mental groups of non-Riemannian locally symmetric spaces.

1. Main Theorem

Let g be a real semisimple Lie algebra, a a maximally split abelian sub-
space of g, and W the Weyl group of ¥(g,a). We fix a positive system
¥t (g,a), denote by a;(C a) the closed Weyl chamber, wq the longest ele-
ment of W, and set a™° :={A ca| —wy- A=A}

We denote by Hom(sl(2,R), g) the set of all Lie algebra homomorphisms
from s((2,R) to g, and put

wiw={s(y ) co | retonGeR}.
H™(ay) == a;. N'H"(g).
In this paper, we prove the following theorem:
THEOREM 1.1. a~%° = R-span(H"(a4)).
In Theorem 1.1, the inclusion

(1.1) a " C R-span(H"(a4))
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is non-trivial and the opposite inclusion is easy (see Section 3 for more
details).

Theorem 1.1 means that nilpotent orbits are “abundant” in g in the
following sense (see (1.2)). Let us denote by AN (g) the set of all nilpotent
elements in g. Then by results of Jacobson—-Morozov and Kostant, we have

N(g)z{p (8 é) €g ‘ pGHom(5[(2,R)7g)}

and for each nilpotent (adjoint) orbit O € N (g)/Int g, there exists a unique
Ao € H"(a4) such that p <(1) _01> = Ap and p <8 [1)> € O for some
p € Hom(sl(2,R), g) (see [4, Section 9.2] for more details). Then the corre-
spondence O — Ap gives a surjective map:

¢: N(g)/Intg — H"(ay).

The non-trivial part (1.1) of Theorem 1.1 is equivalent to the following
inclusion:

(1.2) a~ " C R-span ¢(N(g)/Int g).

Theorem 1.1 was announced in [9, Proposition 4.8 (i)]. More precisely,
Theorem 1.1 played a key role in proving one of the main results in [9] which
claims that semisimple symmetric spaces G/H admit properly discontinuous
groups which are not virtually-abelian if and only if G/H admit proper
actions of SL(2,R) (see also Appendix A). We illustrated an idea of the
proof in [9, Section 7.5] by an example g = su(4,2), but postponed a full
proof to this paper.

2. Algorithm to Classify Hyperbolic Elements Coming from
Nilpotent Orbits

In this section, we recall the algorithm to classify elements in a=*° and
H™(ay) described in [9].

2.1. Notation

We set up our notation. Let gc be a complex semisimple Lie algebra
and g a real form of gc. We fix a Cartan decomposition g = £ + p with a
Cartan involution 6 on g.
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Take a -stable split Cartan subalgebra jg of g. That is, jg is a maximal
abelian subspace of g stable by # such that a :=jgNp is a maximal abelian
subspace of p. Then jp can be written as jo = t + a where t is a maximal
abelian subspace of the centralizer Zg(a) of a in £. Let us denote by jc :=
jo +v/—1jg and j := /=1t + a. Then jc is a Cartan subalgebra of gc and j
is a real form of it with

i={A€jc|a(l) eR for any a € A},
where A is the root system of (gc,jc). We put
Y:={alg|ae A}\ {0} Ca”

to the restricted root system of (g,a). Then we can take a positive system
AT of A such that the subset

2T ={alala e ATF\{0}.

of ¥ becomes a positive system. In fact, if we take an ordering on a and
extend it to j, then the corresponding positive system AT satisfies the condi-
tion above. Let us denote by I/V(C7 W the Weyl groups of A, X, respectively.
We set the closed positive Weyl chambers

jr:={A€j|a(d) >0 forany a € A"},
a, ={Aca|&A) >0 forany £ €XT}.

Then j4 and ay are fundamental domains of j, a for the actions of W€ and
W, respectively. By the definition of A* and ¥T, we have ay =j; Na.

Let wg denote the longest element of W with respect to the positive
system Y*. Then the linear transform x — —wq - £ on a leaves the closed
Weyl chamber a4 invariant. As in Y. Benoist [3], we define a subspace b in
a by

b:=a={Aca|-wy-A=A}.

2.2. Satake diagram
We recall some facts for Satake diagrams of g and weighted Dynkin
diagrams corresponding to elements in a, in this subsection.
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Let us denote by II the fundamental system of A™. Then
I:={ala|acIl}\ {0}

is the fundamental system of X*. The Satake diagram Sg of a semisimple
Lie algebra g consists of the following three data: the Dynkin diagram of
gc with nodes II; black nodes IIy := {a € II | a|q = 0} in S; and arrows
joining av € IT\ Iy and B € IT\ Il in S whose restrictions to a are the same
(see [1, 10] for more details).

For any A € j, we can define a map

Uy: Il =R, a— alA).

We call ¥ 4 the weighted Dynkin diagram corresponding to A € j, and «a(A)
the weight on a node « € II of the weighted Dynkin diagram. Since II is a
basis of j*, the correspondence

(2.1) U:j— Map(Il,LR), A Uy

is a linear isomorphism between real vector spaces. In particular, ¥ is
bijective, and hence

V)5, 1j4 — Map(II,R>q), A Uy

is also bijective. We say that a weighted Dynkin diagram is trivial if all
weights are zero. Namely, the trivial diagram corresponds to the zero in j
by V.

Here, we recall the definition of weighted Dynkin diagrams matching the
Satake diagram Sy of g as follows:

DEFINITION 2.1 (]9, Definition 7.3]). Let ¥ € Map(II,R) be a
weighted Dynkin diagram of gc and Sg the Satake diagram of g with nodes
II. We say that ¥ matches Sy if all the weights on black nodes in Ily are
zero and any pair of nodes joined by an arrow have the same weights.

Then the following lemma holds:

LeEMMA 2.2 ([9, Lemma 7.5]). The linear isomorphism ¥ : j —
Map(II, R) induces a linear isomorphism

a — { ¥y € Map(II,R) | U4 matches Sg}, A Wy
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In particular, by this linear isomorphism, we have

ap iR { W4 € Map(II, R>q) | ¥4 matches Sg}.

2.3. Weighted Dynkin diagrams corresponding to elements in b

In this subsection, we recall an algorithm to classify all weighted Dynkin
diagrams corresponding to elements in b = a="° (see (2.2)) by using the
Satake diagram of g and the opposition involution on the Dynkin diagram
of gc studied by Tits [11].

Let us denote by wg: the longest element of wC corresponding to the
positive system AT. Then, by the action of wé():, every element in j; moves
to —j4y :={—A| A €j4}. In particular,

—uf i, A —(wf - 4)

is an involutive automorphism on j preserving j,. We put
.—wC .
U ={Aej| —uS- A=A}

Recall that the map ¥ : j — Map(II,R) in Section 2.2 is a linear iso-
morphism. Thus —wg: induces an involutive endomorphism on Map(II, R),
which will be denoted by ¢. In other words, the involution ¢ on Map(II, R)
is induced by the opposition involution IT — I, o — —( g:)* - (see Tits
[11, Section 1.5.1] for more details).

Then we have
U(~) = Map(IL, R)",

where Map(II,R)* denote the set of all weighted Dynkin diagrams held
invariant by ¢. For each complex simple Lie algebra gc, we determine ¢
as follows:

PROPOSITION 2.3 ([9, Theorem 6.3]). Suppose that gc is simple. The
inwvolution v is not identity if and only if gc is of type An, Daopyr1 or Eg
(n > 2, k> 2). In other words, this is the complete list of simple gc with
j_wg # 3. In such cases, the forms of v are the following:
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For type A4, (n>2, gc ~sl(n+1,0C))

aq a9 Apn—1 Gp anp Anp—1 a9 aq
L: o—o0— —0—0 +— Oo—=0— —0—o0

For type Dogi1 (k> 2, gc ~ so(4k +2,C))

A2k+1 agk
a1 az ...Q02k—1 al az ...Q02k—1
For type Fg (gc =~ ¢6,C)
al a2 as a4 as as a4 as a2 ai
L (e O — O O

N ol

It should be noted that for the case where gc is of type Doy (kK > 2),

the involution —wg: on j is trivial although the Dynkin diagram of type Doy

admits some non-trivial involutive automorphisms.
To classify elements in b, we use the following lemma:

LEMMA 2.4 ([9, Lemma 7.6]). b=~ Na.

By combining Lemma 2.2 with Lemma 2.4, we obtain that
(2.2) U(b) = { V4 € Map(IL, R)" | ¥4 matches Sg}.

where Map(II,R)* denote the set of all weighted Dynkin diagrams held
invariant by ¢, and S, is the Satake diagram of g (see Section 2.2).

2.4. The Dynkin—Kostant classification
In this subsection, we recall the Dynkin—Kostant classification of com-
plex nilpotent orbits in a complex semisimple Lie algebra gc.
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Let us denote by Hom(sl(2,C), gc) the set of all complex Lie algebra
homomorphisms from s((2,C) to gc. For each p € Hom(sl(2,C), gc), there
uniquely exists an element A, of j which is conjugate to the element

106
pO—l gc

under the adjoint action on gc. Then the correspondence [p] — A, gives a
map from Hom(s((2,C), gc)/Int gc to j4+. Malcev [8] proved that the map

Hom(sl(2,C), gc)/Int gc = jy, [p] — A,

is injective. We put H™(j+) the image of the injective map above. Obviously,
we have

i =i oy ) 1€ HonGi.0).00)}.

Recall that ¥ in Section 2.2 induces a bijection between j; and
Map(IL, R>¢). Thus, a classification of W(H"(j4+)) gives that of
Hom(s((2,C), gc)/Int gc. Dynkin [5] proved that any weight of an weighted
Dynkin diagram in W(H"(j1)) is given by 0, 1 or 2. Hence, U(H"(j+)) (and
therefore the set Hom(sl(2,C), gc)/Int gc is) finite. Dynkin [5] also gave a
complete list of the weighted Dynkin diagrams in W(H"(j)) for each simple
ac.

By combining the Jacobson—Morozov theorem with the results of
Kostant [7], we also obtain a bijection

N 0 1
Hom(sl(2,C), gc)/Int gc — N (gc)/Int g¢, [p] — Intgc - p (0 0) :

Here N (gc)/Int gc denote the set of all complex nilpotent adjoint orbits
in gc. Thus, the classification of ¥(H"(j+)), done by Dynkin [5], gives a
classification of complex nilpotent adjoint orbits in g¢ (see Bala—Cater [2]
or Collingwood-McGovern [4, Section 3] for more details). This is known
as the Dynkin—Kostant classification of complex nilpotent adjoint orbits.

2.5. Algorithm to classify hyperbolic elements coming from
nilpotent orbits
In this subsection, we give an algorithm to determine the finite subset

i) =an{o(y O 1oe Bz k)0
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of a; where Hom(sl(2,R), g) is the set of all Lie algebra homomorphisms
from s((2,R) to g as in Section 1. We note that similar to the situation for
gc, for any p € Hom(sl(2,RR),g), there uniquely exists A, € H"(ay) such

1
that p <0 _01> is conjugate to A, under the adjoint action on g.

Recall that g = ¢+ p is a real form of g¢, j = v—1t+aand ap =anNj
in our setting. Then by [9, Proposition 4.5 (iii)], we have H"(ay) = a; N
H"(j+). Therefore, by Lemma 2.2, the following holds

(2.3) U(H"(at)) = {¥a € ¥(H"(j+)) | ¥4 matches Sg},

where Sy is the Satake diagram of g (see Section 2.2 for the notation).
Hence, for each g, by using the classification of W(H"(j1)) (see Section 2.4)
and the Satake diagram Sg of g, we obtain a classification of W(H"(a4.)).

REMARK 2.5. The finite set H"(a;) parametrizes the set
Ng(gc)/Int gc of complex nilpotent adjoint orbits in g¢ that meet the real
form g, i.e. there is a natural bijection

~ 1 0 0 1
piman) = Nytao/titae oy O)) - meac) o (o)

(see [9, Section 7.4] for more details). We note that H"(a;.) is not bijective
to the set N(g)/Intg of real nilpotent adjoint orbits in g. In fact, the
surjective map ¢ : N(g)/Int g — H™(a;) defined in Section 1 is not always
injective. In summary, we have the following commutative diagram:

Ng(gc)/Int gc <— H"(a4)

complexification T /

N(g)/Int g

where the complexification of a real nilpotent adjoint orbit O in g is defined
as (Int gc) - O C ge. The survey of classifications of real nilpotent (adjoint)
orbits in semisimple Lie algebras can be found in [4, Chapter 9.

3. Proof of Theorem 1.1

First, we show the easy part of Theorem 1.1 as follows:
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LEMMA 3.1. H"(ay) Cb (:=a""0).
PrOOF OF LEMMA 3.1. Let us fix any p € Hom(sl(2,R), g) with 4, :=
0

by p: PSL(2,R) — Intg the Lie group homomorphism corresponding to
p:sl(2,R) — g.

1
,0( _01> € ag. It is enough to show that —A, = wpA,. We denote

One can observe that, in s[(2,R), the two elements (é _01) and

0
fore two elements A,, —A, € g are conjugate under the adjoint action of
p(PSL(2,R)) C Intg. On the other hand, for any A € a; C g, we have
that

<_1 [1)> are conjugate under the adjoint action of PSL(2,R). There-

(Intg-A)Na=W-A

(see [9, Lemma 7.2] for more details). Hence for A, € ay, the element —A4,
isin W - A,. Since —A, € —a, we have —A, = woA,. [

In the rest of this section, we give a proof of non-trivial part b C
R-span(H™(a;)) of Theorem 1.1.

Recall that ¥ : j — Map(II,R) in Section 2.2 is a linear isomorphism.
Therefore, to complete the proof of Theorem 1.1, we only need to show that

(3.1) U(b) C R-span¥(H"(a))

We note that our claim for semisimple g is reduced to that on each
simple factor of g. Furthermore, in the case where g is a complex simple
Lie algebra, our claim is reduced to the case where g’ is a split real form of
g. Thus, it is enough to show (3.1) for the case where gc is simple and g
is non-compact real form of gc. To do this, we shall find weighted Dynkin
diagrams ¥q,...,¥,, in ¥(H"(ay)) such that {¥y,..., ¥, } becomes a basis
of ¥(b) for each non-compact real simple Lie algebra g.

In the rest of this section, for each complex simple gc, we give an ex-
plicit form of Map(II,R)"* (see Section 2.3 for the definition of ¢) and some
examples in W(H™(j4+)) from the list given by Dynkin [5] (we will refer [4]
for classifications of weighted Dynkin diagrams in W(H"(j;))). Then for
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each non-compact real form g of gc, we give the Satake diagram Sy of g,
which can be found in [1], and the explicit form of ¥(b) by using (2.2) in
Section 2.3. Finally, for each g, we give an example of a basis {¥y,...,¥,}
of U(b) with

U, € U(H"(ag)) = {¥a € Y(H"(j4+)) | Y4 matches Sq}

(see Section 2.5 for the details). Then the proof of Theorem 1.1 will be
completed.

REMARK 3.2. As in the following subsections, our basis {Uy,...,V,}
of U(b) consists of weighted Dynkin diagrams of even nilpotent orbits, where
“even” means that any weight of ¥, is 0 or 2.

3.1. Type 4
Let us consider the case where gc is of type A; for [ > 1, that is,
gc ~ sl(l + 1,C). Then we have

al a2 B ¢ 7]
Map(II, R) = ¢ o——o—n —o0——o0 |a;=au1_;fori=1,...,1

By [4, Section 3.6], we can find some examples of weighted Dynkin dia-
grams in W(H"(j4+)) as in Table 3.1.1 below.

Table 3.1.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type A;.

Symbol Weighted Dynkin diagram in ¥(H"(j))
2 2...2 2
[l +1] 0—0——0—0
_9s 2 22 0..-0 2 2 ...2
[28+171l 2 ] O— i O—O——O— - —O——O———O— -0
Qg Aj41—5

) 202 ... 02 20 ... 202
(25 +1)2, 14— 0202 .- 0200 .- 0020 ... 2020
s Ql41-2s
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The Satake diagrams Sg and ¥ (b) of non-compact real forms g of gc are
listed in Table 3.1.2 below.

Therefore for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in W(H"(ay)) = {¥4 € ¥(H"(j+)) | Y4 matches Sy} as
in Table 3.1.3 below.

Table 3.1.2. List of Satake diagrams and ¥(b) of type A;.

g Sq U (b)
by by...by by
sl(l+ 1,R) O o—0 O—0——0—0
* 0b10b2...b2 0010
su*(2k) o oo o021 OO OO
2k =1+1)
a Qq by by-bg 0
su(p, q) . o0
(p+q=1+1) * |
(p>q+1) . 0 5o
Q Al+1—¢q b1 b2 bq
o oy, b1 by b
su(k+1,k)
e T
Q2k—1 k41 by by by
@ by by--- Do
su(k, k) $ i $ Qg br
2k =1+1)
Q2k—1 by bo br—1
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Table 3.1.3. Examples of bases of ¥(b) for real forms of type A;.

g Example of a basis of ¥(b)
sl(2k,R) (2k =1+1) [3, 12F=3] [5,12F75), ... [2k — 1,1], [2k]
sl(2k +1,R) (2k = 1) [3,126-2],[5,126—4] ... [2k + 1]
su*(4m) (4m =1+1) 32, 14m6], [52, 14m—10] |

[(2m —1)2,1%], [(2m)?]
su*(dm+2) dm=1-1) [32,14m=4] [52 14m=8] .. [(2m + 1)?
su(p,q) (p+g=1+1Lp>q+1) [3,172,[517,...,[2¢ + 1,172
su(k +1,k) (2k=1) 3,122 [5,12F4) ... 2k — 1,12], [2k + 1]
su(k, k) (2k =1+1) 3,123, [5,12K75), ... [2k — 1, 1], [2K]

3.2. Type B,
Let us consider the case where g¢ is of type B; for [ > 1, that is,
gc ~ s0(20 + 1,C). Then we have

aq as ... a1 ay
Map(II,R)* = Map(II, R) = oO——0— =0

By [4, Section 5.3], we can find some examples of weighted Dynkin dia-
grams in W(H"(j+)) as in Table 3.2.1 below.

Table 3.2.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type B.

Symbol Weighted Dynkin diagram in U(H"(j4))
2 2 .02 2
20 +1] O——O0——O=——=0

2 2...20-..-00

25 +1,12-25] OO TETOT T
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The Satake diagrams Sg and ¥ (b) of non-compact real forms g of gc are
listed in Table 3.2.2 below.

Therefore for each g, we can find a basis of U(b) by taking some weighted
Dynkin diagrams in U(H"(a4)) = {¥4 € Y(H"(j+)) | ¥4 matches Sg} in
Table 3.2.3 below.

Table 3.2.2. List of Satake diagrams and ¥(b) of type B;.

g Sy W (b)
s0(p, q) by by by 0 00
(p + q = 2l =+ 1) O—O— 7.(é)_._ ..... —o=>0 o—0——O0—O0— - —O=>0
(p>q+1) I
by by ... b1 By
50(l+1?l) O—Q—_O:O oO—~O—— —O:>O

Table 3.2.3. Examples of bases of ¥(b) for real forms of type B;.

g Example of a basis of ¥(b)

so(p,q) (p+g=20+1p>qg+1) [3,177%,[5,1%74,... [2¢ + 1,1%72]
so(l+1,1) [3,12072] [5, 1204], ... [20 + 1]

3.3. Type

Let us consider the case where gc is of type C; for [ > 1, that is,
gc ~ sp(l,C). Then we have

al az ... a1 aj
Map(H’R)L — Map(H’R) = o—O0——m 00
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By [4, Section 5.3], we can find some examples of weighted Dynkin dia-
grams in ¥(H"(j+)) as in Table 3.3.1 below.

The Satake diagrams Sg and ¥(b) of non-compact real forms g of gc are
listed in Table 3.3.2 below.

Table 3.3.1. Examples of weighted Dynkin diagrams in W(H"(j+)) of type C;.

Symbol Weighted Dynkin diagram in W(H"(j))
. 0 ...0 0 0 ... 0 2
[2] o— —O0—O0——0— —O0<—0
2 .2 2 0 . 0 2
[2S+272l—8] O—- - _OT.?S‘_O_ ........ —O@O
CAg— 0202 ... 0200 -.- 00 O
[(25"‘1)2712[ 452] 0-0-0-0— "+ —0-0-0-0— "+ —0-0<=0
Q25
[(2k)? 0202 ... 0202 ... 20 2

Table 3.3.2. List of Satake diagrams and ¥(b) of type C;.

g Sq b)

bl b2 blf 1 bl

sp(l,R) OO =0 O—0——0&=0

(p+qg=1 e—o0—e so—e—e —ece
(p>q) “

sp(k, k)
(2k = 1)

*—0—e— —0—e<0_ 0—0—0——0—0<0

2k

W (
sp(p, q) { 0b10...5%00...0 0
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Therefore for each g, we can find a basis of ¥(b) by taking some weighted

Dynkin diagrams in U(H"(a4)) = {4 € Y(H"(j+)) | ¥4 matches Sg} in
Table 3.3.3 below.

Table 3.3.3. Examples of bases of ¥(b) for real forms of type Cj.

g Example of a basis of ¥(b)

sp(l,R) 2], 4,22, 16,273], ..., [2]]

sp(p.q) (P+a=1p>q) [3° 1770, [5%, 12710 . [(2¢ + 1)%, 122
sp(k, k) (2k =1) [32,14k=6] [52, 14101 | [(2k — 1)2,12],[(2k)?]

3.4. Type Doy,
Let us consider the case where gc is of type Day, for m > 2, that is,
gC ~ 50(4m, C). Then we have

a2m—1
al as ...02m—
Map(II,R)* = Map(II,R) = o o o

By [4, Section 5.3], we can find some examples of weighted Dynkin dia-
grams in W(H"(j4+)) as in Table 3.4.1 below.

Table 3.4.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type Dapn,.

Symbol Weighted Dynkin diagram in W(H"(j4))

0
Ug
0
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2
4m — 1,1] 22 22 2

2
2m oo o0 070
2571 oo o0

2

0
[(25 + 1)2, 14m—4s-2] 0202 ... 0200 --. 00
Qg

The Satake diagrams Sg and W(b) of non-compact real forms g of gc are
listed in Table 3.4.2 below.

Table 3.4.2. List of Satake diagrams and ¥(b) of type Dapn.

g S T (b)
0
so(p,q) /' by by b @ 0
(p+q=4m) 00— —o—e— e O—O0— i —O— O
(p >q+ 2) 1 °
0
bam—1
by by bam—3
so2m+1,2m—-1) o 6 6 o0 o ¢ 5 o—o— b2
bam—1
b2m—1
by by ...bam—3
s0(2m, 2m) o0—o0—0—- w—o—< o—o— bom—a
me
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0
g 0 b1 0...bm—20
50" (4m) o— o o —o—o< 0—0—0— bin—1
bm,

Therefore for each g, we can find a basis of U(b) by taking some weighted
Dynkin diagrams in W(H"(a4)) = {4 € Y(H"(j4+)) | ¥4 matches Sy} in
Table 3.4.3 below.

Table 3.4.3. Examples of bases of ¥(b) for real forms of type Day,.

g Example of a basis of ¥(b)

so(p,q) (p+qg=4m,p>q+2) [3, 143 [5 145 ... [2q+ 1,14m~2971]

so(2m+1,2m — 1) (3,143, [5, 14m=5], ... [4m — 1,1]

50(2m 2m) [3,14m=1], 5, 14m=3], . .., [dm — 1, 1], [227];
0*(4m) [32,14m 6], [52 14m=10)

[(2m —1)%,1%), [22™];

3.5. Type D2m+1
Let us consider the case where g is of type Day,4+1 for m > 1, that is,
gCc ~ so(4m + 2,C). Then we have

a2m
. al ay ...02m—
Map(ILR)' ={ o—o— domet | B2m = Gzmi1

By [4, Section 5.3], we can find some examples of weighted Dynkin dia-
grams in ¥(H"(j+)) as in Table 3.5.1 below.

The Satake diagrams Sg and W (b) of non-compact real forms g of gc are
listed in Table 3.5.2 below.



416 Takayuki OKUDA

Table 3.5.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type Dam+1.

Symbol Weighted Dynkin diagram in ¥(H"(j4))
0
[28+1714m—25+1] 2 2 (j 0 0
s
0
2
2 2 2 2 2
[4m +1,1] OO O
2
0
0202 ... 0200 -.- 0
[(2s+1)2, 14 4] C o oo _S0oo0o0. .
Q25 0
2
0202 ... 0202 ... 0O
[(2m +1)? 0-0-0-0— - —0-0-0-0—-— ,,

Table 3.5.2. List of Satake diagrams and ¥ (b) of type Dam+1.

g S U (b)
ﬁﬁ(pa Q) ° by by bq 0 0
(p>q+2) a .

bi by bam-2
s0(2m + 2,2m) o—o—o— +O—<> o—o0—-
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b2m
b1 bg e b2m—2
so(2m+1,2m+1) o o o o—o0— bom—1
b?m
b
/o 0 b 0...00m=1
50*(4dm + 2) O O O—O—® > 0—0—0—- 0
b

Therefore for each g, we can find a basis of U(b) by taking some weighted
Dynkin diagrams in W(H"(a4)) = {¥4 € Y(H"(+)) | ¥4 matches Sy} in
Table 3.5.3 below.

Table 3.5.3. Examples of bases of ¥(b) for real forms of type Dayp1.

g Example of a basis of ¥(b)

so(p,q) (P+a=4m+2,p>q+2) [3,17"71,[5,177%, . [2¢ 4 1, 1020
s0(2m + 2,2m) [3, 1™~ [5, 1™, ... [4m + 1, 1]

s0(2m + 1,2m + 1) [3, 1471 5,143, ... [4m + 1, 1]
s0™(4m + 2) [32, 1474 [5%,1*™ 78], ... [(2m + 1)?)

3.6. Type Eg

Let us consider the case where gc is of type Eg, that is, gc ~ eg,c. Then
we have

Map(I,R)" = o o a1 = as, as = a4
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In [4, Section 8.4], we can find some examples of weighted Dynkin dia-
grams in ¥(H"(j+)) as in Table 3.6.1 below.

The Satake diagrams Sg and W(b) of non-compact real forms g of gc are
listed in Table 3.6.2 below.

Table 3.6.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type Es.

Symbol  Weighted Dynkin diagram in ¥(H"(j4))

o 0 0 0 0
Az o o

’

24, o o

Dy o o
o2

B (2) 2 2 2 c2>
o2

Table 3.6.2. List of Satake diagrams and ¥ (b) of type Fs.




Abundance of Nilpotent Orbits

419

o b by by by by

€6(2) o T o o o
l J>b4

by 0 0 0 b

€6(—14) o—e ° o0 o o
.

b 0 0 0 b

€6(—26) o© ° ° ° o o 0
l ’

Therefore for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in U(H"(a4)) = {4 € Y(H"(j+)) | ¥4 matches Sg} in
Table 3.6.3 below.

Table 3.6.3. Examples of bases of ¥(b) for real forms of type Fs.

g Example of a basis of ¥(b)

€6(6) Az,2A2, Dy, Es

€6(2) Az,2A3, Dy, Es

eg(—14) A2,242

e6(—26) 242




420 Takayuki OKUDA

3.7. Type E;
Let us consider the case where gc is of type E7, that is, gc ~ e7,c. Then
we have

L B aq as as a4 as Qg
Map(II, R)* = Map(II, R) = o o

Lo

In [4, Section 8.4], we can find some examples of weighted Dynkin dia-
grams in W(H"(j+)) as in Table 3.7.1 below.

/

Table 3.7.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type Ex.

Symbol Weighted Dynkin diagram in ¥(H"(j4))
(341)" S U S S

’

0 0 0 0 0 2

As o 0
°0

924, g) 2 0 0 0 (O]
00

Dy g 0 0 0 2 g
°0

Az + Ay + Ay

00



Abundance of Nilpotent Orbits 421

A4+A2 O

The Satake diagrams Sg and W(b) of non-compact real forms g of gc are
listed in Table 3.7.2 below.

Table 3.7.2. List of Satake diagrams and ¥(b) of type E7.

g Sg W(b)

S
S
[y
[V
o
w
S
iy
o
ot
o5

€7(7) o o) o
i L,

€7(—5) ° ° o) o
| Lo

€7(-25) o—0O—e o—0 o
Lo

Therefore for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in W(H"(a4)) = {¥4 € Y(H"(j1)) | ¥4 matches Sy} in
Table 3.7.3 below.
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Table 3.7.3. Examples of bases of ¥(b) for real forms of type E7.

g Example of a basis of U(b)

e7(7) 3AY,A2,2A5, Dy, Az + Ag + Ay, Ay + Ay, Er
e7(—5)  A2,2A2, Dy, Ay + A
e7(—25) SAY, As,24

3.8. Type Eg

Let us consider the case where gc is of type Eg, that is, gc ~ eg c. Then
we have

L B aj a9 as a4 as Qg a7
Map(II,R)* = Map(II, R) = o o
l as

In [4, Section 8.4], we can find some examples of weighted Dynkin dia-
grams in W(H"(j+)) as in Table 3.8.1 below.

J

Table 3.8.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type Es.

Symbol  Weighted Dynkin diagram in W(H"(j))

2 0 0 0 0 0 0

A2 O O
o0

0 0 0 0 0 0 2

249 o °

00



Ay + As

Dy + Ay

D5 + A

Es(a1)

Abundance of Nilpotent Orbits

2 0 0 0 0

O O
J>0

0 0 0 0 0

O O
lo

2 0 0 0 0

O l O
2

2 2 0 0 0

O O
00

2 2 0 2 2

O O
o2

2 2 2 2 2

O O
o2

423

The Satake diagrams Sg and ¥(b) of non-compact real forms g of gc are

listed in Table 3.8.2 below.

Table 3.8.2. List of Satake diagrams and ¥(b) of type Fs.

T(b)

bl b2 b3 b4 b5 b6 b7

Ibs




424 Takayuki OKUDA

by b2 b3 0 0 0 b4

€8(—24) o—o—o—o—I—o—o O_O_O_O_I_O_O
0

Therefore for each g, we can find a basis of U(b) by taking some weighted
Dynkin diagrams in W(H"(a1)) = {Va4 € V(H"(j+)) | Y4 matches Sy} as
in Table 3.8.3 below.

Table 3.8.3. Examples of bases of ¥(b) for real forms of type Fs.

g Example of a basis of ¥(b)
€s(8) A2,2A9, Dy, Ay + Ay, Dy + Ay, D5 + Ay, Eg(ay), Eg
eg(—24) A2,242, Dy, Ay + Az

3.9. Type Fy
Let us consider the case where gc is of type Fy, that is, gc =~ f4,c. Then
we have

al a9 as a4
Map(II, R)* = Map(II, R) = o0——0—=0—0

In [4, Section 8.4, we can find some examples of weighted Dynkin dia-
grams in W(H"(j+)) as in Table 3.9.1 below.

Table 3.9.1. Examples of weighted Dynkin diagrams in W(H"(j+)) of type Fu.

Symbol  Weighted Dynkin diagram in W(H"(j+))

Ay 2 0 0 0
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AQ oO—O0——>0——0
Bs 2 2 0 0
£ 2 2 2 2

The Satake diagrams Sg and W(b) of non-compact real forms g of gc are
listed in Table 3.9.2 below.

Table 3.9.2. List of Satake diagrams and W(b) of type Fj.

g Sg T(b)
by bo b3 by
fa(a) o—o——=0—o0 O—6——0—9°
0 0 0 b
f4(720) [} o——e—— O O———0——>0—=0

Therefore for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in (H"(ay)) = {¥4 € ¥(H"(j+)) | Y4 matches Sy} as
in Table 3.9.3 below.

Table 3.9.3. Examples of bases of ¥(b) for real forms of type Fj.

g Example of a basis of ¥(b)

f4(4) A27A~*27BB7F4

fa(—20) A2
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3.10. Type G>
Let us consider the case where gc is of type G, that is, gc ~ g2,c. Then
we have

a;  ap
Map(II,R)* = Map(II, R) = o=—=0

In [4, Section 8.4], we can find some examples of weighted Dynkin dia-
grams in H"(j4) as in Table 3.10.1 below.

Table 3.10.1. Examples of weighted Dynkin diagrams in ¥(H"(j+)) of type Ga.

Symbol  Weighted Dynkin diagram in ¥(H"(j+))

2 0
Ga(a1) o——0
2 2
Ga o—0

Let g be a non-compact real form of gc. Then g is a split real form of
gc. The Satake diagram Sy and W(b) of g are listed in Table 3.10.2 below.

Table 3.10.2. List of Satake diagrams and ¥(b) of type Ga.

g Sg ‘I’(b)
by b2
g2(2) o—0 =0

Therefore, the weighted Dynkin diagrams labeled by “Ga(a1)” and “Gs”
in U(H"(ay)) ={¥4 € ¥(H"(j+)) | ¥4 matches Sy} give a basis of ¥(b).
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Appendix A Semisimple Symmetric Spaces with Proper
SL(2,R)-Actions

In [9, Theorem 1.3], by using the main result (Theorem 1.1) of this paper,
Kobayashi’s properness criterion [6, Theorem 4.1] and Benoist’s results in
[3], we proved that the following three conditions on a semisimple symmetric
space G/H are equivalent:

(i) G/H admits a proper action of SL(2,R) via G.
(i) G/H admits discontinuous groups which are not virtually abelian.

(iii) There exists a (complex) nilpotent orbit OC in g¢ := g 4+ +/—1g such
that OC meets g but does not meet the ¢-dual h + v/—1q of the sym-
metric pair (g,h), where g = h + q is the decomposition of g with
respect to the involution associated to the symmetric pair (g, b).

In particular, if a symmetric space G/ H is simply-connected and satisfies the
equivalent conditions above, then for any torsion-free discrete subgroup I'
of SL(2,R) (which acts on G/H properly), we obtain a peudo-Riemmanian
locally symmetric space I'\G/H with its fundamental group T

In [9, Table 6], we gave a list of symmetric pair (g,h) with simple g
satisfying the condition (iii). Taking this opportunity, we would like to
correct some errors of (g,h) in [9, Table 6]:

o “(sl(n,R),s0(n—1,1)) for 2¢ < n” should be “(sl(n,R),s0(n—1,1)) for
2i <n—1".

o “(su(2m —1,2m —1),s0*(4m — 2))” should be “(su(n,n),s0*(2n))”.
o “(so(k,k),s0(2k,C) +s0(2))” should be “(so(k,k),s0(k,C) +s0(2))”.

e “(sl(n,C),s0(n—1,1)) for 2¢ < n” should be “(sl(n,C),s0(n—1,1)) for
2i <n—1".

For the reader’s convenience we give a list of symmetric pair (g,h) with
simple g satisfying the condition (iii) as Table A below.
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Table A. Classification of (g, h) satisfying the condition ().

g b
sl(2k,R) sl(k,C) @ s0(2)
sl(n,R) so(n —1,1)
(2i<n—1)
su*(2k) sp(k —1,1)
(2i < k—1)
su(2p, 29) sp(p, q)
su(n,n) 50%(2n)
su(p, q) su(i, j) ® su(p —i,q — ) ® s0(2)
(min{p, ¢} > min{é, j} + min{p —i,q — j})
50(p7q) 50(1,])@50(]7—@,(]—])
(p+qisodd) (min{p,q} > min{i,j} + min{p —i,q — j})
sp(n,R) su(n —i,1) & s0(2)
sp(2k,R) sp(k,C)
sp(p, q) sp(i, j) ® sp(p — 4,9 — j)
(min{p, ¢} > min{é, j} + min{p —i,¢ — j})
50(p7Q) 50(7“’])@50(p_27q_j)

(p + ¢ is even)

(min{p, ¢} > min{i, j} + min{p —i,q - j},
unless p =g =2m+1 and |i — j| = 1)

s0(2p, 2q) su(p, q) ® so(2)

50" (2k) su(k —1i,1) ®so(2)
(20 <k—1)

so(k, k) s0(k,C) ®s0(2)

s0%(4m) s50%(dm — 4i + 2) @ so0*(4i — 2)

€6(6) sp(2,2)

€6(6) 5u*(6) @ su(2)

€6(2) 0*(10) & s0(2)

€6(2) 5u(4 2) @ su(2)

€6(2) 5]3(3, 1)

€6(—14) fa(—20)

e7(7) eg(2) D 50(2)

27(7) 5u(4, 4)

50%(12) @ su(2)
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e7(7) su”(8)
€7(=5) e(—14) D 50(2)
e7(—5) su(6,2)
€7(—25) e6(—14) D 50(2)
€7(—25) su(6, 2)
€s(8) er(—5) D su(2)
€3(8) 50%(16)
fa) sp(2,1) @ su(2)
sl(2k,C) su*(2k)
sl(n,C) su(n —i,1)
(2i <n—1)
s0(2k+1,C)  so(2k+ 1 —14,4)
(1 <k)
sp(n,C) sp(n —i,1)
s0(2k,C) s0(2k —1,1)
(i <kunlessk=i+1=2m+1)
s0(4m,C) so(4dm —2i+1,C) & so(2i — 1,C)
s0(2k,C) 50" (2k)
¢6,C €6(—14)
€6,C €6(—26)
e7.C €7(—5)
€7,C €7(—25)
€g,C €8(—24)
fa,C fa(—20)

Here k>1, m>1,n>2,p,q>1andij > 0. It should be remarked
that so(p, q) is simple if and only if p + ¢ > 3 and (p, q) # (2,2), so(2k,C)
is simple if and only if k£ > 3.
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