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De Finetti Theorems for a Boolean Analogue

of FEasy Quantum Groups

By Tomohiro HAYASE

Abstract. We show an organized form of quantum de Finetti
theorem for Boolean independence. We define a Boolean analogue of
easy quantum groups for the categories of interval partitions, which is
a family of sequences of quantum semigroups.

We construct the Haar states on those quantum semigroups. The
proof of our de Finetti theorem is based on the analysis of the Haar
states.

Introduction

In the study of distributional symmetries in probability theory, the per-
mutation groups .S, and the orthogonal groups O, play central roles. The
de Finetti theorem states that a sequence of real random variables have a
joint distribution which is stable under each S, action if and only if it is
conditionally independent and identically distributed (i.i.d. for short) over
its tail g-algebra. Similarly, the symmetry given by the orthogonal groups
O,, induces conditionally i.i.d. centered Gaussian random variables. See [2]
for details.

In noncommutative probability theory, a probability measure space is
replaced with a W*-probability space (M, @) which is a pair of a von Neu-
mann algebra and a normal state. A self-adjoint operator in M has a role
as a random variable. Contrary to Kolmogorov probability theory, there
are several possible notions of independence in noncommutative probability
theory. By [10], there exist only three universal independences; the classical
independence, the free independence and the Boolean independence. Free
probability theory is one of the most developed noncommutative probability
theory [13]. The Boolean independence appeared in [14], [12]. The Boolean
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one occurs only in the non-unital situations. Each universal independence is
characterized by a family of multivariate cumulants whose index runs over
one of a category of partitions. Free cumulants and Boolean cumulants are
determined by noncrossing partitions and interval partitions, respectively.
By using Boolean cumulants, it can be proven that the central limit distri-
bution of the Boolean independence is the Bernoulli distribution.

Kostler and Speicher have shown the free de Finetti theorem in [3]. The
theorem states that the symmetry given by the free permutation groups
(C(S;7))neN induces the conditional free independence. The free permuta-
tion group C(S,) is the liberation, that is, a free analogue, of S,, (See [1] for
the liberation). More precisely, the Hopf algebra C(S;7) is given by elimi-
nating the commuting relations among the generators of the Hopf algebra
C(Sy). The free permutation group is one of the free quantum groups which
appeared in [15], [16].

An easy quantum group is one of Woronowicz’s compact matrix quantum
groups which is characterized by a tensor category of partitions in the sense
of the Tannaka-Krein duality. De Finetti theorems have been proven for
easy quantum groups (see [1]) in particular easy groups Sy, Hy,, Bn, Oy
and free quantum groups C(S;7), C(H,"),C(B,}),C(O;). Tt is known that
every compact quantum group admits a unique Haar state [17], and the
Haar states play a main role in the de Finetti theorem.

Liu’s work [6] starts the research of the de Finetti theorem for the
Boolean independence. He adds a projection P to the generators of free
quantum groups C(S;") and defines a quantum semigroup (in the sense of
[9]) Bs(n) and has proven associated Boolean de Finetti theorem. The theo-
rem states that the symmetry given by the family (Bs(n)),eN characterizes
the conditionally Boolean i.i.d. random variables.

Main Results

To develop the research of the Boolean de Finetti theorem, we are in-
terested in finding the Haar states on Boolean quantum semigroups. By
using the Haar state, we can apply the organized strategy for the de Finetti
theorems for easy quantum groups [1] a similar way. We define a Boolean
analogue of permutation group 5, in a different form Begs.

We do not prove that Begs(n) and Bs(n) are isomorphic, but we prove
that Begs(n) and Bs(n) admit a same Haar state hs. Moreover, we prove
that the Boolean quantum semigroups Begp on the category I, and the
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Boolean quantum semigroups Beq, on I, = I3 have unique Haar states hy,
ho. We do not prove the existence of the Haar state on Boolean quantum
semigroups Beqp on I, but we prove that of the Haar state on Boolean
pr-quantum semigroups Ay [I)].

We first define the notion of categories of interval partitions which is
deeply connected with Boolean independence by Boolean cumulants. By
using the categories of interval partitions, we induce the notion of Boolean
pre-quantum semigroups (Ap[D;n]),eN (see Definition 2.3) which is a se-
quence of unital *-algebras equipped with coproducts. Taking their C*-
completion, we define Boolean quantum semigroups Beg,(n).

For a sequence of coalgebras (A(n))neN, we say that (xj)jeN is
A-invariant if its joint distribution is invariant under the coactions of
(A(n))nen. Then we show the following Boolean de Finetti theorems.

THEOREM 0.1. Let (M,¢) be a pair of a von Neumann algebra and
a nondegenerate normal state. Assume M is o-weakly generated by self-
adjoint elements (ij)jeN- Let M,.: be the non-unital tail von Neumann
algebra.

(s) The following assertions are equivalent;

(0) The sequence (xj);eN is Bs-invariant.
(alg) (
(beq) The sequence (xj);eN s Begs-invariant.
(iid) (

)
The sequence (x;);eN is Ap[I]-invariant.
)

The elements (x;)jeN are Boolean i.i.d. over Myy.
o) The following assertions are equivalent;
g q

(alg) The sequence (x;)jeN is Aplla]-invariant.

(beq) The sequence (x});eN is Bego-invariant.

(iid) The elements (z;)jen form a Myu-valued Boolean centered
Bernoulli family.

(h) The following assertions are equivalent;

(alg) The sequence (x;)jeN is Ap[Ip]-invariant.

(beq) The sequence (x;);eN is Begy-invariant.
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(iid) The elements (x;)jen are Boolean independent, and have even
and identically distributions, over Mpyyt.

(b) The following assertions are equivalent;

(alg) The sequence (x;);eN is Ap[lp]-invariant.
(iid) The elements (x;)jen form a Myu-valued Boolean shifted
Bernoulli famaly.

The common difficulty in carrying out the proof is that Boolean indepen-
dence is a non-unital phenomenon. That is, if M is a von Neumann algebra
and ¢ is a faithful normal state on A, and (M7, Ms) is a pair of von Neumann
subalgebras with 15, € My, My and My, My # Clys. Then (M;, M3) cannot
be Boolean independent in (M, ¢). Hence, we consider non-unital embed-
dings of von Neumann algebras in the arguments of Boolean independence
and conditional Boolean independence.

The main difficulty is to find the Haar states on (Begz(n))nen. We
do that by constructing the GNS-representation of Begs(n) on the Hilbert
space L?(S,,) of L2-functions on classical permutation group S,.

Related Works

In recent preprints [5] [7], Liu generalizes By in a different form from
Beg, and proves generalized Boolean de Finetti theorems. His strategy
does not rely on the Haar states.

Organization

This paper consists of four sections. Section 1 is devoted to some pre-
liminaries. In Section 2, we introduce the Boolean pre-quantum semigroups
Ap[D;n] and the Boolean quantum semigroups Beg,(n). Section 3 provides
a detailed exposition of the Haar functionals and the Haar states. In Section
4, our main results, the Boolean de Finetti type results are proved.

1. Preliminaries

1.1. Partitions
Let us review some notations related to partitions of a set.

Notation 1.1.
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(1) A partition of a set S is a decomposition into mutually disjoint, non-
empty subsets. Those subsets are called blocks of the partition. We
denote by P(S5) the set of all partitions of S.

(2) For a partition m of a set S and r,s € S, we define r ~ s if r and s
™

belong to the same block of 7.

(3) Let S,J be any sets and j € Map (S,J). We denote by kerj the
partition of S defined as r ~ s if and only if j(r) = j(s).

ker j

(4) For m,0 € P(S), we write m < o if each block of 7 is a subset of some
block of o. The set P(S) is a poset under the relation <.

(5) We set for m,0 € P(S5),

1, ifm= 1, ifr <
6(71'70') ::{ Y 1 T 0-7 C(T{',O') ::{ ) 1 7T_Uy

0, otherwise, 0, otherwise.

We introduce the Mébius function. See [8] for more details.

DEFINITION 1.2 (The Mobius function). Let (P, <) be a finite poset.
The Mobius function pup: P? — C is defined as the inverse of ¢, that
is, determined by the following relations: for any m,0 € P with 7 £ o,
pup(m,0) =0, and for any 7,0 € P with # < o ,

(1'1) Z :U’P(Wap) = 6(7T70)7 Z MP(pa J) = (5(7T,U),

pEP peP
m<p<o n<p<o

The following remark is one of the most important properties of the
Moébius function to prove de Finetti theorems.

PROPOSITION 1.3. Let Q be a subposet of P which is closed under tak-
ing an interval, that is, if 1,0 € Q,p € P and 7w < p < o then p € Q. Then
for any w0 € Q with m < o, we have ug(m, o) = pp(r,0).

PROOF. The proposition follows from the relations (1.1). O
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We define the notion of categories of interval partitions.

DEFINITION 1.4. A partition 7 € P(k) is said to be an interval parti-
tion of [k] if each block contains only consecutive elements. We denote by
I(k) the set of all interval partitions of [k].

DEFINITION 1.5. The tensor product ® of partitions is defined by hor-
izontal concatenation.

DEFINITION 1.6. A category of interval partitions is a collection D =
(D(k))ken of subsets D(k) C I(k), subject to the following conditions.

(1) It is stable under the tensor product ®.
(2) It contains the pair partition M.

For a category of interval partitions D, let us denote Lp :={k € N: 1 €
D(k)}, where 1, € P(k) is the partition which contains only one block
{1,2,...,k}.

Notation 1.7. We denote by Ij(k), I(k), and I2(k) C I(k) the set of
all interval partitions with even block size, with block size < 2, and with
block size 2 of [k], respectively. Then each I, (r = h,b,2) is a category of
interval partitions. We also write Iy = I, I, = I. Then we have L;, = N,
L[o = {2}, LIh = {2,4,6, .. } and LIb = {1,2}.

Notation 1.8. For n € N, we denote by 12 the standard n-dimensional
Hilbert space. For k € N and 7 € P(k), set a vector in l,%®k by

where (e;);c[n) is a fixed complete orthonomal basis of 12 and ¢ == ej, ®
ej, ® -+ -e;,. For a category of interval partition D, let HP®)(n) € B(lfL@k)
be the orthogonal projection onto the subspace Span{T#n) | m€ D(k)}. We
omit the index (n) if there is no confusion. We set

D(k
Hij( ) = <€i,HD(k)6j>.
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DEFINITION 1.9 (The Weingarten function). For 7,0 € P(k), set the
Gram matrix G by Gpn(m,0) = <T7(rn),Tg(n)> = nl™7l Let D be a
category of interval partitions. Since the family (T7$n))7re D(k) is linearly
independent for large n, Gy, is invertible for sufficiently large n. We define
the Weingarten function W,fn to be its inverse.

ProproSITION 1.10. Let D be a category of interval partitions. For any
i,j € [n)* and sufficiently large n, we have

Hﬁ(k): Z Wk?n(ﬂ',0'>.
m,0€D (k)

mw<keri
o<kerj

PRrOOF. This is a special case of a well-known result, see [1] for more
details. [J

DEFINITION 1.11. A category D of interval partitions is said to be
closed under taking an interval if for any k € N and p,o € D(k), we have

{mellk)|p<nm<o}={reDk)|p<nm<oc}

PROPOSITION 1.12 (The Weingarten estimate). Assume D is closed
under taking an interval. For any m,0 € D(k),
- 1
nl ka[,)n(ﬂ-v U) = :ul(k)(ﬂ-v U) + O(E) (LLS n— OO),
PrOOF. By [1, Prop.3.4], it holds that n‘”'W,fn(ﬂ,a) = ppr)(T,0) +

O(1/n), as n — oo. Since the subposet D(k) C I(k) is closed under taking
an interval, we have urx) = p(x), which proves the proposition. [

REMARK 1.13. We call a category of interval partition D is join-stable
or V-stable if o V p € D(k) for any o,p € D(k),k € N. We see that each
category of interval partitions I, I,, I, is V-stable. Therefore, for x = s, 0, h,
there exists an interval partition max; )W € I.(k) such that for any
nonempty subset W C I,(k) with WV W C W.

However, the category Iy is not V-stable. For example,
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| 1 - [T e

<

Notation 1.14. Let the index x be one of s,0,h. For any £ € N and
o € P(k), we write

i}lfa =max{m € I;(k) |7 <o}
1.2. Nonunital tail von Numann algebras

Let us define non-unital tail von Neumann algebras. In this paper, we do
not assume that an embedding of x-algebras, C*-algebras or von Neumann
algebras is unital.

DEFINITION 1.15.

or n € N, denote by resp. the *x-algebra of all polynomi-

1) F N, d by P P2.) th lgeb f all pol i
als without constant terms in noncommutative n-variables X1,..., X,
(resp. countably infinite many variables (X;);enN).

(2) Let M be a von Neumann algebra. Let (x;);cN be a sequence of self-
adjoint elements in M. Denote by ev,: P2 — M the evaluation map
evy(X;) = x;. Let us denote by My, the non-unital tail von Neumann
algebra, that is,

o0
=5 ~ow
Myt == m evg( Ozn) )
n=1
where P2, = {f € P, | f is a polynomial in variables X; (j > n)}.
We define the notion of conditional expectations for non-unital embed-
dings.

DEFINITION 1.16. Let n: B «— A be an embedding of x-algebras. A
linear map E: A — B is said to be a conditional expectation with respect
to 7 if it satisfies the following conditions:

(1) E(z*x) >0 for all z € A,

(2) Eon=idg,
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(3) E(n(b)x) =bE(x), E(zn(b)) = E(z)b for all b € B,z € A.

DEerINITION 1.17. Let A, B,n and E be the same as in Definition 1.16.
Let (aj)jes be self-adjoint elements in A. We say (a;);es are identically
distributed over (E, B) if E[a;bia;bs - - - a;bg] = Ela;bia;bs - - - a;bg] holds for
any i, € J, k € N, and by,...,bp € BU{l4}.

Let us introduce the notion of conditional Boolean independence.

DEFINITION 1.18. Let n: B — A be a non-unital embedding of unital
x-algebras A, B with a conditional expectation £: A — B. Let 14 be a unit
of A. Let (x;)jcs be a family of self-adjoint elements of A. Write

B(xj>o := Span U {bol‘jbll‘j . bn_1$jbn ’ bo,...,b, € BU {1A}}'

n=1

The elements (x;);es are said to be Boolean independent over (E, B) if

Elyr -yl = El] - - Elyi],

whenever k € N, ji,...,jk € J,j1 7& J2 7é 7é Jk, and y; € B<1“jl>07
I=1,... &

Notation 1.19.

(1) Let (S,<) be a finite totally ordered set and we write S = {s; <
Sg < +-+ < sp}. For a family (as)ses of elements in M, we denote by
[I,eq as the ordered product [[;lgas = as, - --as

(2) For an interval partition 7 and blocks VW € 7, we write V < W if

k<l forany k € V and | € W. The set « is a totally ordered set
under the relation <.

LEMMA 1.20. The elements (x;);eN are Boolean independent and iden-
tically distributed over (E,B) if and only if the following holds: for any
Jis---5Jk € Nand by, by, ... by € BU{14},

E[b0$jlb1:rj2bz"'l’jkbk] = bo : H E[H Sﬂjlbl].
Veinfrkerj eV

ProOF. Forr,s € [n], r ~1kr s if and only if r and s are consecutive
elements and j, = js. By the linearlity of E/, we have the claim. [
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1.3. Boolean cumulants

In operator-valued free probability, operator-valued cumulants charac-
terize the conditional free independence (see [8] [11]). We introduce some
properties of the operator-valued Boolean cumulants. They combinatori-
ally characterize conditional Boolean independence. Single variate Boolean
cumulants are defined in [12]. As far as the author knows, multivariate
Boolean cumulants first appeared in [4].

Throughout this section, we suppose B C A is an embedding of *-
algebras (not necessarily unital) with a normal conditional expectation E.

DEFINITION 1.21. Let us define B-valued multilinear functions K :
A" — B (w € I(k),k € N) inductively by the following three relations:

(1) For ke Nand yi,...,ys € M, Efy1 - - - yi] zzwel(k)Kf[yl,...,yk].
(2) For k€ Nand 7 € I(k), KE[y1,...,ye] = [[yer K, [yl,...,yk].

(3) For m € I(k) and V € m, Kg/)[yl,...,yk] = Kfm[yjl,...,yjm] where
V={j1<ja< <ijm}

We call them Boolean cumulants with respect to E. We write KZ Kl
for n € N.

ProposiTION 1.22. For ©# € I(k), y1,...,yx and k € N, set

E™y1,...,yx] == H;eﬂE[Hj_e’Vyj]. Then for m € P(k), y1,...,yx € M
and k € N,

E™y1,...,yx) = Z K&y, .. uk).

oel(k
0'<7r

Hence we have KEyy,...,yu] = Y ooerte) By - Ykl (o, ).

o<m

PROOF. The proof is a straight induction on |7|. O

The conditional Boolean independence can be characterized by vanishing
of mixed cumulants.
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THEOREM 1.23. Let (z})jcs be a family of self-adjoint elements in A.
Then (x;)jes are Boolean independent identically distributed with respect to
E if and only if

E[bo:tjlblszbQ x]kbk Z K boxlbl, xlbg, ce ,xlbk]

wel(k)
w<kerj

for any by,--- ,bp € BU{14},je J¥ keN.

PROOF. We have

—

bo . H E[H 331(71] = boEmfI ker‘i[.]?lbl, .7)2(72, e ,$1bk]
Veinfrkerj 1€V

= Z Kf[bowlbl,l‘le,...,:Clbk].

wel(k)
7<<infy ker j

We see that {m € I(k) | # < infrkerj} = {m € I(k) | 7 < kerj}.
Lemma 1.20 completes the proof. [

DEFINITION 1.24. Let x be a self-adjoint element in (M, E).

(1) The element x is said to have centered Bernoulli distribution if for any
b1,...,bp_1 € NU{lM} and k € N,

Elabjaby - by_yz] = Y KFlaby,aby, ... .
TI'EIQ(]C)
We see immediately that if N = Cl,,  has centered Bernoulli dis-
tribution if and only if that is (6, + 6_4)/2 where 0 := / K[z, z].

(2) The element x is said to have shifted Bernoulli distribution if for any
b1,...,bp_1 € NU{lM} and k € N,

Elobiaby - bygz] = Y KF[wby,aby,... ).
7T€Ib(k)
We check easily that if N = Cly, x has shifted Bernoulli distribution
with KE[r] = p and K¥[z, 2] = 0? if and only if its distribution is
aby + [0_p

Ber(u, 0?) := G

)
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where o, > 0, and (o, —(3) is the pair of distinct solutions of the
quadratic equation Z? — uZ — 02 = 0 in the variable Z. Its n-th
moment is given by E[z"] = ("™ — (=8)"™) /(a + B).

A Bernoulli distribution is the central limit distribution of Boolean
i.i.d. self-adjoint elements (see [12]). Hence the Bernoulli distribution is
the Boolean analogue of Gaussian distribution.

2. Boolean Analogues of Easy Quantum Groups

2.1. Boolean quantum semigroups

In this section we introduce the notions of Boolean quantum semigroups
on categories of interval partitions.

DEFINITION 2.1. For a category D of interval partitions, consider the
following three conditions.

(D1) It is block-stable, which means that for any k € N,

D(k)={m e D(k) |{V}e D(V|), V en}.

(D2) Tt is closed under taking an interval.

(D3) It has enough patitions, which means that for [ € N, it holds that
D(1) # 0 if there is k € Lp with D(k + 1) # 0.

We say that D is blockwise if it satisfies (D1)-(D3).

Ezxample 2.2. Categories Ig, I,, I, I, of interval paritions are block-
wise.

DEFINITION 2.3. Let D be a blockwise category of partitions. De-

note by A[D; n] the non-unital x-algebra generated by self-adjoint elements

uz(-;b)(l < i,7 < n) and an orthogonal projection p(™ with the following
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relations: for any k € Lp and i,j € [n]*,

n (n) 5 ==
Zugtl) . .uz(;l)p(n) _Jpon ‘ Jkes
— F 0, otherwise,

n pM, ==y
Sl gl — [P =
o “] thJ 0, otherwise.

If there is no confusion, we omit the index (n) and simply write u; ; and p.
There is a linear map A: A[D;n] — A[D;n] ® A[D;n] with

n
Ap) :==p®p, Aluy) =Y up®@u (i,j=12,...,n).
k=1

It is easy to check that A is a coproduct, that is, the following holds:
(id® A)A = (A ®id)A.

Set a linear map e: A[D;n] — C by e(ui;) = 65, €(p) = 1. We have
(id®e)A = id = (e®id)A. Hence A[D;n] is a coalgebra with the coproduct
A and the counit . We define a sequence of unital x-algebra equipped with
a coproduct by

Ap[D;n] := pA[D;n]p
We call (A,[D;nl)neN the Boolean pre-quantum semigroups on D.

DEFINITION 2.4. We call the sequences of pairs ((Begz(n), A))neN de-
fined by the following Boolean quantum semigroups on D for I, (z =

s,0,h,b).
(1) For a € A[l;;n], we set

[|la|| := sup{]||m(a)|| | 7 is a * -representation of A[l,;n],
m(p) =1, [[(m(uij))ijlln <1},
where || - || is the operator norm on B(H) ® M,(C) for each *-

representation (7, H). Since there is the *-representation w: A[I;n] —
C(Sp) € B(H) defined by m(ui;)(0) = 6(o(i),j) (¢ € Sp), we obtain
0 < |[la|| < oo. Hence || - || is a C*-seminorm on A[I;n].
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(2) Let B be the C*-completion of A[I;n]/(|| - || = 0). We define the
Boolean quantum semigroup on I, of n by

Beg,(n) := pBp.

(3) We denote by ¢y, the unital *-hom A,[I;;n] — Beg;(n) which is the
restriction of the s-hom A[I,;n] — Beg,(n) determined by ¢y (u;;) =
[ui;] (1,7 € [n]), tn(p) = [p]. By abuse of notation, we use the same
symbols u;j, p for the generators [u;;], [p] of Begy(n).

(4) For any x-representation m of A[l;;n] with [|(7(ui;))ij|ln < 1, we
obtain ||(m(Ausj)ij|ln < 1. Hence we can extend the domain of A,
that is, there is a unique bounded *-hom A: Begq;(n) — Beg:(n) @min
Begs(n) with A(uij) = 3= ¢pn) wis © us; and A(p) = p @ p. We simply
denote by A the bounded *-hom A if there is no confusion. It is easy
to check that A is a coproduct of Beg,(n).

LEMMA 2.5. Let the index x be one of s,0,h,b. Then for any k,n € N
and 7 € I,(k), we have

(n) < kerj
(n) (m) (ny __ )P, TS Kerj,
Z Uiygy ”uikjkp( )= {

i€[n]* 0, otherwise,
ie[n]
w<keri
S Wl ) ) = p™, m < keri,
e eI 0, otherwise.
J€[n]
w<ker j

PrROOF. The proof is induction on |r|. O

REMARK 2.6.  We denote by Pi; € B(L*(S,)) (i, < n) the generators
of C(S,), where Pij(0) = 6; 5(jy (0 € Sn). We see at once that there is a
x-representation Beqs — B(L?(S,)) which maps ui; to Py and P to 1.

In Section 3.2, we prove that there is another *-representation on L?(S,,)
(see Notation 3.8, Propositon 3.9). In the construction, we use P;; in a
different way. Let ISZ-J- (resp. 1) be the image of P;; (resp. 1) with respect
to the standard inclusion C(S,,) < L?(S,). The xrepresentation maps u;;
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(resp. p) to the one dimensional projection onto the closed subspace Cf’ij
(resp. C1) C L?(S,). Furthermore, we show that Beqs admits the unique
Haar state and that this x-representation is the GNS-representation of the
Haar state (see Theorem 3.14).

Next we consider coactions on the x-algebra of noncommutative polyno-
mials without constant terms.

DEFINITION 2.7. Let A be a unital x-algebra equipped with a coprod-
uct A. For any x-algebra P, a *-preserving linear map T: P — P ® A is
said to be a linear coaction on P if we have

(T®id)oT =(d® A)oT.

Notation 2.8. Let D be a blockwise category of interval partitions.
(1) For m,n € N with m > n, we define a *-hom 7, : A[D;m| — A[D;n]
by

m uZ ] ,L?j é n7 m n
7“nm(ugj )) = J . 7“nm(p( )) = p( )
6ijlADyn), Otherwise,

(2) Define a linear map A,: P — Py @ A,[D;n| by

An(Xjy - Xj) = D Xiy o Xy @ Pltiyjy - Ui -

i€[n]k
We define a linear map ¥,,: P2, — P2, ®@ Ap[D;n] by
\Ijn(f) = (1d ® Tnm) © Am(f)7

for f € Py, C P2.. Then by a direct calculation, each ¥, is a linear
coaction of A,[D;n] on Pg_.

(3) We define a coaction ®,, of Beg;(n) on P2 by

¢, = (Id®tp) 0 Uy,
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DEFINITION 2.9. Let (M, ) be a pair of a von Neumann algebra and
a state. For any sequence (z;);cN of self-adjoint elements in M, we say that
its joint distribution is A, [D]-invariant if it is invariant under the coactions
of (A[D;n])neN, that is, for any n € N,

(poev, ®id) o ¥, = poev, @ p.
We also say that it is Beg,-invariant if for any n € N,

(poev, ®id) o, = poev, ®p.

It is clear that A[l,]-invariance implies Beg,-invariance.

2.2. Relations with Liu’s Boolean quantum semigroups

We introduce Liu’s boolean permutation quantum semigroup defined in
[6]. Let Bs(n) be the universal unital C*-algebra generated by projections
P.U; ;(i,j =1,...,n) and relations such that

n

ZUUP:P’ jzl?"'vna

i=1

Ui, jUi,; = 0, if i1 #ig, forany j =1,...,n,
UijyUij, = 0, if j1 # jo, forany i =1,...,n.

By [6, Lemma 3.3], we have
n
ZU’UP:P7 izl,...,n.
j=1

We see that Bg(n) admits a coproduct A determined by A(P) := P ®
P, AU ) :=> 31 Uir@Uy;j (4,7 =1,2,...,n). Then let us introduce Liu’s
boolean permutation quantum semigroup.

DEFINITION 2.10. We set Bs(n) = PBg(n)P, and we call (Bs(n), A)
the boolean permutation quantum semigroup of n.

We can check that each Bgs(n) is a quantum semigroup in the sense of
Soltan [9].
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LEMMA 2.11. There is a x-hom a:: Beqs(n) — Bs(n) with a(u;;) = Uy
(1,7 <n) and a(p) = P.

PRrOOF. We see that for any k£ € N and i,j € [n]*,

n . .
Pa Jr=""=Jk,
> Ui Uy P = .
) 0, otherwise,
n . .
P7 1 = =1,
Z Uiy j iy ;P = '
= 0, otherwise.

This completes the proof. [

Notation 2.12. We set a linear map L,: P, — P, @ Bs(n) by
Ln(le .. 'Xjk) = Zie[n]k Xiy - X, @PU; - U, P. We set a lin-
ear map L, : P2 — P ® Bs(n) by ¥, (f) := (id @ rpm) o Ap(f), for
[ e Py, CP,. Then by a direct calculation, each L,, is a linear coaction
of Bs(n) on P2_.

Let (M, ) be a von Neumann algebra and a nondegenerate normal state
and (z;);eN be a sequence of self-adjoint elements in M. We may assume
M C B(H), and ¢ is implemented by 2 € H, which is a cyclic vector for
M. We suppose that ev,(P2)) is o-weakly dense in M, where ev, is the
evaluation map.

Notation 2.13. We say that (z;)jen is Bg-invariant if for any n € N,
(poev, ®id)o L, = poev, @ P.

LEMMA 2.14. Assume (x;)jeN is Ap[lz]-invariant or Beqy-invariant
for one of x = s,0,h,b. Then it is Bs-invariant.

ProoOFr. This follows immediately from Lemma 2.11. (I

We review that Bs-invariance implies the existence of the normal con-
ditional expectation onto the non-unital tail von Neumann algebra. As-
sume that (z;);eN is Bs-invariant. Then by [6, Lemma 6.4] , for a €
evy(PL), Ela] := ow-lim,_,o sh™(a) is well-defined, E[a] € My, and E
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is state-preserving. By [6, Lemma 6.7] , we have for any a,b, ¢ € ev,(P2.),
(E[a]b), ) = (aFEnu[b]2, E[c]Q?). By [6, Lemma 6.8], we can define Eyy :
M — My by

(2.1) Enutly] := ow- lim Ely,],

n—oo
where (y,) is a bounded sequence in ev,(P2)) with ocw-lim, o0 yp = y.
By [6, Lemma 6.9], Eyy. is normal. By [6, Lemma 6.10], E[b] = b for any
b € Myy. By [6, Lemma 6.11] and since E is normal, it holds that for any

Y, 21,22 € M,
(22) <Enut [y]2197 ZQQ> = <yEnut [Zl]Q, Enut [22]Q>

In particular, ¢ o Enyy = . By [6, Lemma 6.12], E[by] = bE|y|, E[yb] =
Ely]b for any b € My, and y € M. Hence Ey, is a normal conditional
expectation onto M, which is state-preserving.

PROPOSITION 2.15.  Assume that (z;);eN is Bs-invariant. Let Eynyg :
M — My be the conditional expectation defined by (2.1). Set et € B(H)
be the orthogonal projection onto the closed subspace MpuS2. Then it holds
that
Enut [y] = €nut Y €nut (y € M)
In particular, My = enutM enyt.
PROOF. Let b € Myy, y € M. As En[b*y] = 0" Enuly], (b9 (
Enw[y])) = (Q, (0*y— Enut[b*y])Q2) = 0. Hence (b*y — Eny[b*y])2 € M,
enut Y2 = Enut [y]Q. By (2.2), for any y € M, a,b € ev,(P),
< nut[ ]CLQ bQ) <yEnut [G]QvEnut[b]Q> = (yenutaQaenutbQ>
= (enutYenutall, b2).

Since the subspace ev,(P2)? is dense in H, it holds that Enuly] =
enutYenut- As Enut[M] = My, it holds that Myt = enusMenyt. O

COROLLARY 2.16. Assume (z;)jeN is Ap[I;]-invariant or Begy-invari-
ant for one of x = s,o0,h,b. Then Enyly] == entyennt (y € M) is a
nondegenerate normal conditional expectation onto My with respect to the
embedding My C M.

PrOOF. This follows from Lemma 2.14 and Proposition 2.15. [J
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3. Haar Functionals and Haar States

3.1. Haar functionals on A[D;n)|
At first, we construct a linear functional with an invariance property on
A[D;n] instead of a Haar state.

DEFINITION 3.1. Let A be a unital x-algebra. Assume A is equipped
with a coproduct A. A linear functional h (resp. a state) on A is called
a Haar functional (resp. a Haar state) if it satisfies the following Haar
invariance property:

(3.1) (id ® h)A = h(-)14 = (h @ id)A.

ProroSITION 3.2.  Under the assumption of A in Definition 3.1, the
unital Haar functional on A is unique if it exists.

PROOF. Assume that g, h are unital Haar linear functionals on A.
Combining invariant properties, for any a € A we obtain (h ® g)A(a) =
(h®id)(id® g)A(a) = (h®id)(14 ® g(a)) = g(a). Similarly, (h® g)A(a) =
(id ® ¢)(h ® id)A(a) = (id ® g)(h(a) ® 14) = h(a). This completes the
proof. [J

Notation 3.3. Let D be a category of interval partitions.
(1) Set
V. := Span({p} U {pui,jy - - uipjp | 1,J € [n]*,k € N}) C Ay[D;n].
We see at once that A(V,P) C V.P o VP,

(2) We write ujj = u;,j, -+ Ui, for i,j € [n]*, k € N. Fix a complete or-
thonormal basis {e; };c[, of the standard n dimensional Hilbert space
I5. Set e; :=¢;, ® - ®e;, for i€ [n]k.

(3) We denote by AX the linear map l,%®k — l,%®k ® V,P defined by

Aﬁ(ej) = Z e; ® pusgp.

ie[n]k
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By a direct calculation, Aﬁ is a linear coaction of VnD , that is,

(id @ A)AE = (AF @ id)AE.
(4) Let Fix(A¥) denote the invariant subspace of the coaction A%, that is,

Fix(AF) := {¢ € 2°" | AL(¢) = ¢ @ p).

LEMMA 3.4. Let g be a functional on Ay[I;n]. Assume glyp satisfies
the Haar invariance property and g(apb) = g(a)g(b) for any a,b € V,P.
Then g is a Haar functional.

ProOOF. For any k,l € [n] and for any multi-indices iV, i®®, ... i),
05300050 e [n]k,
(id ® h)A(pus;) PUs@@P -+ PUiw;0)P)

= > DUOPU@ P Pl s P
s ... seln)*

- h(pugy;p)h(pugiep) - h(pugm;op)
= (Id @ h)A(pugm;op) - (id ® h)A(pugjep) - - - (id ® h) A(pugw;wp)-

This finishes the proof by using the Haar invariance on V,P. O

LEMMA 3.5. For any k,n €N, © € D(k), and i € [n]',

AZ—H(TW ® ei) =T, ® Aln(ei), Aln—'—k(ei X TW) = Afl(el) ® T.

ProoF.
M Tr0e)= ) At @e)
j€[n]*
w<kerj

- E E €s ® Er ®pu81j1 Tt uskjkurlil Tt Urmp

je[n]* seln]*, ren]!

m<kerj
= E es @ er ® E (pu81j1 T uskjk)umil c Upy P
s€ln]®, ren]! j€m)”

mw<kerj
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By Lemma 2.5, we have ZJE[TL]IC, r<kerjPUsijy = Usyjy = C(’]{'7ker s)p Hence

AkH( © € ) Z Z €s @ er & PUryiy =+ Upyiy P = 7 ® Aln(ei)‘

s€[n)® renlt
w<kers

The proof for the second equation is similar to that of the first one. [J

LEMMA 3.6. Let D be a category of interval partitions with D(l) # ()
for a fized index | € N. For any k € Lp and j € [n]', we have

HPWH(Ty @ e5) = Ty, @ HPWe;

PROOF. Since D is ®-stable, we have HP*+) > gDKk) o PO - Ag
D(k),D(l) # 0, it holds that D(k + 1) # 0. We have HP*++)(Ty, ®
HPWe;) =Ty, @ HPWe;. We only need to show that

(3.2) (T, Ty, ® €5) = (Tr, Ty, ® HPWey), for any 7 € D(k +1).

As D(I) # 0 by the assumption, there are scalars (ay)sep) With
HPWe; = >oen() @ ls. Then for any p € D(1),

(3.3) Z oy (T, Z agnl?Vel,
oeD(k oeD(l

For any m € D(k +1),

(34) <717ra7—11,c & HD(Z)€J> = Z aG<T7r’T1k ®T Z Oy n|7r\/ 1k®0')|
ceD(l) ceD(l)

Consider the case k ~™ k+1. Set 7' := 7[(41 g4y We have 7V (1;®0) =
(18¢-1) @@ 191 v (1, ® (7' V 0)). Hence |7V (1; ® 0)| = |7’ V o|. By
(3:3), (3.4),

(T, @ HYOg) = 3 apn™l = (T, ¢p).
oeD(1)

As k ~" k+ 1, we have (T, T1, ® e5) = (T, e5F @ e5) = (Ty, €5). Hence in
this case we have shown (3.2).
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Consider the case k ™ k + 1. Since D is block-stable, there are m €
D(k) and mo € D(l) with m = m @ ma. Then 7V (1 ® 0) = 1}, ® (w2 V 0),
and |7V (1 ® 0)| =1+ |m2 V o|. By (3.3), (3.4),

(T, T, ® HD(l)eJ Z apnttimvel — n(Tr,, €5)
ceD(l)

= <T7T17T1k><T7T27ej> = <T7T’T1k ®€j>‘

Hence we have shown (3.2). Then we have proven the lemma. [J

THEOREM 3.7 (The Haar Functionals). Assume D is blockwise. Then
for any k € N,

(3.5) Fix(A¥) = Span{T} : 7 € D(k)}.

Moreover, for any n € N there exists a unique unital Haar functional hp
on A,[D;n] with

(1) hp(p) =1,
(2) hp(pusp) = Hi?(k) fori,j € [n]*, and k € N,

(3) hp(ay---a;)) = hplay)---hp(a;) for anyl €N, ay,...,a; € V.P.

PrOOF. By a direct calculation, Fix(A¥) D Span{T, : 7 € D(k)}.

We prove the opposite inclusion. ~ We have > o ﬂgkerng(k) =
(ex, HP®OITY = (ep,Ty) = ((m kerr). Similarly we have

Zre[n]k,ﬂgkerr ng(k) C(ﬂ-, ker S).

Assume k € Lp. We prove that for any [ € N and i,j,r € [n]k+l,

(3.6) S° L = ¢ kerr) BV,

s€[n]k

1x<kers
In the case HP®+) = 0 it holds that HP® = 0 as D is D(k) # () and
(D1). Assume that HP*+) -£ 0. By condition (D3), D(l) # (. Thus by
Lemma 3.6, we have

D(k+1)
S HRE = (e @ e, HPOHO(T), @ 6)) = (e @ 01, T1, © HPDey)

s€[n]*
1<kers
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This proves the claim (3.6). Similarly we have

Z Hﬂf:uljza kerS)HJ() for any s € [n]",

re[nl®
w<kerr

Z Hﬁi’fﬁg = ((m, kerr) H;; () for any r € [n]",

s€[n]*
n<kers

Z 1Hr]i1+Hll = ((m, kers)H;; DO for any s € [n]".
renl®
w<kerr
Therefore, there is a functional hp on V,P with (1) and (2).
For any ¢ € Fix(AF), (id® hp)AE(€) = (id®hp) (€ ®p) = E@1. On the
other hand, we have

(id® hp) Ak Z 516J®H p:HD(k)§®p.

i, je[n]k

Thus we have HP®)¢ = ¢, which proves Fix(A¥) = Span{T} : 7 € D(k)}.
As AE(HP®eg) = HPWej it holds that 3 cp e puispHy " = Hy®p.
Hence

. D(k
(id @ hp) A(Puiyj, -~ ijD) = Y Plsyjy "'uSkjkasj( :
s€[n]k
D(k
= H ( )p hD(pUnh : 'uikjkp)p-

Therefore, we have (id ® hp)A = hp(-)p. The other invariance property
follows from a similar proof. By Lemma 3.4, we can extend hp to Apy[D;n]
by (3) with the Haar invariance. O

3.2. Haar states on Beq,

In this section, we construct a x-representation of A[I;n] on L?(S,),
which induces the GNS-representation of (Ap[I;n],hr). In particular, we
see that h; is a state and that Beqs; has unique Haar states. By a similar
discussion, we show that Begy,, Beq, have the unique Haar state.

Notation 3.8. Let (L?(S,))neN be the sequence of the Hilbert spaces
of all L2-functions on permutation groups S, with respect to the uniform
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probability measure on S, which is precisely the normalized counting mea-
sure. In particular, the inner product of elements &, n € L?(S,) is given
by

Y ges, £(@)n(0)
#5n '

We write |[€]] := 1/(£,§). Let C(S,) be the C*-algebra of all continuous
functions on S,,. Let 7, be the tra(;lal state on C(Sy,) given by the normalized
counting measure on S,. The C*-algebra C(S,) acts on L?(S,) by the
left multiplication. Set ~ : C(S,) — L?(S,) be the inclusion map then
(L3(Sy),”) is the GNS-representation of (C(Sy),7,). We set the projections
Pij € C(Sn) (i,j < n) by

(&n) =

B]‘(O') = 51-’00) (O’ € Sn)

We have || P;||> = (P} Pij) = ma(P5) = 1/n and I11]|? = 7,(1) = 1. For
¢ € L3(S,), let us denote by Q(¢) the orthogonal projection onto the one
dimensional subspace C¢ C L?(S,,). For n,& € L%(S,), we denote by |£)(n|
the bounded linear operator ¢ € L(S,,) — (1, ()¢ € L?(S,). We have

1 .
AL

Q(P;) =

We denote by w the vector state on B(L?(S,,)) induced by the unit vector
1.
We obtain that if n > 2, 41,192, j1,j2 € [’I”L] with i1 # io and j; # jo then

" " <Pilj17Pi2j2>

#Sn 2
Q(Pi,j,)Q(Pyjp) = —= 2
o S 1P || Py |12

’ ilj1><Pi2j2‘ = ‘Pllj1><Pi2j2"

Hence Q(P;j,)Q(Prj) # Q(Pinjy)Q(Pijy), and (Q(F;))i; contains mutu-

ally noncommutative pairs.

We prove that the s-representation of A[I;n] determined by w;; +—
Q( ZJ) and p — Q( ) is well-defined. At first, we show that the opera-
tors Q( ”) and Q(1) satisfy the relations which appear in the definition of
Liu’s Boolean quantum permutation group.
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PROPOSITION 3.9. Let u;;j(i,j < n), p be the generators of A[l;n].
Then we have

( Z]l)Q(PZJz) = 6]17J2Q( ZJ1) for any i € [n]ajlva € [n]7
(PZU)Q(PDJ) = 04y, Q( zu) for any j € [n],i1,i2 € [n],
Q(Pj)Q(1) = [Py)(1], for anyi,j € [n].

ProoF. For any indices i < n and j1, jo < n, it holds that

% % Za Sn 60’(2’),‘ 60(1‘),' 0; J #Sn,1
<Pij1 ) Pij2> = < #Snjl e j;,:sn )

y > <P1J1’Pljz>
Q(Pij,)Q(Pij,) = ————
(Fi)QP) (Pija Pijy)

Similarly, Q(P;,;)Q(Piy;) = 6i,.4,Q(Pi,;) for any indices i1, iz < nand j < n.
Then

Q(Pjy) = 8j1,:Q(Pjy)-

(P 1)
i

(P, Piy)(1,1)

>b

Q(P;)Q(1) = |1Pi) (L] = 1Py) (1] O

COROLLARY 3.10. There is the unique x-representation s : Ap[I;n| —
B(L?*(Sy)) with

(3.7) ms(uij) = Q(Py) (0,5 < n), ms(p) = Q(1).

Moreover, there are *-representations Ts: Beqs(n) — B(L*(S,)) and
Il;: Bs(n) — B(L*(Sy)) with 7ts([uij]) = ms(uij) = Ws(Uij)(i,5 < n) and
Ts([p]) = 7s(p) = s(P).

PROOF. Since 3", P; = 1 (j < n) and > i1 P =1 (i <n), we
have for any k € N and i,j € [n]¥,

ZQ Z]l zgk)Q(i) = Q(1>7 Ji=""=Jks

0, otherwise,

ZQ ll] zkj)Q(i) = {Q(i)’ i1 = = gy

0, otherwise.
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Hence the s-representation 75 (3.7) is well-defined. The existence of I
directory follows from Proposition 3.9. Since ||ms(ui;)||n < 1 and 7s(p) = 1,
we have 7 is well-defined. O

LEMMA 3.11. For any i,j € [n]* and k € N, we have

6(infs keri,inf; kerj) -
— 1)\inf1keri|71 (1)

(3.8) QUQ(P) - Q(Py,)Q(1) =

n(n

PROOF. In the case |infrkeri| = 1 it holds that keri = 1;. Then the
left hand side of the equation (3.8) is equal to

NP ~ - 6(1g, ker j
S5 kerf)QQURL Q) = )
This proves (3.8).

Let m € N and assume that the equation holds if |inf; keri| < m. Let
infrkeri = {V; < Vo < --- < V4}, where b = |infrkeri|, and s, := minV,
for v € [b]. Then the left hand side of the equation (3.8) is equal to

C(infkeri, ker )Q(1)Q(Pisy)jis1)) -+ Q(Pitsy)jis)) Q1)

Q(1).

n

Since i(sy) # i(sy41) for any v < k, Q(P; J(sy))Q(H(SVHA)j(SVH)) = 0,
whenever j(s,) = j(sy+1). Now

b
¢( mfkerl ker j) 1:[ J(sy) # j(sp+1)) = 6(ir11fkeri,irllfkerj).

Assume indices satisfy i1 # i3 and j; # jo. Then

. . Y ves, Oo(ir)jiOo(in)je  #Sn—2
<Pi1j17Pi2j2> = - #;njl 202 = #Sn .

Hence, if inf7 keri = inf7 ker j, we have

Q(i)Q(R(s;)](sﬂ) Q(P'L(sb)] (sp) ) (i)
_ (#Sn-1/#50)* (#Sn-2/#5.)"""

(#5150 o)
Sy b—1 . 1 .
_ #éf( #Sj)_l)b_zcza): (),
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It proves the lemma. [

LEMMA 3.12. Let w;j(i,j € [n]) and p be the generaters of A[l;n].
Then for any k € N, m € I(k) and i,j € [n]*,

(3.9) Z upgp = 6(m, irjlf kers j)p.
rcn]”,
inf; ker r=m7
(3.10) Z UigD = 6(ir}f ker i, m)p,
sen]®,

inf; ker s=7

PROOF. We give the proof only for the equation (3.9); the same proof
runs for the other. The proof is by induction on |r|. In the case |7| = 1, we
have m = 1;. Then for any r € [n]*, it holds that inf; kerr = 7 if and only
if kerr = 1. This gives the equation (3.9).

Let b € N. Assume (3.9) holds in the case |7| = b. In the case || = b+1,
write 7 = {V; <V <--- < Vp41}. Set v = max Vj.

1 v k
Vi Va Vi Vo1

Then the left hand side of (3.9) is equal to

(3.11) Z (Uryjy Urajo - - - U, j, Z Uty Un g - - Urt D)
PE[”][k]\Vb+17 Tle[nL

inf ker r=m| K\ Vy11 T'#Ty

It follows that

E : Ut jogr Ul jogg =+ - Ur! 53, P
r'€[nl,
7' 1,

= §(ker(j|vb+1), 1Vb+1)p = Uryjoy1Uryjyyn -« - Uryjp P-

Then by the assumption of induction, (3.11) is equal to

(312) 6(7r|[k}\vb+17il}f ker(j‘[k]\VbJrl))p ) 6(1Vb+17ker(j|vb+1)) - R7
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R = E Upy jy Urggg + - Ury oy * Uryjp 1 Uryjprs - - UryjpD-
re[n}[k]\‘/’“rl,
inf; kerr:ﬂ|[k]\vb+1

For any multi-index r € [n]F\Ve+1, set ¥ € [n]F by T, := 1y, if m < v, and
Ty, := Ty, otherwise. Then inf; kerr = 7r|[k}\%+1 if and only if inf; kerr = 7,
where 7 := 7V (191D @ M@ 1@¢k=v=1) We see that the partition 7 is
drown as the following figure.

k

1 v
Vi Va Vo U Vi1

Since |7| = b, applying the assumption of induction yields R =
6(7,infy ker j)p. Hence (3.12) is equal to

[5(7T|[k]\vb+1 , iI}f ker(j][k]\vb+1)) . 6(1Vb+1 , ker(j|vb+1)) — (7, ir}f kerj)]p
= 4(m, iIIlf ker j)p.
This is the desired conclusion. OJ

ProrosiTION 3.13.  The functional hy is a Haar state and the triplet
(ms, L*(Sy), 1) is the GNS-representation of the pair (AplL;n], hr).

PrROOF. Our proof starts with the observation that the functional wom,
satisfies the Haar invariance on V,*. For any k € N, i,j € [n]*,

6(infy ker s, inf ker j)
n(n _ 1)\ inf kers|—1

(id ® w o me) A(puzp) = > puisp -

s€[n]k

1
n(n _ 1)\1nf1 ker j|—1 Z ptisp
s€[n]*,
inf; ker s=inf ker j

By the equation (3.9) , we have for any interval partition 7 € I(k),

Z PUisp = (5(ir}f keri, 7)p.

s€[n]*,
inf; ker s=n
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From this, we obtain the half of the Haar invariance of w o mws. Similar
arguments can be applied to the other invariance. By the uniqueness of the
Haar functional (Lemma 3.2), we have proven the proposition. [J

THEOREM 3.14. For any n € N, Begs(n) and Bs(n) admit the unique
Haar states. We write them hs and hg,, respectively. Furthermore, we have
hp, o a = hs.

PrROOF. The existence of a Haar state follows immediately from Propo-
sition 3.13. The uniqueness follows from Proposition 3.2. [J

LEMMA 3.15. Assume the index x be o or h. Let u;j(i,j € [n]) and p be
the generaters of A[I;n]. Then for any k € N, m € I,(2k) and multi-indices
i,j € [n)?* with N®* < keri, kerj, it holds that

(3.13) Z urjp = 0(, i}lf kers j)p,
ren)?*, ‘
infr, kerr=m
(3.14) Z uijsp = O(inf ker i, 7)p.
sc[n]?k, ¢

infr, kers=m

Proor. We only prove the first equation. In the case of ©z = o, we
have 7 = M®* and inf;, ker p = N®* for any p € P(2k) with p > N®*. Hence
the first equation follows from the definiton.

In the case of z = h, the proof is by induction on |7|. In the case |7| = 1,
we have T = 1g;. Then for any r € [n]?*, it holds that inf;, kerr = 7 if and
only if kerr = 19;. This gives (3.13).

Let b € N. Assume the first equation holds in the case || = b. In the
case |m| =b+ 1, write m = {V} < Vo < -+ < Vpq1}. Set v = maxV},.

v

|
12

mT =
2k
Vi Va Vb Vi1
Then the left hand side of (3.13) is equal to
Z (Uryjy Urojy - - - Ur,j, Z Up oy Unl iy yg - - - Urljoy D)
ren) P\ Vot1 r'€[nl,
inf 7, kerr=mlp\v, '
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Since |Vp41] is even, it follows that

E : Ut Gy Url g« + - Ur! oy P
r'eln],
' Fry

= 6(ker(j|vb+1)7 1Vb+1)p - uh;jv+1u7“vjv+2 e uijZlcp'

By the assumption of induction, (3.13) is equal to

(3.15) 6(7"’[k}\vb+1 , iﬂf ker(j\[k]\‘/bJr1 )p - (5(1VbJrl , ker(j]vb+1)) — R,
where
R= Z Upyjy Upgjy -+ - Uryjy * Uryjy iy Uryjpgs - - - Ury o D-

ren]2H\Vor1,

infy, ker r:ﬂ[%]\Vb+1

For any multi-index r € [n] 2EN\Ve+1 ) get T € [n)%* by T, := 14 if m < v,
Ty, := Ty, Otherwise.

Set 7 := 7V (12D @ M@ 1%@k—v=1)) The partition 7 can be drown
as the following figure.

v

2k
Vi Va Vb U Vi1

|
12

Then infy, kerr = 7lp\v;,, if and only if infy, kert = 7. Since |7| = b,
applying the assumption of induction yields R = ¢(7,infy, ker j)p. Hence
(3.15) is equal to

[6(7T|[k]\\/},+1aiﬁf ker (jliorpvi,a ) - 0(Lviy s ker(Glv,, ) — 5(7?712Lf ker j)|p

= §(m, inf ker j)p.
Iy
This is the desired conclusion. [J

Let us construct -representations of A[l,;n], A[I};n]|, which give us
Haar states. We set a one dimensional projection R and self-adjoint opera-
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tors F; € My,+1(C) (i <n) by the following: for k,l <n+1,

R(k.1) = 1, ifk=1l=n+1,
a 0, otherwise,

Fi(k.1) = 1, if (k,0) = (i,n+ 1), (n + 1,4),
0, otherwise.

For any i,r € [n] with ¢ # r we have

(3.16) RF? = R, RE;F, =0.

Set F;; = F; ® F;. We set operators

1
PO = R(@R7 UZ(‘)] = ﬁFm,

Ph = Q1) ® P°, Ul = Q(Py) ® F.

LEMMA 3.16. The following relations define a x-homomorphism
7ot Allo;n] — Mp+1(C) @ M, 4+1(C) and a x-homomorphism mp,: A[ly;n] —
B(L*(Sn)) ® Mnt1(C) @ My41(C).

7 (p¥) = P*, ﬂx(u"fj) = U}

PROOF. The proof is straightforward. [
LEMMA 3.17. Letl,n € N. Ifl is odd then for any i,j € [n]!, we have

(3.17) 7o (puizp) = mh(pusijp) = 0.

If 1 is even and | = 2k, then for any i,j € [n]?*, we have

1
(3.18) 7o(pusjp) = C(M®* keri)((M®* kerj)— - Po.
n
(3.19) mh(puszp) = C(M®F keri)¢(M®F, kerj)é(i}lf keri, i}lf ker j)
h h
1
X : Ph.

n(n - 1)\ infy, keri|—1
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PrRoOF. The first and the second equations follow directory from
(3.16). We prove the last equation. If i  r, or j # s, we have PhUZ; Uk =o0.
Hence if ((M®*, keri) = 0 or ((M®* kerj) = 0 then m(pus;) = 0.

Assume ((M®* keri) = 1 and ((N®* kerj) = 1. Then infrkeri =
infy, keriand infr ker j = inf;, ker j. We check that PhUZf =Q(1)Q(P))’®

R®R=P,(Q(P;)?>®1®1). By (3.8),

71-h(puijp) = Q(i)Q(PZAlh)? T Q(Plzk Aljzk—l)zQ(i) ®R®R

_ 6(infr keri, inf; ker j)
B n(n_1)|1nf1ker1| 1 Q( )®R®R
6(infy, keri, infy, ker j)

- n(n— 1)|inf1h keri|—1 h

This finishes proof. [J

Notation 3.18. We define states w, on M, 1(C) and wy, on B(L?(S,))®
My 11(C) by

_ trn—i—l(Po') - w R t’r’n_H(Ph-)

tTn+1PO w trn—}—l(Ph) '
ProproOSITION 3.19. For x = o, h, each state w, o 7, is a Haar state.
Furthermore, hy, = wy 0 Ty.
Proor. If [ € N is odd, by (3.17), (id ® (wom,)) A(puszp) = 0 =

wz (puijp), where i,j € [n)! and = = o, h.
Assume [ € N is even and set | = 2k. By (3.18) and (3.19), we have

(id ® (0 7o) Mpug) = 3 puiap - (M7, ker $)C(M%* ker )

s€[n]2k
_ ¢(M®¥ kerj) (M®k ker_]
= Z Puisp-
s€[n]k,
N®k<kers

(id @ (wp, o 1)) A(puizp) = Z puisp - 6(inf ker s, inf ker j)
In I

s€[n]?k
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{0 ker s)((N%F, Jer )

n(n o 1)|inf1h kers|—1
_ G(M®F ker))
- n(n o 1)\inf[h ker j|—1 Z Dusisp-

s€[n]*,
ianh ker s:inflh ker j

By (3.13), we obtain the half of the Haar invariance of w, o w5 (x = o, h).
Similar arguments can be applied to the other invariance. By the uniqueness
of the Haar functional (Lemma 3.2), we have proven the proposition. [J

THEOREM 3.20. For any n € N, Beg,(n) and Beqn(n) admit the
unique Haar states. We write them h, and hy, respectively. In particu-
lar, we have hy o ty, = hy, and hy, oty = hy, .

PrOOF. As [|UZ]|, < 1, we can extend m; to Beg, (z = 0,h), which

proves the theorem. [

4. Boolean De Finetti Theorems

Let (M, ¢) be a pair of a von Neumann algebra and a normal state
with faithful GNS-representation and consider an infinite sequence (x;);eN
of self-adjoint elements x; € M. We may assume M C B(H), and ¢
is implemented by 2 € H, which is a cyclic vector for M. Throughout
this section we suppose ev,(P2)
evaluation map (see Notation 1.15. for the definition).

is o-weakly dense in M, where ev, is the

4.1. Combinatorial part

At first we show the purely combinatorial part of Boolean de Finetti
theorems.

PRrROPOSITION 4.1. Assume D be a blockwise category of interval par-
titions. Let E: M — N be a p-preserving conditional expectation. Suppose
(xj)jes are Boolean independent and identically distributed over (E, N), and
KPlz1,21,...,21) =0, for allk € N\ Lp. Then (z;)jeN is Ay[D]-invariant.
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PROOF. By the moments-cumulants formula, we have for any j € [n]"
and k£ € N,

(poevy ®id) o Uy (X, -+ Xj,)

= Z So(l'il e xlk) @ PUiyjy * ** Wiy 5y, P
ie[n]k

= Z Z Kg) [T1,...,21] @ Uiy jy * Uiy 5;, P
ie[n]k meD(k)

mw<keri
= Z Kg)[xl,...,x1]® Z PUiyj4p - - Wig 5, D
reD(k) i€[n]"
mw<keri
= Y KD, e @p
weD(k)
n<kerj

=poevy(X; - Xj,)®p. O

4.2. Observations on the conditional expectations

To prove the opposite direction, we observe properties of the conditional
expectations. Throughout this section, we assume D is a blockwise category
of interval partitions.

Notation 4.2.

(1) Denote by %Y the fixed point algebra of the coaction W,,, that is,
P = {f €P% | Walf) = f@p}

(2) Define a linear map &,: P2 — P2 by &, := (id @ h) o U,,.

(3) For m € P(k), we set

Xei= > XX,

J€[n]*, m<kerj

PRroOPOSITION 4.3. The following hold:
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(1) U, is P2Y"-P%Y" bilinear map : for each f € P2Y" and g € P2,

Un(fg) = (f ®@id)¥n(g), Ynlgf) = Vnlg)(f ®@id).

(2) &, is a conditional expectation with respect to the embedding PO —

P,

PROOF. By (3.5), it follows that ?%'" = Span{X, € P | © €
D(k),k € N}. For any j € [n]*, 7 € D(I) and k,I € N,

U, (X, - X, X)) = U (X5, - X5, ) (X ®1d)

by the direct computation. The symmetric proof shows ¥,, is a P%¥r-gpo¥n
bilinear map.

Next, we prove that &£, is a conditional expectation. &, is also @g;}’n
%% ¥ bilinear map since so is ¥,,. Clearly we have &,[f] = (id®h)(f®p) =
for any f € @)ggl'”. The proof is completed by showing that ¥,, o &,
&l ] ® p. Let v be the natural isomorphism V. @ C — V.P. Then

|~

U,o0&[fl=(d®@v)o (¥,oid)o(id®h) o ¥,
(idov)o(id®id® h) o (¥, ®id) o ¥,

As U, is a linear coaction, the right-hand side is equal to (id ® v) o (id ®
id® h) o (id ® A) o ¥,,. By the invariance property of the Haar functional
h, this is equal to (id ® v) o t o (id ® h) o ¥,,, where ¢ is the embedding
P°.RC—PLRVPRC;(f®)) = f@p® A\ By the easy computation,
this is equal to &,[ - | ®@ p. O

Using the invariance of the joint distribution, we see that the conditional
expectation is connected with the L?-conditional expectation.

LEMMA 4.4.  Suppose (x;)jeN is Ap[D]-invariant for a blockwise cate-

gory D of interval partitions, or Beq,-invariant for x = s,o0,h. Then &,
(0]

a0s We have

preserves p o evy for any n € N. Moreover for any f € P
eneve(flen = evi(En(f))en,

where ey, is the orthogonal projection onto evx(@)q/”)Q.
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PROOF. By definition Ap[D]-invariance implies that &, preserves ¢ o
evy. Assume Beg,-invariance. Since hy, = hy o ty, we have &, =
(id® (hy otp)) ¥y = (id ® hy)®,. The Beg,-invariance implies that &,
preserves ¢ o ev,. For any 7,0 € D(k) and f € P2, we have

(XS0, vy 0 En( ) fo ) = p(evy 0 En(XF X)) = p(eve(XEfX,))
= (X, ev.(f) f-),

which completes the proof. [J

In [1], a noncommutative martingale convergence theorem of cumulants
plays an important role in the proof of de Finetti theorems. Since ¢ is not
faithful, we modify this convergence theorem.

PROPOSITION 4.5. Let (M C B(H), Q € H) be a pair of a von Neu-
mann algebra and a cyclic vector. Assume M is o-weekly generated by a
sequence (xn)neN of self-adjoint elements. Let ¢ € M be a non-zero projec-
tion and L := qMgq, set a conditional expectaion Ey, :=q-q: M — L. Let

B )neN be a decreasing sequence of *-subalgebras of P2, and denote by e,
o

the orthogonal projections onto the closed subspaces evy (B, )2, Set

By = ﬂ evx(%n)aw.
neN

We assume the following conditions:

(1) There is a p o ev, preserving conditional expectation Ey: P2 — By,
for each n € N.

(2) BooQ = LQ.
Then for any m € I(k), k € N, and fi,..., fr € P2, we have

S-JLH;OGVx(gﬁr[fl7 ERR) fk])en = Eg[fl(x)7 s fk(x)]a
s-lim evy (K [f1, ..., f])en = KEL[f1(2),. .., fu(z)],

n—oo

where we write f(x) = evy(f) for f € Po.

PrROOF. By condition (1), epevy(f)en, = evy(En(f))en. By condtition
(2), slimp.ooe, = ¢, and s-lim, cevy(E(f))en = qeve(f)g =
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EL[eVac(f)]' It holds that €Vy O 5,’{[f1, ceey fk]en = H;@r enevx<HEV fj)6n7
for any 7w € I(k). Hence

s- lim evy 0 EX[f1,. .., frlen = H EL[H fi()]

n—00 Ven jev
= Eg[fl('x)’ f?(x)a .. 7fk($)]

Partitioned cumulants are linear combinations of partitioned conditional
expectations, which proves the statement. [

PROPOSITION 4.6. For any k € N, m € D(k) and sufficiently large n
such that the Gram matriz is invertible, we have

1
EilXy,. . X = > X Xy X5,

ie[n]®
m<keri

ProoF. This follows by a similar proof to that in [1, Prop.4.7], which
is induction on |7|. O

LEMMA 4.7. Let M be a von Neumann algebra. Fiz a nonzero pro-
jection e € M. Set a conditional expectation E: M — N = eMe by
E(y) = eye. Let k € N with k > 2 and m € I(k). Assume that | € N
satisfies | < k and I ~" I+ 1. Then for anyb € N,y1,...,yr € M,

(41) Kf[ylv t 7ylb7 Y41, 7yk} =0.

PROOF. In the case k = 2, it holds I(2) = {M} and K¥[yb,ys] =
Ely1bys] — Ey1b)Ey2] = ey1byse — eyrbeyse = 0 as b = be.

Let £k > 3. Assume (4.1) holds for any 7 € I(k — 1). Since b = be,
Elyi...ytbyis1---yx] = Ely1 ... yiblE[y1+1 - - - yx). The moments-cumulants
formula and the assumption of induction imply that

K€y b yists -+ 5 Uk

= Elyy - ybysr el — Y KXy uboy e vkl
wel(k),m#1k

= Elyr -y By ) — Y KXy by vkl
eI (k) 1A+
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We have {m € I(k) |l " I+ 1} ={o@p|oeI(l),pe I(k—1)}. Then

KUE@)p[ylv T »Z/lb» Y41, ayk]

= H K(E‘/)[ylv aylbvyl+17'“ 7yk]

Veo®p
- H K(]%ﬁ)[ylv”' , yib] H K(]%/Q)[ylﬂa'“ s Yk]
Vi€o Va€p
= Kf[yla o 7ylb]KpE[yl+la e 7yk]
Hence Ely;...yb|E[yis1---yx] — Zwel(k),l7é7r1+1 KE[yy, -y, a1,

-+, yk] = 0. Induction on k proves the lemma. OJ

4.3. Boolean de Finetti theorems

LEMMA 4.8. Assume that ||z;|| < ||z1]| for any j € N. Let D be one
of I,1o,In,Iy. For any k € N, 0 € D(k) and ng,n € N with ng < n, set an
element in P2, by

ng,n 1
fo-o7 = E il E XilXiQ T XZkMI(k) (777 U)'
weD(k) i€[no,n]*
w<keri

Then we have

(42)  |leve 0 EnlXj Xy - X5 ] = Y evpo KEn[Xy,..., X1]|

ceD(k)
o<kerj

— 0 (as n — o0).

(4.3)  leve 0 EalX;, Xj - X5 = D evalf7™) = 0 (as n — o0).

ceD(k)
o<kerj

Proor. By Proposition 1.10 and Lemma 4.6, we have for sufficiently
large n,

k
Enl X Xjy - Xy, ] = Z Xiy Xy - 'Xiin(j)

ie[n]k
= Z XilXig .. sz Z Wk’n(ﬂ', O')
ie[n]k m,o€D(k)

m<keri,o<kerj
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- Z Z |7r\ Z ’ )nka,n(W’J)

ceD(k) meD(k) ic[n]®
o<kerj w<keri
= > Z X, ., Xl W (o).
ceD(k) meD(k
o<kerj

By the moments-cumulants formula Proposition 1.22, we have

gn[leij"'Xjk]_ Z Kgn[le"le]

oeD(k)
o<kerj

= > Y X X W (ro)

oceD(k) meD(k)
o<kerj

- Z Z gg[Xl,-w,Xl]M](k)(W,O')

ceD(k) mreD(k)
o<kerj

= Z [ Z n‘”'ka(ﬂ,a)—;J,I(k)(w,a)]gg[Xl,...,Xl].

weD(k) ceD(k)
o<kerj

lleva 0 EnlXj Xy - Xl = D evpo K&n[Xy,..., X4]]
oeD(k)
o<kerj
< max [ > [0 Wi (m,0) = pyg (m,0)]]
weD(k) D)
o<kerj

XY [lexg 0 XX, ..., X4]l]
meD(k)
< max D |0 Wia(m,0) = gy (m0)| - ID)] - laal*
N oeD(k)
o<kerj

By the Weingarten estimate in Proposition 1.12,

1
max > [nITWi (7, 0) — pr (r,0)] = O(=) (as n — o0).
weD(k) D) n

o<kerj
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Therefore, we have (4.2).
For any ng € N, we have

1
Kzfn[Xla"w fn07 = Z TL— Z X741X2“'X7:kﬂl(k)<7rao-)'
eD(k) ie[n]*\[no,n]*
w<keri
Now
1 nl™l — (n — ng)!!
1 > lwaws el < g ][ — 0 (as n — o).
ie[n]k\[no,n]*
w<keri
Hence
|leve o En[ X, Xy -+ X5, ] — Z eva(fe")l|
oeD(k)
o<kerj
< leva 0 En[ X, Xy - X ] = D eva o K& Xy, ..., X4]]]
oceD(k)
o<kerj
+ 3 leve o K& [Xy, ..., X1] — eva(f70m)]]
ceD(k)
o<kerj

— 0 (asn —o00). O

Now we are prepared to prove our main theorem, de Finetti theorems
for Ay,[I,] and Beg,.

THEOREM 4.9. Let (M, ) be a pair of a von Neumann algebra and
a nondegenerate normal state. Assume M is generated by self-adjoint ele-
ments (z;)jen. Consider the following three assertions.

(1) The joint distribution of (x;);eN is Ap[lz]-invariant.
(2) The joint distribution of (x;);eN is Beqy-invariant.

(3) The elements (xj)jen are Boolean independent and identically dis-
tributed over (Enut, Mnut), and for all k € N\ Ly, and by, -+ by €
My U {1}, it holds that

K]fnm [.1‘1()1,.7}11)2, - ,:1?1] =0.
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Then for x = s,o0,h, all assertions are equivalent. For x = b, (1) and (3)
are equivalent.

PrOOF. By Proposition 4.1, we have (3) implies (1). We prove each
condition (1), (2) implies (3) in the case x = s,0,h, and prove (1) im-
plies (3) in the case x = b. Let (H,Q) be the GNS-representation of
(M, ). As ¢ is nondegenerate, we may assume M C B(H). Set By :=
ﬂneNevx(@\P”)gw. At first, we prove B2 = Myu§). Since %, C pin,
it is clear that B, O Mpu£2. Let e, be the orthogonal projection onto
the subspace H,, := ev,(PY")Q C H. Set ey be the orthogonal projec-
tion onto NpeooHn = Boo2. The projections (e, )neN strongly converges to
€oo- To see By © My€2, we only need to show that e,oz;d € My
for any k € N,j € [n]*. By Lemma 4.4, each condition (1) , (2) implies
evy 0 En[ X X, - X, 1Q = enxjixy, - x5, Q. As each condition (1), (2)
implies that (z;);en are identically distributed, we have ||x;|| = [|z1|| for
any j € N. Then by Lemma 4.8, it holds that ev,(f»°")Q converges to an
element in ev, (%, )2 as n — oo. We have

Cootil = lim evy 0 E[X;, X, - X;, ] € () eva(P2,,)Q = Myl

n—oo
7o eN

By Lemma 4.4, &, preserves ¢ o ev, and by the modified martingale
convergence theorem (see Proposition 4.5) and (4.2), we obtain for any
Ji,--5Jk € Sk €N,

(4.4) Buwlrg, -z )= > KPay, ... ).
ceD(k)
o<kerj
The proof is completed by showing that for any b, ..., by € Mpy U{1},
J1y---,Jk € J, and k € N,

(4.5) Enut[$j1blxj2b2 s bk—ll/‘jk] = Z Kf““t [l‘lbl, x1bo, . .. ,1}1].

ceD(k)
o<kerj

We prove this by induction on #{l € [k — 1];b; # 1}. In the case #{l €
[k — 1];b; # 1} = 1, the claim holds by (4.4). Pick any m € N U {0}
with m < k — 1. Assume that (4.5) is proved in the case that #{l €
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[k —1];b; # 1} < m. Consider the case #{l € [k — 1];b; # 1} = m. Let
r =max{l € [k —1];b; # 1}. Then by Lemma 4.7,

Z Kf““t[flflbl, e, T1bpy o ,.’El]

ceD(k)
o<kerj

E E
= E Kt by, ...,z |bp K™ |z1b .o, xl.
J‘[l,r][ 191, 5 l] r U‘[r+1,k][ 19r+1, ) 1]
c€D(k),o0<kerj
robr+1

By the property (D1), this equals to

Z Kf"“t[aclbl,...,xl]br Z KPE““t[xlbr+1,...,x1]

w€D(r) pED(k—r)
m<ker |1 p<ker jlri1, 5]

Enut [lebl e qu-]brEnut[xjr+1br+l e xjk]
E

nut [T, 0125, b2 -+ - b—125, ]

By induction on m, (4.5) holds for any by, ..., by € Myu U{1}, which proves
(1). O

COROLLARY 4.10. If the equaivalent conditions in Theorem 4.9 are
satisfied for one of x = o, h and b, then the following hold:

(o) If x =0, (x)jeN form a My -valued Boolean centered Bernoulli fam-
ily.

(h) Ifx = h, (x)jeN are Boolean independent, and have even and identi-
cally distributions, over Mpyy.

(b) Ifx =0b, (z});eN form a Myyt-valued Boolean shifted Bernoulli family.

PROOF. The proof directly follows from Theorem 4.9. [J
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