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Introduction

(gKdV) Oru+ 0x(Pu+f(u)) =0 t,xeR
We call soliton a solution R(t,x) = Q.(x —ct), ¢ >0

General questions about the collision of two solitons

Let u(t) be a solution such that
u(t) ~ Qg (x — at) + Qo(x — cot) ast — —oo,
where Qc, (x — c1t), Qc,(x — cat) are two solitons (0 < & < ¢1)

» What is the behavior of u(t) during and after the collision ?
» Do the two solitons survive the collision at the main orders ?
> If yes, are their speeds (size) and trajectories (shift) modified ?

» Is the collision elastic or inelastic ?



Previous results concerning the collision of solitons

> Integrable case (f(u) = u? or u3)

There exist explicit multi-solitons describing the interaction of
solitons and explicit formulas for the shifts on the solitons.
The collision is elastic

[Fermi, Pasta and Ulam], [Zabusky and Kruskal] [Lax],
[Hirota], [Miura et al.], etc.

» Numerical results for nonintegrable models and experiments

The collision seems inelastic but almost elastic

(small dispersive trail)

[Eilbeck and McGuire|, [Bona et al.] (BBM), [Shih] (gKdV),
[Craig et al.] and references therein (Euler, KdV, experiments)
etc.

No rigorous description of collision for nonintegrable models.



We report on a recent work describing collision for nonintegrable
gKdV, in the case of two nonlinear objects of different scale:

I<okKaqg

Available results say that Q, is globally stable and will survive the
collision, up to a perturbation of order ||Qq,||;2.

However, in the nonintegrable case, without special algebraic
structure, it is not clear whether Q., survives the collision.



General setting

Assumption on f: for p=2,3,4

fu(u)

uP

=0 subcriticality at 0

f(u) = uP + f(u), Iim0

Then, there exists ¢, > 0 s.t. Vc € (0, c.), 3Q. € H! solution of

Q!+ f(Q.) = cQ. stable in H!

For ¢ small:
1

4

_1 1
Qe(x) ~ Kere VL1 Qc i ~ 1| Qcl 2 ~ Ko



Asymptotic results in the energy space

Orbital stability by conservation laws
[Cazenave and Lions, 1982], [Weinstein, 1986]

16(0) = Qellt = a0 small = sup f[u(t) = Qc(- — (1))l < Koo

Asymptotic stability [Martel and Merle, 2001-2007]

Under the same assumptions, there exists ¢ ~ ¢ such that

u(t) — Qe (. — p(t)) — 0 in HY(x > 1ot)

+

p(t)—ct ast— +oo



Existence of asymptotic multi-solitons [Martel, 2005]

There exists a unique solution in H' such that

lim HU ch( at) + ch(. — C2t))”H1 —0

t——00

The behavior of U(t) as t — +oo is not known, except that Q is
_1

stable up to a perturbation of order ||Q, || ~ Kcf™* *

Stability of multi-solitons in H* [Martel, Merle and Tsai, 2002]

For ag small, T large:

[u(T) = (Qa (-~ aT) + Qal-— &) <a0 =
e H“ —(Qa (- = p1() + Qe = p2(1))[[ < K(a0 +e777)
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Stability of two soliton collision (general nonlinearity)

THM 1. [Martel and Merle, 2007]

Assume 0 < ¢ < cp(c1) < c1. Let U(t) be s.t.

Jim [ U() = (@ (- = aut) + Q- = c2t)|| ey — 0

There exist C1+ ~ 1, (:2+ ~ Cp, S.t.
c~0 co~0

o >a, o <o
wh(t,x) = U(t, x) = (Qp (x = p1(t)) + Qcr (x — p2(t)))

1
im [w™(Ollpzge =0, sup W™ (B)llm < Keg™*



Comments on THM 1

» The two solitons are preserved through the collision

1 1

sup [wH(t) I < Kef ™ and || Qe llps ~ Kef
t

=

» Speed change is related to a dispersive residue

wh ()| g1 A 0as t — +o0 iff ¢ > ¢ and & < &
H 1 2

lim 1o |
» Center of mass : Ligno lpj(t) —¢"|=0

» Stability in H! of the behavior of U(t) for all time



Detailed description for the quartic KdV equation

Oru+ 05 (Pu+u*)=0 t,xecR
Assume 0 < ¢ < 1. Let U(t) besit. (Q = Q1)

Jim |U(t) = Q(. —t) — Qe(. — ct)HHl(R) —0

THM 2. [Martel and Merle, 2007]
+
o —1>Kch, 1-%2;@%

0< Keiz < [|w)(t)||2+c2|wh(t)|2 < K'c2, tlarge



Comments on THM 2

» Nonexistence of a pure 2-soliton solution in this regime

» THM 2 is the first rigorous result describing an inelastic
collision between two nonlinear objects

» The collision is almost elastic

Iw* ()2 < KIIQell2



Generalized 2-soliton and explicit shifts (quartic)

THM 3. [Martel and Merle, 2007]

Assume 0 < ¢ < 1. There exists a solution ¢(t) s.t.

p(—t, —x) = p(t, x)
w(t,x) = (t,x) = Q(x — t + 3A) — Qe(x — ct + 3A,)
W+(t,X) = gO(t,X) - Q(X —t— %A) - Qc(X — ct — %Ac)
|_|210 HWi(t)HHl(xgl—loct) =0, L'_[;no ||W+(t)||H1(x21i0ct) =0

Kci < ||wE(t)z + c2|w(t)] 2 < K'c2, =+t large

Ki
Acfzo—ﬁ <0, Ac C:JO—KQ <0



Comments on THM 3

» The solution ¢(t) is a generalization of multi-soliton in the
nonintegrable situation.
We can obtain ¢(t) at any order of c.

» Speeds at t = oo are identical.
The shift A on Q becomes negative infinite as ¢ — 0.
The shift Ac on Q¢ is negative and of size 1

> ©(t) is not unique but lower bound on the defect is universal.

» From critical Cauchy theory [Tao, 2006], we conjecture that
w is pure dispersion.

» THM 3 extends to general nonlinearity f(u), except the lower
bound on wt(t) (A ~ K1 | Qc).



Classification of the nonlinearities

We go back to the general framework: for p =2,3, m> p+1,

fl(u)

f(u)=uP + fA(u), lim b

u—0

Considering small solutions, after scaling, we reduce to

fa(u)

um

f(u) =uP +eu™+ f(u), Iim0 =0.

THM 4. [Mufioz, 2009]
Assume 0 < e <1, 0< cx 1.

2 3
0< Keer 178 < ||lwl ()] 2 + c2||wh(t)| 2, ¢ large

Non existence of a pure 2-soliton solution in this regime.



Sketch of the method (quartic case)

Proofs are based on both algebraic computations (during the
. . . . . 11
interaction) and asymptotic analysis. Define T, = ¢~ 2" 10.

» Asymptotic arguments for |t| > T,

For |t| > T., we expect the solitons to be decoupled

We apply refinements of previous stability and asymptotic
stability arguments ([Martel and Merle, 2001]).
Monotonicity of localized L? quantities, Viriel type identities.

» Construction of an explicit approximate solution

Algebraic computations relevant in the collision region |t|< T,

» Justification of the algebra on [— T, T¢]

Stability arguments using a modified Hamiltonian structure
(refinement of [Weinstein, 1986])



Approximate solution at all order for |t| < T,

Let
yc:X+(1_C)t7 y:X_a(YC)
v(t,x) = Qy) + Qelye) + W(t, x)
()= S anec'Q(s)

1<k<ko
0<0<ty

Wiex) = Y- ¢ QL) Acely) + QL) (ve)Bialy))
1<k<ko
0<4</y

where (ax ¢, Ax¢, Bie) are to be determined so that
|0¢v 4 05 (02v — v — v¥)|| 2 < KN (ko,to)

N(ko, o) — 400 as ko, by — +00
(Introduction of parameters (aj ) is related to the shift of Q)



Model system

For each (k,¢), we obtain the system

(D) (LAke) + ake(3Q — 2Q%) = Fyy
ot (LBiy) + ae(3Q") — 3AY , — 4Q3 Ay = Gy

where Fy ¢ and Gy, are given in terms of (ay ¢, Ax ¢, Bir ), for
k' < k, ¢! < £, with either k' < k or ¢/ < ¢ and where
LA=—-A"+A-4Q3A.

System (L) can be solved when Fy ¢ and G, have certain parity
properties (no uniqueness: two free parameters).

We obtain Ay 4, By, which are localized functions plus polynomial.



Recomposition at t = £ T, and identification of a defect

We find A1, Az € L? and

Bio(x) = —big ((?Q((j:)) +Bio(x), Bigel? bio#0
Boo(x) = —bog C(\)Q((j:)) +Boo(x), Bog€l? byg#0

For t = 4+ T,, we have y. << y, the two solitons are decoupled and

V(Tax) ~ Q(Y) + Qc()/c) - bl,OQé(Yc) - b2,0(Qg),(YC) +...
~ Q(y) + Qe(ye—b1,0) — b2,0(Q2) (ye—br0) + ...

. . 1
But the term —b0(Q2) is a defect of size ||(Q2)||;2 = Kc:.
We cannot recompose v( T¢, x) as the sum of two solitons at this

order (Q" is related to Q4 and Q%) is related to (Q*)')



Nonexistence of a pure 2-soliton (quartic case)

e By contradiction, assume that there exists a pure 2-soliton U(t):
|U(t) = Q(—t—x1+) — Qc(-—ct—x2.2)||,p — 0 as t — +oo
By stability, after time and space translations, 37,
IU(=Te, = Te) = Q(-+%A) ~ Qe(-—(1=0) Te+3Ac) || < Ke

IU(T4, . =04) = Q(-=38) = Qe(-+(1—c) Te—34¢) |1 < Ke
A priori no relation between T, and T..

e From the algebra, there exists a nonsymmetric approx. solution
[7(=Tc) = Q(438) = Qc(-—(1—¢) Tet340) || 1 < Ke

[7(Te) = Q(-—3A) — Qe(A(1—c) Te—3Ac) +2b20(Q2) || 1 < Ke



By stability analysis on [T, T¢] applied on ¥, 3¢ s.t.
|U(Te) = #(Te,. — )|, < K
e T, ~ T, by stability of 2 soliton structure
|U(TS) = Q= p1) = Qel. — p2) || < K2, p1—p2 ~ Te,

= VE> Te, [[U(E) = Q( — pi(t)) = Qe — pa(t))|| 1 < K2
with p1(t) — pa(t) ~ (1 —c)t
e Contradiction follows from

HU(T-F) - Q( - ﬁl) - Qc( - ﬁZ)HHl < Kc

IU(T4) = Q- = p1) = Qe(. = p2) + 2b20(QZ) (- = p2) |1 < Ke



Case of the BBM equation [Martel, Merle and Mizumachi]

For the BBM equation, we study the collision of a soliton of speed
co > 1 with a small soliton of speed ¢ > 1 close to 1.

After renormalization, it is equivalent to study the collision of Q by

a small soliton R, ~ Q,, 0 = ¢ — 1 > 0 small, for the equation

(1= X02)0u + 05 (Pu—u+uv?) =0, A=2Lc(0,1)

<0

Similar analysis can be done, and shows the existence of a nonzero
defect.



