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Introduction

(gKdV ) ∂tu + ∂x(∂2
xu + f (u)) = 0 t, x ∈ R

We call soliton a solution R(t, x) = Qc(x − ct), c > 0

General questions about the collision of two solitons

Let u(t) be a solution such that

u(t) ∼ Qc1(x − c1t) + Qc2(x − c2t) as t → −∞,

where Qc1(x − c1t), Qc2(x − c2t) are two solitons (0 < c2 < c1)

I What is the behavior of u(t) during and after the collision ?

I Do the two solitons survive the collision at the main orders ?

I If yes, are their speeds (size) and trajectories (shift) modified ?

I Is the collision elastic or inelastic ?



Previous results concerning the collision of solitons

I Integrable case (f (u) = u2 or u3)

There exist explicit multi-solitons describing the interaction of
solitons and explicit formulas for the shifts on the solitons.
The collision is elastic
[Fermi, Pasta and Ulam], [Zabusky and Kruskal] [Lax],
[Hirota], [Miura et al.], etc.

I Numerical results for nonintegrable models and experiments

The collision seems inelastic but almost elastic
(small dispersive trail)
[Eilbeck and McGuire], [Bona et al.] (BBM), [Shih] (gKdV),
[Craig et al.] and references therein (Euler, KdV, experiments)
etc.
No rigorous description of collision for nonintegrable models.



We report on a recent work describing collision for nonintegrable
gKdV, in the case of two nonlinear objects of different scale:

0 < c2 � c1

Available results say that Qc1 is globally stable and will survive the
collision, up to a perturbation of order ‖Qc2‖L2 .

However, in the nonintegrable case, without special algebraic
structure, it is not clear whether Qc2 survives the collision.



General setting

Assumption on f : for p = 2, 3, 4

f (u) = up + f1(u), lim
u→0

∣∣∣∣ f1(u)

up

∣∣∣∣ = 0 subcriticality at 0

Then, there exists c∗ > 0 s.t. ∀c ∈ (0, c∗), ∃Qc ∈ H1 solution of

Q ′′c + f (Qc) = cQc stable in H1

For c small:

Qc(x) ∼ Kc
1

p−1 e−
√

c|x |, ‖Qc‖H1 ∼ ‖Qc‖L2 ∼ Kc
1

p−1
− 1

4



Asymptotic results in the energy space

Orbital stability by conservation laws
[Cazenave and Lions, 1982], [Weinstein, 1986]

‖u(0)−Qc‖H1 = α0 small ⇒ sup
t
‖u(t)−Qc(.− ρ(t))‖H1 ≤ Kα0

Asymptotic stability [Martel and Merle, 2001-2007]

Under the same assumptions, there exists c+ ∼ c such that

u(t)− Qc+(.− ρ(t))→ 0 in H1(x > c
10 t)

ρ′(t)→ c+ as t → +∞



Existence of asymptotic multi-solitons [Martel, 2005]

There exists a unique solution in H1 such that

lim
t→−∞

∥∥U(t)− (Qc1(.− c1t) + Qc2(.− c2t))
∥∥

H1 → 0

The behavior of U(t) as t → +∞ is not known, except that Qc1 is

stable up to a perturbation of order ‖Qc2‖H1 ∼ Kc
1

p−1
− 1

4

2 .

Stability of multi-solitons in H1 [Martel, Merle and Tsai, 2002]

For α0 small, T large:∥∥u(T )− (Qc1(.− c1T ) + Qc2(.− c2T ))
∥∥

H1 ≤ α0 ⇒
sup
t≥T

∥∥u(t)− (Qc1(.− ρ1(t)) + Qc2(.− ρ2(t)))
∥∥

H1 ≤ K (α0 + e−γT )



PLAN

I Stability of two soliton collision for the gKdV equation

I Detailed description for the quartic gKdV equation f (u) = u4

I Existence of symmetric 2-soliton-like solutions

I Classification of the nonlinearities

I Some elements of proof



Stability of two soliton collision (general nonlinearity)

THM 1. [Martel and Merle, 2007]

Assume 0 < c2 < c0(c1)� c1. Let U(t) be s.t.

lim
t→−∞

∥∥U(t)− (Qc1(.− c1t) + Qc2(.− c2t))
∥∥

H1(R)
→ 0

There exist c+
1 ∼

c2∼0
c1, c+

2 ∼
c2∼0

c2, s.t.

c+
1 ≥ c1, c+

2 ≤ c2

w+(t, x) = U(t, x)− (Qc+
1

(x − ρ1(t)) + Qc+
2

(x − ρ2(t)))

lim
+∞
‖w+(t)‖H1(x≥ c2

10
t) = 0, sup

t
‖w+(t)‖H1 ≤ Kc

1
p−1

2



Comments on THM 1

I The two solitons are preserved through the collision

sup
t
‖w+(t)‖H1 ≤ Kc

1
p−1

2 and ‖Qc2‖H1 ∼ Kc
1

p−1
− 1

4

2

I Speed change is related to a dispersive residue

‖w+(t)‖H1 6→ 0 as t → +∞ iff c+
1 > c1 and c+

2 < c2

I Center of mass : lim
+∞
|ρ′j(t)− c+

j | = 0

I Stability in H1 of the behavior of U(t) for all time



Detailed description for the quartic KdV equation

∂tu + ∂x(∂2
xu + u4) = 0 t, x ∈ R

Assume 0 < c � 1. Let U(t) be s.t. (Q = Q1)

lim
t→−∞

∥∥U(t)− Q(.− t)− Qc(.− ct)
∥∥

H1(R)
→ 0

THM 2. [Martel and Merle, 2007]

c+
1 − 1 ≥ K c

17
6 , 1−

c+
2

c
≥ K c

8
3

0 < K c
17
12 ≤ ‖w+

x (t)‖L2 + c
1
2 ‖w+(t)‖L2 ≤ K ′c

11
12 , t large



Comments on THM 2

I Nonexistence of a pure 2-soliton solution in this regime

I THM 2 is the first rigorous result describing an inelastic
collision between two nonlinear objects

I The collision is almost elastic

‖w+(t)‖L2 ≤ K‖Qc‖7L2



Generalized 2-soliton and explicit shifts (quartic)

THM 3. [Martel and Merle, 2007]

Assume 0 < c � 1. There exists a solution ϕ(t) s.t.

ϕ(−t,−x) = ϕ(t, x)

w−(t, x) = ϕ(t, x)− Q(x − t + 1
2∆)− Qc(x − ct + 1

2∆c)

w+(t, x) = ϕ(t, x)− Q(x − t − 1
2∆)− Qc(x − ct − 1

2∆c)

lim
−∞
‖w−(t)‖H1(x≤ 1

10
ct) = 0, lim

+∞
‖w+(t)‖H1(x≥ 1

10
ct) = 0

K c
17
12 ≤ ‖w±x (t)‖L2 + c

1
2 ‖w±(t)‖L2 ≤ K ′c

17
12 , ±t large

∆ ∼
c∼0
− K1

c1/6
< 0, ∆c ∼

c∼0
−K2 < 0



Comments on THM 3

I The solution ϕ(t) is a generalization of multi-soliton in the
nonintegrable situation.
We can obtain ϕ(t) at any order of c .

I Speeds at t = ±∞ are identical.
The shift ∆ on Q becomes negative infinite as c → 0.
The shift ∆c on Qc is negative and of size 1

I ϕ(t) is not unique but lower bound on the defect is universal.

I From critical Cauchy theory [Tao, 2006], we conjecture that
w+ is pure dispersion.

I THM 3 extends to general nonlinearity f (u), except the lower
bound on w+(t) (∆ ∼ K1

∫
Qc).



Classification of the nonlinearities

We go back to the general framework: for p = 2, 3, m ≥ p + 1,

f (u) = up + f1(u), lim
u→0

∣∣∣∣ f1(u)

up

∣∣∣∣ = 0, f
(m)
1 (0) 6= 0.

Considering small solutions, after scaling, we reduce to

f (u) = up + εum + f2(u), lim
u→0

∣∣∣∣ f2(u)

um

∣∣∣∣ = 0.

THM 4. [Muñoz, 2009]

Assume 0 < ε� 1, 0 < c � 1.

0 < Kε c
2

p−1
+ 3

4 ≤ ‖w+
x (t)‖L2 + c

1
2 ‖w+(t)‖L2 , t large

Non existence of a pure 2-soliton solution in this regime.



Sketch of the method (quartic case)

Proofs are based on both algebraic computations (during the

interaction) and asymptotic analysis. Define Tc = c−
1
2
− 1

100 .

I Asymptotic arguments for |t| > Tc

For |t| > Tc , we expect the solitons to be decoupled
We apply refinements of previous stability and asymptotic
stability arguments ([Martel and Merle, 2001]).
Monotonicity of localized L2 quantities, Viriel type identities.

I Construction of an explicit approximate solution

Algebraic computations relevant in the collision region |t|<Tc

I Justification of the algebra on [−Tc ,Tc ]

Stability arguments using a modified Hamiltonian structure
(refinement of [Weinstein, 1986])



Approximate solution at all order for |t| < Tc

Let
yc = x + (1− c)t, y = x − α(yc)

v(t, x) = Q(y) + Qc(yc) + W (t, x)

α′(s) =
∑

1≤k≤k0
0≤`≤`0

ak,` c
`Qk

c (s)

W (t, x) =
∑

1≤k≤k0
0≤`≤`0

c`
(
Qk

c (yc)Ak,`(y) + (Qk
c )′(yc)Bk,`(y)

)

where (ak,`,Ak,`, Bk,`) are to be determined so that

‖∂tv + ∂x(∂2
xv − v − v4)‖L2 ≤ KcN(k0,`0)

N(k0, `0)→ +∞ as k0, `0 → +∞
(Introduction of parameters (ak,`) is related to the shift of Q)



Model system

For each (k , `), we obtain the system

(Ωk,`)

{
(LAk,`)

′ + ak,`(3Q − 2Q4)′ = Fk,`

(LBk,`)
′ + ak,`(3Q ′′)− 3A′′k,` − 4Q3Ak,` = Gk,`

where Fk,` and Gk,` are given in terms of (ak ′,`′ ,Ak ′,`′ , Bk ′,`′), for
k ′ ≤ k, `′ ≤ `, with either k ′ < k or `′ < ` and where
LA = −A′′ + A− 4Q3A.

System (Ωk,`) can be solved when Fk,` and Gk,` have certain parity
properties (no uniqueness: two free parameters).

We obtain Ak,`, Bk,` which are localized functions plus polynomial.



Recomposition at t = ±Tc and identification of a defect

We find A1,0, A2,0 ∈ L2 and

B1,0(x) = −b1,0
Q ′(x)

Q(x)
+ B̃1,0(x), B̃1,0 ∈ L2, b1,0 6= 0

B2,0(x) = −b2,0
Q ′(x)

Q(x)
+ B̃2,0(x), B̃2,0 ∈ L2, b2,0 6= 0

For t = +Tc , we have yc << y , the two solitons are decoupled and

v(Tc , x) ∼ Q(y) + Qc(yc)− b1,0Q
′
c(yc)− b2,0(Q2

c )′(yc) + . . .

∼ Q(y) + Qc(yc−b1,0)− b2,0(Q2
c )′(yc−b1,0) + . . .

But the term −b2,0(Q2
c )′ is a defect of size ‖(Q2

c )′‖L2 = Kc
11
12 .

We cannot recompose v(Tc , x) as the sum of two solitons at this

order (Q ′′c is related to Q4
c and Q

(3)
c is related to (Q4

c )′)



Nonexistence of a pure 2-soliton (quartic case)

• By contradiction, assume that there exists a pure 2-soliton U(t):∥∥U(t)− Q(.−t−x1,±)− Qc(.−ct−x2,±)
∥∥

H1 → 0 as t → ±∞

By stability, after time and space translations, ∃T+, δ+

‖U(−Tc , .−Tc)− Q(.+1
2∆)− Qc(.−(1−c)Tc+1

2∆c)‖H1 ≤ Kc

‖U(T+, .−δ+)− Q(.−1
2∆)− Qc(.+(1−c)Tc−1

2∆c)‖H1 ≤ Kc

A priori no relation between T+ and Tc .

• From the algebra, there exists a nonsymmetric approx. solution∥∥ṽ(−Tc)− Q(.+1
2∆)− Qc(.−(1−c)Tc+1

2∆c)
∥∥

H1 ≤ Kc∥∥ṽ(Tc)−Q(.−1
2∆)−Qc(.+(1−c)Tc−1

2∆c)+2b2,0(Q2
c)′
∥∥

H1 ≤ Kc



By stability analysis on [−Tc ,Tc ] applied on ṽ , ∃δ s.t.∥∥U(Tc)− ṽ(Tc , .− δ)
∥∥

H1 ≤ Kc

• T+ ∼ Tc by stability of 2 soliton structure∥∥U(Tc)− Q(.− ρ1)− Qc(.− ρ2)
∥∥

H1 ≤ Kc
11
12 , ρ1 − ρ2 ∼ Tc ,

⇒ ∀t > Tc ,
∥∥U(t)− Q(.− ρ1(t))− Qc(.− ρ2(t))

∥∥
H1 ≤ Kc

5
12

with ρ1(t)− ρ2(t) ∼ (1− c)t

• Contradiction follows from

‖U(T+)− Q(.− ρ̃1)− Qc(.− ρ̃2)‖H1 ≤ Kc∥∥U(T+)− Q(.− ρ1)− Qc(.− ρ2) + 2b2,0(Q2
c)′(.− ρ2)

∥∥
H1 ≤ Kc



Case of the BBM equation [Martel, Merle and Mizumachi]

For the BBM equation, we study the collision of a soliton of speed
c0 > 1 with a small soliton of speed c > 1 close to 1.

After renormalization, it is equivalent to study the collision of Q by
a small soliton Rσ ∼ Qσ, σ = c − 1 > 0 small, for the equation

(1− λ∂2
x )∂tu + ∂x(∂2

xu − u + u2) = 0, λ = c0−1
c0
∈ (0, 1)

Similar analysis can be done, and shows the existence of a nonzero
defect.


