On the collision of two solitons for the generalized KdV equation in the nonintegrable case

Yvan Martel ${ }^{(1)}$ and Frank Merle ${ }^{(2)}$

(1) Université de Versailles Saint-Quentin-en-Yvelines, France
(2) Université de Cergy-Pontoise, IHES and CNRS, France

Introduction

$$
(g K d V) \quad \partial_{t} u+\partial_{x}\left(\partial_{x}^{2} u+f(u)\right)=0 \quad t, x \in \mathbb{R}
$$

We call soliton a solution $R(t, x)=Q_{c}(x-c t), c>0$

General questions about the collision of two solitons

Let $u(t)$ be a solution such that

$$
u(t) \sim Q_{c_{1}}\left(x-c_{1} t\right)+Q_{c_{2}}\left(x-c_{2} t\right) \quad \text { as } t \rightarrow-\infty,
$$

where $Q_{c_{1}}\left(x-c_{1} t\right), Q_{c_{2}}\left(x-c_{2} t\right)$ are two solitons $\left(0<c_{2}<c_{1}\right)$

- What is the behavior of $u(t)$ during and after the collision ?
- Do the two solitons survive the collision at the main orders ?
- If yes, are their speeds (size) and trajectories (shift) modified ?
- Is the collision elastic or inelastic ?

Previous results concerning the collision of solitons

- Integrable case $\left(f(u)=u^{2}\right.$ or $\left.u^{3}\right)$

There exist explicit multi-solitons describing the interaction of solitons and explicit formulas for the shifts on the solitons.
The collision is elastic
[Fermi, Pasta and Ulam], [Zabusky and Kruskal] [Lax], [Hirota], [Miura et al.], etc.

- Numerical results for nonintegrable models and experiments

The collision seems inelastic but almost elastic (small dispersive trail)
[Eilbeck and McGuire], [Bona et al.] (BBM), [Shih] (gKdV), [Craig et al.] and references therein (Euler, KdV, experiments) etc.
No rigorous description of collision for nonintegrable models.

We report on a recent work describing collision for nonintegrable gKdV, in the case of two nonlinear objects of different scale:

$$
0<c_{2} \ll c_{1}
$$

Available results say that $Q_{c_{1}}$ is globally stable and will survive the collision, up to a perturbation of order $\left\|Q_{c_{2}}\right\|_{L^{2}}$.

However, in the nonintegrable case, without special algebraic structure, it is not clear whether $Q_{c_{2}}$ survives the collision.

General setting

Assumption on f : for $p=2,3,4$

$$
f(u)=u^{p}+f_{1}(u), \quad \lim _{u \rightarrow 0}\left|\frac{f_{1}(u)}{u^{p}}\right|=0 \quad \text { subcriticality at } 0
$$

Then, there exists $c_{*}>0$ s.t. $\forall c \in\left(0, c_{*}\right), \exists Q_{c} \in H^{1}$ solution of

$$
Q_{c}^{\prime \prime}+f\left(Q_{c}\right)=c Q_{c} \quad \text { stable in } H^{1}
$$

For c small:

$$
Q_{c}(x) \sim K c^{\frac{1}{p-1}} e^{-\sqrt{c}|x|}, \quad\left\|Q_{c}\right\|_{H^{1}} \sim\left\|Q_{c}\right\|_{L^{2}} \sim K c^{\frac{1}{p-1}-\frac{1}{4}}
$$

Asymptotic results in the energy space

Orbital stability by conservation laws
[Cazenave and Lions, 1982], [Weinstein, 1986]
$\left\|u(0)-Q_{c}\right\|_{H^{1}}=\alpha_{0}$ small $\Rightarrow \sup _{t}\left\|u(t)-Q_{c}(.-\rho(t))\right\|_{H^{1}} \leq K \alpha_{0}$
Asymptotic stability [Martel and Merle, 2001-2007]
Under the same assumptions, there exists $c^{+} \sim c$ such that

$$
\begin{gathered}
u(t)-Q_{c^{+}}(.-\rho(t)) \rightarrow 0 \quad \text { in } H^{1}\left(x>\frac{c}{10} t\right) \\
\rho^{\prime}(t) \rightarrow c^{+} \text {as } t \rightarrow+\infty
\end{gathered}
$$

Existence of asymptotic multi-solitons [Martel, 2005]

There exists a unique solution in H^{1} such that

$$
\lim _{t \rightarrow-\infty}\left\|U(t)-\left(Q_{c_{1}}\left(.-c_{1} t\right)+Q_{c_{2}}\left(.-c_{2} t\right)\right)\right\|_{H^{1}} \rightarrow 0
$$

The behavior of $U(t)$ as $t \rightarrow+\infty$ is not known, except that $Q_{c_{1}}$ is stable up to a perturbation of order $\left\|Q_{C_{2}}\right\|_{H^{1}} \sim K c_{2}^{\frac{1}{p-1}-\frac{1}{4}}$.

Stability of multi-solitons in H^{1} [Martel, Merle and Tsai, 2002]
For α_{0} small, T large:

$$
\begin{aligned}
& \left\|u(T)-\left(Q_{c_{1}}\left(.-c_{1} T\right)+Q_{c_{2}}\left(.-c_{2} T\right)\right)\right\|_{H^{1}} \leq \alpha_{0} \quad \Rightarrow \\
& \sup \left\|u(t)-\left(Q_{c_{1}}\left(.-\rho_{1}(t)\right)+Q_{c_{2}}\left(.-\rho_{2}(t)\right)\right)\right\|_{H^{1}} \leq K\left(\alpha_{0}+e^{-\gamma T}\right)
\end{aligned}
$$

PLAN

- Stability of two soliton collision for the gKdV equation
- Detailed description for the quartic gKdV equation $f(u)=u^{4}$
- Existence of symmetric 2 -soliton-like solutions
- Classification of the nonlinearities
- Some elements of proof

Stability of two soliton collision (general nonlinearity)

THM 1. [Martel and Merle, 2007]
Assume $0<c_{2}<c_{0}\left(c_{1}\right) \ll c_{1}$. Let $U(t)$ be s.t.

$$
\lim _{t \rightarrow-\infty}\left\|U(t)-\left(Q_{c_{1}}\left(.-c_{1} t\right)+Q_{c_{2}}\left(.-c_{2} t\right)\right)\right\|_{H^{1}(\mathbb{R})} \rightarrow 0
$$

There exist $c_{1}^{+} \underset{c_{2} \sim 0}{\sim} c_{1}, c_{2}^{+} \underset{c_{2} \sim 0}{\sim} c_{2}$, s.t.

$$
\begin{gathered}
c_{1}^{+} \geq c_{1}, \quad c_{2}^{+} \leq c_{2} \\
w^{+}(t, x)=U(t, x)-\left(Q_{c_{1}^{+}}\left(x-\rho_{1}(t)\right)+Q_{c_{2}^{+}}\left(x-\rho_{2}(t)\right)\right) \\
\lim _{+\infty}\left\|w^{+}(t)\right\|_{H^{1}\left(x \geq \frac{c_{2}}{10} t\right)}=0, \quad \sup _{t}\left\|w^{+}(t)\right\|_{H^{1}} \leq K c_{2}^{\frac{1}{\rho-1}}
\end{gathered}
$$

Comments on THM 1

- The two solitons are preserved through the collision

$$
\sup _{t}\left\|w^{+}(t)\right\|_{H^{1}} \leq K c_{2}^{\frac{1}{p-1}} \quad \text { and } \quad\left\|Q_{c_{2}}\right\|_{H^{1}} \sim K c_{2}^{\frac{1}{p-1}-\frac{1}{4}}
$$

- Speed change is related to a dispersive residue

$$
\left\|w^{+}(t)\right\|_{H^{1}} \nrightarrow 0 \text { as } t \rightarrow+\infty \text { iff } c_{1}^{+}>c_{1} \text { and } c_{2}^{+}<c_{2}
$$

- Center of mass : $\lim _{+\infty}\left|\rho_{j}^{\prime}(t)-c_{j}^{+}\right|=0$
- Stability in H^{1} of the behavior of $U(t)$ for all time

Detailed description for the quartic KdV equation

$$
\partial_{t} u+\partial_{x}\left(\partial_{x}^{2} u+u^{4}\right)=0 \quad t, x \in \mathbb{R}
$$

Assume $0<c \ll 1$. Let $U(t)$ be s.t. $\left(Q=Q_{1}\right)$

$$
\lim _{t \rightarrow-\infty}\left\|U(t)-Q(.-t)-Q_{c}(.-c t)\right\|_{H^{1}(\mathbb{R})} \rightarrow 0
$$

THM 2. [Martel and Merle, 2007]

$$
\begin{gathered}
c_{1}^{+}-1 \geq K c^{\frac{17}{6}}, \quad 1-\frac{c_{2}^{+}}{c} \geq K c^{\frac{8}{3}} \\
0<\mathbf{K ~ c}^{\frac{17}{12}} \leq\left\|w_{x}^{+}(t)\right\|_{L^{2}}+c^{\frac{1}{2}}\left\|w^{+}(t)\right\|_{L^{2}} \leq K^{\prime} c^{\frac{11}{12}}, \quad t \text { large }
\end{gathered}
$$

Comments on THM 2

- Nonexistence of a pure 2-soliton solution in this regime
- THM 2 is the first rigorous result describing an inelastic collision between two nonlinear objects
- The collision is almost elastic

$$
\left\|w^{+}(t)\right\|_{L^{2}} \leq K\left\|Q_{c}\right\|_{L^{2}}^{7}
$$

Generalized 2-soliton and explicit shifts (quartic)

THM 3. [Martel and Merle, 2007]
Assume $0<c \ll 1$. There exists a solution $\varphi(t)$ s.t.

$$
\begin{gathered}
\varphi(-t,-x)=\varphi(t, x) \\
w^{-}(t, x)=\varphi(t, x)-Q\left(x-t+\frac{1}{2} \Delta\right)-Q_{c}\left(x-c t+\frac{1}{2} \Delta_{c}\right) \\
w^{+}(t, x)=\varphi(t, x)-Q\left(x-t-\frac{1}{2} \Delta\right)-Q_{c}\left(x-c t-\frac{1}{2} \Delta_{c}\right) \\
\lim _{-\infty}\left\|w^{-}(t)\right\|_{H^{1}\left(x \leq \frac{1}{10} c t\right)}=0, \quad \lim _{+\infty}\left\|w^{+}(t)\right\|_{H^{1}\left(x \geq \frac{1}{10} c t\right)}=0 \\
K c^{\frac{17}{12}} \leq\left\|w_{x}^{ \pm}(t)\right\|_{L^{2}}+c^{\frac{1}{2}}\left\|w^{ \pm}(t)\right\|_{L^{2}} \leq K^{\prime} c^{\frac{17}{12}}, \quad \pm t \text { large } \\
\Delta \underset{c \sim 0}{\sim}-\frac{K_{1}}{c^{1 / 6}}<0, \quad \Delta_{c} \underset{c \sim 0}{\sim}-K_{2}<0
\end{gathered}
$$

Comments on THM 3

- The solution $\varphi(t)$ is a generalization of multi-soliton in the nonintegrable situation. We can obtain $\varphi(t)$ at any order of c.
- Speeds at $t= \pm \infty$ are identical.

The shift Δ on Q becomes negative infinite as $c \rightarrow 0$. The shift Δ_{c} on Q_{c} is negative and of size 1

- $\varphi(t)$ is not unique but lower bound on the defect is universal.
- From critical Cauchy theory [Tao, 2006], we conjecture that w^{+}is pure dispersion.
- THM 3 extends to general nonlinearity $f(u)$, except the lower bound on $w^{+}(t)\left(\Delta \sim K_{1} \int Q_{c}\right)$.

Classification of the nonlinearities

We go back to the general framework: for $p=2,3, m \geq p+1$,

$$
f(u)=u^{p}+f_{1}(u), \quad \lim _{u \rightarrow 0}\left|\frac{f_{1}(u)}{u^{p}}\right|=0, \quad f_{1}^{(m)}(0) \neq 0 .
$$

Considering small solutions, after scaling, we reduce to

$$
f(u)=u^{p}+\varepsilon u^{m}+f_{2}(u), \quad \lim _{u \rightarrow 0}\left|\frac{f_{2}(u)}{u^{m}}\right|=0 .
$$

THM 4. [Muñoz, 2009]
Assume $0<\varepsilon \ll 1,0<c \ll 1$.

$$
0<\mathbf{K} \varepsilon \mathbf{c}^{\frac{2}{p-1}+\frac{3}{4}} \leq\left\|w_{x}^{+}(t)\right\|_{L^{2}}+c^{\frac{1}{2}}\left\|w^{+}(t)\right\|_{L^{2}}, \quad t \text { large }
$$

Non existence of a pure 2-soliton solution in this regime.

Sketch of the method (quartic case)

Proofs are based on both algebraic computations (during the interaction) and asymptotic analysis. Define $T_{c}=c^{-\frac{1}{2}-\frac{1}{100}}$.

- Asymptotic arguments for $|t|>T_{C}$

For $|t|>T_{c}$, we expect the solitons to be decoupled We apply refinements of previous stability and asymptotic stability arguments ([Martel and Merle, 2001]).
Monotonicity of localized L^{2} quantities, Viriel type identities.

- Construction of an explicit approximate solution

Algebraic computations relevant in the collision region $|t|<T_{c}$

- Justification of the algebra on $\left[-T_{c}, T_{c}\right]$

Stability arguments using a modified Hamiltonian structure (refinement of [Weinstein, 1986])

Approximate solution at all order for $|t|<T_{c}$

Let

$$
\begin{gathered}
y_{c}=x+(1-c) t, \quad y=x-\alpha\left(y_{c}\right) \\
v(t, x)=Q(y)+Q_{c}\left(y_{c}\right)+W(t, x) \\
\alpha^{\prime}(s)=\sum_{\substack{1 \leq k \leq k_{0} \\
0 \leq \ell \leq \ell \ell_{0}}} a_{k, \ell} c^{\ell} Q_{c}^{k}(s) \\
W(t, x)=\sum_{\substack{1 \leq k \leq k_{0} \\
0 \leq \ell \leq \ell_{0}}} c^{\ell}\left(Q_{c}^{k}\left(y_{c}\right) A_{k, \ell}(y)+\left(Q_{c}^{k}\right)^{\prime}\left(y_{c}\right) B_{k, \ell}(y)\right)
\end{gathered}
$$

where $\left(a_{k, \ell}, A_{k, \ell}, B_{k, \ell}\right)$ are to be determined so that

$$
\left\|\partial_{t} v+\partial_{x}\left(\partial_{x}^{2} v-v-v^{4}\right)\right\|_{L^{2}} \leq K c^{N\left(k_{0}, \ell_{0}\right)}
$$

$N\left(k_{0}, \ell_{0}\right) \rightarrow+\infty$ as $k_{0}, \ell_{0} \rightarrow+\infty$
(Introduction of parameters $\left(a_{k, \ell}\right)$ is related to the shift of Q)

Model system

For each (k, ℓ), we obtain the system

$$
\left(\Omega_{k, \ell}\right) \quad\left\{\begin{array}{l}
\left(\mathcal{L} A_{k, \ell}\right)^{\prime}+a_{k, \ell}\left(3 Q-2 Q^{4}\right)^{\prime}=F_{k, \ell} \\
\left(\mathcal{L} B_{k, \ell}\right)^{\prime}+a_{k, \ell}\left(3 Q^{\prime \prime}\right)-3 A_{k, \ell}^{\prime \prime}-4 Q^{3} A_{k, \ell}=G_{k, \ell}
\end{array}\right.
$$

where $F_{k, \ell}$ and $G_{k, \ell}$ are given in terms of ($a_{k^{\prime}, \ell^{\prime}}, A_{k^{\prime}, \ell^{\prime}}, B_{k^{\prime}, \ell^{\prime}}$), for $k^{\prime} \leq k, \ell^{\prime} \leq \ell$, with either $k^{\prime}<k$ or $\ell^{\prime}<\ell$ and where $\mathcal{L} A=-A^{\prime \prime}+A-4 Q^{3} A$.

System $\left(\Omega_{k, \ell}\right)$ can be solved when $F_{k, \ell}$ and $G_{k, \ell}$ have certain parity properties (no uniqueness: two free parameters).

We obtain $A_{k, \ell}, B_{k, \ell}$ which are localized functions plus polynomial.

Recomposition at $t= \pm T_{c}$ and identification of a defect

We find $A_{1,0}, A_{2,0} \in L^{2}$ and

$$
\begin{array}{ll}
B_{1,0}(x)=-b_{1,0} \frac{Q^{\prime}(x)}{Q(x)}+\tilde{B}_{1,0}(x), & \tilde{B}_{1,0} \in L^{2},
\end{array} \quad b_{1,0} \neq 00
$$

For $t=+T_{c}$, we have $y_{c} \ll y$, the two solitons are decoupled and

$$
\begin{aligned}
v\left(T_{c}, x\right) & \sim Q(y)+Q_{c}\left(y_{c}\right)-b_{1,0} Q_{c}^{\prime}\left(y_{c}\right)-b_{2,0}\left(Q_{c}^{2}\right)^{\prime}\left(y_{c}\right)+\ldots \\
& \sim Q(y)+Q_{c}\left(y_{c}-b_{1,0}\right)-b_{2,0}\left(Q_{c}^{2}\right)^{\prime}\left(y_{c}-b_{1,0}\right)+\ldots
\end{aligned}
$$

But the term $-b_{2,0}\left(Q_{c}^{2}\right)^{\prime}$ is a defect of size $\left\|\left(Q_{c}^{2}\right)^{\prime}\right\|_{L^{2}}=K c^{\frac{11}{12}}$. We cannot recompose $v\left(T_{c}, x\right)$ as the sum of two solitons at this order $\left(Q_{c}^{\prime \prime}\right.$ is related to Q_{c}^{4} and $Q_{c}^{(3)}$ is related to $\left.\left(Q_{c}^{4}\right)^{\prime}\right)$

Nonexistence of a pure 2-soliton (quartic case)

- By contradiction, assume that there exists a pure 2-soliton $U(t)$:

$$
\left\|U(t)-Q\left(.-t-x_{1, \pm}\right)-Q_{c}\left(.-c t-x_{2, \pm}\right)\right\|_{H^{1}} \rightarrow 0 \quad \text { as } t \rightarrow \pm \infty
$$

By stability, after time and space translations, $\exists T_{+}, \delta_{+}$

$$
\begin{gathered}
\left\|U\left(-T_{c}, .-T_{c}\right)-Q\left(.+\frac{1}{2} \Delta\right)-Q_{c}\left(.-(1-c) T_{c}+\frac{1}{2} \Delta_{c}\right)\right\|_{H^{1}} \leq K c \\
\left\|U\left(T_{+}, .-\delta_{+}\right)-Q\left(.-\frac{1}{2} \Delta\right)-Q_{c}\left(.+(1-c) T_{c}-\frac{1}{2} \Delta_{c}\right)\right\|_{H^{1}} \leq K c
\end{gathered}
$$

A priori no relation between T_{+}and T_{C}.

- From the algebra, there exists a nonsymmetric approx. solution

$$
\begin{gathered}
\left\|\tilde{v}\left(-T_{c}\right)-Q\left(.+\frac{1}{2} \Delta\right)-Q_{c}\left(.-(1-c) T_{c}+\frac{1}{2} \Delta_{c}\right)\right\|_{H^{1}} \leq K_{c} \\
\left\|\tilde{v}\left(T_{c}\right)-Q\left(.-\frac{1}{2} \Delta\right)-Q_{c}\left(.+(1-c) T_{c}-\frac{1}{2} \Delta_{c}\right)+\mathbf{2 b}_{2,0}\left(\mathbf{Q}_{c}^{2}\right)^{\prime}\right\|_{H^{1}} \leq K c
\end{gathered}
$$

By stability analysis on $\left[-T_{c}, T_{c}\right]$ applied on $\tilde{v}, \exists \delta$ s.t.

$$
\left\|U\left(T_{c}\right)-\tilde{v}\left(T_{c}, .-\delta\right)\right\|_{H^{1}} \leq K c
$$

- $T_{+} \sim T_{c}$ by stability of 2 soliton structure

$$
\begin{aligned}
& \left\|U\left(T_{c}\right)-Q\left(.-\rho_{1}\right)-Q_{c}\left(.-\rho_{2}\right)\right\|_{H^{1}} \leq K C^{\frac{11}{12}}, \quad \rho_{1}-\rho_{2} \sim T_{c} \\
& \Rightarrow \quad \forall t>T_{c},\left\|U(t)-Q\left(.-\rho_{1}(t)\right)-Q_{c}\left(.-\rho_{2}(t)\right)\right\|_{H^{1}} \leq K c^{\frac{5}{12}}
\end{aligned}
$$

with $\rho_{1}(t)-\rho_{2}(t) \sim(1-c) t$

- Contradiction follows from

$$
\begin{gathered}
\left\|U\left(T_{+}\right)-Q\left(.-\tilde{\rho}_{1}\right)-Q_{c}\left(.-\tilde{\rho}_{2}\right)\right\|_{H^{1}} \leq K c \\
\left\|U\left(T_{+}\right)-Q\left(.-\rho_{1}\right)-Q_{c}\left(.-\rho_{2}\right)+\mathbf{2 b}_{2,0}\left(\mathbf{Q}_{\mathbf{c}}^{2}\right)^{\prime}\left(.-\rho_{2}\right)\right\|_{H^{1}} \leq K c
\end{gathered}
$$

Case of the BBM equation [Martel, Merle and Mizumachi]

For the BBM equation, we study the collision of a soliton of speed $c_{0}>1$ with a small soliton of speed $c>1$ close to 1 .

After renormalization, it is equivalent to study the collision of Q by a small soliton $R_{\sigma} \sim Q_{\sigma}, \sigma=c-1>0$ small, for the equation

$$
\left(1-\lambda \partial_{x}^{2}\right) \partial_{t} u+\partial_{x}\left(\partial_{x}^{2} u-u+u^{2}\right)=0, \quad \lambda=\frac{c_{0}-1}{c_{0}} \in(0,1)
$$

Similar analysis can be done, and shows the existence of a nonzero defect.

