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Abstract: We consider the semilinear wave equation with power nonlinearity in one space
dimension. We first show the existence of a blow-up solution with a characteristic point. Then,
we consider an arbitrary blow-up solution u(z,t), the graph x — T'(z) of its blow-up points and
S the set of all characteristic points, and show that the & has an empty interior. Finally, given
xg € S, we show that T'(x) is hat shaped near xo, and that in selfsimilar variables, the solution
decomposes into a decoupled sum of (at least 2) solitons (with alternate signs).
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1 Introduction

1.1 Known results and the case of non characteristic points
We consider the one dimensional semilinear wave equation

Ohu = 02, u + |ufP~tu,
u(0) = up and u¢(0) = uy,

loc,u loc,u

where u(t) : 2 € R — u(x,t) € R, p > 1, ugp € HL _ and u; € L2 _ with Hv||i2 =
loc,u

SUP/ [o(2)[dz and [Jv]lf, = [ollf,  + VoI,
ac€R |(E—a|<1 loc,u loc,u loc,u

We will also consider the following equation for p > 1,

atztu = agzu + [ul?,
u(0) = up and uy(0) = uy.

(2)

2
loc,u

the finite speed of propagation and the wellposedness in H' x L? (see Ginibre, Soffer and

The Cauchy problem for equations (1) and (2) in the space Hl_ x L follows from
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Velo [6]). The existence of blow-up solutions for equation (1) follows from Levine [9].
More blow-up results can be found in Caffarelli and Friedman [5], [4], Alinhac [1], [2] and
Kichenassamy and Litman [7], [8].

If w is a blow-up solution of (1), we define (see for example Alinhac [1]) a 1-Lipschitz
curve I' = {(z, T(z))} such that u cannot be extended beyond the set called the maximal
influence domain of w:

D ={(z,t) [t <T(2)}. (3)

T = inf,er T'(x) and T' are called the blow-up time and the blow-up curve of u. x¢ is a
non characteristic point if

there are dg € (0,1) and o < T'(zo) such that u is defined on Cy 1(z),5, N {t = to} (4)

where Cp 75 = {(z,t) | t <t — 6|z — Z[}. We denote by R (resp. S) the set of non
characteristic (resp. characteristic) points.

Following our earlier work ([10]-[12]), we aim at describing the blow-up behavior for
any blow-up solution, especially I' and the solution near T.

Given some (zg,Tp) such that 0 < Ty < T(xp), a natural tool is to introduce the
following self-similar change of variables:

T — X0
To—t’

W, Ty (y, 5) = (TO - t)ﬁu(x, t), Yy = § = — log(To — t). (5)

If Ty = T'(zo), then we simply write wy, instead of wy (). The function w = wy, T,
satisfies the following equation for all y € B = B(0,1) and s > — log Tp:

2(p+1) _ p+3

2w = _\Ema) p-1, PT9 _ 2

o w = Lw = 1)2w + |wP" w - 188w 2y0, sw (6)
1 2 2\ 527

where Lw = ;8y (p(1 — y*)oyw) and p(y) = (1 —y*)»1. (7)

The Lyapunov functional for equation (6)

1
_ 1 2 1 201 .2 (p+1) 2 1 p+1
B(wis) = [ 1 <2<asw> + 5O (1 =9 + P = Sl )y (8)
is defined for (w, dsw) € H where
1 2
{1 lal= [ (@4 @) 1=+ @) piy < 40 0
We will note
1
Mo = {r € H-L1) [ 7l = [ (2= 92) 45 pdy < +ock. (10)
-1



We also introduce for all |d| < 1 the following stationary solutions of (6) defined by

1
p=1 2 1)\ r—1
k(d,y) = ko~———"—5— Where ko = <(]§p_+1)3> " and ly| < 1. (11)

In [12] and [13], we established the following results:

(Blow-up behavior for zy € R, see Corollary 4 in [12], Theorem 1 (and the following
remark) and Lemma 2.2 in [15]).

(i) The set of non characteristic points R is non empty and open.

(ii) (Selfsimilar blow-up profile for z¢ € R) There exist positive jg and Cy such that
if xo € R, then there exist do(xo) > 0, d(xo) € (—1,1), |0(x0)| = 1, so(xo) > —logT(xo)
such that for all s > sq:

y ) (o) ( g(d(:vo),.) )H < Cpe-tole=so) 12)
H

y > ~ 0(zo) < g(d(wo),.) )'

Moreover, E(wy,(s)) — E(kg) as s — 0.
(iii) The function T(z) is C' on R and for all xg € R, T'(x9) = d(x) € (—1,1).
Moreover, 6(xq) is constant on connected components of R.

—0ass—o0. (13)
H1xL2(|y|<1+60)

1.2 Existence of characteristic points

For characteristic points, the only available result about existence or non existence is due
to Caffarelli and Friedman [5] and [4] who proved (using the maximum principle) the non
existence of characteristic points for equation (1):

- under conditions on initial data that ensure that for all x € R and ¢ > 0, u > 0 and
Oru > (1 + 09)|0zu| for some §p > 0,

- for p > 3 with ug > 0, u1 > 0 and (ug,u1) € C* x C3(R).

JFrom this example, it was generally conjectured by most people that there were no
blow-up solutions for equation (1) with characteristic points: for all (ug,u1) which lead to
blow-up, R = R.

Our first result is to disprove this fact. Existence of characteristic points is seen as a
consequence of two facts:

- on the one hand, the study of the blow-up profile at a non characteristic point,

- on the other hand, connectedness arguments related to the sign of the blow-up profile.

To state our results, let us consider u(z,t) a blow-up solution of equation (1) (take

ﬁ\uo\pﬂ) dr < 0, which gives
blow-up by Levine [9]). The first result follows from the study near a regular point, that
ensures the existence of an explicit signed profile.

for example initial data satisfying [ <%|8mu0\2 + %u% —

Proposition 1 If the initial data (ug,u1) is odd and u(zx,t) blows up in finite time, then
0eS.



The second one follows from the continuity of the profile on the connected components of
R (see Theorem 1 in [13]).

Theorem 2 (Existence and generic stability of characteristic points)
(i) (Existence) Let a1 < ag two non characteristic points such that

We, (s) — 0(a;)k(dy,,-) as s — oo with §(a1)f(az) = —1

for some dg, in (—1,1), in the sense (12). Then, there exists a characteristic point ¢ €

(a1,a2).
(ii) (Stability) There ezists eg > 0 such that if ||(to, 1) — (uo,ul)HH%omeleC’u < €,

then, u(x,t) the solution of equation (1) with initial data (tg,u1) blows up and has a
characteristic point ¢ € [a1, az].

Remark: It is enough to take (ug,u;) with large plateaus of opposite signs to guarantee
that u(x,t) blows up satisfying the hypotheses of this theorem.
Since a solution in one space dimension is also a solution in higher dimensions, we get

from the finite speed of propagation the following existence result in N dimensions:

Corollary 3 (Existence of characteristic points in higher dimensions) Consider
(z1,t) a blow-up solution of (1) in one space dimension with a characteristic point. Then,
for R large enough, initial data (ug,u1) such that u;(x) = u;(x1) for |x| < R, the solution
u(z,t) of equation (1) with initial data (ug,u1) blows up and has a characteristic point.

1.3 Non existence results for characteristic points

In this section, we give sufficient conditions under which no characteristic point can occur.
Our analysis in fact relates the fact that xg is a characteristic point to sign changes of the
solution in a neighborhood of (xg, T (xg). We claim the following:

Theorem 4 Consider u(x,t) a blow-up solution of (1) such that u(x,t) > 0 for all z €
(ap,bo) and to <t < T(x) for some real ag, by and ty > 0. Then, (ag,bp) C R.

Remark: This result can be seen as a generalization of the result of Caffarelli and Fried-
man, with no restriction on initial data. Indeed, from our result, taking nonnegative initial
data suffices to exclude the occurrence of characteristic points.

Considering the equation (2), we get the following twin result of Theorem 4:

Theorem 4’ The set of characteristic points is empty for any blow-up solution of equation

(2).

1.4 Shape of the blow-up set near characteristic points and properties
of §

We have the following theorem, which is the main result of our analysis:

Theorem 5 (The interior of S is empty) Consider u(z,t) a blow-up solution of (1).
The set of characteristic points S has an empty interior.



Now, for g € S, we are able to give the precise behavior of the solution near (xg, T (z¢)):

Proposition 6 (Description of the behavior of w,, where z( is characteristic)
Consider u(z,t) a blow-up solution of (1) and xg € S. Then, it holds that

k(zo)
wxo 2@ || L0 and Bway(s) — k(ro)B(so)  (14)
(‘9 wxo i=1
H
as s — 0o, for some
k(o) = 2, ej (-1

and continuous d;(s) = —tanh (;(s) € (—1,
we have (1(s) < —Cp logs and Cp(zy)(s) >
and Gi+1(s) — Gi(s) — oo as s — oo.

€ =
1) fori=1,...,k. Moreover,
Colog s for s large enough for some Cy > 0,

Remark: In [12], we proved a much weaker version of this result, with (14) valid just with
k(xzo) > 0 and no information on the signs of e}, (i(s) and (x(s). Note that eliminating
the case k(xo) = 0 is the most difficult part in our analysis. In some sense, we put in
relation the notion of charactersitic point at xp and the notion of decomposition of wy,
in a decoupling sum of (at least 2) +k(d;(s)). This result can be seen as a result of
decomposition up to dispersion into sum of decoupling solitons in dispersive problems.
Accroding to the value of k(xg), this sum appears to have a multipole nature (dipole if
k(xo) = 2, tripole if k(zo) = 3,....).

Remark: In subsection 4.4, we derive from Proposition 6 some estimates on various norms
of the solution at blow-up.

We also have the following consequences in the original variables:

Proposition 7 (Description of T'(z) for x near x()
(i) If xy € S, then we have for some 6y > 0, Cy > 0 and v > 0,

Co‘l‘—xo‘

if 0 < |z—z0] < do, then T'(zo)—|z—z0| < T(x) < T(x0)—|2—20|+ . (15)

| log(z — 2o)|7
(ii) If xo € S, then T'(x) is right and left differentiable at xq, with
T/ (xo) = 1 and T)(xg) = —1.

(i1i) For all t € [T(xo) — 10,1 (x0)) for some 19 > 0, there exist z1(t) < ... < zx(t)
continuous in t such that '

ef(—1) " u(zi(t),t) >0
and z;(t) — xo as t — T(xg).

Remark: From (iii), we have the existence of zero lines z1(f) < ... < zp_1(¢t) (not
necessarily continuous in t) such that u(z;(t),t) = 0 and x;(t) — z¢ as t — T'(xg).

The paper is organized as follows. Section 2 is devoted to the proofs of Proposition 1
and Theorem 2 (note that Corollary 3 follows straightforwardly from Theorem 2 and the
finite speed of propagation). In Section 3, we consider a characteristic point and study the
equation in selfsimilar variables. As for Section 4, it is devoted to the proof of Theorems
5, 4 and 4’, as well as Propositions 6 and 7.



2 Existence and stability of characteristic points

Here in this section, we consider u(x, t) a blow-up solution of equation (1). As mentioned in
the introduction, we prove in this section the existence of characteristic points (Proposition
1 and Theorem 2).

Proof of Proposition 1: Assuming that (ug,u1) is odd, we would like to prove that
0 € S. Arguing by contradiction, we assume that 0 € R.
On the one hand, using the result of [12] stated in (13), we see that for some d(0) € (—1,1),

[wo(s) = £(d(0), )l oo (—1,1) < Cllwo(s) — w(d(0), )| gr1(~1,1) = 0 as s — o0.

In particular,
|wo(0, s)| — £(d(0),0) >0 as s — oo. (16)

On the other hand, since the initial data is odd, the same holds for the solution, in
particular, u(0,t) = 0 for all ¢t € [0,7(0)), hence wy(0,s) = 0 for all s > —logT'(0), which
contradicts (16). This concludes the proof of Proposition 1. [ ]
Remark: We don’t need to know that for ¢y € R, w,, converges to a particular profile
to derive this result. It is enough to know that w,, approaches the set {0(zo)x(d, ) | |d| <
1 —n} for some n > 0, which is a much weaker result.

We now turn to the proof of Theorem 2. It is a consequence of three results from our
earlier work:

- the continuity with respect to initial data of the blow-up time at xg € R.

Proposition 2.1 (Continuity with respect to initial data at xo € R) There exists
Ao > 0 such that T(zo) — T(x0) as (o, 1) — (uo,u1) in H' x L*(|z] < Ap), where

T(xzg) is the blow-up time of u(x,t) at x = xg, the solution of equation (1) with initial
data (710,711).

Proof. This is a direct consequence of the Liouville Theorem and its applications given in

[13]. See Appendix A for a sketch of the proof. [ |

- the continuity of the blow-up profile on R proved in Theorem 1 in [13] (in particular,
the fact that 0(xg) given in (12) is constant on the connected components of R).

- the following trapping result from [12]:

Proposition 2.2 (See Theorem 3 in [12] and its proof) There exists ¢ > 0 such
that if w € C([s*,00), H) for some s* € R is a solution of equation (6) such that

* U](S*) * H(d*a ) *

Vs > s*, E(w(s)) > E(ko) and H( Dy (s) > —w < 0 y <e (17)
for some d* = —tanh £*, w* = 1 and €* € (0, €], then there exists doy = — tanh & such
that

N " w(s « [ k(dso,-
|€so — &7 < Co€e™ and H<8(w>(s)>_w <0( ))H — 0. (18)
§ H



Let us use these results to prove Theorem 2.

Proof of Theorem 2: We consider a; < as two non characteristic points such that
Wq, (s) — 0(ai)k(dg,, ) with 6(a1)0(az) = —1 for some d,, in (—1,1), in the sense (12). Up
to changing u in —u, we can assume that 6(a;) = 1 and 6(az) = —1. We aim at proving
that (a1,a2) NS # 0 and the stability of such a property with respect to initial data.

(i) If we assume by contradiction that [a1,as2] C R, then the continuity of 0(xo) where
xo € la1,az] implies that 6(xg) is constant on [aj,as]. This is a contradiction, since
O(a1) =1 and (az) = —1.

(ii) By hypothesis and estimate (13), there is 9 > 0 and sg € R such that

()2 ()

where ¢q is defined in Proposition 2.2. From the continuity with respect to initial data for
equation (1) at the fixed time T'(a;) — e~ *°, we see there exists n(ep) > 0 such that if

€
<
2

HY x L2 (Jy|<1+50)

x L2 <777

loc,u

[ (o, 1) — (uo, u1)|im

loc,u

then @(z,t) the solution of equation (1) with initial data (g, @1) is such that wg, (y, so) is
defined for all |y| < 1+ dp/2 and

(50 w0 (54,
0 waz 80 0 HxL2(Jy|<1460/2) 4

where @, is the selfsimilar version defined from (x,t) by (5).
i From Proposition 2.1, we have T'(a;) — T'(a;) as n — 0, where T'(a;) is the blow-up time
of u(t) at a;. We then have for n small enough,

(St ) -0 (57 )] <o (19

Two cases then arise (by the way, we will prove later in Proposition 6 that the Lyapunov
functional stays above 2FE(kg) at a characteristic point, which means by (19) that a; and
as are non characteristic points for 1 small enough, but we cannot use Proposition 6 for
the moment):

- If a1 or ag is a characteristic point of u(t), then the proof is finished.

- Otherwise, (12) holds for w,, from the fact that the point is non characteristic. Thus,
from the monotonicity of E(g,(s)), (17) holds with w* = 6(a;). Applying Proposition
2.2, we see that g, (s) — 0(a;)k(dg,,-) as s — oo, for some d,, € (—1,1). Noting that
O(a1) = 1 and 6(az) = —1, we apply (i) to get the result. This concludes the proof of
Theorem 2. |

3 Refined behavior for w,, where z( is characteristic

In this section, we consider xg € S. We know from [13] that

(5%) Eo(5400)] omon
H

i=1



for some k(xg) > 0, e;, = =1 and continuous d;(s) = —tanh(;(s) € (—1,1) for i =
1,...,k(xo) with

C1(8) < oo < C(ap)(s) and (i11(s) — Gi(s) — oo foralli=1,...k — 1. (21)

Since wg,(s) is convergent when k(zp) < 1 (to 0 when k(xzo) = 0 and to some k(ds) by
Proposition 2.2), we focus throughout this section on the case

k(xo) > 2.

For simplicity in the notations, we forget the dependence of wy, and k(zg) on xg.

This section is organized as follows. In Subsection 3.1, assuming an ODE on the solitons’
center, we find their behavior. Then, in Subsection 3.2, we study equation (6) around
the solitons’ sum and derive in Subsection 3.3 the ODE satisfied by the solitons’ center.
Finally, we prove in Subsection 3.4 the hat property near characteristic points.

3.1 Time behavior of the solitons’ centers

We will prove the following:

Proposition 3.1 (Refined behavior of w,, where zy € S)Assuming that k > 2, there
exists another set of parameters (still denoted by (i(s), ... (x(s)) such that (20) and (21)
hold and:
(i) For alli=1,...k, e; = (—1)"*ley.
(ii) For some Cy € R, we have for s large,

C1(s) < —Cylog s and (x(s) > Cylog s.
Remark: If we knew that in the following proposition R; = o (Z;gfl e BlG+1=Gl
(where R; is defined below in Proposition 3.2), then, we would get (1(s) > —C1log s and
Ck(s) < Chlogs. Indeed, we write from Proposition 3.2 (and (i) of this proposition)

Ci(s) = Cis) < 3¢ Bit1(8)=Gi(s))

which yields by integration 0 < (;+1(s) — Gi(s) < Clogs and then, 0 < (i(s) — (i(s) <
C'log s. Since (i(s) — (1(s) = |¢1| + |Ck| from (ii) of this proposition, this yields the desired
bound.

The following ODE system satisfied by ((;(s)) is crucial in our proof:

Proposition 3.2 (Equations satisfied by the solitons’ centers) Assuming that k >
2, there exists another set of parameters (still denoted by (i(s), ... Ck(s)) such that (20)
and (21) hold and for alli =1, ..., k:

1 — 2 e L2 G
;{ = —e;_1e5€ p71|Cz Clil|+€i€i+1€ p,1|Cz+l CZI+RZ (22)
1
k—1 9
with R; = o(J) as s — oo and J(s) = Ze_ﬁ‘@“(s)_g(s)‘, (23)
j=1

for some c; > 0, with the convention eg = ep+1 = 0.



Proof: See subsection 3.2. |
Let us now give the proof of Proposition 3.1.

Proof of Proposition 3.1: Given some sg € R, we first define for all s > sg, Jy(s) and

jo(s) (S {1, ceny k — 1},

Jo(s) = max / e Al (=GNl gg" — / e o +1 ()=o) lgg’  (24)
2 1 S0 S0

where § = p%l. Then, we claim that

Jo(s) — o0 as s — 0. (25)
Indeed, we write from (22) and (24) [¢i(s) — Gi(so)] < C S22 f e Al () =GNl gs <

CJp(s) and (21) implies (25).
Integrating equation (22), this yields as s — oo for all i = 1,..., k:

Gi(s) + -:-+C¢(S)
G(8) + .. + G(s)
k—i+1

= €z‘€i+1cil/ e A1 N=GEgs 4 o (Jy(s)), (26)
50

C s (8" —C s
—eiei17— z’l+ - /SO e AGEN =G gs’ 1+ 0 (Jo(s)).  (27)

(i) Using (21), we write for s large,

C1(8) + -+ o) () _ Cio(s)+1(8) + o + Cr(s)
Jo(s) k= jo(s) ’
Cu(s) -+ Gils) Gi(s) + -+ Gios)(8)
i jo(s) 7
Cio(s)41(8) + oo + Ck(s) - Git1(8) + ... + C(s)
k— jo(S) k—1 .

Then, using (26), (27) and (24), we write for s large,

ifi < jO(S)’

if i > jo(s),

C1 1

ejg(s)ejo(s)JrlmJO(s) < —€jo(s) o (s)+1 mJo(S) + 0(Jo(s)),
if i< jo(s),

C $ _ . N_ (o C
e +171 / e )G < ey 1
S

T(S)Jo(s) +0(Jo(s)), (28)

if i>j0()

PRI 5) + ol (s)) < —ereii

Therefore, for s large, Jo(s) (ejo(s)ejo(s)ﬂ(jocﬁ + #(1)(5)) + 0(1)) < 0, hence,

c1 / Tl (=Gl g (29)
_Z %

€o(s)jo(s)+1 = ~1-

Then, (28) and (29) write together with (24)

Vi, ﬂjo( ) €z€z+1/ e_6|<i+1(5’)_ci(s’)|dsl S J(](S),
S0

9



which gives for all ¢ and s large,

eiei+1 = —1 and JOC(;) < / e Al N=GEge" < Jo(s) — oo (30)
50

Using a finite induction, we get e; = (—1)i*le;.

(ii) Using Proposition 3.2, (i) and (30), we see that for all i = 1,....,k — 1 and s large,

1 $ X N_Ci (s
- (Ciga(s) = G(s)) < 3/ e Bt (sN=G() gg, (31)
50
1 1 [* / /
il < _Z —B(G2(s)=C1(s") g6/
- G(s) < 5 /SO e ds', (32)
1 L —B(Ck(s")—=Cr-1(s")) g ¢!
C—le(s) > 5] ¢ - ds'. (33)
50

Since we get by integrating (31), f:o e Bt =G()) s > Clogs, the conclusion then
follows from (32) and (33). This concludes the proof of Proposition 3.1. [ ]
3.2 Refinement of (20) for k > 2

Note that the case k = 1 has been already treated in [12] giving rise to estimate (12). As
announced in the beginning of the section, we assume that k > 2 and claim the following;:

Proposition 3.3 (Size of ¢ in terms of the distance between solitons) There exists
another set of parameters (still denoted by (1(s), ... Cx(s)) such that (20) and (21) hold
and for some s* € R and for all s > s*,

k—1

la(s)lln < C ; h(Giv1(s) = Gi(s)), (34)
where
= (5)=(50) 2 (5)
and

h(¢) = e 1S ifp<2, h(¢)= e—QC\/Z ifp=2and h(¢) = e_%c if p> 2. (35)

Before proving the estimate, we need to use a modulation technique to slightly change the
¢i(s) in order to guarantee some orthogonality conditions. In order to do so, we need to
introduce for A =0 or 1, for any d € (—1,1) and r € H,

() = ¢ (Wx(d), r) (36)

where:

san=o((8).(1)) = [ G+ ot +aurs) i (67

q2 —1

10



1— 2 +d
Wi (d, y)(y) = e1(d)———L—, Woa(d,y) = cor
(1—|—dy)1’—1+ 1+dy

k(d,y),

with 0 < ¢1(d) < O(1 — d2)7-7, ¢ > 0,
and W) 1(d,y) € Hop is uniquely determined as the solution of

p+3

8 Wia(d
—Lr+r= ()\ - ) Wi2(d) — 2y0,Wy 2(d) + —— r2(d)

p—11—1y?

p—1

(in [12], we defined Wy 2(d,y) by —coldurd)  iep
’ (l-i—dy)ﬁ_‘—1

1 2
1= co(d)(1 - d?)7 / WED" 2 gy
2
P—lJa(14dy)r1t21-y

(38)

1
Setting y = tanh ¢, we compute the integral and get co(d) = c¢f(1 —d?)»-1. Using (11), we

get (38)). Recall from Lemma 4.4 page 85 in [12] that
vd e (=1,1), [Wi(d)|n <C.
We now have the following;:

Lemma 3.4 (Modulation technique) Assume that k > 2.

(40)

(i) (Choice of the modulation parameters) There exist other values of the parameters
(still denoted by d;(s)) of class O, such that (i11(s) — (i(s) — oo as s — oo where

di(5) = — tanh Gi(s),
lg(s)|l — 0 and ng(s)(q) =0 foralli=1,.,k,

where 8 and q are defined in (36) and (34) respectively.
(i) (Equation on ¢) For s large, we have

i (5)=2 (5 ) ~Senor (3 ) (5)+ (S )

where L ( « )
q2

q2
< Lq1 + g1 — ﬁ%?(h — 2yqy > ’

Wy.s) = pIK( o)l = B0, Ky.s) = Y5 er(di(s). ),
fla) = |K+aP ' (K+aq)— [KPE - plKP gy,
R = |KIPTIK = Y5 en(d;)P.

11

(41)



Remark: From the modulation technique, it is clear that the distance between old and
new parameter (;(s) goes to zero as s — 00.

Proof. See the proof of Proposition 5.1 in [12] where the case k = 1 is treated. There is
no difficulty in adapting the proof to k > 2. |

In the following, we will show that Proposition 3.3 holds with the set of parameters
€1(8),---,Ck(8) given by the modulation technique of Lemma 3.4. Before giving the proof,
we start by reformulating the problem.

Let us first remark that equation (42) can be localized near each soliton’s center which
allows us to view it as a perturbation of the case of one soliton already treated in [12].
For this, given i = 1, ..., k, we need to expand the linear operator of equation (42) as

L(q) = Lg,(s)(q) + (0, Vi(y, s)q1) with
I < q1 ) q2
\ @ Lar + (pr(di(s), )™ = 22D 1 — P40 — 2ygh |
‘/1(3/7 S) = p|K(y75)|p_1 _p’{(di(s)7y)p_1' (43)

Since the solitons’ sum is decoupled (remember from (i) of Lemma 3.4 that

§iy1 — & — 00 as s — 00), (44)

the properties of Lg,5) will be essential in our analysis.
;From section 4 in [12], we know that for any d € (—1,1), the operator L has 1 and 0 as
eigenvalues, the rest of the eigenvalues are negative. More precisely, introducing

y+d

_ 2
Fi(d,y) = (1—d?)7s ( S : Z‘zi ) | Fo(doy) = (1—d®)7 (1t ).
(45)
we have
La(Fx(d)) = AFx(d) and [[F1(d)]|# + [[Fo(d)[ln < C. (46)
The projection on F)(d) is defined in (36) by 7¢(r) = ¢ (Wx(d),r). Of course,
LyWi(d) = AW(d) (47)

where L}, is the conjugate of Ly with respect to the inner product ¢, and the choice of the
constants ¢1(d) and ¢y guarantees the orthogonality condition

TU(Eu(d)) = $(Wa(d), Fu(d)) = O - (48)

In the following, we give a decomposition of the solution which is well adapted to the
proof:

Lemma 3.5 (Decomposition of ¢q) If we introduce for all r and r in H the operator
m_(r) =r_(y,s) defined by

k
ry.5) = > (7O 0)F(dils),0) + 75 DO Fo(di(s) ) + 7)) (49)

=1

12



and the bilinear form
1
p(r,r) = / (i (1 = y?) = ¢riey + rora) pdy (50)
-1

where (y, s) is defined in (42), then:
(i) for s large enough and for all v and r in H, we have

o (r,0)| < Cllrflwlirlla (51)

(ii) for some Cy > 0 and for all s large enough, we have:

k
Q(yas) = Zai(s)Fl(di(S%y)+Q—(yas)? (52)

=1
Cfouq_@)u% ~ Cod(s)?lla(s)3, < A—(s) < Colla— ()13, (53)

k
;qu@ua < 3 () +A(5) < Colla)E  (54)

=1

where
k—1 4

(Gar — Gle 16 76) 1 ad (5) = 75 (g(s)) and A_(s) = p(g—(5), 9 (5))-

=1

.

(55)

Remark: Note that the choice of d;(s) made in (41) guarantees that for s large enough,
Vi=1,...k ob(s)=al(s)=0. (56)

Moreover, we see from (53) that A_(s) is nearly positive and nearly equivalent to ||g_||3,.
Remark: The operator m_ depends on the time variable s. In [12], we had only one
soliton, and we decomposed ¢ as follows:

a(y, s) = 7{(a) Fi(d, y) + (@) Fo(d, y) + 72 (q), (57)

where we had only one d(s) (note that this decomposition is in fact a definition of the
operator 7). Here, due to (44), we have a decoupling effect, in the sense that ﬂij(s)(q)
for j # i cannot be “seen” when y is close to —d;(s), the “center” of the soliton x(d;(s),y).
Hence, w_(q) is more or less Wd_i(s)(q) and we are reduced to the situation of one soliton
already treated in [12]. This idea will be essential in our proof since given some i = 1, ..., k,
we have two types of terms in equation (42):

- terms involving the soliton x(d;(s),y) for which we refer the reader to [12],

- interaction terms involving a different soliton x(d;(s),y) which we treat in details.

Proof of Lemma 3.5: See Appendix B. |

In order to prove Proposition 3.3, we project equation (42) according to the decompo-
sition (49). More precisely, we have the following:

13



Lemma 3.6 For s large enough, the following holds:
(i) (Control of the positive modes and the modulation parameters)

Vi=1,..k,

ai/(5) = a(s)] + 1/(5)] < Clla(s) I, + C.I(s) (58)

where J(s) is defined in (23).
(i) (Control of the negative part)

1 / 3 1 k—1
<R_ + 2A_> < =1/ q 21 dy +o(llg(s)ll3) +C Z (Gmer1 = Gm))?
+ CJ(s) |A,(s)| (59)
for some R_(s) satisfying
p+1
[R—(s)| < Clla() 115 (60)
where p = min(p,2) and h(s) is defined in (35).
(i) (An additional relation)
k—1
/ CI1CI2P<—5A +CZhCm+1 Cm) +C/_ q 21 +CZ 0K1
Proof: See Appendix C. |

With Lemma 3.6, we are ready to prove Proposition 3.3.

Proof of Proposition 3.3: We proceed as in section 5.3 page 113 in [12], though
the situation is a bit different because of the presence of the forcing terms J(s) and
Zle h(Ciy1 — ¢)? in the differential inequalities in Lemma, 3.6.

If we introduce

k -1

=Y ai(s)? b(s) = A_(s) +2R_(s) and H(s) = Y h(Gu+1 — (m)? (62)
i 1

N

3
Il

where h is defined in (35), then we see from (i) of Lemma 3.4 and (60) that
a(s) +b(s)+ H(s) — 0 as s — oo. (63)

Moreover, we see from (60) and (54) that [b — A_| < 15 (A_ + Z,’f:l(azi)2> for s large

enough, hence

99 1 101 1
A a<h< A 4
100 100% <%= 100 100 (64)

Therefore, since J(s) < H(s) by (23) and (35), we have for s large,
C
Ve >0, CJ\/|A_| <e(a+b)+ ;H(s)

Using (62), (64) and (63), we rewrite estimates (54) and Lemma 3.6 with the new variables,
in the following;:

14



Corollary 3.7 (Equations in the new framework) There exists Ky > 1 such that for
all € > 0, there exists so(€) € R such that for all s > so(€), the following holds:
(i) (Size of the solution)

1
—(a+0) <|dll}; < Kola+b), (65)
Ky
1
’/ Q1Q2pdy‘ < Ko(a+D). (66)
-1

(i) (Equations)

3 5
ia—eb—KoHSa’ < §a+eb+K0H,

6 ! P Ko
Vo< —— 2 d b)+ —H
S o) ey y+ela+b)+—H,
d [! 3 1 p
/ Q1q2pdy < —b+Ko/ i 5dy + Koa + KoH,
ds -1 5 1 ’]_—y
|H'| < eH. (67)

We proceed in 2 steps:
- In Step 1, we show that a is controlled by b+ H:.
- In Step 2, we show that b is controlled by H and conclude the proof using (65).

Step 1: a is controlled by b+ H
We claim that for € small enough, we have:

Vs > so(e), a(s) < eb(s)+ ?H(S) (68)

Indeed, from Corollary 3.7, we see that for all s > sg(¢), we have

3 K
a > 20~ (eb—l——OH),
€

K K
(eb+ —2H) < 2e(eb+ —2H) + éa.
€ €

Introducing 1 (s) = a(s) — (eb(s) + %H(s)), we see that for all s > sq(e),

K K K,
V=da — (e + =2H') > ga—(eb—i— “UH) — 2e(eb+ —2H) — é%a
€ € €
3
= (G- -1-29a+(1+29m >

if € is small enough. Since 7i(s) — 0 as s — oo (see (63)), this implies v (s) < 0, hence
(68) follows.

Step 2: b is controlled by H
We claim that in order to conclude, it is enough to prove for some K; > 0 that

Vs > s0(€), f(s) < KiH(s) (69)
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where

1 1 1 6
f +n/1q1q2p y and 7 2mln<2K07 (p—l)K0> (70)

Indeed, using (66) and (68), and taking e small enough, we get for all s > s¢(e),
1 2 2 2
‘/ qqupdy’ < 2Kgb + %H and |f — b < 2Konb + n%H < g + U%H, hence
~1

2 2
b B < <oy oy (71)
2 € €
Therefore, if (69) holds, then using (65), (71) and (68), we see that for some K2 > 0 and
for all s > so(e), [lg(s)]13, < Ko(a(s) + b(s)) < KoH(s) which is the desired conclusion of
Proposition 3.3. It remains to prove (69).
Using Corollary 3.7, (68), (70) and the fact that Ky > 1, and taking e small enough, we
get for all s > sg(e):

6 ! P Ko
y < ——— 2 dy +2eb+2—H 2
~ p—l 71q7,21_y2 y+ €0 + p ) (7)
d ! 2 ! p K?
_ dy < —Zb+ K 2 dy+2—2H 73
ds/_lcnquy < —gbt o/_lq_,gl_y2 y+2-—H, (73)
2 6 ! p Ky _K?
"< —(En—-2eb— | — — K 2 d 2— +2-9%)H
Fros —Gn—2 (p_l on)/_lq,gl_y2 y+(2—+2—"n)
K K
< —D+350H < —3f 4400, (74)

If 2(s) = f(s) — o H (), then we write from (67) and (74), for all s > sq(e),

64K K
e = -1y + 22 < -1y
€ 8 € 8

K
0l < —df+4=CH 4
€

n
n

+ 84080 L YKy = —4Ky+ %e < 0 if € is small enough. Therefore,
<

e~ 3 (5750)5(50), hence

64K,

f(s) < = H(s) + 72 na(so). (75)
Since we have from (67) and (62),
H(s) > e =0 H(sy) and H(sg) > 0, (76)

taking € < {, we see that (69) follows from (75) and (76). This concludes the proof of
Proposition 3.3. u
3.3 An ODE system satisfied by the solitons’ centers

With Proposition 3.3, we are ready to prove Proposition 3.2 now. The proof consists in
refining the projection of equation (42) with the projector 7rg (36), already performed in
the proof of (i) of Lemma 3.6 (see Part 1 page 39).
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Proof of Proposition 3.2: Using (152), (153)
equality (58) on ¢; and the fact that oy(s) = a%]/

, (157), (158), (161), the differential in-
(s) =0 (see (56)), we write:

2/@0

—61

i)+ af (5 )] < e oty ass e

Since we have from Proposition 3.3,

la(s)l13, < CZ (Gir1 — G:))* = 0(J(s)) as s — 0o (78)

where h(() is defined in (35), it is clear that if one proves that for some ¢} > 0,

1 4 . _2 . _é
aﬂgZ(S) < OR > s e TGO GO il oy (79)
as s — oo (with the convention (p = —oo and (;41 = +00), then, Proposition 3.2 imme-

diately follows from (77) and (78). It remains to prove (79).
Proof of (79): We claim first that

ZPE P 11{3/] 1(8)<y<y;(s }Zelﬁ dl )>
I#5

R(dj ()" P Ly, () <y<yy (o)) D Rldi(s (80)
J=1 I#j

M»

< C

where y; are the solitons’ separators defined in (199).
Indeed, let us take y € (y;-1(s),y;(s)) and set X = (3, ; err(di(s)))/ejr(d;(s)). From
the fact that (j11(s) — (;(s) — oo and (199), we have | X]| < 3 hence

1+ XP 14+ X) -1 -pX| < CX?
and for y € (y;—1(s),y;j(s)) and s large,

KPP K = ejr(dj(s))” — pr(d;(s))"~" Y ern(di(s))

I#j
< Crld;(s))P 2 k(di(s))?
I#j

Since for y € (y5-1(5), 53(5)), | X er(di(5))?] < Spy w(da(s))P and (dy(s)) > w(di(s))
if I # j, this concludes the proof of (80).
Now, we prove (79). Using (80), (36), (38) and the notations of Lemma E.1, we write

k k
7[-[C)li ( OR ) _pCOZZAi,j,l < szBivjvl'

=1 17 =1 17
Since we have from (iii) and (iv) of Lemma E.1, A; j; + B, j; = o(J) except for A;;; with

[ = i+ 1 where we have A;;;+1 ~ c’{’eip%ll@f@ﬂl, we get (79). Since Proposition 3.2
follows form (79) and (77), this concludes the proof of Proposition 3.2 too. [ ]
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3.4 The blow-up set is hat-shaped near =y € S when k(z() > 2
We derive here the following consequence of Proposition 3.1:

Proposition 3.8 (Existence of signed lines and the hat property near xy € S) If
xo € S with k(xo) > 2, then:
(i) For all j =1,..k,

u(zj(t),t) ~ ejko cosh1 G (s)(T(zo) — t)_% as t — T (xop),
where t — z;(t) is continuous and defined by

zj(t) = xo + (T'(zo) — t) tanh (j(s) with s = —log(T'(xo) — t). (81)
(i) We have for some dy > 0 and vy > 0,

|z — x|

if |© — xo| < o, then T(xo) — |z — x| < T(x) < T(x0) — |2 — 20| + (82)

|log(z — xo)|7"
Remark: The point z;(t) corresponds in the original variables to the center of the j-th
soliton in the description (20).

Remark: In the next section, we prove that for all zg € S, we have k(xg) > 2. Thus, the
result will hold for all zg € S.

Proof: 1t follows from Proposition 3.1 and the following;:

Lemma 3.9 (Upper blow-up bound for equation (1)) For all zyp € R and t €
(3T (w0), T (x0)),

2

sup lu(z,t)| < K(T(zg) —t) »-1
|r—mo|<7T(102)7t)

where K depends only on p and an upper bound on T (xo) and 1/T(x¢).
Proof. Use Theorem 1 in [11] and the Sobolev injection. [ |

Proof of Proposition 3.8:
(i) Using Proposition 3.1 and (i) of Lemma B.1, we see that we have

k(zo)
sup [(1 — y2)P%1wx0(y, s) — Z e (1— y2)ri11<a(di7y) — 0 as s — 0. (83)
lyl<1 i—1
Since we have
k(di(s),y)(1 — y2)Ti1 = Ko coshfﬁ(ﬁ — (i(s)) if y = tanh ¢ (84)

and (41(s) — Gi(s) — 0o as s — 0o, we apply (83) with y = —d;(s) = tanh (j(s) to get

(1-— dj(s)Q)Tilwxo(fdj(s), §) — €jKp as s — 00. (85)

Since (1 — dj(3)2)7p%l = cosh# 1 Gi(s), e = ej(—=1)t and s — d;(s) € (—1,1) is

continuous, using the selfsimilar transformation (5), we see that (i) follows.
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(ii) Note that the left-hand inequality follows from the fact that « — T'(z) is 1-Lipschitz,
which is a consequence of the finite speed of propagation. For the right-hand inequality,
we give the proof only for x > xg since the case z < xg follows in the same way. The key
idea is to derive lower and upper bounds for |u(z(t),t)| where z(t) defined in (81) is the
“center” of the k-th soliton.

Using (i) with j = k(zo), we see that for all ¢ € [t1,T(x0)) for some t; < T'(xp),

2

IM%@JMZ%%wm%@@KHm%%YFT (86)

on the one hand. On the other hand, using Lemma 3.9 and the continuity of = — T'(z),
we see that for all for some ¢y € [t1,T(x0)) and C1 > 0, we have

2

vt € [to, T'(x0)), |ulzk(t),1)] < Cr(T(2(t)) — 1) #-T.
Therefore, it follows from (86) that

Vt € [to, T(z0)), T(z(t)) —t < COW,

hence

T(2(t)) < T(xo) — (T(x0) — 1) (1 - coshii(s)) where s = —log(T (z9) —t).  (87)

Recall from Proposition 3.1 and Lemma 3.2 that for some v > 0 and for s large,
Ck(s) > vlogs, cosh(k(s) > %, 1 > tanh (x(s) and ¢i.(s) — 0 (88)
as s — 0o. Therefore, we see from (81) that
2k(t) — xo and z),(t) = — tanh (i (s) + C4(s) cosh™2 ¢ (s) — —1 as t — T(xp).

Therefore, the map ¢ — 2z (t) is one to one from [tg, T'(z¢)) to (zo,zo + do] for some dg > 0
and we can make the change of variables

x = z(t) = o + (T'(x0) — t) tanh (i (s) where s = —log(T'(xo) — t). (89)
Since we have from (89) and (88)
Co (1 - witw)
(T (o) = 1) (1 " cosh @(s)) = (7 =) i ()

and s = —log(T(xo) —t) ~ —log(z — o) as & — xp, (82) follows from (87) and (90). This
concludes the proof of Proposition 3.8. |

> @-m)1-5)  (90)

4 Properties of S

We proceed in 3 subsections. We first prove that the interior of S is empty (Theorem
5. Then, we give the proofs of Theorems 4 and 4’, as well as Propositions 6 and 7. In
the last subsection, we give various estimates on norms of the solution at blow-up, near a
characteristic point.
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4.1 Soliton characterization on S

This subsection is devoted to the proof of the following result (which directly implies
Theorem 5):

Proposition 4.1
(i) The interior of S is empty.
(i1) For all xg € S, k(xg) > 2.

Before proving this proposition, let us first state the following Lemmas:

Lemma 4.2 (Characterization of the interior of S) For any x1 < x2, the following
statements are equivalent:

(a) (x1,22) €S.

(b) There exists x* € [z1,x2] such that for all x € [z1,x2], T'(x) = T(a*) — |z — z*|.
Lemma 4.3 Consider r1 < xo such that e = w = +1. Then,
(1) for all x € [x1,29], T(z) = T(x1) + e(x — 1),
(ii) (z1,22) € S.

Lemma 4.4 (Boundary properties of S)

(1) For all xoy € 0S, k(zo) # 0.

(i) Consider xog € 0S with k(xg) = 1. If there exists a sequence x, € R converging
from the left (resp. the right) to xq, then xg is left-non-characteristic (resp. right-non-
characteristic).

Remark: We mean by zg is left-non-characteristic (resp. right-non-characteristic) that it
satisfies condition (4) only for x < z¢ (resp. for x > x).

Remark: It is not possible to prove by a direct argument that k(xp) > 1 when zg is
arbitrary in S. We need to prove it first for 2o € S and then prove that the interior is
empty. See the derivation of Proposition 4.1 from Lemma 4.4.

We now give the proofs of Lemmas 4.2, 4.3 and 4.4.

Proof of Lemma 4.2
(a) = (b): Let us introduce z* € [z, z2] such that

T(z*) = max T(xz).

r1<x<T2

We claim that T'(x) is nondecreasing on [z1, 2*], and nonincreasing on [z*, x3]. Indeed, let
us prove the first fact, the second being similar. If for some 2’ < 2” in [z1,2*], we have
T(z') > T(z"), then ming <, <,» T'(x) < T(2") < T(2") < T(x*). Therefore, this minimum
is achieved at a point Z different from 2’ and z*, hence

T € (2, 2%) C (21, 22).

In other words, Z is a local minimum, hence non characteristic, which is in contradiction

with (a).

The result clearly follows if we prove that
Vo € (z1,27),  T(z)=T(x1)+ (z —21), (91)
Vo € (2%, 22), T(x)=T(x2) — (z — x2). (92)



We only prove (91) since (92) follows similarly.
Assume by contradiction that for some 2’ € (x1,2*), we have

T(2) = T(x1)

o o g {=L1} (93)

Then, since x +— T(z) is 1-Lipschitz and nondecreasing, it follows that 0 < mgy < 1.
Considering a family of lines of slope H% growing from below, we find A\ € R and

xo € [z1,2'] such that

(1+mp)
2

(1 + mo)

Vo € [x1,2'], T(x) > 5

(x —z1) + Ao and T'(zp) = (xo — 1) + Ao- (94)

If 29 € (x1,2'), then for all z € [zq,2'], T(x) > W(x — x9) + T'(z0), hence z¢ is non
characteristic (the cone of slope H% is convenient).

If 2o = 2/, then since T'(x) is non decreasing on (x1,z*), it follows that x( is again non
characteristic. In these two cases, we have a contradiction with the fact that (z1,22) € S.
If 9 = x1, then we have from (94), T(z1) = Ao and T'(z') > W(m’ —x1) + T(21), in
contradiction with (93).

Thus, (91) holds. Since (92) follows similarly, (b) follows too.

(b) = (a): For any = € (x1,x2), the left-slope of x — T'(z) is 1 or —1, hence, by
definition, z € S and (a) follows. This concludes the proof of Lemma 4.2. |

We now give the proof of Lemma 4.3:
Proof of Lemma 4.3: Up to replacing u(z,t) by u(—x,t), we can assume that z1 < o
and T T
e = M =1. (95)

T2 — 21

(i) If x € (21, 22), we use the fact that x — T'(z) together with (95) to write:

T(z1) + (z — z1),
T(x9) — (w9 —x) = T(21) + (z — 1)

(AVARVAN

and (i) follows.
(ii) It follows from (i), just by applying the fact that (b) implies (a) in Lemma 4.2 (take
x* = x9). This concludes the proof of Lemma 4.3. [ ]
We now give the proof of Lemma 4.4.
Proof of Lemma 4.4: Consider z¢g € dS. Up to replacing u(z,t) by u(—=z,t), we can
assume that for some sequence

Tn € R, we have z,, < 1¢ and z,, — xg as n — oo. (96)

Therefore, we have
Ve < xo, T(x)>T(x0) — (x0 — ). (97)

Indeed, note first form the fact that x — T'(x) is 1-Lipschitz that for all x < zg, T(x) >
T(xz9) — (xg — x). By contradiction, if for some & < xq, we have T'(z) = T'(zg) — (xg — ),
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then we see from Lemma 4.3 that (Z,29) C S, in contradiction with (96). Thus, (97)
holds.

To prove (i) and (ii), we proceed by contradiction. Assume then that

either k(xg) =0 (case 1),
or k(xg) =1 and xq is not left-non-characteristic (case 2).

Using (20) when k(zp) = 0 and Proposition 2.2 when k(z¢) = 1, we see that

H<g}x&xo >_<(1)UOO>H —0as s — oo, (98)

where (y) =0 if k(xo) = 0 and weo(y) = e*k(d(z0),y) if k(zo) =1,  (99)
for some e* = +1 and d(zg) € (—1,1). Now, we claim the following continuity result:

Claim 4.5 For all ¢g > 0, there exists t < T(zo) and & < zo such that for all 2’ € (¥, ),

H(f”wx (30(x ))>_(7EJUOO)“H§€0 (100)

where 5o(x') = —log(T(x') — 1).

Proof: See Appendix D. [ |
Let us first use this lemma to find a contradiction.

Case 1: k(zg) = 0. Consider some ¢y > 0 (to be fixed small enough later). Using this
claim, (99) and (96), we see that for some t < T'(z¢) and for n large enough, we have

wxn SO( ) <
T, € R and H< Dty (30(x") >H €.

Using the continuity of E(w) in H (which is a consequence of Lemma B.1), we see that
E(wg, (30(z"))) < Cep < $E(ko) (if €y is small enough), on the one hand. On the other
hand, since z,, € R, we know from the limit and the monotonicity of E(ws, (s)) stated in
page 3 that E(wg,(s)) > E(ko) > 0, which is a contradiction.

Case 2: k(z¢) = 1 and zg is not left-non-characteristic. Since zg is not left-non-
characteristic, we see from (97) that there exists a sequence Z,, such that

T@En) = Two) oy _ L 4y (101)

Tn < X9, Tn — xg and Mm, = -
Tn — To n

Considering a family of lines of slope 1+2m", we can select one such that

(14 1)
9

(1 +70p)

Vo € [y, 0], T(x)> 5

(x—2n)+A\p and T(Zy,) = (T —3n)+An (102)
for some A, € R and Z,, € [&, x0].

If Z,, = xo, then for all x € [Z,,, z¢], T'(x) > %(x—xo)—l—T(xo), which is in contradiction
with the fact that xq is left-non-characteristic.

If ¥, = &y, then we have from (102), T(%,) = A, and T(zo) > 2 (zg — &) + T(&y), in
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contradiction with (101).
If Z,, € (&n,x0), then &,, € R (the cone of slope 1‘*‘% is convenient). Since Z, — xg and
T, € R, we see from Claim 4.5 that for some # < T'(zo) and n large enough, we have

(it ) - (6] =< oY

where €* is introduced in Proposition 2.2. Since the energy barrier follows from the fact
that Z,, € R, Proposition 2.2 applies and we have for n large enough,

(wz, (8), Oswsz, (s)) — e*(k(dy),0) in H as s — oo,

where |d, — d(z¢)| < no for some 79 > 0 small enough so that |d(x¢) £ n0| < 1. The use
of the geometrical interpretation of d,, is crucial for the conclusion. Indeed, from (103)
and the regularity result of [12] cited in page 3, we see that x — T'(x) is differentiable at
T = I, and that

T/(jn) = dn < d(xO) +no < 1

on the one hand. On the other hand, using (102) and (101), we see that

1+,

T (Zn) = —lasn— oo

which is a contradiction. This concludes the proof of Lemma 4.4. |
Now, we are ready to prove Proposition 4.1.

Proof of Proposition 4.1:
(i) Let us assume by contradiction that S contains some non empty interval (a’,b’). Since
S # R by the result of [12] cited in page 3, by maximizing this interval and up to replacing
u(z,t) by u(—=z,t), we can assume that:

(a,b) C S witha € 9S, b>a

and, either b € 9§ or b = +o0. If b is finite, then up to replacing u(x,t) by ( x,t), w
can assume that T'(b) > T'(a). Using Lemma 4.2 and the fact that 7'(x) > 0, we see that
for some b < b, we have

Vo € (a,b), T(z) =T(a)+ (z —a). (104)

We consider three cases and find a contradiction in each case.

- If k(a) = 0, then a contradiction occurs from (i) of Lemma 4.4.

- If k(a) = 1, then from the fact that a € S, there exists a sequence z,, € R such that
Ty, — a as n — 00. Since (a,b) C S, it follows that x,, < a for n large enough. Therefore,
applying (ii) of Lemma 4.4, we see that a is left-non-characteristic. Since it is clearly
right-non-characteristic by (104), a is in fact non-characteristic, which contradicts the fact
that a € S C S (note that S is closed since its complementary set R is open by the result
of [13] cite in page 3).

- If k(a) > 2, then the hat property stated in Proposition 3.1 is in contradiction with
(104).

Thus, (i) of Proposition 4.1 follows.
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(ii) Consider zg € S. From (i), we have zy € 0S. Using (i) of Lemma 4.4, we see that
k(xzp) > 1. The result follows if we rule out the case k(xg) = 1.

Assume by contradiction that k(xz) = 1. Since the interior of S is empty, we can construct
2 sequences x, and y, in R, such that z,, — x¢ from the left, and y,, — x¢ from the right.
Applying (ii) of Lemma 4.4, we see that x¢ is in fact left-non-characteristic and right-non-
characteristic, hence non characteristic. This contradicts the fact that xg € S. Thus, (ii)
follows. This concludes the proof of Proposition 4.1 |

4.2 On characteristic points for equation (1)
We prove Propositions 6 and 7, as well as Theorem 4 here.

Proof of Proposition 6: Consider u(z,t) a solution of equation (1) and zy € S. Using
(ii) of Proposition 4.1, we see that k(zg) > 2. Therefore, Proposition 3.1 and Proposition
3.8 apply and directly give the conclusion of Proposition 6.

Proof of Proposition 7. Consider u(z,t) a solution of equation (1) and g € S. Using
(ii) of Proposition 4.1, we see that k(z¢) > 2. Therefore, Proposition 3.1 and Proposition
3.8 apply and give the conclusion of Proposition 7, except for the strict inequality in (15),
which we prove now.
Assume by contradiction that for some 1 < xg, we have equality in the left-hand inequality
of (15). Then, we see from Lemma 4.3 that (x1,20) C S, which contradicts the fact that
the interior of S is empty (see (i) of Proposition 4.1). Thus, (15) follows and Proposition
7 follows too. |

Proof of Theorem 4: Consider u(x,t) a solution of equation (1) that blows up on a
graph z +— T'(z) such that for some ag < by and some ty > 0, we have

Va € (ag,bp) and t € [tg, T(x)), wu(x,t) > 0. (105)

We would like to prove that (ag,by) C R. Proceeding by contradiction, we assume that
there exists z¢ € (ap,bp) N'S. Using Proposition 7, we see that for some e; = +1 and
t1 € [to, T(xp)), there are continuous ¢ — z;(t) where ¢ = 1 and 2 such that z;(t) — xo as
t — T(xp) and

Vit € [t1,T(z0)), eru(z1(t),t) >0 and eju(z2(t),t) < 0.
Therefore, u changes sign in (ag,bg) x [t1,T(z¢)), which is in contradiction with (105).
Thus, (ag,by) C R and Theorem 4 follows. [ ]

4.3 Non existence of characteristic points for equation (2)

This subsection is dedicated to the study of equation (2) which we recall here:

{ O2u = 02, u+ |ulP,

u(0) = up and u,(0) = uy. (106)

We take p > 1 and (ug,u1) € H%OC’u X leoc?u. Our aim is to prove Theorem 4’, which asserts
that the set of characteristic points is empty, for any blow-up solution of (106). To do so,

we need to perform for equation (106), an almost identical analysis to what we did for
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equation (1), in our previous papers, including this last one. Therefore, we only give the
main steps and stress only the novelties.

Consider u(z,t) a solution of equation (2) that blows up on some graph z — T'(x).
As for equation (1), we denote the set of non characteristic points by R and the set of
characteristic points by S. Our aim is to show that S = ().
Given 29 € R and Ty € (0,7 (zo)], we define wg, 1, as in (5) by
T — X0

2
Weo 1 (Y, 8) = (To — t) P Tu(x,t), y= Tt s = —log(Ty — t). (107)

If Ty = T'(zo), then we simply write wy, instead of wy ;). The function w = wy, 1,
satisfies the following equation for all y € B = B(0,1) and s > —log Tp:

2w = Lw — mw + |w?

The Lyapunov functional for this equation is defined in H (9) and is given by

+3
- ]%1 w — 2482 w. (108)

1
= _ 1 2, 1 201 .2 (p+1) o 1 P
Blu(s) = [ (50 + 5 @R 1 -3+ P50 - luPu) pdy
and satisfies
d 4 [t

P === [ (Ow(ys)”

We first give the following lower bound:

1—

Lemma 4.6 (A lower bound on solutions of (2)) For all R > 0, there ezists M(R) >
0 such that for all x € (=R, R) and t € [0,T(x)), we have u(z,t) > —M(R).

Proof: Using Duhamel’s formula, we write for all z € R and ¢t € [0,T(z)),

u(z,t) = S(t)uo(z) + S1(t)ur(z) + /0 (S1(t — 1) |u(r)P])(x)dT (109)
where . —
S(t)h(z) = i(h(ac +t)+ h(zx —t)) and S1(t)h(z) = 5 /_t h(z")dx'.

Take R > 0 and introduce Ry = R + max|;<r T(z). Since we have by hypothesis,
ug € H'(—=Ry, Ry) C L>®(—Ry, Ro) and u; € L*(—Ry, Ry),
we use the continuity of x — T'(z) to write from (109):
u(z,t) > S(t)uo(z) + S1(t)ur(x) = —|luoll oo (— Ry, Re) — \/PTOHul”L?(—RO,ROM
which concludes the proof of Lemma 4.6. |

Using Lemma 4.6, we get the following consequences:

25



Claim 4.7 (A lower bound on solutions of (108))If zy € R, and Ty € (0,T(xo)],
then: .

(i) For all y € (—1,1) and s > —logTy, we have w(y,s) > —Moye r-1, where My =
M (|zo| + T'(0)).

(ii) For all s > —log Ty,

3 |ty - oagte < [ ulrwpy < [ ol o,
_ 25 1 +1 _ 2s 1
(1 —2Moe P—l)/ |lwP™ pdy — CMpe »—1 < / |wPwpdy.
1 —1

Proof:

(i) It follows straightforwardly from Lemma 4.6.

(ii) Consider = > —logTy. The right-hand side inequality is obvious. For the left-hand
side inequality, we use (i) to write

1
|2Pz — |2[PT > —e|2|P > max(—gzwrl — 2”68“, —eo(1 + 2PThY)

2s
where z = w(y, s) and ¢y = 2Mpe  »-1. By integration, (ii) follows. [ ]
In the following, we give the following blow-up criterion for equation (2):

Claim 4.8 (A blow-up criterion for equation (2)) Consider W(y,s) a solution to
equation (108) such that W (y, so) is defined for all |y| < 1 and E(W (sp)) < 0 for some
so € R. Then, W(y,s) cannot exist for all (y,s) € (—1,1) X [sg, 00).

Proof: The proof is the same as the proof of Theorem 2 in Antonini and Merle [3] (of
course, one need to use the Lyapunov functional E(w)). |

Using the Lyapunov functional E(w) together with the estimate in (ii) of Claim 4.7,

one can adapt with no difficulty the analysis of our previous papers ([10], [11], [12] and
[13], without forgetting the present paper) to equation (2), and get the same results, with
the following new feature:
Due to the lower bound of (i) in Claim 4.7, only nonnegative objects appear in the limit
at infinity of wy, when xg € R (take 6(zp) = 1 in (12) and (13)) and in the asymptotic
decomposition of w,, when xo € S (take e¢; = 1 for all i« = 1,...,k in (20)). This is the
main difference with the case of equation (1), where different signs may appear. More
precisely, we have the following:

Claim 4.9 (Classification of nonnegative stationary solutions of equation (108))
Consider w € Ho a nonnegative stationary solution of (108). Then

either w =0 or w(y, s) = k(d,y) (110)

for some d € (—1,1), where k(d,y) is defined in (11).
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Remark: It is easy to prove that all stationary solutions of (108) in Hy are in fact
nonnegative, hence characterized by (110).

Proof. If w € Hp a nonnegative stationary solution of (108), then it is also a stationary
solution of (6). Using Proposition 1 of [13], we see that either w = 0 or w(y, s) = ex(d,y)
for some d € (—1,1) and e = +1. Since w is nonnegative, we get e = 1. [ ]

Arguing as in [13] (note that the Liouville Theorem 2 and 2’ of [13] hold for equation
(1) and that only nonnegative solutions are possible), we get that the set R of non charac-
teristic points is non empty, open and = — T'(x) is C! on R (see page 3 in this paper, see
Theorem 1 and the following remark in [13]). In other words, the set S of characteristic
points is closed and

oS cCS.

As a consequence of the fact that only nonnegative solitons appear in the asymptotitc
decomposition (20) of wy, when zp € S, we have the following result which is the main
difference with equation (1):

Claim 4.10

(1) For all xo € S, k(xzg) =0 or 1.

(ii) For all xg € 0S, k(zo) = 1.

(iii) Consider xg € 0S. If there exists a sequence x, € R converging from the left (resp.
the right) to xq, then xq is left-non-characteristic (resp. right-non-characteristic).

Proof:
(i) Proceeding by contradiction, we assume that for some zg € S, we have k(zg) > 2. As
for equation (1), wy, can be decomposed as s — oo as a sum of decoupled solitons (take

e, =1foralli=1,..k, (111)

in (20)), and we can show that (up to slightly changing the solitons’ location), the solitons’
centers satisfy the same ODE system (22) as in the case of equation (1).
Therefore, (i) of Proposition 3.1 holds and we have

Vi=1,...k, e =(—1)"le.

Since k(zo) > 2, this is in contradiction with (111). Thus, (i) holds.

(ii) Using Lemma 4.4, we see that for all xg € S, k(zg) # 0. Using (i), we get the
conclusion.

(iii) Consider g € dS. From (ii), we have k(z9) = 1. Applying (ii) of Lemma 4.4, we get
the result. This concludes the proof of Claim 4.10. |

Now, we are ready to give the proof of Theorem 4’.

Proof of Theorem 4 Assume by contradiction that S # ). Since R # 0 (see the
remark following Theorem 1 in [13]), it follows that 9S # 0. If 2o € JS, then up to
replacing u(z,t) by u(—x,t), we assume that there exists a sequence z,, € R — xg from
the left as n — oco. Applying Claim 4.10, we see that

k(xo) = 1 and x¢ is left-non-characteristic. (112)
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Now, we consider 2 cases.
- If [xp,00) C S, then we have from Lemma 4.2 and the positivity of T'(x) that

Vo > xo, T(x) = T(x0) + (x — x0).

Therefore, xq is right-non-characteristic, hence non characteristic. Contradiction with the
fact that zog € 0§ C S.
- Now, if [zg,00) ¢ S, then we can define x1 > xp maximal such that

[1‘0,331] cS.

Since x1 is maximal, it follows that z; € dS and that there exists a sequence y, € R — x1
from the right as n — oco. Applying Claim 4.10, we see that

k(z1) = 1 and x; is right-non-characteristic. (113)

If 1 = g, then x( is non characteristic by (112), which is a contradiction.
If 1 > z, then applying Lemma 4.2, we see that for some z* € [z, x1], we have

Vo € [xo, 2], T(x)=T(x") — |z — 2"

If 2* > x, then 1z is right-non-characteristic, hence non characteristic by (112). Contra-
diction again.

If * = x¢, then x; is left-non-characteristic, hence non characteristic by (113). This is in
contradiction with the fact that 1 € 0S C S.

This concludes the proof of Theorem 4’. |

4.4 Estimates on various norms of the solution localized at characteristic
points

1l faudrait rajouter des corrections logarithmiques sur ||y, poo(—1,1), en utilisant le fait
que [|k(d1 ()| Loo(—1,1) ~ |s[7%-....

If o € R, we know from [11] (Theorem 1.8 page 1132) that

T'(x)
4

Vs > —log —o2 0 < eo(N,p) < llwng ()l s (_1.1) + 1Bsta ()l 21y < K. (114)

where K depends only on the norm of initial data, dp(zo) defined in (4), and on an upper
bound on T'(xg) and 1/T'(zp). Since we have an upper and a lower bound in (114), this

2
means that the blow-up rate of u near z is of ODE type, i.e. given by (T'(xg) —¢) »—1I.

If 29 € S, we could only obtain an upper bound in H (see Proposition 3. page 66 in

[12]):
Vs > so, ||(wx0(5)aaswzo(s))HH + H(wzo(s)vaswwo(s))”Hl ><L2(—%,%) <K, (115)

where sg > —log T'(xg) and Cy > 0. Note that (115) is valid also on H' x L?(—1+n,1—1n),
for any n > 0 and that we couldn’t obtain information on the whole interval (—1,1)
with no weights. Note also that no lower estimate could be derived in our previous
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work. As a matter of fact, Proposition 6 shows that asymptotically, the solution is a
decoupled sum of solitons among them two go to the boundary +1. Thus, any norm on
(=1 4+ mn,1 —n) where n > 0 cannot be a good measure for the size of the solution at
blow-up (to illustrate this, we give at the end of this subsection a counterexample where
[ (W (8), Osway ()| i1 x £2(—14m,1—n) — 0 as s — oo, for any 7 > 0). We now claim the
following:

Proposition 4.11 The following assertions are equivalent:
(a) o € S.
(b) [Jwao (8)|| Lo+1(—1,1) — 00 as s — o0.
(6) [tz ()11 (11 — 00 as s — 0.

Remark: From this Proposition, we see that near a characteristic point, the blow-up rate
of u(z,t) in H' is larger that the ODE rate (T(xg) — t)_P%l.

Remark: When xg € S, the behavior of [[w(s)||z2(—1,1) and [[Osw(s)|p2(—1,1) as s — o0
should be less universal and depends on the power p.

Proof: Clearly, (b) implies (c) from the Sobolev injection and (c) implies (a) by (114). It
remains then to prove that (a) implies (b) to conclude.

Let us take xg € S and prove (b). We claim that it is enough to prove that for some ¢y > 0
and for all 0 € (0,1), there exists s9(d) € R such that

1
Vs > s, / lw(y, s)|P™ p(y)dy > co > 0. (116)
1-6

Indeed, if (116) is true, then we write for any 6 € (0,1) and s > s¢(9),

1 1 1
1 c
[ sty = [ sy 2 s [ s )Py =
-1 1-6o p(8) Ji-s, p(6)
Since % — 00 as 6 — 0, (b) follows. Let us prove (116) then.
Using Proposition 6 and Lemma B.1, we see that for some e; = £1, we have
k .
lwzg(s) = ey (=1)"F k(di(s), )| p+r — 0 as s — oo,
i=1
where
Cit1(s) — Gi(s) o0 as s — o0, foralli=1,...,k—1, (117)
and
Cr(s) — 00 as s — 0. (118)
Therefore, given § € (0, 1), we see that
k: .
|wa, (s) — €1 Z(—l)“rl/i(di(s), ')HLg‘H(lf(S,l) — 0 as s — o0. (119)
i=1

29



Performing the change of variables ¢ = tanhy and using (117) and (118), we write for §
small enough,

k

1Y (=1 k(di(s), Meprrasyy =

i=1

k

3 (—1)"* cosh 7T (€ — Gi(s))

i=1

LPH1L(€>A(0))

> chosh (€ = Guls $)l| o165 a0))
L, 2
> 1” cosh™ 1 (€ = G Lrr(m) = Z” cosh™ 7=1 (&) || Lo+ (r) = co

where A(§) = tanh™'(1 — §). Therefore, using (119), we see that for s large enough,
(116) holds. Since we already know that (116) implies (b), this concludes the proof of
Proposition 4.11. ]

Remark: We give here an example (with odd initial data) where
| (wg (s), 6swzo(s))HHle2(7%’%) is not bounded from below by a positive constant:

Claim 4.12 If the initial data is odd and u(x,t) blows up in finite time, then for any
€ (0,1), l[(wo(5), Astwo(3)) ]l £2( 11y — 0 a5 5 — 00.

Remark: It is enough to take odd initial data with large plateaus to guarantee that u(z,t)
blows up and satisfies the hypotheses of this claim.

Proof: We already know from Proposition 1 that 0 € S§. Using Proposition 6, we see that
for some k > 2 and e; = £1, we have

k(zo)
i+1 . .
— e Z (_1)Z H(dl(8)7 ) — (0 as s — 00, (120)
6 wo i=1
H
where d;(s) = — tanh (;(s) satisfy
Cit1(s) — Gi(s) w0 as s — o0, foralli=1,..,k—1. (121)
Using Lemma B.1, we see that
k
2517 * 2\ i1
sup |(1 —y*)r—Two(y,s) — Zei (1 —y*)r1k(di(s),y)| — 0 as s — oc. (122)
lyl<1 i=1

We claim that the conclusion follows if we prove the following;:
Vi=1,..,k, |di(s)] —1ass— oo, (123)
since we have from the definition (11) of x(d,y) that
v € (0,1), |[(d, y)llzoo(~14n,1-n) < [I6(d Y E1(—1491-9) — 0 as [d] — 1. (124)

It remains to prove (123) to conclude.
Proof of (123): If for some iy = 1,....,k and §y € (0,1), we have |d;(s,)| < o for some
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sequence s, — 00 as n — o0, then up to extracting a subsequence, we can assume that
di(sp) — dop € (—1,1) as n — oo. Using (121), we see that if i # ig, then |d;(s,)| — 1 as
n — oco. Therefore, using (122) and (124), we see that

sup |wo(y,s) — k(diy,y)| — 0 as s — oo.

14dg
lyl<—

Since k(di,,y) > 0 if |y| < 1+—;l°, it follows that wo(y,s) can not be odd, and by the

selfsimilar transformation (5), u(z,t) cannot be odd neither, which is a contradiction.
Thus, (123) holds and Claim 4.12 is proved. [ ]

A Continuity with respect to initial data of the blow-up
time at a non characteristic point

This section is devoted to the proof of Proposition 2.1. The proof is more or less included
in the arguments of the proof of Lemma 2.2 of [13]. We only give here a sketch of the
proof (see [13] for more details).

Sketch of the proof of Proposition 2.1: We will prove the continuity in the norm H' x
L?(R) since the result with the norm H' x L?(|z| < Ag) follows from the finite speed of
propagation.

Using the continuity of u(ty) for ¢y < T'(x¢) with respect to initial data, it follows that
T'(z0) is lower semi-continuous as a function of initial data.

For the upper continuity, we consider Ty > T'(xo) to be taken close enough to T'(x¢) and
aim at proving that @(z,t) blows up in finite time T'(xo) < Tp, where @(z, t) is the solution
of equation (1) with initial data (g, @) close enough to (ug, u1).

Up to changing u in —u, we know from (13) that for some dy € (—1,1) and 9 > 0,

Gt )= (57

Consider sy < 0 to be fixed later and introduce ty < T'(xg) such that T%@;)to =1—¢e%.
Using the selfsimilar transformation (5) and (125), we see that

__2
Wy, To( 1Og(T0 - tO)) = (1 - 680) P We <1_y680’ - IOg(T(ZEO) - to)) )

— 0 as s — 00. (125)
H1XxL2(Jy|<1+60)

H( Wao 11 ( log(To —to)) ) _ ( w-(s0) )H 0 (126)
Oswz,. 10 (—log(Th — o)) sw—(s0) /|| % L2(—1,1)
(1-d3) 7T

as Top — T'(x0), where w_(y, s) = is a particular solution of equation (6).

(1—e%0+doy) P~T
Since E(w_(sg)) < 0 for some sy < 0 from Appendix B in [13], we see from (126) that for

Tp close enough to T'(xg) and ty defined above, we have
E(wao,1(— log(To — t0))) < 0. (127)

Using the blow-up criterion of Antonini and Merle (see Theorem 2 in [3]), we see that
Wg,, 1, cannot be defined for all (y,s) € (—1,1) x [—logTp, c0), which means that u blows
up in finite time and that T'(z¢) < Tp. This yields the upper semi-continuity and concludes
the proof of Proposition 2.1. |
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B Estimates on the quadratic form ¢

This section is devoted to the proof of Lemma 3.5. We proceed in two subsections:

- in the first subsection, we give some preliminary results, in particular, we change the
problem to the £ variable, where y = tanh&.

- in the second subsection, we give the proof of Lemma 3.5.

B.1 Preliminaries and formulation in the ¢ variable with y = tanh ¢

We first recall the following result from [12].
Claim B.1 (i) (A Hardy-Sobolev type identity) For all h € Hy, it holds that

1
IRllz2,  + 1Rl e+ 1= 57T e —1,1) < Cll .

2

1-y

(ii) (Boundedness of k(d,y) in several norms) For all d € (—1,1), it holds that

1
lk(d, )l s + Nl ) (1= 52) 7 || oo 1,0y < Clls(d, )l < CE (o).

Proof: For (i), see Lemma 2.2 page 51 in [12]. For (ii), use (i) and identity (49) page 59

in [12]. n

To prove estimates about ¢, we take advantage of the decoupling in the solitons’ sum
(see (44)) and use information we proved in [12] for the 1-soliton version of ¢ defined for
all d € (—1,1), r and 7’ in H by

! 2(p+1
eatror) = [ (it =) = (pet@r = = 25 s rara ) pay (128)
-1 -
and satisfying (see estimate (138) page 91 in [12]):
[ea(r,v)| < Cllr{lallellx- (129)
It happens that the proof is clearer in the £ variable where
y = tanh&.

More precisely, let us introduce the transformations

r(y) = Tr(€) = 7€) = r(y) (1 —y?)7 and r(y) = Tr(€) = 7€) = r(y)(1 — )77 2,
(130)
and for r = (ry,r2), the notation

ro=r= ()= (50 )

In the following claim, we transform ¢ and ¢4 in the new set of variables. Let us first
introduce the quadratic forms (where d € (—1,1)):

eda(g,q) = /R (q1d} + Ba(©)qran + g2q2) d€ (131)

¢(q,q) = /[R(qllq/1+/6(€=S)Q1CI1+Q2Q2)d€ (132)
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where (using (11))

Bu(6) = g~ PR )P = gy — pRa(€ — 0P with d = —tanh(,
Ro(€) = rocosh 71 (€), (133)
4 _ . LN !
B, s) = m —plK (& )] b= ( p ;emo(ﬁ — Gi(s)) (134)

In the following claim, we give the effect of the new transformation:

Claim B.2
(i) There exists Coy > 0 such that for all r € H, we have

1 -
oo Irl < 7l 2y < Collrle

(ii) If r1 € Ho, then (1 — y*)T (Cr — (15 ':)2) ) = (82771 — ﬁﬂ).
(i1i) For allr, r in H and d € (—1,1), we have

90("”> I‘) = Sb (7:’ f‘) and Spd(ra I‘) = de (’Fa f‘)
where @ and @4 are introduced in (132) and (131).

Proof:
(i) Consider r = (ry,r2) € H. Using (130), we first write

/ )2dE = / y?i dy and / )2de = / : (135)

Using Lemma B.1, we obtain

Il < [ ra(€)7de < vl (136)

Now, using again (130), we write

01(6) = 0y ()1 = )71 = (1= )T (y),

therefore,

|07
10,1 2p(1 — y*)?

20,1 %p(1 — y*)? + C|r1)?p,

<
— 12 — 2
< 2|9¢7 ) + ClF 2.

Integrating this and using Lemma B.1, we write
[ieempae<2 [ oo - a0 [ Aty <l
/ yriPot— Py <2 [ |ogr g+ C [ !f1\2d£- (137)
-1 R R
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Gathering (135), (136) and (137), we conclude the proof of (i).

(ii) See page 60 in [12].

(iii) We only prove the estimate for ¢ since it is even easier for ¢4. Using the definitions
(50), (7) and (42) of ¢, £ and 1, integration by parts and the change of variables (130),
we write

1
o(r,r) = / [—Lri.r1 — Yriry + rora] pdy
—1

! 2(p+1 ! !
/ (—Lr + 2Py — p / riry K pdy + / rarapdy
- —1 1

-1 (p 1)2
_ AT (—Lr 2(p+1)
= /R(l y )T (—L 1+7(p—1)2

Using (ii) and integration by parts, we see that

4 _
o(r,r) = —/ (agfl — 2F1> rldg—p/f1r1|K|P—1d5+/f2f2dg
R (p—1) R R

= gO(’l",I‘)

rl)fldg—p/nflu‘ﬂp1d§+/f2f~2d§
R R

where @ is introduced in (132). This concludes the proof of Claim B.2. [ ]

As we said earlier, we take advantage of the decoupling in the solitons’ sum. In the
following claim, we give a localized estimate coming from an identity we proved in [12] for
@4, the 1-soliton version of ¢ defined in (128), then we derive a global estimate for @.

Claim B.3 (Identity for ¢,)
(i) There exist g > 0 and Ag > 0 such that for all A > Ay, d € (—1,1) and g € H' x L*(R),
we have

1

_ €0 ~_
Palay/Xad av/xaa) = eollayXadlliz = gpllallig: =D (77 (@)

A=0

where x4,4(§) = Xl,O(%); tanh( = —d and x10 € C®(R,[0,1]) is even, decreasing for

§ >0 with x1,0(§) =1 1f [§] <1 and x1,0(§) =0 if || > 2.
(ii) There ewists ea > 0 such that for s large enough and for all ¢ € H' x L?, we have

k2

2(0:0) = ellaln e — — 303 7 (7 (q)?

€
251 =1

Proof:
(i) Consider some d € (—1,1) and r € H. On the one hand, we write from Proposition 4.7
page 90 in [12],

1
1
Palr—a,7—a) = 21|l — p > Il () (138)
A=0
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for some €; > 0 where r? = 7% (r) defined in (57). On the other hand, using the continuity
of @g stated in (129) and (46), we write

1 1
pilr—ar—a) < walr,r) +C Y |m{(r)F + Clirllw Y [ni(r)]
A=0 A=0

1
C
< palnr)+ > 17 ()P + el
A=0

Using (138), we see that

1
pa(r,r) = eollrlly — Y mi(r)*.
A=0

Using the ¢ framework and Claim B.2, we get for all ¢ € H' x L%(R),

1
Pala:q) = collall 2w — D (T (@)%
A=0

Now, we claim that (ii) follows from the fact that for all d € (—1,1) and A =0 or 1, we
have

Vue H' x L*(R), [78(T"(u))] < C/Ro(ﬁ—C)\(lul(ﬁ)\ + |uz(§)])d€ where d = — tanh§.

(139)
Indeed, consider ¢ € H' x L?, d € (—1,1), A> 0 and A = 0 or 1. Taking

uw="T""(q(1 - \/Xa4)),

using the Cauchy-Schwartz inequality and performing the change of variables z = £ — (,
we see that

HE - xE)) < O [ Role - 0 - yRED O] + @)
1/2
< c ( JECRE m,ofdz) Il

Using Lebesgue’s theorem, we find Ag > 0 such that if A > Ay, then

~ €0
T (g(1 = yxXaa))| < ﬁHQHHleZ
(uniformly in d € (—1,1) of course). Since 7{ is linear, this gives

~ ~ €0
7T ayxaa) < 20T @) + sz Nl e

Using (i) with ¢,/xa.4, (ii) follows. It remains to prove (139) to finish the proof of Claim
B.3.
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Proof of (139): Consider d € (=1,1), A =0or 1 and u € H' x L*. If we introduce
r = T~1(q) which is in H by (i) of Claim B.2, then we have from (36) and integration by
parts

1
() = / [(=LWx1(d) + Wx1(d))r1 + Waa(d)ra] p(y)dy. (140)
Since we have from (38), (39) and (11)

K(d,y)

W)\,Z(d7 y) < C’%(dv y) and ’ - ‘CW/\,l(dv y) + W)\,l(dv y)| < C 1_ y2 5

we get from (140) and the transformation (130)

1
¢ [ w2

N

>,

=
AN

1
dy + C/l k(d,y)|r2(y)|p(y)dy

IN

¢ [ ra@ s + [ i(d.©)lus(©)lde.
Since we have from (130) and (133),

#(d,€) < R(d, &) = Rocosh 71 (€ — () = ro(¢ — ¢) with d = — tanh,
(139) follows. This concludes the proof of (1) in Claim B.3.

(ii) Introducing the notation

_ _ §—Gi
Xi = XA,d;(§) = X1,0 ( " )

and using (132), we write

Pla9) = /(a§QI)2+ ngjl;g /qf+/q% —p/|K‘p—1q%

k
= [/(35ql)2><j + w/qu +/q§><j —p/lffl”‘lfﬁm]
j=1
i 2p+ 1 b K
+ /(55611)2(1 —j;xg‘) + (]()p_ 1)2) /Qf(l—j;xy')Jr/qg(l—;Xj)

k
~ / B -3 x)
j=1

|
<.
I M?T
—_

Jj=1 Jj=1

k k
(av/XG:4v/X5) + ¢ (qd 1- ZXj,qJ 1- ZXJ‘) +N(s)  (141)

where
k

Li(s) = —Z{/Q% (85@)2_2/41135411\/%55\/@}

7j=1

k 2 k k
- /q (ag« 1- ZXj) - 2/Q1B§Q1J 1- Zxﬁgd 1= x5 (142)
j=1 j=1 j=1
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Using the definitions (132) and (131) of ¢ and @4, we write

@ (av/ X5+ 4VX5) = Pas(s) (av/X5av/X5) — La(s),

where ¢y(p) = min (1, 1)

_ B k
Iy(s) = p/ (IK (& s)[P~" = Ro(€ — Gi(s)P™") qix; and I3(s) :p/ KPPt (1= x;)-
j=1

Since we have from Claim B.3 and (134)
Oex;l < C/A, (1K (& )P = Ro(€ = G(s)P ") xyllze < C(A)J(s),  (143)

k
and  [[K[P7 (1= xg)llee < Ce?A
j=1

where J(s) — 0 is defined in (23), it follows that for A and s large enough,

(1 (8)] + [12(s)] + [ 13(s)] < %HmH?p- (144)

Therefore, using (141), (142), (143), (143), (144) and Claim B.3, we write for A and s
large enough,

€0
- ZHQH%PXL? (145)

k
o(@,0) = €0 llayxillinxre + o) ||a
j=1 Hlx L2

k1
- S E @)
j=1A=0

Since (141) holds with ¢ replaced by the canonical inner product of H! x L2, we use (144)
to write

k co
1_ZXj +Z”QHH1XL2
=t lmixre

k
lallZriwze < D Navxilzes + |4
j=1

hence for A and s large enough,

k k
lalFrnre <2 NGl +2||ay |1 - DX

j=1 j=1

HixL?

and (ii) follows from (145). This concludes the proof of Claim B.3. [ |
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B.2 Proof of Lemma 3.5

Now we are ready to start the proof of Lemma 3.5.
Proof of Lemma 3.5:
(i) Since ¥(y, s) = plK(y,s)|P~! — 2L with K(y,s) = SF_, ejr(d;(s),) by (42),

we split ¢(r,7") into 2 parts as follows:
- We first use the definition (9) of the norm in H to write

! 2(p+ 1
[ (@t = 2 St ) | < Clill e

- Then, using Claim B.1, we write

Ul
' / P pdy] <c / S pdy < Oz, e, < Clirlbele e

17y2 17y2
Using these two bounds gives the conclusion of (i).

(ii) Proof of (52): It immediately follows from (49), (55) and (56).

Proof of (53): The right inequality follows from (i). For the left inequality, we use Claim
B.2 to translate (ii) of Claim B.3 back to the y variable:
for some €2 > 0, for s large enough and for all r € H,

o(r,r) > eo|r|)3, — — ZZ |75 ()2, (146)

z—l A=0
Using (146) with r(y) = ¢—(y, s), we write
o(q-,q-) > eallg- 13 — *ZZ 75 (g-) . (147)
i=1 A=0

Since ﬂ';\li (F%) = 651 by (48), we use (52) to write
k
my(g-) = Z EY) =Y (@)m (1)), (148)
j=1 i#i
Using (55), (36) and (40), we see that

lod] = 17 (9)] = [6(Wa(dy), @)] < [Wa(d))llllallz < Cllall: (149)

Using (36), integration by parts and the definition (7) of £, we write

Wii(Fu(dj)) = /_1 (W1 (ds)0ar(dy) + 0y Wi 1(di) 9y Flun (d;) (1 — y?)) pdy
1

+ Wi2(di) Fpu2(d;) pdy

= /_ (LW 1(di) + Wy 1(di)) Fpua(d; PdZH-/ W2(di) Fu2(d;)pdy.
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Since we have from the definitions (11), (38), (39) and (45) of k(d, y), Wi(d, y) and F,(d,y),
for all (d,y) € (—=1,1)%,

k(d,
Waalds)] + [£Wa1(d,3) — Wa(d )] < CH00 and [Fyuld.y)] < On(dy), (150)

we use (i) of Lemma E.1 to write for s large enough,

1 2 . =
wd ()| < c/_l w(di)k(d;) py2dy <Ol - Gle 719Gl < od(s)  (151)

1—
by definition (55) of J. Using (148) and (149), we see that for s large enough,
[ (@) < Tl

Using (147), we see that the left inequality in (53) follows.

Proof of (54): The right inequality follows from (149), (51) and (53). For the left inequality
in (54), we write from the bilinearity of ¢, (52), (51) and (46)

k k
0lg-q-) = @lg.q)—CY 4> = Cligllw Y _ lod|
i=1 =1

k
C i €9
> ela0) - > lodf* = lall
=1

where €; > 0 is introduced in (146). Using (146) with r = ¢, we get the left inequality in
(54). This concludes the proof of Lemma 3.5. [}

C Projection of equation (42) on the different modes
We prove Lemma 3.6 here. We proceed in 3 parts to prove (i), (ii), and finally (iii).
Proof of (i): Projection of equation (42) on Fj(d;(s),-) and Fy(d;(s),")

We prove (i) of Lemma 3.6 here. Fixing some i = 1, ...,k and projecting equation (42)
with the projector 7¢ (36) (where A = 0 or 1), we write (putting on top the main terms)

i(s i(s i(s 0, dz ) ils 0
A0 0) = 1 (Lo (@) — ey ((GEEOD ) g (07

k
T ( f(a1) ) R < Vi(y, s)q1 ) ;eﬂd](s) A ( 0 ! >(152)

Note that we expand the operator L(q) according to (43). In the following, we handle
each term of (152) in order to finish the proof of (58).
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- Using the analysis performed in Claim 5.3 page 104 and Step 1 page 105 in [12] for
the case of one soliton (k = 1), we immediately get the following estimates:

C , )
9| < T ) < QG )l
( Q>) = Aai(s),
() Ol w2
L) ( > -1 1-(d(s)?) (- )Cz( $)02,0;
)

Coppsayla’ + CIKIP?|quf (153)

70 0u0) - ol

IN

Q1

(recall that d;(s) = — tanh ;(s), hence (/(s) = _1—311-(5)2)'
- Since we have from the definitions (42), (11) and (38) of R, r(d,y) and Wy 2(d,y)

R(y.s)| < CY_ wldj,y)" + w(diyy)" ' w(dj,y) and [Waa(diyy)| < Cr(dizy),  (154)
JFi
we use (36), (i) of Lemma E.1 and the definition (23) of J(s) to write as s — o0

1
Wii < % >' = ‘/WA72(di)Rde' < CZ/ de+/ r(di)Pk(dj)pdy
J#i !
< Ze*pjlgf(jl <CJ. (155)
J#i

- Using (36), (154), (153) and the Holder inequality, we write

i (0
@ < C d
W)\(f((h))‘ > / ’ffh pay
<C%ﬁ/l(ﬂm%@+0/ )| K P21 [2pdy
_1
< Copallntd) | ger s + Cillar(1 = y2)7 1

where

1
Ji = / o (dy)| K P~2dy. (156)
—1

Using (v) of Lemma E.1 and Claim B.1, we see that

ﬁ( ﬂ<0/ 4\ f(an)lpdy < Co,malal,+ Cllally < Clald,  (157)

where we use (41) in the last step.

- We claim that

4 (0
n ( v )‘ < OllqllZ, + o(J) as s — oo (158)
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and

H/Z(y’ 5)’ < Cl{yi_1<y<yi} Z ’Q(div y)p_Z"/”'(dla y) +C Z K’(dh ?/)p_ll{yzf1<y<yz} (159)
1#i 1#£1

where yo = —1, y; = tanh(%) if j =1,.,k—1, y» = 1 and p = min(p,2). In
particular, we have

“l=y<-di <y <-do<..<y; <—dj<yjr1<..<—-dg<yp=1

and k(d;(s),y;j+1(s)) = k(dj+1(s),yj+1(s)) for j =1,...,k — 1 (use (84) to see this).
We first prove (159) and then (158). To prove (159), using (44), we see that:

o if y € (yi—1(s),yi(s)), then [ 3, errs(di(s),y)| < 3r(di(s),y), hence
Vily, s)] < C 3214 6(di(s), y)P~2k(di(s), y);

o if y € (yj—1(s),y;(s)) for some j # i, then for all = 1,..., k, x(d;(s),y) < k(d;(s),y),
hence [Vi(y, )| < C 31 w(di(s), y)P " < Cr(ds(s), y) .

Thus, (159) follows. Now, we prove (158). Using (36), Claim B.1 and (159), we write

1
di (U NV
W (Y )| =€ [ ro Wil i

1 1 ) 2
< @MU—fﬁlﬁm+</m@ﬂmu—fﬁ1@)
—1
< Cllqll3
2 2
Yi e ul L
+ Z%J)ﬁwmlmmu—fvlw>+</ n@vlama—fp1@>.
144 Yi—1 Yi—1

Using (ii) of Lemma E.1, (158) follows.

- Consider j # 4. Since we have from the definitions (11) and (45) of x(d,y) and

Fﬂ(d7 y)7
Oak(d,y) 2K
= Fy(d 1
we use (151) and the fact that d; = — tanh (; hence C]/- = —lil—%p_, to write
J
a. (Oanldy) \| 2 Gl g, 7
%“(o j Mgl_ﬁwﬂ%@MSCﬂ@ (161)

where J(s) is defined in (55). Using (152), (153), (155), (157), (158), (161) and (56), we
write for all i = 1,.., k (starting with A = 0 and then A = 1),

<< Clclalln+ CT+Cllali + 0T > [¢, (162)
J#i

of —ai| < Ol +CT + Cllgll, + ¢TSI, (163)
J#i
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Since ||¢||% + J — 0 (see (i) of Lemma 3.4), summing up (162) in i, we get,

k
Y16l < CT+Cllal3,.

i=1

Plugging this in (162), we get

il i
‘041 o=
which closes the proof of (58). This concludes the proof of (i) of Lemma 3.6. [ |

Proof of (ii): Differential inequality satisfied by A_(s)
We proceed in 2 steps: we first project equation (42) with the projector m_ defined in
(49), and then use that equation to write a differential inequality for A_ = p(q—,q-).

Step 2.1 : Projection of equation (42) with 7_
In this claim, we project equation (42) with the projector w_ defined in (49):

Claim C.1 (A partial differential inequality for ¢_) For s large enough, we have

9sq— — Lq— — Z”l (VFll(d)>_(§(Q1)>_<%>

< CJ+Clall%

H

where J(s) is defined in (23).
Proof: Applying the projector m_ defined in (49) to equation (42), we write

m_ (0sq) = m— (Lq) — zk:eidgw ( gd”(di) ) + 7 < ?”(ql) > +7 ( OR > . (164)

i=1
In the following, we will estimate each term appearing in this identity.

- Proceeding as for estimate (213) in [12] in the case of one soliton, one can straight-
forwardly control the left-hand term as follows:

17— (9sq) — 0sq— |11 < CJlqll2 + Cllall3;- (165)
- We claim that

©)(
~La-— Z”l (VFll(d() >>
(166)

Indeed, applying the operator L to (52) on the one hand, and using (49) with » = Lq on
the other hand, we write

< Clla()lI3 + o(J) as s — oo.
H

Lg = N 7" QLF (di(s),) + Lq-

k
>
=1

k
S (L) Fi(d; +Zw0 (Lq)Fo(di(s), ) + 7 (Lq).
=1
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Therefore,

k

k
m_(Lg)~Lg- = Y 7" () LF(di(s), )~ (La) Fi(di(s), )~ > mg ") (Lg) Fo(di(s), ).
=1 =1

Since we have from (36) and (47), 7¢(Lar) = ¢(Wa(d,-), Lar) = ¢(L3WA(d, ), ) = And(r),
using this with (43) and (46) gives for A =0 or 1,

LF\(di(s),") = La,(s)Fx(di(s),-) + ( (‘)/iFA 1(di(s), ) )

= AE\(di(s),) + < ({)/iF,\J(di(s)v ) > "~

d;(s d;(s d;(s 0 d;(s d;(s 0
ﬂ'/\( )(Lq) = m ( )(Ldi(s)Q) —|—7r)\( ) < Vit ) S ( )(q) —|—7r)\( ) ( Vig )(169)

Using (167), (168) and (169) together with (158) and (46), we get (166).
- Using the definition (49) of the operator m_, we see that

- ( gm(d,-,-) ) _ < gd'ﬂ(du') > (170)

Using (160), it follows from the orthogonality relation (48) that for A =0 or 1,

wi%‘ < gdﬁ(di,-) ) — _(]?—12)(?—6?)7??(1?0(@")) = d\0 ( gdn(di,.) ) '

Therefore, it follows from (170) that

_ ( gdn(di,.) ) B ( gdm(di,.) >F1(dj,~) Y ( gdn(di,.) >F0<dj ).

J# J#
Using (161), (46) and (58), we see that

sy ()| < ovTEIGE] < VTR (@l + @) )

- From definition (49) of the operator 7m_, (46), (157) and (155), we have

i ( ?(cn) > - < (}(ql) )HH T L5
() (R, <o X

A
Q
] =

2O (G )| = ClalBuam

i) ( OR )‘ < CJ(s). (173)

VAN
Q
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Using (164), (165), (166), (171), (172) and (173) closes the proof of Claim C.1. [ ]

Step 2.2: A differential inequality on A_(s)
By definition (55) of a_(s), it holds that

AL (s) = p(05q-,q-) — (174)
with
1 k
fi= / 0qr(di)| K P72 (q- 1) pdy and K = e;r(d;).
1 -
7=1
Using (150), (i) of Claim B.1 and the definition (9) of the norm in H, we see that
c ! _ 1 C
1< 7 [ AP Syl s =) e < el (79)
with J; defined in (156). Using (174), (175), (v) of Lemma E.1, (58) and (52)
1
A~ 90| < Clle (llB + ). (176

Since ||¢— |l < C'min (HQHH, Jllqll# + \/]A_|> from (52) and (53), we use (51) and Claim
C.1 to estimate ¢(0sq—, ¢—) in the following:

1 1
'go@sq_, i)~ olLia) — [ aaftapy— [ Q—,zGP(y)dy‘
Clo-the(s + ) < C7VIAT + 017 + Cla

CJV/]A] +CHqHH+OZ (Cmt1 = Cm))? (177)

IN

IN

where h is defined in (35) and

k
G(y7 S) = Z O"i (S)VZ(ya S)Fl,l(di(s)v y) + R(y7 S)' (178)

i=1

In the following, we estimate every term of (177) in order to finish the proof of (59).
- Arguing as in page 107 of [12], we write

4 1 p
¢(Lg-,q-) = — Y (179)

% 2
p—1),21-
- Since we have from the definitions (11) and (45) of k(d,y) and Fi(d,y),

Fl,l(da y) = Fl,Q(da y) S CK:(CL y)’ (180)
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using (52) and (157), we write

1
‘/lqu(ql)pdy—/ a@f(q pdy‘ < CZI%\/ &) f(q)|pdy < CllqllF,.  (181)

If we introduce

“ K +q Pt |K|PT!
Flq) = dé = _
(q1) ; f(&)dg P ]

_ D _
LA TR T
then it is easy to see that

[F(a)l < Clar ™ + Copoay K P2 |ar|°. (182)

1
Introducing R_ = — / F(q1)pdy and using equation (42), we write
~1

1 1 k 1
R+ / gof(@1)pdy = R_ + / 165q1f(q1)pdy+zd2 / Danld) fa)pdy (183)
- =1 -

k 1 k 1
plp—1 -
Z / (Dar(di) f(q1) — 00, F (q1)) pdy = (2)Zd§/ dar(dy) | K [P~ qi pdy.
=1 /- =1 /1
Therefore, using (181) and (183), arguing as for (175), using (v) of Lemma E.1 and
(58), we write

il

|d
< Cllalli + CZ - ng illallz < € (lali? + Jllall3X184)

1
‘/ 1 a2, f(q1)pdy + R_

Note that from (182), the Holder inequality and Claim B.1, we have

1 1 1
‘/f(cn)pdy’ < 0/1\q1|p+1pdy+05{p22}/1IK\’”‘QImI?’pdy

»

3
1 p+1 1 p+1
Cllally™ + Coppzay (/1 Icm”“pdy) </1 IK!”“pdy)

Cllgll™" + Cogzayllally < Clall™ (185)

IN

IN

where p = min(p, 2).

- Using the Cauchy-Schwartz inequality, we write

1 1
‘/ q— QGpdy’<_1 el 2T dy+C/ G?p(1 — 3?)dy. (186)

(From the definition (178) of G, we need to handle R and V;F} ;. We start by R first.
We claim that

R < CZ ) y)"” 11{1/; 1(s)<y<y; (s }Z (di(s),y) (187)
I#j

45



where
yo = —1, y; = tanh (W) if j=1,.,k—1and y, = 1. (188)

In particular, we have
“l=yp<-di<y<-d<..<y<—-d <yt <..<—-dy<yp,=1

and k(d;(s),yj+1(s)) = k(djt1(s),yj4+1(s)) for j =1,...,k —1 (to see this, just use the fact
1 2

that k(d,y)(1 —y?)»T = Kgcosh 71 (& — (;) if y = tanh &).
To prove (187), we take y € (y;—1(s), y;(s)) and set X = (3_,; err(di(s), y))/ejr(d;(s), y).
From the fact that (j41(s) — ¢j(s) — oo, we have | X| < 2 hence

1+ XPi(1+ X) — 1] < O|X
and for y € (y;—1(s),y;j(s)) and s large,

|K[PT K — ejr(d;(s),9)"| < Crld;(s),9)P > kldi(s),y)
i

Since for all y € (y;j—1(5),y;(s)), k(d;(s),y) > r(di(s),y) if I # j, this concludes the proof
of (187).
Using (187), we see that

1 k k—
/1 R*p(1 - y*)dy < CZ / Ve (di)?p(1 — Z (S
. < 2

(189)
where h is defined in (35).
Now, we handle V;F} ;. Using (159), (180) and (i) of Lemma E.1, we see that
1
/awmm>a— @<OZ/ 420V p(1 — y?)dy
-1 JFi
+ Cdpp>gy Z/ #(dj)*p(1 — y*)dy — 0 as s — oo.
JF
Hence, using (54), we see that
1
i\ 2
(a1) /1 (ViF11(d)? p(1 = y*)dy = o (|lall3,) - (190)

Gathering (176), (177), (179), (184), (186), (178), (189) and (190), we get to the conclusion
of (59). Note that the estimate for R_(s) is given in (185).

Proof of (iii): An additional estimate

We prove estimate (61) here. The proof is the same as in the case of one soliton treated
n [12], except for the term involving the interaction term R(y, s) (42). Therefore, arguing
exactly as in pages 111 and 112 of [12], we write

d 9
ds/QlQZdeS—OOZ_‘}‘CJQ‘FC/ q 272 i dy+(] E |041’ +/1 q1 Rpdy.
=1
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Since we have from the Cauchy-Schwartz inequality, (i) of Claim B.1, (52) and (189)

[ o< (]2 (] -v0)

1 5
< CHQ”H(/ R2(1—y2)pdy) Sm( 2+ Zoq >+Czh<z+l G)°

-1 i=1

where h is defined in (35), this concludes the proof of (61) and the proof of Lemma 3.6. B

D A continuity result in the selfsimilar variable

We prove Claim 4.5 here. Consider ey > 0 and from (98), fix  close enough to T'(z) so
that
|wa, (s0) — wOOHL% < €9 where so = —log(T'(wg) — 7). (191)

Note from (97) and the continuity of z — T'(x) that u(z,f) is well defined for all x €
[Z,20 + (T(x0) — t)) for some & < x¢ — (T(x0) — t). Therefore, using the selfsimilar
transformation (5), we see that

w(-, 80) € L*(7,0) where §j = ————= < —1. (192)

We aim at proving that for 2’ close enough to g, we have

H( Dstwy 80 2')) > N < 0" )HH < 6eg where 5o() = —log(T(z') 7). (193)

For simplicity, we will only prove that
[war (30(2")) — Weol| 12 < 2e0, (194)

provided that zy — 2’ is small. The estimates involving dyw,/(5o(2’)) and dsw, (So(z’))
follow in the same way.
Using the selfsimilar transformation (6), we write

Vy € (_L 1)3 wl"(ga §O($,)) = Q%wxo(ya 80) where y = g0 + &, (195)

_ 1 o / go(x/) /
T Ty — Ty L 4= (@ w0 = 0asam = ao. - (196)

Therefore, performing a change of variables, we write for g — 2’ small enough,

1
lwar (S0(a")) — weoll72 =/ [z (5, 50(2)) — weo (9)*p () dy
-1

_ /“f 07 (4. 50) — w0 <y—£> <y—€>dy
— ove zo\Y, SO [e’s) 0 P 0 9 .
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Since we have from (196), (193) and the fact that z — T'(z) is 1-Lipschitz,

1+ (&' — zq)e®®) CT@) —t+a' -z <1

O+c= 1+ e§o(x’)(T(x0) —T(x")) N T(zo) — t -

it follows that

1
e (3) — el = |96, 0)dy
Y

where § < —1 is defined in (192) and
1, —
g(6,€,y) = ~TIEIE g, (g, s0) — wi <y5>

0 0

5, (%ﬁf) a9

We claim that in order to conclude, it is enough to prove that for xy — z’ small enough,

vy € (—0+&,60+¢€), 9(6,&y) < gly) for some g € L1(g,1). (198)
Indeed, since we have from (196) that
Vy € (5,1), 9(0,&y) — g(1,0,y) as 2’ — x,

we use (198) to apply the Lebesgue Theorem and obtain that

1 1
g _

as @' — xg. Using (191), we see that for xy — 2’ small enough, (194) holds. It remains to
prove (198) in order to conclude.

If —0+ ¢ <y <0, then we have p(¥5*) < 1. Using (197), (196), (192) and the definition
(99) of weo, we write for xy — 2’ small enough:

9(0, &) < Cllwao(y, 50)* + wsollfe(—1,1)) € L' (7, 0)-

_ e\ 2 _
fo<y §2 6 + &, then we have from (196), p(%) <C(1- yTg)P—l = C(laﬁ)?—l <
C(1—y)r—T < Cp(y). Therefore, using (197) and (191), we write
9(0,€,) < C(Jway(y, 50)[* + [woo || Foe(—1,1))0(y) € L(0,1).
Thus, (198) holds and so does (194).

Since the same technique works for

Dywar (3o (o)) — A

i and [|9swa (50(z"))l| 2,

p(1-y2)

estimate (193) follows in the same way. This concludes the proof of Claim 4.5. [ |

E A table for integrals involving the solitons
In this section, we estimate integrals involving the solitons.

Recalling that y = —d;(s) = tanh(;(s) is the center of the i-th soliton x(d;(s),y), we
introduce the following “separators” between the solitons:

yo = —1, y; = tanh (Cﬁf“) if j=1,..,k—landy, =1 (199)
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Note in particular that we have
—1:y0<—d1<y1<—d2<...<yj<—dj<yj+1<...<—dk<yk:1

and k(d;(s),yj+1(s)) = k(dj+1(s),yj4+1(s)) for j =1,...,k —1 (to see this, just use the fact

1 2
that s (d,y)(1 —y?)»—T = kgcosh™ »=1 (¢ — (;) if y = tanh¢).
In the following lemma, we estimate various integrals involving the solitons x(d;(s),y):

Lemma E.1 (A table of integrals involving the solitons) We have the following

estimates as s — 00: .

(i) Ifi#j,a>0,06>0and I, = / k(dy)*r(d;)P (1 — y%%_ldy, then:
-1

fora=p, I ~ Cyl¢ — Cj|e*%|4ﬁm;
fora# B, I ~ C'oeiﬁmin(a’ﬁ)m*c"l for some Cy = Cy(a, 3) > 0.
(i) If it #j, « >0, >0 and [ = /y] H(dj)al-{(di)ﬁ(l _ yz)Z—ff—ld% then.:
Yj—1
fora=p3, I <C|C]+1 C]’e p— 1‘<]+1 Gl +CKJ 1 _C |6 o 1|CJ 1— C;|
fOTOé>ﬂ7 I2<Ce p— 1KJ+1 CJ|_|_C€ — 1|<] 1— Cg|

for B> a, Iy < Ce~ p,l 21¢i41-¢] +Ce” ((;:f)KJ 1— Cg|
y+di d;

Yj
(i11) Let A; j :/ T w(di)k(dy)P ke (dy) pdy with | # 5.
Ifi=j, then A;;; ~sgn(l — j)c{'e” o1l for some ¢’ > 0.
If j # i, then A, j; = o(J) where J is defined in (23).

() If L # j, then B, j; = /yj #(d;)k(dj)PPr(d)Ppdy = o(J) (with p = min(p,2)).
Yj—1

1
v) For any 1 = 1,..,k, i holds that J; = K(d; Cdy < where Y,8) 18
F i = 1,..,k, it holds that .J d;)|K|P72dy < C where K '

-1
defined in (42).
Proof: (i) With the change of variables y = tanh{, we write
a+p3 —2a _28
I = Ky cosh™ »=1 (& — (j) cosh™ »=1(& — (;)dE.
R

(From symmetry, we can assume that o« > 8 and ¢; > ¢;. Using the change of variables
z =§ — (5, we write

o 28
L = /<;8‘+’8/ COSh_PZTl(Z) cosh »=1(z+ (j — ¢;)dz
R

When « > 3, we get from Lebesgue’s Theorem I1 ~ Ce p- por (Gim <2
When a = 3, we write from symmetry and Lebesgue’s Theorem

Gi—¢5
5 5
L = 2/18“3/ ’ cosh_;j(z) cosh_;i(z + (= G)dz ~ C(G — (e P =1l

—00
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(ii) Since I < I and [¢; — G| = min(|¢j+1 — ¢, [¢j — ¢j-1]), the result follows from (i)
if « > 3. When a < 8, we assume that (; > (;, the other case being parallel. Using the
change of variables y = tanh { then z = £ — (;, we write

(Ci+1—64)
L = k57 ((jij 5 cosh_z%l(z) cosh_:Tﬂl(z +( — G)dz
’ (G+1—¢5)
~ e GG ’ coshfﬁ(z)e%zdz
—o
~ 06_%(@_4‘7)6%'% < e—(ztf)(CjH—Cj)

since ¢; — ¢j > (i1 — ¢j, which yields the result.
(iii) If 4 = 7, then using the change of variables y = tanh &, we write

Citlit1

1 2 2 2
Aiig = Ko [, cosh#=T(§ = () tanh(€ — ¢) cosh#=1 (& — )€
Sim1th

(Ci+1—64)

p) 2 2 2 )

= /-igH i) cosh_prl(z) tanh(z) cosh™ »=1(z + (; — (;)dz ~ e, e Tl Gil
i 5i—1
G

as s — 0o, where § = sgn(l — j), with

K _2p_ 2z
c” = -9 /cosh poT (z) tanh(z)er-1dz
2»-1 JR
Kerl 00 _2p 2z _ 22
S . / cosh™ »=1(z)tanh(z)(er-T —e »=1)dz > 0.
2p-1 J0

Now, if j # i, then we have from the Cauchy-Schwartz inequality, (ii) and the definition
(23) of J(s),

. 1/2 _ 1/2
Y Y
A < (/J /i(dj)P—l,‘q(di)2pdy> (/J H(dj)p_lh‘,<dl)2pdy> = o(J).
Yj—1 Yj—1

(iv) If i = j, then the result follows from (ii). If i # j, using the Holder inequality
with P=p+1and Q = %, (ii) and the definition (23) of J(s), we write

Yj _ _ Til Yj _ _ ptl
e O A ) B W O e ) R )
y |

-1 Yj—1

(v) Using the change of variables y = tanh ¢, we write

k
Ji=rp / cosh ™ 7T (¢ = ) K (€, )| 28 where K(¢,s) = e;cosh 77 (¢ = ).
R =1
’ (200)
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If p> 2, then |K(&,5)] < C and |J;(s)] < C.

_ 2
If p < 2 and the e; are the same, then |K(&,s)] > cosh »=1(§ — (;) and |Ji(s)| <
Jg cosh™2(& = ¢)d¢ < C.
It remains to treat the delicate case where p < 2 with the e; not all the same. Taking
advantage of the decoupling in the sum of the solitons (see (44)), we write

p—1 i bi+4 2 I 2
Ji = Ky h »-1(¢& - G)|K (&, P=4q 201
L ;/9+A (€ - QIR )P 2de (201)

where 6y = —o0, 0; = Cﬁgﬁl if j=1,.,k—1, 0 = 0o and A = A(p) is fixed such that

24 _ 24
er-1 > 2e »-1, (202)
This partition isolates each soliton in the definition of K (¢,s). It is shifted by A since
K (&, s) may be zero for some z;(s) ~ 0;(s) if ejej41 = —1, giving rise to a singularity in
|K(€,5)|P~2, integrable though delicate to control.
Consider some j =1,....,k — 1.
If e; = ej11, then we have from (44) and (202) for all £ € (6;_1 + A,0; + A), |K(,s)] >
2 2 2
C(A)cosh™ »=1(¢ — (;) and cosh™ »=1 (£ — (;) < C(A) cosh™ P=1(£ — (5), hence
0;+A 2 B 0;+A
[ o e IR P < C) [ coHE - e < CA). (209)
0i_1+A 0j_1+A
If e; = —ej41, then K(zj(s),s) = 0 with z;(s) ~ 6;(s), which makes |K (£, s)|P~2 singular
at & = z;(s). For this we split the integral over the interval (6;_; + A,60; + A) into two
parts, below and above ¢; — A:
- the part on the interval (6;,_1 + A,6; — A) is bounded by the same argument as in the
case e; = €j41;
- the part on the interval (§; — A,6; + A). Since we have from the definition (200) of

K(€.s)
k
O (€.5) = == > cxsinh(€ — G oosh 7T (€~ ),
=1

Gi+1=G

it follows that for all £ € (0; —A,0;+ A), |0:K (&, 5)| > C(A)e 7~ rT0mG) = C(A)e  »1
for some C'(A) > 0, hence

|K(&,8)P2 = |K(&s) — K(zj(s s),s)P"2 < C(A )E — zi(s)|P~ 2,7 5= B2 (G- )

Therefore, since for all £ € (0; — A,0; + A), cosh_Pj(f —G) <C(A) cosh_PTl(é —¢) <
Gr1=G
C(A) cosh 77 (8; — ¢;) < C(A)e™ 7T, it follows that
0;+A 2 B
[ ot - RGP < Caye (9 / €= ()2
0;,—A
< C(Ae —(Gi+1—¢5) (204)

because z;(s) ~ 6(s) as s — oo. Therefore, (v) follows from (201), (203) and (204).
|
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