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Abstract: We consider the semilinear wave equation with power nonlinearity in one space
dimension. We first show the existence of a blow-up solution with a characteristic point. Then,
we consider an arbitrary blow-up solution u(x, t), the graph x → T (x) of its blow-up points and
S the set of all characteristic points, and show that the S has an empty interior. Finally, given
x0 ∈ S, we show that T (x) is hat shaped near x0, and that in selfsimilar variables, the solution
decomposes into a decoupled sum of (at least 2) solitons (with alternate signs).
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1 Introduction

1.1 Known results and the case of non characteristic points

We consider the one dimensional semilinear wave equation{
∂2
ttu = ∂2

xxu+ |u|p−1u,
u(0) = u0 and ut(0) = u1,

(1)

where u(t) : x ∈ R → u(x, t) ∈ R, p > 1, u0 ∈ H1
loc,u and u1 ∈ L2

loc,u with ‖v‖2
L2

loc,u
=

sup
a∈R

∫
|x−a|<1

|v(x)|2dx and ‖v‖2
H1

loc,u
= ‖v‖2

L2
loc,u

+ ‖∇v‖2
L2

loc,u
.

We will also consider the following equation for p > 1,{
∂2
ttu = ∂2

xxu+ |u|p,
u(0) = u0 and ut(0) = u1.

(2)

The Cauchy problem for equations (1) and (2) in the space H1
loc,u × L2

loc,u follows from
the finite speed of propagation and the wellposedness in H1 × L2 (see Ginibre, Soffer and
∗Both authors are supported by a grant from the french Agence Nationale de la Recherche, project
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Velo [6]). The existence of blow-up solutions for equation (1) follows from Levine [9].
More blow-up results can be found in Caffarelli and Friedman [5], [4], Alinhac [1], [2] and
Kichenassamy and Litman [7], [8].

If u is a blow-up solution of (1), we define (see for example Alinhac [1]) a 1-Lipschitz
curve Γ = {(x, T (x))} such that u cannot be extended beyond the set called the maximal
influence domain of u:

D = {(x, t) | t < T (x)}. (3)

T̄ = infx∈R T (x) and Γ are called the blow-up time and the blow-up curve of u. x0 is a
non characteristic point if

there are δ0 ∈ (0, 1) and t0 < T (x0) such that u is defined on Cx0,T (x0),δ0 ∩ {t ≥ t0} (4)

where Cx̄,t̄,δ̄ = {(x, t) | t < t̄ − δ̄|x − x̄|}. We denote by R (resp. S) the set of non
characteristic (resp. characteristic) points.

Following our earlier work ([10]-[12]), we aim at describing the blow-up behavior for
any blow-up solution, especially Γ and the solution near Γ.

Given some (x0, T0) such that 0 < T0 ≤ T (x0), a natural tool is to introduce the
following self-similar change of variables:

wx0,T0(y, s) = (T0 − t)
2
p−1u(x, t), y =

x− x0

T0 − t
, s = − log(T0 − t). (5)

If T0 = T (x0), then we simply write wx0 instead of wx0,T (x0). The function w = wx0,T0

satisfies the following equation for all y ∈ B = B(0, 1) and s ≥ − log T0:

∂2
ssw = Lw − 2(p+ 1)

(p− 1)2
w + |w|p−1w − p+ 3

p− 1
∂sw − 2y∂2

y,sw (6)

where Lw =
1
ρ
∂y
(
ρ(1− y2)∂yw

)
and ρ(y) = (1− y2)

2
p−1 . (7)

The Lyapunov functional for equation (6)

E(w(s)) =
∫ 1

−1

(
1
2

(∂sw)2 +
1
2

(∂yw)2 (1− y2) +
(p+ 1)
(p− 1)2

w2 − 1
p+ 1

|w|p+1

)
ρdy (8)

is defined for (w, ∂sw) ∈ H where

H =
{
q | ‖q‖2H ≡

∫ 1

−1

(
q2

1 +
(
q′1
)2 (1− y2) + q2

2

)
ρdy < +∞

}
. (9)

We will note

H0 = {r ∈ H1
loc(−1, 1) | ‖r‖2H0

≡
∫ 1

−1

(
r′2(1− y2) + r2

)
ρdy < +∞}. (10)
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We also introduce for all |d| < 1 the following stationary solutions of (6) defined by

κ(d, y) = κ0
(1− d2)

1
p−1

(1 + dy)
2
p−1

where κ0 =
(

2(p+ 1)
(p− 1)2

) 1
p−1

and |y| < 1. (11)

In [12] and [13], we established the following results:

(Blow-up behavior for x0 ∈ R, see Corollary 4 in [12], Theorem 1 (and the following
remark) and Lemma 2.2 in [13]).

(i) The set of non characteristic points R is non empty and open.
(ii) (Selfsimilar blow-up profile for x0 ∈ R)There exist positive µ0 and C0 such that

if x0 ∈ R, then there exist δ0(x0) > 0, d(x0) ∈ (−1, 1), |θ(x0)| = 1, s0(x0) ≥ − log T (x0)
such that for all s ≥ s0:∥∥∥∥( wx0(s)

∂swx0(s)

)
− θ(x0)

(
κ(d(x0), .)
0

)∥∥∥∥
H
≤ C0e

−µ0(s−s0), (12)∥∥∥∥( wx0(s)
∂swx0(s)

)
− θ(x0)

(
κ(d(x0), .)
0

)∥∥∥∥
H1×L2(|y|<1+δ0)

→ 0 as s→∞. (13)

Moreover, E(wx0(s))→ E(κ0) as s→∞.
(iii) The function T (x) is C1 on R and for all x0 ∈ R, T ′(x0) = d(x0) ∈ (−1, 1).

Moreover, θ(x0) is constant on connected components of R.

1.2 Existence of characteristic points

For characteristic points, the only available result about existence or non existence is due
to Caffarelli and Friedman [5] and [4] who proved (using the maximum principle) the non
existence of characteristic points for equation (1):
- under conditions on initial data that ensure that for all x ∈ R and t ≥ 0, u ≥ 0 and
∂tu ≥ (1 + δ0)|∂xu| for some δ0 > 0,
- for p ≥ 3 with u0 ≥ 0, u1 ≥ 0 and (u0, u1) ∈ C4 × C3(R).

¿From this example, it was generally conjectured by most people that there were no
blow-up solutions for equation (1) with characteristic points: for all (u0, u1) which lead to
blow-up, R = R.
Our first result is to disprove this fact. Existence of characteristic points is seen as a
consequence of two facts:
- on the one hand, the study of the blow-up profile at a non characteristic point,
- on the other hand, connectedness arguments related to the sign of the blow-up profile.

To state our results, let us consider u(x, t) a blow-up solution of equation (1) (take
for example initial data satisfying

∫
R

(
1
2 |∂xu0|2 + 1

2u
2
1 − 1

p+1 |u0|p+1
)
dx < 0, which gives

blow-up by Levine [9]). The first result follows from the study near a regular point, that
ensures the existence of an explicit signed profile.

Proposition 1 If the initial data (u0, u1) is odd and u(x, t) blows up in finite time, then
0 ∈ S.
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The second one follows from the continuity of the profile on the connected components of
R (see Theorem 1 in [13]).

Theorem 2 (Existence and generic stability of characteristic points)
(i) (Existence) Let a1 < a2 two non characteristic points such that

wai(s)→ θ(ai)κ(dai , ·) as s→∞ with θ(a1)θ(a2) = −1

for some dai in (−1, 1), in the sense (12). Then, there exists a characteristic point c ∈
(a1, a2).
(ii) (Stability) There exists ε0 > 0 such that if ‖(ũ0, ũ1) − (u0, u1)‖H1

loc,u×L2
loc,u
≤ ε0,

then, ũ(x, t) the solution of equation (1) with initial data (ũ0, ũ1) blows up and has a
characteristic point c̃ ∈ [a1, a2].

Remark: It is enough to take (u0, u1) with large plateaus of opposite signs to guarantee
that u(x, t) blows up satisfying the hypotheses of this theorem.

Since a solution in one space dimension is also a solution in higher dimensions, we get
from the finite speed of propagation the following existence result in N dimensions:

Corollary 3 (Existence of characteristic points in higher dimensions) Consider
ũ(x1, t) a blow-up solution of (1) in one space dimension with a characteristic point. Then,
for R large enough, initial data (u0, u1) such that ui(x) = ũi(x1) for |x| < R, the solution
u(x, t) of equation (1) with initial data (u0, u1) blows up and has a characteristic point.

1.3 Non existence results for characteristic points

In this section, we give sufficient conditions under which no characteristic point can occur.
Our analysis in fact relates the fact that x0 is a characteristic point to sign changes of the
solution in a neighborhood of (x0, T (x0). We claim the following:

Theorem 4 Consider u(x, t) a blow-up solution of (1) such that u(x, t) ≥ 0 for all x ∈
(a0, b0) and t0 ≤ t < T (x) for some real a0, b0 and t0 ≥ 0. Then, (a0, b0) ⊂ R.

Remark: This result can be seen as a generalization of the result of Caffarelli and Fried-
man, with no restriction on initial data. Indeed, from our result, taking nonnegative initial
data suffices to exclude the occurrence of characteristic points.

Considering the equation (2), we get the following twin result of Theorem 4:

Theorem 4’ The set of characteristic points is empty for any blow-up solution of equation
(2).

1.4 Shape of the blow-up set near characteristic points and properties
of S

We have the following theorem, which is the main result of our analysis:

Theorem 5 (The interior of S is empty) Consider u(x, t) a blow-up solution of (1).
The set of characteristic points S has an empty interior.
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Now, for x0 ∈ S, we are able to give the precise behavior of the solution near (x0, T (x0)):

Proposition 6 (Description of the behavior of wx0 where x0 is characteristic)
Consider u(x, t) a blow-up solution of (1) and x0 ∈ S. Then, it holds that∥∥∥∥∥∥∥

(
wx0(s)
∂swx0(s)

)
−


k(x0)∑
i=1

e∗iκ(di(s), ·)

0


∥∥∥∥∥∥∥
H

→ 0 and E(wx0(s))→ k(x0)E(κ0) (14)

as s→∞, for some
k(x0) ≥ 2, e∗i = e∗1(−1)i+1

and continuous di(s) = − tanh ζi(s) ∈ (−1, 1) for i = 1, ..., k. Moreover,
we have ζ1(s) ≤ −C0 log s and ζk(x0)(s) ≥ C0 log s for s large enough for some C0 > 0,
and ζi+1(s)− ζi(s)→∞ as s→∞.

Remark: In [12], we proved a much weaker version of this result, with (14) valid just with
k(x0) ≥ 0 and no information on the signs of e∗i , ζ1(s) and ζk(s). Note that eliminating
the case k(x0) = 0 is the most difficult part in our analysis. In some sense, we put in
relation the notion of charactersitic point at x0 and the notion of decomposition of wx0

in a decoupling sum of (at least 2) ±κ(di(s)). This result can be seen as a result of
decomposition up to dispersion into sum of decoupling solitons in dispersive problems.
Accroding to the value of k(x0), this sum appears to have a multipole nature (dipole if
k(x0) = 2, tripole if k(x0) = 3,....).
Remark: In subsection 4.4, we derive from Proposition 6 some estimates on various norms
of the solution at blow-up.

We also have the following consequences in the original variables:

Proposition 7 (Description of T (x) for x near x0)
(i) If x0 ∈ S, then we have for some δ0 > 0, C0 > 0 and γ > 0,

if 0 < |x−x0| ≤ δ0, then T (x0)−|x−x0| < T (x) ≤ T (x0)−|x−x0|+
C0|x− x0|
| log(x− x0)|γ

. (15)

(ii) If x0 ∈ S, then T (x) is right and left differentiable at x0, with

T ′l (x0) = 1 and T ′r(x0) = −1.

(iii) For all t ∈ [T (x0) − τ0, T (x0)) for some τ0 > 0, there exist z1(t) < ... < zk(t)
continuous in t such that

e∗1(−1)i+1u(zi(t), t) > 0

and zi(t)→ x0 as t→ T (x0).

Remark: From (iii), we have the existence of zero lines x1(t) < ... < xk−1(t) (not
necessarily continuous in t) such that u(xi(t), t) = 0 and xi(t)→ x0 as t→ T (x0).

The paper is organized as follows. Section 2 is devoted to the proofs of Proposition 1
and Theorem 2 (note that Corollary 3 follows straightforwardly from Theorem 2 and the
finite speed of propagation). In Section 3, we consider a characteristic point and study the
equation in selfsimilar variables. As for Section 4, it is devoted to the proof of Theorems
5, 4 and 4’, as well as Propositions 6 and 7.
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2 Existence and stability of characteristic points

Here in this section, we consider u(x, t) a blow-up solution of equation (1). As mentioned in
the introduction, we prove in this section the existence of characteristic points (Proposition
1 and Theorem 2).

Proof of Proposition 1: Assuming that (u0, u1) is odd, we would like to prove that
0 ∈ S. Arguing by contradiction, we assume that 0 ∈ R.
On the one hand, using the result of [12] stated in (13), we see that for some d(0) ∈ (−1, 1),

‖w0(s)− κ(d(0), ·)‖L∞(−1,1) ≤ C‖w0(s)− κ(d(0), ·)‖H1(−1,1) → 0 as s→∞.

In particular,
|w0(0, s)| → κ(d(0), 0) > 0 as s→∞. (16)

On the other hand, since the initial data is odd, the same holds for the solution, in
particular, u(0, t) = 0 for all t ∈ [0, T (0)), hence w0(0, s) = 0 for all s ≥ − log T (0), which
contradicts (16). This concludes the proof of Proposition 1.
Remark: We don’t need to know that for x0 ∈ R, wx0 converges to a particular profile
to derive this result. It is enough to know that wx0 approaches the set {θ(x0)κ(d, ·) | |d| <
1− η} for some η > 0, which is a much weaker result.

We now turn to the proof of Theorem 2. It is a consequence of three results from our
earlier work:

- the continuity with respect to initial data of the blow-up time at x0 ∈ R.

Proposition 2.1 (Continuity with respect to initial data at x0 ∈ R) There exists
A0 > 0 such that T̃ (x0) → T (x0) as (ũ0, ũ1) → (u0, u1) in H1 × L2(|x| < A0), where
T̃ (x0) is the blow-up time of ũ(x, t) at x = x0, the solution of equation (1) with initial
data (ũ0, ũ1).

Proof: This is a direct consequence of the Liouville Theorem and its applications given in
[13]. See Appendix A for a sketch of the proof.

- the continuity of the blow-up profile on R proved in Theorem 1 in [13] (in particular,
the fact that θ(x0) given in (12) is constant on the connected components of R).

- the following trapping result from [12]:

Proposition 2.2 (See Theorem 3 in [12] and its proof) There exists ε0 > 0 such
that if w ∈ C([s∗,∞),H) for some s∗ ∈ R is a solution of equation (6) such that

∀s ≥ s∗, E(w(s)) ≥ E(κ0) and
∥∥∥∥( w(s∗)

∂sw(s∗)

)
− ω∗

(
κ(d∗, ·)
0

)∥∥∥∥
H
≤ ε∗ (17)

for some d∗ = − tanh ξ∗, ω∗ = ±1 and ε∗ ∈ (0, ε0], then there exists d∞ = − tanh ξ∞ such
that

|ξ∞ − ξ∗| ≤ C0ε
∗ and

∥∥∥∥( w(s)
∂sw(s)

)
− ω∗

(
κ(d∞, ·)
0

)∥∥∥∥
H
→ 0. (18)
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Let us use these results to prove Theorem 2.

Proof of Theorem 2: We consider a1 < a2 two non characteristic points such that
wai(s)→ θ(ai)κ(dai , ·) with θ(a1)θ(a2) = −1 for some dai in (−1, 1), in the sense (12). Up
to changing u in −u, we can assume that θ(a1) = 1 and θ(a2) = −1. We aim at proving
that (a1, a2) ∩ S 6= ∅ and the stability of such a property with respect to initial data.

(i) If we assume by contradiction that [a1, a2] ⊂ R, then the continuity of θ(x0) where
x0 ∈ [a1, a2] implies that θ(x0) is constant on [a1, a2]. This is a contradiction, since
θ(a1) = 1 and θ(a2) = −1.

(ii) By hypothesis and estimate (13), there is δ0 > 0 and s0 ∈ R such that∥∥∥∥( wai(s0)
∂swai(s0)

)
− θ(ai)

(
κ(dai , ·)
0

)∥∥∥∥
H1×L2(|y|<1+δ0)

≤ ε0
2

where ε0 is defined in Proposition 2.2. From the continuity with respect to initial data for
equation (1) at the fixed time T (ai)− e−s0 , we see there exists η(ε0) > 0 such that if

‖(ũ0, ũ1)− (u0, u1)‖H1
loc,u×L2

loc,u
≤ η,

then ũ(x, t) the solution of equation (1) with initial data (ũ0, ũ1) is such that w̃ai(y, s0) is
defined for all |y| < 1 + δ0/2 and∥∥∥∥( w̃ai(s0)

∂sw̃ai(s0)

)
− θ(ai)

(
κ(dai , ·)
0

)∥∥∥∥
H1×L2(|y|<1+δ0/2)

≤ 3
4
ε0,

where w̃ai is the selfsimilar version defined from ũ(x, t) by (5).
¿From Proposition 2.1, we have T̃ (ai)→ T (ai) as η → 0, where T̃ (ai) is the blow-up time
of ũ(t) at ai. We then have for η small enough,∥∥∥∥( w̃ai(s0)

∂sw̃ai(s0)

)
− θ(ai)

(
κ(dai , ·)
0

)∥∥∥∥
H
≤ ε0. (19)

Two cases then arise (by the way, we will prove later in Proposition 6 that the Lyapunov
functional stays above 2E(κ0) at a characteristic point, which means by (19) that ai and
a2 are non characteristic points for η small enough, but we cannot use Proposition 6 for
the moment):
- If a1 or a2 is a characteristic point of ũ(t), then the proof is finished.
- Otherwise, (12) holds for w̃ai from the fact that the point is non characteristic. Thus,
from the monotonicity of E(w̃ai(s)), (17) holds with ω∗ = θ(ai). Applying Proposition
2.2, we see that w̃ai(s) → θ(ai)κ(d̃ai , ·) as s → ∞, for some d̃ai ∈ (−1, 1). Noting that
θ(a1) = 1 and θ(a2) = −1, we apply (i) to get the result. This concludes the proof of
Theorem 2.

3 Refined behavior for wx0
where x0 is characteristic

In this section, we consider x0 ∈ S. We know from [13] that∥∥∥∥∥∥
(
wx0(s)
∂swx0(s)

)
−
k(x0)∑
i=1

ei

(
κ(di(s), ·)
0

)∥∥∥∥∥∥
H

→ 0 as s→∞ (20)
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for some k(x0) ≥ 0, ei = ±1 and continuous di(s) = − tanh ζi(s) ∈ (−1, 1) for i =
1, ..., k(x0) with

ζ1(s) < ... < ζk(x0)(s) and ζi+1(s)− ζi(s)→∞ for all i = 1, ..., k − 1. (21)

Since wx0(s) is convergent when k(x0) ≤ 1 (to 0 when k(x0) = 0 and to some κ(d∞) by
Proposition 2.2), we focus throughout this section on the case

k(x0) ≥ 2.

For simplicity in the notations, we forget the dependence of wx0 and k(x0) on x0.
This section is organized as follows. In Subsection 3.1, assuming an ODE on the solitons’
center, we find their behavior. Then, in Subsection 3.2, we study equation (6) around
the solitons’ sum and derive in Subsection 3.3 the ODE satisfied by the solitons’ center.
Finally, we prove in Subsection 3.4 the hat property near characteristic points.

3.1 Time behavior of the solitons’ centers

We will prove the following:

Proposition 3.1 (Refined behavior of wx0 where x0 ∈ S)Assuming that k ≥ 2, there
exists another set of parameters (still denoted by ζ1(s), ... ζk(s)) such that (20) and (21)
hold and:
(i) For all i = 1, ..., k, ei = (−1)i+1e1.
(ii) For some C0 ∈ R, we have for s large,

ζ1(s) ≤ −C0 log s and ζk(s) ≥ C0 log s.

Remark: If we knew that in the following proposition Ri = o
(∑i+1

j=i−1 e
−β|ζj+1−ζj |

)
(where Ri is defined below in Proposition 3.2), then, we would get ζ1(s) ≥ −C1 log s and
ζk(s) ≤ C1 log s. Indeed, we write from Proposition 3.2 (and (i) of this proposition)

ζ ′i+1(s)− ζ ′i(s) ≤ 3e−β(ζi+1(s)−ζi(s)),

which yields by integration 0 ≤ ζi+1(s) − ζi(s) ≤ C log s and then, 0 ≤ ζk(s) − ζ1(s) ≤
C log s. Since ζk(s)− ζ1(s) = |ζ1|+ |ζk| from (ii) of this proposition, this yields the desired
bound.
The following ODE system satisfied by (ζi(s)) is crucial in our proof:

Proposition 3.2 (Equations satisfied by the solitons’ centers) Assuming that k ≥
2, there exists another set of parameters (still denoted by ζ1(s), ... ζk(s)) such that (20)
and (21) hold and for all i = 1, ..., k:

1
c1
ζ ′i = −ei−1eie

− 2
p−1
|ζi−ζi−1| + eiei+1e

− 2
p−1
|ζi+1−ζi| +Ri (22)

with Ri = o(J) as s→∞ and J(s) =
k−1∑
j=1

e
− 2
p−1
|ζj+1(s)−ζj(s)|, (23)

for some c1 > 0, with the convention e0 = ek+1 = 0.
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Proof: See subsection 3.2.

Let us now give the proof of Proposition 3.1.

Proof of Proposition 3.1: Given some s0 ∈ R, we first define for all s ≥ s0, J0(s) and
j0(s) ∈ {1, ..., k − 1},

J0(s) ≡ max
i=1,..k−1

∫ s

s0

e−β|ζi+1(s′)−ζi(s′)|ds′ =
∫ s

s0

e−β|ζj0(s)+1(s′)−ζj0(s)(s
′)|ds′ (24)

where β = 2
p−1 . Then, we claim that

J0(s)→∞ as s→∞. (25)

Indeed, we write from (22) and (24) |ζi(s) − ζi(s0)| ≤ C
∑k−1

i=1

∫ s
s0
e−β|ζi+1(s′)−ζi(s′)|ds′ ≤

CJ0(s) and (21) implies (25).
Integrating equation (22), this yields as s→∞ for all i = 1, ..., k:

ζ1(s) + ...+ ζi(s)
i

= eiei+1
c1

i

∫ s

s0

e−β|ζi+1(s′)−ζi(s′)|ds′ + o (J0(s)) , (26)

ζi(s) + ...+ ζk(s)
k − i+ 1

= −eiei−1
c1

k − i+ 1

∫ s

s0

e−β|ζi(s
′)−ζi−1(s′)|ds′ + o (J0(s)) . (27)

(i) Using (21), we write for s large,

ζ1(s) + ...+ ζj0(s)(s)
j0(s)

<
ζj0(s)+1(s) + ...+ ζk(s)

k − j0(s)
,

if i < j0(s),
ζ1(s) + ...+ ζi(s)

i
<

ζ1(s) + ...+ ζj0(s)(s)
j0(s)

,

if i > j0(s),
ζj0(s)+1(s) + ...+ ζk(s)

k − j0(s)
<

ζi+1(s) + ...+ ζk(s)
k − i

.

Then, using (26), (27) and (24), we write for s large,

ej0(s)ej0(s)+1
c1

j0(s)
J0(s) ≤ −ej0(s)ej0(s)+1

c1

k − j0(s)
J0(s) + o(J0(s)),

if i < j0(s),

eiei+1
c1

i

∫ s

s0

e−β|ζi+1(s′)−ζi(s′)|ds′ ≤ ej0(s)ej0(s)+1
c1

k − j0(s)
J0(s) + o(J0(s)), (28)

if i > j0(s),

−
c1ej0(s)ej0(s)+1

k − j0(s)
J0(s) + o(J0(s)) ≤ −eiei+1

c1

k − i

∫ s

s0

e−β|ζi+1(s′)−ζi(s′)|ds′. (29)

Therefore, for s large, J0(s)
(
ej0(s)ej0(s)+1( c1

j0(s) + c1
k−j0(s)) + o(1)

)
≤ 0, hence,

ej0(s)ej0(s)+1 = −1.

Then, (28) and (29) write together with (24)

∀i, 1
2k
J0(s) ≤ −eiei+1

∫ s

s0

e−β|ζi+1(s′)−ζi(s′)|ds′ ≤ J0(s),

9



which gives for all i and s large,

eiei+1 = −1 and
J0(s)
C0

≤
∫ s

s0

e−β|ζj+1(s′)−ζj(s′)|ds′ ≤ J0(s)→∞. (30)

Using a finite induction, we get ei = (−1)i+1e1.

(ii) Using Proposition 3.2, (i) and (30), we see that for all i = 1, ..., k − 1 and s large,

1
c1

(ζi+1(s)− ζi(s)) ≤ 3
∫ s

s0

e−β(ζi+1(s′)−ζi(s′))ds′, (31)

1
c1
ζ1(s) ≤ −1

2

∫ s

s0

e−β(ζ2(s′)−ζ1(s′))ds′, (32)

1
c1
ζk(s) ≥

1
2

∫ s

s0

e−β(ζk(s′)−ζk−1(s′))ds′. (33)

Since we get by integrating (31),
∫ s
s0
e−β(ζi+1(s′)−ζi(s′))ds′ ≥ C log s, the conclusion then

follows from (32) and (33). This concludes the proof of Proposition 3.1.

3.2 Refinement of (20) for k ≥ 2

Note that the case k = 1 has been already treated in [12] giving rise to estimate (12). As
announced in the beginning of the section, we assume that k ≥ 2 and claim the following:

Proposition 3.3 (Size of q in terms of the distance between solitons) There exists
another set of parameters (still denoted by ζ1(s), ... ζk(s)) such that (20) and (21) hold
and for some s∗ ∈ R and for all s ≥ s∗,

‖q(s)‖H ≤ C
k−1∑
i=1

h(ζi+1(s)− ζi(s)), (34)

where

q =
(
q1

q2

)
=
(
w
∂sw

)
−

k∑
i=1

ei

(
κ(di)
0

)
,

and

h(ζ) = e
− p
p−1

ζ if p < 2, h(ζ) = e−2ζ
√
ζ if p = 2 and h(ζ) = e

− 2
p−1

ζ if p > 2. (35)

Before proving the estimate, we need to use a modulation technique to slightly change the
ζi(s) in order to guarantee some orthogonality conditions. In order to do so, we need to
introduce for λ = 0 or 1, for any d ∈ (−1, 1) and r ∈ H,

πdλ(r) = φ (Wλ(d), r) (36)

where:

φ(q, r) = φ

((
q1

q2

)
,

(
r1

r2

))
=
∫ 1

−1

(
q1r1 + q′1r

′
1(1− y2) + q2r2

)
ρdy, (37)
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Wλ(d, y) = (Wλ,1(d, y),Wλ,2(d, y)),

W1,2(d, y)(y) = c1(d)
1− y2

(1 + dy)
2
p−1

+1
, W0,2(d, y) = c0

y + d

1 + dy
κ(d, y), (38)

with 0 < c1(d) ≤ C(1− d2)
1
p−1 , c0 > 0,

and Wλ,1(d, y) ∈ H0 is uniquely determined as the solution of

−Lr + r =
(
λ− p+ 3

p− 1

)
Wλ,2(d)− 2y∂yWλ,2(d) +

8
p− 1

Wλ,2(d)
1− y2

(39)

(in [12], we defined W0,2(d, y) by c0(d)(y+d)

(1+dy)
2
p−1 +1

with

1 = c0(d)(1− d2)
1
p−1

4
p− 1

∫ 1

−1

(y + d)2

(1 + dy)
4
p−1

+2

ρ

1− y2
dy.

Setting y = tanh ξ, we compute the integral and get c0(d) = c′0(1− d2)
1
p−1 . Using (11), we

get (38)). Recall from Lemma 4.4 page 85 in [12] that

∀d ∈ (−1, 1), ‖Wλ(d)‖H ≤ C. (40)

We now have the following:

Lemma 3.4 (Modulation technique) Assume that k ≥ 2.
(i) (Choice of the modulation parameters) There exist other values of the parameters
(still denoted by di(s)) of class C1, such that ζi+1(s) − ζi(s) → ∞ as s → ∞ where
di(s) = − tanh ζi(s),

‖q(s)‖H → 0 and πdi(s)0 (q) = 0 for all i = 1, .., k, (41)

where πd0 and q are defined in (36) and (34) respectively.
(ii) (Equation on q) For s large, we have

∂

∂s

(
q1

q2

)
= L

(
q1

q2

)
−

k∑
j=1

ejd
′
j(s)

(
∂dκ(dj(s), y)
0

)
+
(

0
R

)
+
(

0
f(q1)

)
(42)

where L
(
q1

q2

)
=

(
q2

Lq1 + ψq1 − p+3
p−1q2 − 2yq′2

)
,

ψ(y, s) = p|K(y, s)|p−1 − 2(p+1)
(p−1)2 , K(y, s) =

∑k
j=1 ejκ(dj(s), y),

f(q1) = |K + q1|p−1(K + q1)− |K|p−1K − p|K|p−1q1,

R = |K|p−1K −
∑k

j=1 ejκ(dj)p.

11



Remark: From the modulation technique, it is clear that the distance between old and
new parameter ζi(s) goes to zero as s→∞.
Proof: See the proof of Proposition 5.1 in [12] where the case k = 1 is treated. There is
no difficulty in adapting the proof to k ≥ 2.

In the following, we will show that Proposition 3.3 holds with the set of parameters
ζ1(s),...,ζk(s) given by the modulation technique of Lemma 3.4. Before giving the proof,
we start by reformulating the problem.

Let us first remark that equation (42) can be localized near each soliton’s center which
allows us to view it as a perturbation of the case of one soliton already treated in [12].
For this, given i = 1, ..., k, we need to expand the linear operator of equation (42) as

L(q) = Ldi(s)(q) + (0, Vi(y, s)q1) with

Ld

(
q1

q2

)
=

(
q2

Lq1 + (pκ(di(s), y)p−1 − 2(p+1)
(p−1)2 )q1 − p+3

p−1q2 − 2yq′2

)
,

Vi(y, s) = p|K(y, s)|p−1 − pκ(di(s), y)p−1. (43)

Since the solitons’ sum is decoupled (remember from (i) of Lemma 3.4 that

ξi+1 − ξi →∞ as s→∞), (44)

the properties of Ldi(s) will be essential in our analysis.
¿From section 4 in [12], we know that for any d ∈ (−1, 1), the operator Ld has 1 and 0 as
eigenvalues, the rest of the eigenvalues are negative. More precisely, introducing

F1(d, y) = (1− d2)
p
p−1

(
(1 + dy)−

2
p−1
−1

(1 + dy)−
2
p−1
−1

)
, F0(d, y) = (1− d2)

1
p−1

 y + d

(1 + dy)
2
p−1

+1

0

 ,

(45)
we have

Ld(Fλ(d)) = λFλ(d) and ‖F1(d)‖H + ‖F0(d)‖H ≤ C. (46)

The projection on Fλ(d) is defined in (36) by πdλ(r) = φ (Wλ(d), r). Of course,

L∗dWλ(d) = λWλ(d) (47)

where L∗d is the conjugate of Ld with respect to the inner product φ, and the choice of the
constants c1(d) and c0 guarantees the orthogonality condition

πdλ(Fµ(d)) = φ(Wλ(d), Fµ(d)) = δλ,µ. (48)

In the following, we give a decomposition of the solution which is well adapted to the
proof:

Lemma 3.5 (Decomposition of q) If we introduce for all r and r in H the operator
π−(r) ≡ r−(y, s) defined by

r(y, s) =
k∑
i=1

(
π
di(s)
1 (r)F1(di(s), y) + π

di(s)
0 (r)F0(di(s), y)

)
+ π−(r) (49)
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and the bilinear form

ϕ(r, r) =
∫ 1

−1

(
r′1r
′
1(1− y2)− ψr1r1 + r2r2

)
ρdy (50)

where ψ(y, s) is defined in (42), then:
(i) for s large enough and for all r and r in H, we have

|ϕ(r, r)| ≤ C‖r‖H‖r‖H, (51)

(ii) for some C0 > 0 and for all s large enough, we have:

q(y, s) =
k∑
i=1

αi1(s)F1(di(s), y) + q−(y, s), (52)

1
C0
‖q−(s)‖2H − C0J̄(s)2‖q(s)‖2H ≤ A−(s) ≤ C0‖q−(s)‖2H, (53)

1
C0
‖q(s)‖2H ≤

k∑
i=1

(
αi1(s)

)2 +A−(s) ≤ C0‖q(s)‖2H (54)

where

J̄(s) =
k−1∑
j=1

(ζj+1 − ζj)e−
2
p−1

(ζj+1−ζj), αiλ(s) = π
di(s)
λ (q(s)) and A−(s) = ϕ(q−(s), q−(s)).

(55)

Remark: Note that the choice of di(s) made in (41) guarantees that for s large enough,

∀i = 1, ..., k, αi0(s) ≡ αi0
′(s) ≡ 0. (56)

Moreover, we see from (53) that A−(s) is nearly positive and nearly equivalent to ‖q−‖2H.
Remark: The operator π− depends on the time variable s. In [12], we had only one
soliton, and we decomposed q as follows:

q(y, s) = πd1(q)F1(d, y) + πd0(q)F0(d, y) + πd−(q), (57)

where we had only one d(s) (note that this decomposition is in fact a definition of the
operator πd−). Here, due to (44), we have a decoupling effect, in the sense that πdj(s)λ (q)
for j 6= i cannot be “seen” when y is close to −di(s), the “center” of the soliton κ(di(s), y).
Hence, π−(q) is more or less πdi(s)− (q) and we are reduced to the situation of one soliton
already treated in [12]. This idea will be essential in our proof since given some i = 1, ..., k,
we have two types of terms in equation (42):
- terms involving the soliton κ(di(s), y) for which we refer the reader to [12],
- interaction terms involving a different soliton κ(dj(s), y) which we treat in details.
Proof of Lemma 3.5: See Appendix B.

In order to prove Proposition 3.3, we project equation (42) according to the decompo-
sition (49). More precisely, we have the following:
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Lemma 3.6 For s large enough, the following holds:
(i) (Control of the positive modes and the modulation parameters)

∀i = 1, ..., k,
∣∣∣αi1′(s)− αi1(s)

∣∣∣+ |ζ ′i(s)| ≤ C‖q(s)‖2H + CJ(s) (58)

where J(s) is defined in (23).
(ii) (Control of the negative part)(

R− +
1
2
A−

)′
≤ − 3

p− 1

∫ 1

−1
q2
−,2

ρ

1− y2
dy + o

(
‖q(s)‖2H

)
+ C

k−1∑
m=1

(h(ζm+1 − ζm))2

+ CJ(s)
√
|A−(s)| (59)

for some R−(s) satisfying
|R−(s)| ≤ C‖q(s)‖p̄+1

H (60)

where p̄ = min(p, 2) and h(s) is defined in (35).
(iii) (An additional relation)

d

ds

∫ 1

−1
q1q2ρ ≤ −

4
5
A− + C

k−1∑
m=1

h(ζm+1 − ζm)2 + C

∫ 1

−1
q2
−,2

ρ

1− y2
+ C

k∑
i=1

(
αi1
)2
. (61)

Proof: See Appendix C.

With Lemma 3.6, we are ready to prove Proposition 3.3.

Proof of Proposition 3.3: We proceed as in section 5.3 page 113 in [12], though
the situation is a bit different because of the presence of the forcing terms J(s) and∑k

i=1 h(ζi+1 − ζi)2 in the differential inequalities in Lemma 3.6.
If we introduce

a(s) =
k∑
i=1

αi1(s)2, b(s) = A−(s) + 2R−(s) and H(s) =
k−1∑
m=1

h(ζm+1 − ζm)2 (62)

where h is defined in (35), then we see from (i) of Lemma 3.4 and (60) that

a(s) + b(s) +H(s)→ 0 as s→∞. (63)

Moreover, we see from (60) and (54) that |b − A−| ≤ 1
1000

(
A− +

∑k
i=1(αi1)2

)
for s large

enough, hence
99
100

A− −
1

100
a ≤ b ≤ 101

100
A− +

1
100

a. (64)

Therefore, since J(s) ≤ H(s) by (23) and (35), we have for s large,

∀ε > 0, CJ
√
|A−| ≤ ε(a+ b) +

C

ε
H(s).

Using (62), (64) and (63), we rewrite estimates (54) and Lemma 3.6 with the new variables,
in the following:
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Corollary 3.7 (Equations in the new framework) There exists K0 ≥ 1 such that for
all ε > 0, there exists s0(ε) ∈ R such that for all s ≥ s0(ε), the following holds:
(i) (Size of the solution)

1
K0

(a+ b) ≤ ‖q‖2H ≤ K0(a+ b), (65)∣∣∣∣∫ 1

−1
q1q2ρdy

∣∣∣∣ ≤ K0(a+ b). (66)

(ii) (Equations)

3
2
a− εb−K0H ≤ a′ ≤

5
2
a+ εb+K0H,

b′ ≤ − 6
p− 1

∫ 1

−1
q2
−,2

ρ

1− y2
dy + ε(a+ b) +

K0

ε
H,

d

ds

∫ 1

−1
q1q2ρdy ≤ −3

5
b+K0

∫ 1

−1
q2
−,2

ρ

1− y2
dy +K0a+K0H,

|H ′| ≤ εH. (67)

We proceed in 2 steps:
- In Step 1, we show that a is controlled by b+H:.
- In Step 2, we show that b is controlled by H and conclude the proof using (65).

Step 1: a is controlled by b+H
We claim that for ε small enough, we have:

∀s ≥ s0(ε), a(s) ≤ εb(s) +
K0

ε
H(s). (68)

Indeed, from Corollary 3.7, we see that for all s ≥ s0(ε), we have

a′ ≥ 3
2
a− (εb+

K0

ε
H),

(εb+
K0

ε
H)′ ≤ 2ε(εb+

K0

ε
H) + ε2a.

Introducing γ1(s) = a(s)− (εb(s) + K0
ε H(s)), we see that for all s ≥ s0(ε),

γ′1 = a′ − (εb′ +
K0

ε
H ′) ≥ 3

2
a− (εb+

K0

ε
H)− 2ε(εb+

K0

ε
H)− ε2a

= (
3
2
− ε2 − 1− 2ε)a+ (1 + 2ε)γ1 ≥ γ1

if ε is small enough. Since γ1(s) → 0 as s → ∞ (see (63)), this implies γ1(s) ≤ 0, hence
(68) follows.

Step 2: b is controlled by H
We claim that in order to conclude, it is enough to prove for some K1 > 0 that

∀s ≥ s0(ε), f(s) ≤ K1H(s) (69)
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where

f = b+ η

∫ 1

−1
q1q2ρdy and η =

1
2

min
(

1
2K0

,
6

(p− 1)K0

)
. (70)

Indeed, using (66) and (68), and taking ε small enough, we get for all s ≥ s0(ε),∣∣∣∣∫ 1

−1
q1q2ρdy

∣∣∣∣ ≤ 2K0b+ K2
0
ε H and |f − b| ≤ 2K0ηb+ η

K2
0
ε H ≤

b
2 + η

K2
0
ε H, hence

b

2
− ηK

2
0

ε
H ≤ f ≤ 2b+ η

K2
0

ε
H. (71)

Therefore, if (69) holds, then using (65), (71) and (68), we see that for some K2 > 0 and
for all s ≥ s0(ε), ‖q(s)‖2H ≤ K0(a(s) + b(s)) ≤ K2H(s) which is the desired conclusion of
Proposition 3.3. It remains to prove (69).
Using Corollary 3.7, (68), (70) and the fact that K0 ≥ 1, and taking ε small enough, we
get for all s ≥ s0(ε):

b′ ≤ − 6
p− 1

∫ 1

−1
q2
−,2

ρ

1− y2
dy + 2εb+ 2

K0

ε
H, (72)

d

ds

∫ 1

−1
q1q2ρdy ≤ −2

5
b+K0

∫ 1

−1
q2
−,2

ρ

1− y2
dy + 2

K2
0

ε
H, (73)

f ′ ≤ −(
2
5
η − 2ε)b−

(
6

p− 1
−K0η

)∫ 1

−1
q2
−,2

ρ

1− y2
dy + (2

K0

ε
+ 2

K2
0

ε
η)H

≤ −η
4
b+ 3

K0

ε
H ≤ −η

8
f + 4

K0

ε
H. (74)

If γ2(s) = f(s)− 64K0
ηε H(s), then we write from (67) and (74), for all s ≥ s0(ε),

γ′2 = f ′ − 64K0

ηε
H ′ ≤ −η

8
f + 4

K0

ε
H +

64K0

ηε
εH = −η

8
γ2 +

K3

ε
H ≤ −η

8
γ2

because K3 = −64K0
η

η
8 + 64K0

η ε+ 4K0 = −4K0 + 64K0
η ε ≤ 0 if ε is small enough. Therefore,

for all s ≥ s0(ε), γ2(s) ≤ e−
η
8

(s−s0)γ2(s0), hence

f(s) ≤ 64K0

ηε
H(s) + e−

η
8

(s−s0)|γ2(s0)|. (75)

Since we have from (67) and (62),

H(s) ≥ e−ε(s−s0)H(s0) and H(s0) > 0, (76)

taking ε ≤ η
8 , we see that (69) follows from (75) and (76). This concludes the proof of

Proposition 3.3.

3.3 An ODE system satisfied by the solitons’ centers

With Proposition 3.3, we are ready to prove Proposition 3.2 now. The proof consists in
refining the projection of equation (42) with the projector πd0 (36), already performed in
the proof of (i) of Lemma 3.6 (see Part 1 page 39).
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Proof of Proposition 3.2: Using (152), (153), (157), (158), (161), the differential in-
equality (58) on ζi and the fact that αi0(s) ≡ αi0

′(s) ≡ 0 (see (56)), we write:∣∣∣∣−ei 2κ0

p− 1
ζ ′i(s) + π

di(s)
0

(
0
R

)∣∣∣∣ ≤ C‖q(s)‖2H + o(J(s)) as s→∞. (77)

Since we have from Proposition 3.3,

‖q(s)‖2H ≤ C
k−1∑
i=1

(h(ζi+1 − ζi))2 = o(J(s)) as s→∞ (78)

where h(ζ) is defined in (35), it is clear that if one proves that for some c′1 > 0,

1
c′1
π
di(s)
0

(
0
R

)
= −ei−1e

− 2
p−1
|ζi(s)−ζi−1(s)| + ei+1e

− 2
p−1
|ζi+1(s)−ζi(s)| + o(J) (79)

as s → ∞ (with the convention ζ0 = −∞ and ζk+1 = +∞), then, Proposition 3.2 imme-
diately follows from (77) and (78). It remains to prove (79).

Proof of (79): We claim first that∣∣∣∣∣∣R−
k∑
j=1

pκ(dj(s))p−11{yj−1(s)<y<yj(s)}
∑
l 6=j

elκ(dl(s))

∣∣∣∣∣∣
≤ C

k∑
j=1

κ(dj(s))p−p̄1{yj−1(s)<y<yj(s)}
∑
l 6=j

κ(dl(s))p̄ (80)

where yi are the solitons’ separators defined in (199).
Indeed, let us take y ∈ (yj−1(s), yj(s)) and set X = (

∑
l 6=j elκ(dl(s)))/ejκ(dj(s)). From

the fact that ζj+1(s)− ζj(s)→∞ and (199), we have |X| ≤ 3 hence

||1 +X|p−1(1 +X)− 1− pX| ≤ CX2

and for y ∈ (yj−1(s), yj(s)) and s large,

||K|p−1K − ejκ(dj(s))p − pκ(dj(s))p−1
∑
l 6=j

elκ(dl(s))|

≤ Cκ(dj(s))p−2
∑
l 6=j

κ(dl(s))2

Since for y ∈ (yj−1(s), yj(s)), |
∑

l 6=j elκ(dl(s))p| ≤
∑

l 6=j κ(dl(s))p and κ(dj(s)) ≥ κ(dl(s))
if l 6= j, this concludes the proof of (80).
Now, we prove (79). Using (80), (36), (38) and the notations of Lemma E.1, we write∣∣∣∣∣∣πdi0

(
0
R

)
− pc0

k∑
j=1

∑
l 6=j

Ai,j,l

∣∣∣∣∣∣ ≤ C
k∑
j=1

∑
l 6=j

Bi,j,l.

Since we have from (iii) and (iv) of Lemma E.1, Ai,j,l +Bi,j,l = o(J) except for Ai,i,l with

l = i ± 1 where we have Ai,i,i±1 ∼ c′′′1 e
− 2
p−1
|ζi−ζi±1|, we get (79). Since Proposition 3.2

follows form (79) and (77), this concludes the proof of Proposition 3.2 too.
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3.4 The blow-up set is hat-shaped near x0 ∈ S when k(x0) ≥ 2

We derive here the following consequence of Proposition 3.1:

Proposition 3.8 (Existence of signed lines and the hat property near x0 ∈ S) If
x0 ∈ S with k(x0) ≥ 2, then:
(i) For all j = 1, .., k,

u(zj(t), t) ∼ e∗jκ0 cosh
2
p−1 ζj(s)(T (x0)− t)−

2
p−1 as t→ T (x0),

where t 7→ zj(t) is continuous and defined by

zj(t) = x0 + (T (x0)− t) tanh ζj(s) with s = − log(T (x0)− t). (81)

(ii) We have for some δ0 > 0 and γ > 0,

if |x− x0| ≤ δ0, then T (x0)− |x− x0| ≤ T (x) ≤ T (x0)− |x− x0|+
|x− x0|

| log(x− x0)|γ
. (82)

Remark: The point zj(t) corresponds in the original variables to the center of the j-th
soliton in the description (20).
Remark: In the next section, we prove that for all x0 ∈ S, we have k(x0) ≥ 2. Thus, the
result will hold for all x0 ∈ S.
Proof: It follows from Proposition 3.1 and the following:

Lemma 3.9 (Upper blow-up bound for equation (1)) For all x0 ∈ R and t ∈
[3
4T (x0), T (x0)),

sup
|x−x0|<T (x0)−t)

2

|u(x, t)| ≤ K(T (x0)− t)−
2
p−1

where K depends only on p and an upper bound on T (x0) and 1/T (x0).

Proof: Use Theorem 1 in [11] and the Sobolev injection.

Proof of Proposition 3.8:
(i) Using Proposition 3.1 and (i) of Lemma B.1, we see that we have

sup
|y|<1

∣∣∣∣∣∣(1− y2)
1
p−1wx0(y, s)−

k(x0)∑
i=1

e∗i (1− y2)
1
p−1κ(di, y)

∣∣∣∣∣∣→ 0 as s→∞. (83)

Since we have

κ(di(s), y)(1− y2)
1
p−1 = κ0 cosh−

2
p−1 (ξ − ζi(s)) if y = tanh ξ (84)

and ζi+1(s)− ζi(s)→∞ as s→∞, we apply (83) with y = −dj(s) = tanh ζj(s) to get

(1− dj(s)2)
1
p−1wx0(−dj(s), s)→ e∗jκ0 as s→∞. (85)

Since (1 − dj(s)2)−
1
p−1 = cosh

2
p−1 ζj(s), e∗j = e∗1(−1)j+1 and s 7→ dj(s) ∈ (−1, 1) is

continuous, using the selfsimilar transformation (5), we see that (i) follows.
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(ii) Note that the left-hand inequality follows from the fact that x 7→ T (x) is 1-Lipschitz,
which is a consequence of the finite speed of propagation. For the right-hand inequality,
we give the proof only for x > x0 since the case x < x0 follows in the same way. The key
idea is to derive lower and upper bounds for |u(zk(t), t)| where zk(t) defined in (81) is the
“center” of the k-th soliton.
Using (i) with j = k(x0), we see that for all t ∈ [t1, T (x0)) for some t1 < T (x0),

|u(zk(t), t)| ≥
κ0

2
cosh

2
p−1 ζk(s)(T (x0)− t)−

2
p−1 (86)

on the one hand. On the other hand, using Lemma 3.9 and the continuity of x 7→ T (x),
we see that for all for some t0 ∈ [t1, T (x0)) and C1 > 0, we have

∀t ∈ [t0, T (x0)), |u(zk(t), t)| ≤ C1(T (zk(t))− t)−
2
p−1 .

Therefore, it follows from (86) that

∀t ∈ [t0, T (x0)), T (zk(t))− t ≤ C0
(T (x0)− t)
cosh ζk(s)

,

hence

T (zk(t)) ≤ T (x0)− (T (x0)− t)
(

1− C0

cosh ζk(s)

)
where s = − log(T (x0)− t). (87)

Recall from Proposition 3.1 and Lemma 3.2 that for some γ > 0 and for s large,

ζk(s) ≥ γ log s, cosh ζk(s) ≥
sγ

2
, 1 > tanh ζk(s) and ζ ′k(s)→ 0 (88)

as s→∞. Therefore, we see from (81) that

zk(t)→ x0 and z′k(t) = − tanh ζk(s) + ζ ′k(s) cosh−2 ζk(s)→ −1 as t→ T (x0).

Therefore, the map t 7→ zk(t) is one to one from [t0, T (x0)) to (x0, x0 + δ0] for some δ0 > 0
and we can make the change of variables

x = zk(t) = x0 + (T (x0)− t) tanh ζk(s) where s = − log(T (x0)− t). (89)

Since we have from (89) and (88)

(T (x0)− t)
(

1− C0

cosh ζk(s)

)
= (x− x0)

(
1− C0

cosh ζk(s)

)
tanh ζk(s)

≥ (x− x0)(1− C

sγ
) (90)

and s = − log(T (x0)− t) ∼ − log(x−x0) as x→ x0, (82) follows from (87) and (90). This
concludes the proof of Proposition 3.8.

4 Properties of S
We proceed in 3 subsections. We first prove that the interior of S is empty (Theorem
5. Then, we give the proofs of Theorems 4 and 4’, as well as Propositions 6 and 7. In
the last subsection, we give various estimates on norms of the solution at blow-up, near a
characteristic point.
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4.1 Soliton characterization on S

This subsection is devoted to the proof of the following result (which directly implies
Theorem 5):

Proposition 4.1
(i) The interior of S is empty.
(ii) For all x0 ∈ S, k(x0) ≥ 2.

Before proving this proposition, let us first state the following Lemmas:

Lemma 4.2 (Characterization of the interior of S) For any x1 < x2, the following
statements are equivalent:

(a) (x1, x2) ∈ S.
(b) There exists x∗ ∈ [x1, x2] such that for all x ∈ [x1, x2], T (x) = T (x∗)− |x− x∗|.

Lemma 4.3 Consider x1 < x2 such that e ≡ T (x2)−T (x1)
x2−x1

= ±1. Then,
(i) for all x ∈ [x1, x2], T (x) = T (x1) + e(x− x1),
(ii) (x1, x2) ∈ S.

Lemma 4.4 (Boundary properties of S)
(i) For all x0 ∈ ∂S, k(x0) 6= 0.
(ii) Consider x0 ∈ ∂S with k(x0) = 1. If there exists a sequence xn ∈ R converging
from the left (resp. the right) to x0, then x0 is left-non-characteristic (resp. right-non-
characteristic).

Remark: We mean by x0 is left-non-characteristic (resp. right-non-characteristic) that it
satisfies condition (4) only for x < x0 (resp. for x > x0).
Remark: It is not possible to prove by a direct argument that k(x0) ≥ 1 when x0 is
arbitrary in S. We need to prove it first for x0 ∈ ∂S and then prove that the interior is
empty. See the derivation of Proposition 4.1 from Lemma 4.4.

We now give the proofs of Lemmas 4.2, 4.3 and 4.4.

Proof of Lemma 4.2:
(a) =⇒ (b): Let us introduce x∗ ∈ [x1, x2] such that

T (x∗) = max
x1≤x≤x2

T (x).

We claim that T (x) is nondecreasing on [x1, x
∗], and nonincreasing on [x∗, x2]. Indeed, let

us prove the first fact, the second being similar. If for some x′ ≤ x′′ in [x1, x
∗], we have

T (x′) > T (x′′), then minx′≤x≤x∗ T (x) ≤ T (x′′) < T (x′) ≤ T (x∗). Therefore, this minimum
is achieved at a point x̃ different from x′ and x∗, hence

x̃ ∈ (x′, x∗) ⊂ (x1, x2).

In other words, x̃ is a local minimum, hence non characteristic, which is in contradiction
with (a).
The result clearly follows if we prove that

∀x ∈ (x1, x
∗), T (x) = T (x1) + (x− x1), (91)

∀x ∈ (x∗, x2), T (x) = T (x2)− (x− x2). (92)
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We only prove (91) since (92) follows similarly.
Assume by contradiction that for some x′ ∈ (x1, x

∗), we have

T (x′)− T (x1)
x′ − x1

= m0 6∈ {−1, 1}. (93)

Then, since x 7→ T (x) is 1-Lipschitz and nondecreasing, it follows that 0 ≤ m0 < 1.
Considering a family of lines of slope 1+m0

2 growing from below, we find λ0 ∈ R and
x0 ∈ [x1, x

′] such that

∀x ∈ [x1, x
′], T (x) ≥ (1 +m0)

2
(x− x1) + λ0 and T (x0) =

(1 +m0)
2

(x0 − x1) + λ0. (94)

If x0 ∈ (x1, x
′), then for all x ∈ [x1, x

′], T (x) ≥ (1+m0)
2 (x − x0) + T (x0), hence x0 is non

characteristic (the cone of slope 1+m0
2 is convenient).

If x0 = x′, then since T (x) is non decreasing on (x1, x
∗), it follows that x0 is again non

characteristic. In these two cases, we have a contradiction with the fact that (x1, x2) ∈ S.
If x0 = x1, then we have from (94), T (x1) = λ0 and T (x′) ≥ (1+m0)

2 (x′ − x1) + T (x1), in
contradiction with (93).
Thus, (91) holds. Since (92) follows similarly, (b) follows too.

(b) =⇒ (a): For any x ∈ (x1, x2), the left-slope of x 7→ T (x) is 1 or −1, hence, by
definition, x ∈ S and (a) follows. This concludes the proof of Lemma 4.2.

We now give the proof of Lemma 4.3:
Proof of Lemma 4.3: Up to replacing u(x, t) by u(−x, t), we can assume that x1 < x2

and
e ≡ T (x2)− T (x1)

x2 − x1
= 1. (95)

(i) If x ∈ (x1, x2), we use the fact that x 7→ T (x) together with (95) to write:

T (x) ≤ T (x1) + (x− x1),
T (x) ≥ T (x2)− (x2 − x) = T (x1) + (x− x1)

and (i) follows.
(ii) It follows from (i), just by applying the fact that (b) implies (a) in Lemma 4.2 (take
x∗ = x2). This concludes the proof of Lemma 4.3.

We now give the proof of Lemma 4.4.

Proof of Lemma 4.4: Consider x0 ∈ ∂S. Up to replacing u(x, t) by u(−x, t), we can
assume that for some sequence

xn ∈ R, we have xn < x0 and xn → x0 as n→∞. (96)

Therefore, we have
∀x < x0, T (x) > T (x0)− (x0 − x). (97)

Indeed, note first form the fact that x 7→ T (x) is 1-Lipschitz that for all x < x0, T (x) ≥
T (x0)− (x0 − x). By contradiction, if for some x̂ < x0, we have T (x̂) = T (x0)− (x0 − x̂),
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then we see from Lemma 4.3 that (x̂, x0) ⊂ S, in contradiction with (96). Thus, (97)
holds.

To prove (i) and (ii), we proceed by contradiction. Assume then that

either k(x0) = 0 (case 1),
or k(x0) = 1 and x0 is not left-non-characteristic (case 2).

Using (20) when k(x0) = 0 and Proposition 2.2 when k(x0) = 1, we see that∥∥∥∥( wx0(s)
∂swx0(s)

)
−
(
w∞
0

)∥∥∥∥
H
→ 0 as s→∞, (98)

where w∞(y) = 0 if k(x0) = 0 and w∞(y) = e∗κ(d(x0), y) if k(x0) = 1, (99)

for some e∗ = ±1 and d(x0) ∈ (−1, 1). Now, we claim the following continuity result:

Claim 4.5 For all ε0 > 0, there exists t̃ < T (x0) and x̃ < x0 such that for all x′ ∈ (x̃, x0),∥∥∥∥( wx′(s̃0(x′))
∂swx′(s̃0(x′))

)
−
(
w∞
0

)∥∥∥∥
H
≤ ε0 (100)

where s̃0(x′) = − log(T (x′)− t̃).

Proof: See Appendix D.
Let us first use this lemma to find a contradiction.

Case 1: k(x0) = 0. Consider some ε0 > 0 (to be fixed small enough later). Using this
claim, (99) and (96), we see that for some t̃ < T (x0) and for n large enough, we have

xn ∈ R and
∥∥∥∥( wxn(s̃0(x′))

∂swxn(s̃0(x′))

)∥∥∥∥
H
≤ ε0.

Using the continuity of E(w) in H (which is a consequence of Lemma B.1), we see that
E(wxn(s̃0(x′))) ≤ Cε0 ≤ 1

2E(κ0) (if ε0 is small enough), on the one hand. On the other
hand, since xn ∈ R, we know from the limit and the monotonicity of E(wxn(s)) stated in
page 3 that E(wxn(s)) ≥ E(κ0) > 0, which is a contradiction.

Case 2: k(x0) = 1 and x0 is not left-non-characteristic. Since x0 is not left-non-
characteristic, we see from (97) that there exists a sequence x̂n such that

x̂n < x0, x̂n → x0 and m̂n ≡
T (x̂n)− T (x0)

x̂n − x0
∈ [1− 1

n
, 1). (101)

Considering a family of lines of slope 1+m̂n
2 , we can select one such that

∀x ∈ [x̂n, x0], T (x) ≥ (1 + m̂n)
2

(x− x̂n)+λn and T (x̃n) =
(1 + m̂n)

2
(x̃n− x̂n)+λn (102)

for some λn ∈ R and x̃n ∈ [x̂n, x0].
If x̃n = x0, then for all x ∈ [x̂n, x0], T (x) ≥ (1+m̂n)

2 (x−x0)+T (x0), which is in contradiction
with the fact that x0 is left-non-characteristic.
If x̃n = x̂n, then we have from (102), T (x̂n) = λn and T (x0) ≥ 1+m̂n

2 (x0− x̂n) + T (x̂n), in
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contradiction with (101).
If x̃n ∈ (x̂n, x0), then x̃n ∈ R (the cone of slope 1+m̂n

2 is convenient). Since x̃n → x0 and
x̃n ∈ R, we see from Claim 4.5 that for some t̃ < T (x0) and n large enough, we have∥∥∥∥( wx̃n(s̃0(x̃n))

∂swx̃n(s̃0(x̃n))

)
− e∗

(
κ(d(x0), ·)
0

)∥∥∥∥
H
≤ ε∗ (103)

where ε∗ is introduced in Proposition 2.2. Since the energy barrier follows from the fact
that x̃n ∈ R, Proposition 2.2 applies and we have for n large enough,

(wx̃n(s), ∂swx̃n(s))→ e∗(κ(dn), 0) in H as s→∞,

where |dn − d(x0)| < η0 for some η0 > 0 small enough so that |d(x0) ± η0| < 1. The use
of the geometrical interpretation of dn is crucial for the conclusion. Indeed, from (103)
and the regularity result of [12] cited in page 3, we see that x 7→ T (x) is differentiable at
x = x̃n and that

T ′(x̃n) = dn ≤ d(x0) + η0 < 1

on the one hand. On the other hand, using (102) and (101), we see that

T ′(x̃n) =
1 + m̂n

2
→ 1 as n→∞

which is a contradiction. This concludes the proof of Lemma 4.4.

Now, we are ready to prove Proposition 4.1.

Proof of Proposition 4.1:
(i) Let us assume by contradiction that S contains some non empty interval (a′, b′). Since
S 6= R by the result of [12] cited in page 3, by maximizing this interval and up to replacing
u(x, t) by u(−x, t), we can assume that:

(a, b) ⊂ S with a ∈ ∂S, b > a

and, either b ∈ ∂S or b = +∞. If b is finite, then up to replacing u(x, t) by u(−x, t), we
can assume that T (b) ≥ T (a). Using Lemma 4.2 and the fact that T (x) ≥ 0, we see that
for some b̃ < b, we have

∀x ∈ (a, b̃), T (x) = T (a) + (x− a). (104)

We consider three cases and find a contradiction in each case.
- If k(a) = 0, then a contradiction occurs from (i) of Lemma 4.4.
- If k(a) = 1, then from the fact that a ∈ ∂S, there exists a sequence xn ∈ R such that
xn → a as n→∞. Since (a, b) ⊂ S, it follows that xn < a for n large enough. Therefore,
applying (ii) of Lemma 4.4, we see that a is left-non-characteristic. Since it is clearly
right-non-characteristic by (104), a is in fact non-characteristic, which contradicts the fact
that a ∈ ∂S ⊂ S (note that S is closed since its complementary set R is open by the result
of [13] cite in page 3).
- If k(a) ≥ 2, then the hat property stated in Proposition 3.1 is in contradiction with
(104).
Thus, (i) of Proposition 4.1 follows.
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(ii) Consider x0 ∈ S. From (i), we have x0 ∈ ∂S. Using (i) of Lemma 4.4, we see that
k(x0) ≥ 1. The result follows if we rule out the case k(x0) = 1.
Assume by contradiction that k(x0) = 1. Since the interior of S is empty, we can construct
2 sequences xn and yn in R, such that xn → x0 from the left, and yn → x0 from the right.
Applying (ii) of Lemma 4.4, we see that x0 is in fact left-non-characteristic and right-non-
characteristic, hence non characteristic. This contradicts the fact that x0 ∈ S. Thus, (ii)
follows. This concludes the proof of Proposition 4.1

4.2 On characteristic points for equation (1)

We prove Propositions 6 and 7, as well as Theorem 4 here.

Proof of Proposition 6: Consider u(x, t) a solution of equation (1) and x0 ∈ S. Using
(ii) of Proposition 4.1, we see that k(x0) ≥ 2. Therefore, Proposition 3.1 and Proposition
3.8 apply and directly give the conclusion of Proposition 6.

Proof of Proposition 7: Consider u(x, t) a solution of equation (1) and x0 ∈ S. Using
(ii) of Proposition 4.1, we see that k(x0) ≥ 2. Therefore, Proposition 3.1 and Proposition
3.8 apply and give the conclusion of Proposition 7, except for the strict inequality in (15),
which we prove now.
Assume by contradiction that for some x1 < x0, we have equality in the left-hand inequality
of (15). Then, we see from Lemma 4.3 that (x1, x0) ⊂ S, which contradicts the fact that
the interior of S is empty (see (i) of Proposition 4.1). Thus, (15) follows and Proposition
7 follows too.

Proof of Theorem 4: Consider u(x, t) a solution of equation (1) that blows up on a
graph x 7→ T (x) such that for some a0 < b0 and some t0 ≥ 0, we have

∀x ∈ (a0, b0) and t ∈ [t0, T (x)), u(x, t) ≥ 0. (105)

We would like to prove that (a0, b0) ⊂ R. Proceeding by contradiction, we assume that
there exists x0 ∈ (a0, b0) ∩ S. Using Proposition 7, we see that for some e1 = ±1 and
t1 ∈ [t0, T (x0)), there are continuous t 7→ zi(t) where i = 1 and 2 such that zi(t)→ x0 as
t→ T (x0) and

∀t ∈ [t1, T (x0)), e1u(z1(t), t) > 0 and e1u(z2(t), t) < 0.

Therefore, u changes sign in (a0, b0) × [t1, T (x0)), which is in contradiction with (105).
Thus, (a0, b0) ⊂ R and Theorem 4 follows.

4.3 Non existence of characteristic points for equation (2)

This subsection is dedicated to the study of equation (2) which we recall here:{
∂2
ttu = ∂2

xxu+ |u|p,
u(0) = u0 and ut(0) = u1.

(106)

We take p > 1 and (u0, u1) ∈ H1
loc,u×L2

loc,u. Our aim is to prove Theorem 4’, which asserts
that the set of characteristic points is empty, for any blow-up solution of (106). To do so,
we need to perform for equation (106), an almost identical analysis to what we did for
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equation (1), in our previous papers, including this last one. Therefore, we only give the
main steps and stress only the novelties.

Consider u(x, t) a solution of equation (2) that blows up on some graph x 7→ T (x).
As for equation (1), we denote the set of non characteristic points by R and the set of
characteristic points by S. Our aim is to show that S = ∅.
Given x0 ∈ R and T0 ∈ (0, T (x0)], we define wx0,T0 as in (5) by

wx0,T0(y, s) = (T0 − t)
2
p−1u(x, t), y =

x− x0

T0 − t
, s = − log(T0 − t). (107)

If T0 = T (x0), then we simply write wx0 instead of wx0,T (x0). The function w = wx0,T0

satisfies the following equation for all y ∈ B = B(0, 1) and s ≥ − log T0:

∂2
ssw = Lw − 2(p+ 1)

(p− 1)2
w + |w|p − p+ 3

p− 1
∂sw − 2y∂2

y,sw. (108)

The Lyapunov functional for this equation is defined in H (9) and is given by

Ẽ(w(s)) =
∫ 1

−1

(
1
2

(∂sw)2 +
1
2

(∂yw)2 (1− y2) +
(p+ 1)
(p− 1)2

w2 − 1
p+ 1

|w|pw
)
ρdy

and satisfies
d

ds
Ẽ(w(s)) = − 4

p− 1

∫ 1

−1
(∂sw(y, s))2 ρ

1− y2
dy.

We first give the following lower bound:

Lemma 4.6 (A lower bound on solutions of (2)) For all R > 0, there exists M(R) >
0 such that for all x ∈ (−R,R) and t ∈ [0, T (x)), we have u(x, t) ≥ −M(R).

Proof: Using Duhamel’s formula, we write for all x ∈ R and t ∈ [0, T (x)),

u(x, t) = S(t)u0(x) + S1(t)u1(x) +
∫ t

0
(S1(t− τ)|u(τ)p|)(x)dτ (109)

where

S(t)h(x) =
1
2

(h(x+ t) + h(x− t)) and S1(t)h(x) =
1
2

∫ x+t

x−t
h(x′)dx′.

Take R > 0 and introduce R0 = R+ max|x|≤R T (x). Since we have by hypothesis,

u0 ∈ H1(−R0, R0) ⊂ L∞(−R0, R0) and u1 ∈ L2(−R0, R0),

we use the continuity of x 7→ T (x) to write from (109):

u(x, t) ≥ S(t)u0(x) + S1(t)u1(x) ≥ −‖u0‖L∞(−R0,R0) −
√
R0‖u1‖L2(−R0,R0),

which concludes the proof of Lemma 4.6.

Using Lemma 4.6, we get the following consequences:
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Claim 4.7 (A lower bound on solutions of (108))If x0 ∈ R, and T0 ∈ (0, T (x0)],
then:
(i) For all y ∈ (−1, 1) and s ≥ − log T0, we have w(y, s) ≥ −M0e

− 2s
p−1 , where M0 =

M(|x0|+ T (x0)).
(ii) For all s ≥ − log T0,

1
2

∫ 1

−1
|w|p+1ρdy − CMp+1

0 e
− 2(p+1)s

p−1 ≤
∫ 1

−1
|w|pwρdy ≤

∫ 1

−1
|w|p+1ρdy,

(1− 2M0e
− 2s
p−1 )

∫ 1

−1
|w|p+1ρdy − CM0e

− 2s
p−1 ≤

∫ 1

−1
|w|pwρdy.

Proof:
(i) It follows straightforwardly from Lemma 4.6.
(ii) Consider x ≥ − log T0. The right-hand side inequality is obvious. For the left-hand
side inequality, we use (i) to write

|z|pz − |z|p+1 ≥ −ε0|z|p ≥ max(−1
2
zp+1 − 2pεp+1

0 ,−ε0(1 + zp+1))

where z = w(y, s) and ε0 = 2M0e
− 2s
p−1 . By integration, (ii) follows.

In the following, we give the following blow-up criterion for equation (2):

Claim 4.8 (A blow-up criterion for equation (2)) Consider W (y, s) a solution to
equation (108) such that W (y, s0) is defined for all |y| < 1 and Ẽ(W (s0)) < 0 for some
s0 ∈ R. Then, W (y, s) cannot exist for all (y, s) ∈ (−1, 1)× [s0,∞).

Proof: The proof is the same as the proof of Theorem 2 in Antonini and Merle [3] (of
course, one need to use the Lyapunov functional Ẽ(w)).

Using the Lyapunov functional Ẽ(w) together with the estimate in (ii) of Claim 4.7,
one can adapt with no difficulty the analysis of our previous papers ([10], [11], [12] and
[13], without forgetting the present paper) to equation (2), and get the same results, with
the following new feature:
Due to the lower bound of (i) in Claim 4.7, only nonnegative objects appear in the limit
at infinity of wx0 when x0 ∈ R (take θ(x0) = 1 in (12) and (13)) and in the asymptotic
decomposition of wx0 when x0 ∈ S (take ei = 1 for all i = 1, ..., k in (20)). This is the
main difference with the case of equation (1), where different signs may appear. More
precisely, we have the following:

Claim 4.9 (Classification of nonnegative stationary solutions of equation (108))
Consider w ∈ H0 a nonnegative stationary solution of (108). Then

either w ≡ 0 or w(y, s) = κ(d, y) (110)

for some d ∈ (−1, 1), where κ(d, y) is defined in (11).
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Remark: It is easy to prove that all stationary solutions of (108) in H0 are in fact
nonnegative, hence characterized by (110).
Proof: If w ∈ H0 a nonnegative stationary solution of (108), then it is also a stationary
solution of (6). Using Proposition 1 of [13], we see that either w ≡ 0 or w(y, s) = eκ(d, y)
for some d ∈ (−1, 1) and e = ±1. Since w is nonnegative, we get e = 1.

Arguing as in [13] (note that the Liouville Theorem 2 and 2’ of [13] hold for equation
(1) and that only nonnegative solutions are possible), we get that the set R of non charac-
teristic points is non empty, open and x 7→ T (x) is C1 on R (see page 3 in this paper, see
Theorem 1 and the following remark in [13]). In other words, the set S of characteristic
points is closed and

∂S ⊂ S.

As a consequence of the fact that only nonnegative solitons appear in the asymptotitc
decomposition (20) of wx0 when x0 ∈ S, we have the following result which is the main
difference with equation (1):

Claim 4.10
(i) For all x0 ∈ S, k(x0) = 0 or 1.
(ii) For all x0 ∈ ∂S, k(x0) = 1.
(iii) Consider x0 ∈ ∂S. If there exists a sequence xn ∈ R converging from the left (resp.
the right) to x0, then x0 is left-non-characteristic (resp. right-non-characteristic).

Proof:
(i) Proceeding by contradiction, we assume that for some x0 ∈ S, we have k(x0) ≥ 2. As
for equation (1), wx0 can be decomposed as s→∞ as a sum of decoupled solitons (take

ei = 1 for all i = 1, ..., k, (111)

in (20)), and we can show that (up to slightly changing the solitons’ location), the solitons’
centers satisfy the same ODE system (22) as in the case of equation (1).
Therefore, (i) of Proposition 3.1 holds and we have

∀i = 1, ..., k, ei = (−1)i+1e1.

Since k(x0) ≥ 2, this is in contradiction with (111). Thus, (i) holds.
(ii) Using Lemma 4.4, we see that for all x0 ∈ ∂S, k(x0) 6= 0. Using (i), we get the
conclusion.
(iii) Consider x0 ∈ ∂S. From (ii), we have k(x0) = 1. Applying (ii) of Lemma 4.4, we get
the result. This concludes the proof of Claim 4.10.

Now, we are ready to give the proof of Theorem 4’.

Proof of Theorem 4’: Assume by contradiction that S 6= ∅. Since R 6= ∅ (see the
remark following Theorem 1 in [13]), it follows that ∂S 6= ∅. If x0 ∈ ∂S, then up to
replacing u(x, t) by u(−x, t), we assume that there exists a sequence xn ∈ R → x0 from
the left as n→∞. Applying Claim 4.10, we see that

k(x0) = 1 and x0 is left-non-characteristic. (112)
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Now, we consider 2 cases.
- If [x0,∞) ⊂ S, then we have from Lemma 4.2 and the positivity of T (x) that

∀x ≥ x0, T (x) = T (x0) + (x− x0).

Therefore, x0 is right-non-characteristic, hence non characteristic. Contradiction with the
fact that x0 ∈ ∂S ⊂ S.
- Now, if [x0,∞) 6⊂ S, then we can define x1 ≥ x0 maximal such that

[x0, x1] ⊂ S.

Since x1 is maximal, it follows that x1 ∈ ∂S and that there exists a sequence yn ∈ R → x1

from the right as n→∞. Applying Claim 4.10, we see that

k(x1) = 1 and x1 is right-non-characteristic. (113)

If x1 = x0, then x0 is non characteristic by (112), which is a contradiction.
If x1 > x0, then applying Lemma 4.2, we see that for some x∗ ∈ [x0, x1], we have

∀x ∈ [x0, x1], T (x) = T (x∗)− |x− x∗|.

If x∗ > x0, then x0 is right-non-characteristic, hence non characteristic by (112). Contra-
diction again.
If x∗ = x0, then x1 is left-non-characteristic, hence non characteristic by (113). This is in
contradiction with the fact that x1 ∈ ∂S ⊂ S.
This concludes the proof of Theorem 4’.

4.4 Estimates on various norms of the solution localized at characteristic
points

Il faudrait rajouter des corrections logarithmiques sur ‖wx0‖L∞(−1,1), en utilisant le fait
que ‖κ(d1(s))‖L∞(−1,1) ∼ |s|−α.....

If x0 ∈ R, we know from [11] (Theorem 1.8 page 1132) that

∀s ≥ − log
T (x0)

4
, 0 < ε0(N, p) ≤ ‖wx0(s)‖H1(−1,1) + ‖∂swx0(s)‖L2(−1,1) ≤ K, (114)

where K depends only on the norm of initial data, δ0(x0) defined in (4), and on an upper
bound on T (x0) and 1/T (x0). Since we have an upper and a lower bound in (114), this
means that the blow-up rate of u near x0 is of ODE type, i.e. given by (T (x0)− t)−

2
p−1 .

If x0 ∈ S, we could only obtain an upper bound in H (see Proposition 3. page 66 in
[12]):

∀s ≥ s0, ‖(wx0(s), ∂swx0(s))‖H + ‖(wx0(s), ∂swx0(s))‖H1×L2(− 1
2
, 1
2

) ≤ K, (115)

where s0 ≥ − log T (x0) and C0 > 0. Note that (115) is valid also on H1×L2(−1+η, 1−η),
for any η > 0 and that we couldn’t obtain information on the whole interval (−1, 1)
with no weights. Note also that no lower estimate could be derived in our previous
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work. As a matter of fact, Proposition 6 shows that asymptotically, the solution is a
decoupled sum of solitons among them two go to the boundary ±1. Thus, any norm on
(−1 + η, 1 − η) where η > 0 cannot be a good measure for the size of the solution at
blow-up (to illustrate this, we give at the end of this subsection a counterexample where
‖(wx0(s), ∂swx0(s))‖H1×L2(−1+η,1−η) → 0 as s → ∞, for any η > 0). We now claim the
following:

Proposition 4.11 The following assertions are equivalent:
(a) x0 ∈ S.
(b) ‖wx0(s)‖Lp+1(−1,1) →∞ as s→∞.
(c) ‖wx0(s)‖H1(−1,1) →∞ as s→∞.

Remark: From this Proposition, we see that near a characteristic point, the blow-up rate
of u(x, t) in H1 is larger that the ODE rate (T (x0)− t)−

2
p−1 .

Remark: When x0 ∈ S, the behavior of ‖w(s)‖L2(−1,1) and ‖∂sw(s)‖L2(−1,1) as s → ∞
should be less universal and depends on the power p.
Proof: Clearly, (b) implies (c) from the Sobolev injection and (c) implies (a) by (114). It
remains then to prove that (a) implies (b) to conclude.
Let us take x0 ∈ S and prove (b). We claim that it is enough to prove that for some c0 > 0
and for all δ ∈ (0, 1), there exists s0(δ) ∈ R such that

∀s ≥ s0,

∫ 1

1−δ
|w(y, s)|p+1ρ(y)dy ≥ c0 > 0. (116)

Indeed, if (116) is true, then we write for any δ ∈ (0, 1) and s ≥ s0(δ),∫ 1

−1
|wx0(y, s)|p+1dy ≥

∫ 1

1−δ0
|wx0(y, s)|p+1dy ≥ 1

ρ(δ)

∫ 1

1−δ0
|wx0(y, s)|p+1ρ(y)dy ≥ c0

ρ(δ)
.

Since c0
ρ(δ) →∞ as δ → 0, (b) follows. Let us prove (116) then.

Using Proposition 6 and Lemma B.1, we see that for some e1 = ±1, we have

‖wx0(s)− e1

k∑
i=1

(−1)i+1κ(di(s), ·)‖Lp+1
ρ
→ 0 as s→∞,

where
ζi+1(s)− ζi(s)→∞ as s→∞, for all i = 1, ..., k − 1, (117)

and
ζk(s)→∞ as s→∞. (118)

Therefore, given δ ∈ (0, 1), we see that

‖wx0(s)− e1

k∑
i=1

(−1)i+1κ(di(s), ·)‖Lp+1
ρ (1−δ,1)

→ 0 as s→∞. (119)
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Performing the change of variables ξ = tanh y and using (117) and (118), we write for δ
small enough,

‖
k∑
i=1

(−1)i+1κ(di(s), ·)‖Lp+1
ρ (1−δ,1)

=

∥∥∥∥∥
k∑
i=1

(−1)i+1 cosh−
2
p−1 (ξ − ζi(s))

∥∥∥∥∥
Lp+1(ξ>A(δ))

≥ 1
2
‖ cosh−

2
p−1 (ξ − ζk(s))‖Lp+1(ξ>A(δ))

≥ 1
4
‖ cosh−

2
p−1 (ξ − ζk(s))‖Lp+1(R) =

1
4
‖ cosh−

2
p−1 (ξ)‖Lp+1(R) ≡ c0

where A(δ) = tanh−1(1 − δ). Therefore, using (119), we see that for s large enough,
(116) holds. Since we already know that (116) implies (b), this concludes the proof of
Proposition 4.11.

Remark: We give here an example (with odd initial data) where
‖(wx0(s), ∂swx0(s))‖H1×L2(− 1

2
, 1
2

) is not bounded from below by a positive constant:

Claim 4.12 If the initial data is odd and u(x, t) blows up in finite time, then for any
η ∈ (0, 1), ‖(w0(s), ∂sw0(s))‖H1×L2(−1+η,1−η) → 0 as s→∞.

Remark: It is enough to take odd initial data with large plateaus to guarantee that u(x, t)
blows up and satisfies the hypotheses of this claim.
Proof: We already know from Proposition 1 that 0 ∈ S. Using Proposition 6, we see that
for some k ≥ 2 and e1 = ±1, we have∥∥∥∥∥∥∥

(
w0(s)
∂sw0(s)

)
− e1


k(x0)∑
i=1

(−1)i+1κ(di(s), ·)

0


∥∥∥∥∥∥∥
H

→ 0 as s→∞, (120)

where di(s) = − tanh ζi(s) satisfy

ζi+1(s)− ζi(s)→∞ as s→∞, for all i = 1, ..., k − 1. (121)

Using Lemma B.1, we see that

sup
|y|<1

∣∣∣∣∣(1− y2)
1
p−1w0(y, s)−

k∑
i=1

e∗i (1− y2)
1
p−1κ(di(s), y)

∣∣∣∣∣→ 0 as s→∞. (122)

We claim that the conclusion follows if we prove the following:

∀i = 1, ..., k, |di(s)| → 1 as s→∞, (123)

since we have from the definition (11) of κ(d, y) that

∀η ∈ (0, 1), ‖κ(d, y)‖L∞(−1+η,1−η) ≤ ‖κ(d, y)‖H1(−1+η,1−η) → 0 as |d| → 1. (124)

It remains to prove (123) to conclude.
Proof of (123): If for some i0 = 1, ..., k and δ0 ∈ (0, 1), we have |di(sn)| ≤ δ0 for some
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sequence sn → ∞ as n → ∞, then up to extracting a subsequence, we can assume that
di(sn) → d0 ∈ (−1, 1) as n → ∞. Using (121), we see that if i 6= i0, then |di(sn)| → 1 as
n→∞. Therefore, using (122) and (124), we see that

sup
|y|< 1+d0

2

|w0(y, s)− κ(di0 , y)| → 0 as s→∞.

Since κ(di0 , y) > 0 if |y| < 1+d0
2 , it follows that w0(y, s) can not be odd, and by the

selfsimilar transformation (5), u(x, t) cannot be odd neither, which is a contradiction.
Thus, (123) holds and Claim 4.12 is proved.

A Continuity with respect to initial data of the blow-up
time at a non characteristic point

This section is devoted to the proof of Proposition 2.1. The proof is more or less included
in the arguments of the proof of Lemma 2.2 of [13]. We only give here a sketch of the
proof (see [13] for more details).

Sketch of the proof of Proposition 2.1: We will prove the continuity in the norm H1 ×
L2(R) since the result with the norm H1 × L2(|x| < A0) follows from the finite speed of
propagation.
Using the continuity of u(t0) for t0 < T (x0) with respect to initial data, it follows that
T (x0) is lower semi-continuous as a function of initial data.
For the upper continuity, we consider T0 > T (x0) to be taken close enough to T (x0) and
aim at proving that ũ(x, t) blows up in finite time T̃ (x0) < T0, where ũ(x, t) is the solution
of equation (1) with initial data (ũ0, ũ1) close enough to (u0, u1).

Up to changing u in −u, we know from (13) that for some d0 ∈ (−1, 1) and δ0 > 0,∥∥∥∥( wx0(s)
∂swx0(s)

)
−
(
κ(d0, .)
0

)∥∥∥∥
H1×L2(|y|<1+δ0)

→ 0 as s→∞. (125)

Consider s0 < 0 to be fixed later and introduce t0 < T (x0) such that T (x0)−t0
T0−t0 = 1 − es0 .

Using the selfsimilar transformation (5) and (125), we see that

wx0,T0(y,− log(T0 − t0)) = (1− es0)−
2
p−1wx0

(
y

1− es0
,− log(T (x0)− t0)

)
,∥∥∥∥( wx0,T0(− log(T0 − t0))

∂swx0,T0(− log(T0 − t0))

)
−
(
w−(s0)
∂sw−(s0)

)∥∥∥∥
H1×L2(−1,1)

→ 0 (126)

as T0 → T (x0), where w−(y, s) = κ0
(1−d2

0)
1
p−1

(1−es0+d0y)
2
p−1

is a particular solution of equation (6).

Since E(w−(s0)) < 0 for some s0 < 0 from Appendix B in [13], we see from (126) that for
T0 close enough to T (x0) and t0 defined above, we have

E(wx0,T0(− log(T0 − t0))) < 0. (127)

Using the blow-up criterion of Antonini and Merle (see Theorem 2 in [3]), we see that
wx0,T0 cannot be defined for all (y, s) ∈ (−1, 1)× [− log T0,∞), which means that u blows
up in finite time and that T (x0) < T0. This yields the upper semi-continuity and concludes
the proof of Proposition 2.1.
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B Estimates on the quadratic form ϕ

This section is devoted to the proof of Lemma 3.5. We proceed in two subsections:
- in the first subsection, we give some preliminary results, in particular, we change the
problem to the ξ variable, where y = tanh ξ.
- in the second subsection, we give the proof of Lemma 3.5.

B.1 Preliminaries and formulation in the ξ variable with y = tanh ξ

We first recall the following result from [12].

Claim B.1 (i) (A Hardy-Sobolev type identity) For all h ∈ H0, it holds that

‖h‖L2
ρ

1−y2

+ ‖h‖
Lp+1
ρ

+ ‖h(1− y2)
1
p−1 ‖L∞(−1,1) ≤ C‖h‖H0 .

(ii) (Boundedness of κ(d, y) in several norms) For all d ∈ (−1, 1), it holds that

‖κ(d, y)‖
Lp+1
ρ

+ ‖κ(d, y)(1− y2)
1
p−1 ‖L∞(−1,1) ≤ C‖κ(d, y)‖H0 ≤ CE(κ0).

Proof: For (i), see Lemma 2.2 page 51 in [12]. For (ii), use (i) and identity (49) page 59
in [12].

To prove estimates about ϕ, we take advantage of the decoupling in the solitons’ sum
(see (44)) and use information we proved in [12] for the 1-soliton version of ϕ defined for
all d ∈ (−1, 1), r and r′ in H by

ϕd(r, r) =
∫ 1

−1

(
r′1r
′
1(1− y2)−

(
pκ(d)p−1 − 2(p+ 1)

(p− 1)2

)
r1r1 + r2r2

)
ρdy (128)

and satisfying (see estimate (138) page 91 in [12]):

|ϕd(r, r)| ≤ C‖r‖H‖r‖H. (129)

It happens that the proof is clearer in the ξ variable where

y = tanh ξ.

More precisely, let us introduce the transformations

r(y) 7→ T̄ r(ξ) = r̄(ξ) = r(y)(1− y2)
1
p−1 and r(y) 7→ T̂ r(ξ) = r̂(ξ) = r(y)(1− y2)

1
p−1

+ 1
2 ,

(130)
and for r = (r1, r2), the notation

T̃ (r) = r̃ =
(
r̄1

r̂2

)
=
(
T̄ (r1)
T̂ (r2)

)
.

In the following claim, we transform ϕ and ϕd in the new set of variables. Let us first
introduce the quadratic forms (where d ∈ (−1, 1)):

ϕ̄d(q,q) =
∫

R

(
q′1q
′
1 + βd(ξ)q1q1 + q2q2

)
dξ (131)

ϕ̄(q,q) =
∫

R

(
q′1q
′
1 + β(ξ, s)q1q1 + q2q2

)
dξ (132)
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where (using (11))

βd(ξ) =
4

(p− 1)2
− p(κ̄(d, y))p−1 =

4
(p− 1)2

− pκ̄0(ξ − ζ)p−1 with d = − tanh ζ,

κ̄0(ξ) = κ0 cosh−
2
p−1 (ξ), (133)

β(ξ, s) =
4

(p− 1)2
− p|K̄(ξ, s)|p−1 =

4
(p− 1)2

− p

∣∣∣∣∣
k∑
i=1

eiκ̄0(ξ − ζi(s))

∣∣∣∣∣
p−1

. (134)

In the following claim, we give the effect of the new transformation:

Claim B.2
(i) There exists C0 > 0 such that for all r ∈ H, we have

1
C0
‖r‖H ≤ ‖r̃‖H1×L2(R) ≤ C0‖r‖H.

(ii) If r1 ∈ H0, then (1− y2)T̄
(
Lr1 − 2(p+1)

(p−1)2 r1

)
=
(
∂2
ξ r̄1 − 4

(p−1)2 r̄1

)
.

(iii) For all r, r in H and d ∈ (−1, 1), we have

ϕ(r, r) = ϕ̄ (r̃, r̃) and ϕd(r, r) = ϕ̄d (r̃, r̃)

where ϕ̄ and ϕ̄d are introduced in (132) and (131).

Proof:
(i) Consider r = (r1, r2) ∈ H. Using (130), we first write∫

R
r̄1(ξ)2dξ =

∫ 1

−1
r1(y)2 ρ(y)

1− y2
dy and

∫
R
r̂2(ξ)2dξ =

∫ 1

−1
r2(y)2ρ(y)dy. (135)

Using Lemma B.1, we obtain

‖r1‖2L2
ρ
≤
∫

R
r̄1(ξ)2dξ ≤ ‖r‖2H. (136)

Now, using again (130), we write

∂ξ r̄1(ξ) = ∂yr1(y)(1− y2)
1
p−1

+1 − 2y
p− 1

(1− y2)
1
p−1 r1(y),

therefore,

|∂ξ r̄1|2 ≤ 2|∂yr1|2ρ(1− y2)2 + C|r1|2ρ,
|∂yr1|2ρ(1− y2)2 ≤ 2|∂ξ r̄1|2 + C|r̄1|2.

Integrating this and using Lemma B.1, we write∫
R
|∂ξ r̄1|2dξ ≤ 2

∫ 1

−1
|∂yr1|2ρ(1− y2)dy + C

∫ 1

−1
r2

1

ρ

1− y2
dy ≤ C‖r‖2H,∫ 1

−1
|∂yr1|2ρ(1− y2)dy ≤ 2

∫
R
|∂ξ r̄1|2dξ + C

∫
R
|r̄1|2dξ. (137)
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Gathering (135), (136) and (137), we conclude the proof of (i).
(ii) See page 60 in [12].
(iii) We only prove the estimate for ϕ since it is even easier for ϕd. Using the definitions

(50), (7) and (42) of ϕ, L and ψ, integration by parts and the change of variables (130),
we write

ϕ(r, r) =
∫ 1

−1
[−Lr1.r1 − ψr1r1 + r2r2] ρdy

=
∫ 1

−1
(−Lr1 +

2(p+ 1)
(p− 1)2

r1)r1ρdy − p
∫ 1

−1
r1r1|K|p−1ρdy +

∫ 1

−1
r2r2ρdy

=
∫

R
(1− y2)T̄ (−Lr1 +

2(p+ 1)
(p− 1)2

r1)r̄1dξ − p
∫

R
r̄1r̄1|K̄|p−1dξ +

∫
R
r̂2r̂2dξ

Using (ii) and integration by parts, we see that

ϕ(r, r) = −
∫

R

(
∂2
ξ r̄1 −

4
(p− 1)2

r̄1

)
r̄1dξ − p

∫
R
r̄1r̄1|K̄|p−1dξ +

∫
R
r̂2r̂2dξ

= ϕ̄(r̃, r̃)

where ϕ̄ is introduced in (132). This concludes the proof of Claim B.2.

As we said earlier, we take advantage of the decoupling in the solitons’ sum. In the
following claim, we give a localized estimate coming from an identity we proved in [12] for
ϕ̄d, the 1-soliton version of ϕ defined in (128), then we derive a global estimate for ϕ̄.

Claim B.3 (Identity for ϕd)
(i) There exist ε0 > 0 and A0 > 0 such that for all A > A0, d ∈ (−1, 1) and q ∈ H1×L2(R),
we have

ϕ̄d(q
√
χA,d, q

√
χA,d) ≥ ε0‖q

√
χA,d‖2H1×L2 −

ε0
8k
‖q‖2H1×L2 −

1∑
λ=0

(T̃−1(q))2

where χA,d(ξ) = χ1,0( ξ−ζA ), tanh ζ = −d and χ1,0 ∈ C∞(R, [0, 1]) is even, decreasing for
ξ > 0 with χ1,0(ξ) = 1 if |ξ| < 1 and χ1,0(ξ) = 0 if |ξ| > 2.
(ii) There exists ε2 > 0 such that for s large enough and for all q ∈ H1 × L2, we have

ϕ̄(q, q) ≥ ε2‖q‖2H1×L2 −
1
ε2

k∑
i=1

2∑
λ=1

πdiλ (T̃−1(q))2

Proof:
(i) Consider some d ∈ (−1, 1) and r ∈ H. On the one hand, we write from Proposition 4.7
page 90 in [12],

ϕd(r−,d, r−,d) ≥ 2ε1‖r‖2H −
1
ε1

1∑
λ=0

|πd1(r)|2 (138)
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for some ε1 > 0 where rd− = πd−(r) defined in (57). On the other hand, using the continuity
of ϕd stated in (129) and (46), we write

ϕd(r−,d, r−,d) ≤ ϕd(r, r) + C
1∑

λ=0

|πdλ(r)|2 + C‖r‖H
1∑

λ=0

|πdλ(r)|

≤ ϕd(r, r) +
C

ε1

1∑
λ=0

|πdλ(r)|2 + ε1‖r‖H.

Using (138), we see that

ϕd(r, r) ≥ ε0‖r‖2H −
1∑

λ=0

πdλ(r)2.

Using the ξ framework and Claim B.2, we get for all q ∈ H1 × L2(R),

ϕ̄d(q, q) ≥ ε0‖q‖2H1×L2(R) −
1∑

λ=0

πdλ(T̃−1(q))2.

Now, we claim that (ii) follows from the fact that for all d ∈ (−1, 1) and λ = 0 or 1, we
have

∀u ∈ H1×L2(R), |πdλ(T̃−1(u))| ≤ C
∫
κ̄0(ξ− ζ)|(|u1(ξ)|+ |u2(ξ)|)dξ where d = − tanh ξ.

(139)
Indeed, consider q ∈ H1 × L2, d ∈ (−1, 1), A > 0 and λ = 0 or 1. Taking

u = T̃−1(q(1−√χA,d)),

using the Cauchy-Schwartz inequality and performing the change of variables z = ξ − ζ,
we see that

|πdλ(T̃−1(q(1−√χA,d)))| ≤ C

∫
κ̄0(ξ − ζ)(1−√χA,d)(|q1(ξ)|+ |q2(ξ)|)dξ

≤ C

(∫
κ̄0(z)2(1−√χA,0)2dz

)1/2

‖q‖H1×L2 .

Using Lebesgue’s theorem, we find A0 > 0 such that if A ≥ A0, then

|πdλ(T̃−1(q(1−√χA,d)))| ≤
√

ε0
16k
‖q‖H1×L2

(uniformly in d ∈ (−1, 1) of course). Since πdλ is linear, this gives

|πdλ(T̃−1(q
√
χA,d))|2 ≤ 2|πdλ(T̃−1(q))|2 +

ε0
8k
‖q‖2H1×L2 .

Using (i) with q
√
χA,d, (ii) follows. It remains to prove (139) to finish the proof of Claim

B.3.
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Proof of (139): Consider d ∈ (−1, 1), λ = 0 or 1 and u ∈ H1 × L2. If we introduce
r = T̃−1(q) which is in H by (i) of Claim B.2, then we have from (36) and integration by
parts

πdλ(r) =
∫ 1

−1
[(−LWλ,1(d) +Wλ,1(d))r1 +Wλ,2(d)r2] ρ(y)dy. (140)

Since we have from (38), (39) and (11)

Wλ,2(d, y) ≤ Cκ(d, y) and | − LWλ,1(d, y) +Wλ,1(d, y)| ≤ Cκ(d, y)
1− y2

,

we get from (140) and the transformation (130)

|πdλ(r)| ≤ C

∫ 1

−1
κ(d, y)|r1(y)| ρ(y)

1− y2
dy + C

∫ 1

−1
κ(d, y)|r2(y)|ρ(y)dy

≤ C

∫
κ̄(d, ξ)|u1(ξ)|dξ +

∫
κ̂(d, ξ)|u2(ξ)|dξ.

Since we have from (130) and (133),

κ̂(d, ξ) ≤ κ̄(d, ξ) = κ̄0 cosh−
2
p−1 (ξ − ζ) = κ0(ξ − ζ) with d = − tanh,

(139) follows. This concludes the proof of (i) in Claim B.3.

(ii) Introducing the notation

χi = χA,di(ξ) = χ1,0

(
ξ − ζi
A

)
and using (132), we write

ϕ̄(q, q) =
∫

(∂ξq1)2 +
2(p+ 1)
(p− 1)2

∫
q2

1 +
∫
q2

2 − p
∫
|K̄|p−1q2

1

=
k∑
j=1

[∫
(∂ξq1)2χj +

2(p+ 1)
(p− 1)2

∫
q2

1χj +
∫
q2

2χj − p
∫
|K̄|p−1q2

1χj

]

+
∫

(∂ξq1)2(1−
k∑
j=1

χj) +
2(p+ 1)
(p− 1)2

∫
q2

1(1−
k∑
j=1

χj) +
∫
q2

2(1−
k∑
j=1

χj)

− p

∫
|K̄|p−1q2

1(1−
k∑
j=1

χj)

=
k∑
j=1

ϕ̄(q
√
χj , q
√
χj) + ϕ̄

q
√√√√1−

k∑
j=1

χj , q

√√√√1−
k∑
j=1

χj

+ I1(s) (141)

where

I1(s) = −
k∑
j=1

{∫
q2

1

(
∂ξ
√
χj
)2 − 2

∫
q1∂ξq1

√
χj∂ξ
√
χj

}

−
∫
q2

1

∂ξ
√√√√1−

k∑
j=1

χj

2

− 2
∫
q1∂ξq1

√√√√1−
k∑
j=1

χj∂ξ

√√√√1−
k∑
j=1

χj . (142)
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Using the definitions (132) and (131) of ϕ̄ and ϕ̄d, we write

ϕ̄
(
q
√
χj , q
√
χj
)

= ϕ̄di(s)
(
q
√
χj , q
√
χj
)
− I2(s),

ϕ̄

q
√√√√1−

k∑
j=1

χj , q

√√√√1−
k∑
j=1

χj

 ≥ c0(p)

∥∥∥∥∥∥q
√√√√1−

k∑
j=1

χj

∥∥∥∥∥∥
2

H1×L2

− I3(s)

where c0(p) = min
(

1, 2(p+1)
(p−1)2

)
,

I2(s) = p

∫ (
|K̄(ξ, s)|p−1 − κ̄0(ξ − ζi(s))p−1

)
q2

1χj and I3(s) = p

∫
|K̄|p−1q2

1(1−
k∑
j=1

χj).

Since we have from Claim B.3 and (134)

|∂ξχj | ≤ C/A, ‖
(
|K̄(ξ, s)|p−1 − κ̄0(ξ − ζi(s))p−1

)
χj‖L∞ ≤ C(A)J(s), (143)

and ‖|K̄|p−1(1−
k∑
j=1

χj)‖L∞ ≤ Ce−2A

where J(s)→ 0 is defined in (23), it follows that for A and s large enough,

|I1(s)|+ |I2(s)|+ |I3(s)| ≤ C

A
‖q1‖2H1 . (144)

Therefore, using (141), (142), (143), (143), (144) and Claim B.3, we write for A and s
large enough,

ϕ̄(q, q) ≥ ε0

k∑
j=1

‖q√χj‖2H1×L2 + c0(p)

∥∥∥∥∥∥q
√√√√1−

k∑
j=1

χj

∥∥∥∥∥∥
2

H1×L2

− ε0
4
‖q‖2H1×L2 (145)

−
k∑
j=1

1∑
λ=0

|πdj(s)λ (T̃−1(q))|2.

Since (141) holds with ϕ̄ replaced by the canonical inner product of H1×L2, we use (144)
to write

‖q‖2H1×L2 ≤
k∑
j=1

‖q√χj‖2H1×L2 +

∥∥∥∥∥∥q
√√√√1−

k∑
j=1

χj

∥∥∥∥∥∥
2

H1×L2

+
C

A
‖q‖2H1×L2

hence for A and s large enough,

‖q‖2H1×L2 ≤ 2
k∑
j=1

‖q√χj‖2H1×L2 + 2

∥∥∥∥∥∥q
√√√√1−

k∑
j=1

χj

∥∥∥∥∥∥
2

H1×L2

and (ii) follows from (145). This concludes the proof of Claim B.3.
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B.2 Proof of Lemma 3.5

Now we are ready to start the proof of Lemma 3.5.

Proof of Lemma 3.5:

(i) Since ψ(y, s) = p|K(y, s)|p−1 − 2(p+1)
(p−1)2 with K(y, s) =

∑k
j=1 ejκ(dj(s), y) by (42),

we split ϕ(r, r′) into 2 parts as follows:
- We first use the definition (9) of the norm in H to write∣∣∣∣∫ 1

−1

(
∂yr1∂yr

′
1(1− y2) +

2(p+ 1)
(p− 1)2

r1r
′
1 + r2r

′
2

)
ρdy

∣∣∣∣ ≤ C‖r‖H‖r′‖H.
- Then, using Claim B.1, we write∣∣∣∣∫ 1

−1
|K(s)|p−1r1r

′
1ρdy

∣∣∣∣ ≤ C ∫ 1

−1

|r1||r′1|
1− y2

ρdy ≤ C‖r1‖L2
ρ

1−y2

‖r′1‖L2
ρ

1−y2

≤ C‖r‖H‖r′‖H.

Using these two bounds gives the conclusion of (i).

(ii) Proof of (52): It immediately follows from (49), (55) and (56).

Proof of (53): The right inequality follows from (i). For the left inequality, we use Claim
B.2 to translate (ii) of Claim B.3 back to the y variable:
for some ε2 > 0, for s large enough and for all r ∈ H,

ϕ(r, r) ≥ ε2‖r‖2H −
1
ε2

k∑
i=1

1∑
λ=0

|πdi(s)λ (r)|2. (146)

Using (146) with r(y) = q−(y, s), we write

ϕ(q−, q−) ≥ ε2‖q−‖2H −
1
ε2

k∑
i=1

1∑
λ=0

|πdiλ (q−)|2. (147)

Since πdiλ (F di1 ) = δλ,1 by (48), we use (52) to write

πdiλ (q−) = πdiλ (q)−
k∑
j=1

π
dj
1 (q)πdiλ (F dj1 ) =

∑
j 6=i

π
dj
1 (q)πdiλ (F dj1 ). (148)

Using (55), (36) and (40), we see that

|αj1| = |π
dj
1 (q)| = |φ(Wλ(dj), q)| ≤ ‖Wλ(dj)‖H‖q‖H ≤ C‖q‖H. (149)

Using (36), integration by parts and the definition (7) of L, we write

πdiλ (Fµ(dj)) =
∫ 1

−1

(
Wλ,1(di)∂dκ(dj) + ∂yWλ,1(di)∂yFµ,1(dj)(1− y2)

)
ρdy

+
∫ 1

−1
Wλ,2(di)Fµ,2(dj)ρdy

=
∫ 1

−1
(−LWλ,1(di) +Wλ,1(di))Fµ,1(dj)ρdy +

∫ 1

−1
Wλ,2(di)Fµ,2(dj)ρdy.
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Since we have from the definitions (11), (38), (39) and (45) of κ(d, y), Wλ(d, y) and Fµ(d, y),
for all (d, y) ∈ (−1, 1)2,

|Wλ,2(d, y)|+ |LWλ,1(d, y)−Wλ,1(d, y)| ≤ Cκ(d, y)
1− y2

and |Fµ,l(d, y)| ≤ Cκ(d, y), (150)

we use (i) of Lemma E.1 to write for s large enough,∣∣∣πdiλ (Fµ(di))
∣∣∣ ≤ C ∫ 1

−1
κ(di)κ(dj)

ρ

1− y2
dy ≤ C|ζi − ζj |e−

2
p−1
|ζi−ζj | ≤ CJ̄(s) (151)

by definition (55) of J̄ . Using (148) and (149), we see that for s large enough,

|πdiλ (q−)| ≤ CJ̄‖q‖H.

Using (147), we see that the left inequality in (53) follows.

Proof of (54): The right inequality follows from (149), (51) and (53). For the left inequality
in (54), we write from the bilinearity of ϕ, (52), (51) and (46)

ϕ(q−, q−) ≥ ϕ(q, q)− C
k∑
i=1

|αi1|2 − C‖q‖H
k∑
i=1

|αi1|

≥ ϕ(q, q)− C

ε2

k∑
i=1

|αi1|2 −
ε2
2
‖q‖2H

where ε1 > 0 is introduced in (146). Using (146) with r = q, we get the left inequality in
(54). This concludes the proof of Lemma 3.5. .

C Projection of equation (42) on the different modes

We prove Lemma 3.6 here. We proceed in 3 parts to prove (i), (ii), and finally (iii).

Proof of (i): Projection of equation (42) on F1(di(s), ·) and F0(di(s), ·)
We prove (i) of Lemma 3.6 here. Fixing some i = 1, ..., k and projecting equation (42)

with the projector πdλ (36) (where λ = 0 or 1), we write (putting on top the main terms)

π
di(s)
λ (∂sq) = π

di(s)
λ

(
Ldi(s)(q)

)
− eid′i(s)π

di(s)
λ

(
∂dκ(di(s), y)
0

)
+ π

di(s)
λ

(
0
R

)
+ π

di(s)
λ

(
0
f(q1)

)
+ π

di(s)
λ

(
0
Vi(y, s)q1

)
−

k∑
j 6=i

ejd
′
j(s)π

di(s)
λ

(
∂dκ(dj(s), y)
0

)
.(152)

Note that we expand the operator L(q) according to (43). In the following, we handle
each term of (152) in order to finish the proof of (58).
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- Using the analysis performed in Claim 5.3 page 104 and Step 1 page 105 in [12] for
the case of one soliton (k = 1), we immediately get the following estimates:∣∣∣πdi(s)λ (∂sq)− αi1

′(s)
∣∣∣ ≤ C0

1− (di(s))2
|d′i(s)|‖q(s)‖H ≤ C0|ζ ′i(s)|‖q(s)‖H,

π
di(s)
λ

(
Ldi(s)(q)

)
= λαi1(s),

d′i(s)π
di(s)
λ

(
∂dκ(di(s), y)
0

)
= − 2κ0

(p− 1)
d′i(s)

(1− (di(s))2)
=

2κ0

(p− 1)
ζ ′i(s)δλ,0,

|f(q1)| ≤ Cδ{p≥2}|q1|p + C|K|p−2|q1|2 (153)

(recall that di(s) = − tanh ζi(s), hence ζ ′i(s) = − d′i(s)
1−di(s)2 ).

- Since we have from the definitions (42), (11) and (38) of R, κ(d, y) and Wλ,2(d, y)

|R(y, s)| ≤ C
∑
j 6=i

κ(dj , y)p + κ(di, y)p−1κ(dj , y) and |Wλ,2(di, y)| ≤ Cκ(di, y), (154)

we use (36), (i) of Lemma E.1 and the definition (23) of J(s) to write as s→∞∣∣∣∣πdiλ ( 0
R

)∣∣∣∣ =
∣∣∣∣∫ Wλ,2(di)Rρdy

∣∣∣∣ ≤ C
∑
j 6=i

∫ 1

−1
κ(di)κ(dj)pρdy +

∫ 1

−1
κ(di)pκ(dj)ρdy

≤
∑
j 6=i

e
− 2
p−1
|ζi−ζj | ≤ CJ. (155)

- Using (36), (154), (153) and the Hölder inequality, we write∣∣∣∣πdiλ ( 0
f(q1)

)∣∣∣∣ ≤ C

∫ 1

−1
κ(di)|f(q1)|ρdy

≤ Cδp≥2

∫ 1

−1
κ(di)|q1|pρdy + C

∫ 1

−1
κ(di)|K|p−2|q1|2ρdy

≤ Cδp≥2‖κ(di)‖Lp+1
ρ
‖q1‖p

Lp+1
ρ

+ CJi‖q1(1− y2)
1
p−1 ‖L∞

where

Ji =
∫ 1

−1
κ(di)|K|p−2dy. (156)

Using (v) of Lemma E.1 and Claim B.1, we see that∣∣∣∣πdiλ ( 0
f(q1)

)∣∣∣∣ ≤ C ∫ 1

−1
κ(di)|f(q1)|ρdy ≤ Cδp≥2‖q‖pH + C‖q‖2H ≤ C‖q‖2H (157)

where we use (41) in the last step.

- We claim that ∣∣∣∣πdiλ ( 0
Viq1

)∣∣∣∣ ≤ C‖q‖2H + o(J) as s→∞ (158)
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and

|Vi(y, s)| ≤ C1{yi−1<y<yi}
∑
l 6=i

κ(di, y)p−2κ(dl, y) + C
∑
l 6=i

κ(dl, y)p−11{yl−1<y<yl} (159)

where y0 = −1, yj = tanh( ζj+ζj+1

2 ) if j = 1, .., k − 1, yk = 1 and p̄ = min(p, 2). In
particular, we have

−1 = y0 < −d1 < y1 < −d2 < ... < yj < −dj < yj+1 < ... < −dk < yk = 1

and κ(dj(s), yj+1(s)) = κ(dj+1(s), yj+1(s)) for j = 1, ..., k − 1 (use (84) to see this).
We first prove (159) and then (158). To prove (159), using (44), we see that:

• if y ∈ (yi−1(s), yi(s)), then |
∑

l 6=i elκ(dl(s), y)| ≤ 3κ(di(s), y), hence
|Vi(y, s)| ≤ C

∑
l 6=i κ(di(s), y)p−2κ(dl(s), y);

• if y ∈ (yj−1(s), yj(s)) for some j 6= i, then for all l = 1, ..., k, κ(dl(s), y) ≤ κ(dj(s), y),
hence |Vi(y, s)| ≤ C

∑k
l=1 κ(dl(s), y)p−1 ≤ Cκ(dj(s), y)p−1.

Thus, (159) follows. Now, we prove (158). Using (36), Claim B.1 and (159), we write∣∣∣∣πdiλ ( 0
Viq1

)∣∣∣∣ ≤ C ∫ 1

−1
κ(di) |Viq1| ρdy

≤ C‖q1(1− y2)
1
p−1 ‖2L∞ +

(∫ 1

−1
κ(di) |Vi| (1− y2)

1
p−1dy

)2

≤ C‖q‖2H

+
∑
l 6=i

(∫ yi

yi−1

κ(di)p−1κ(dl)(1− y2)
1
p−1dy

)2

+

(∫ yl

yl−1

κ(di)p−1κ(dl)(1− y2)
1
p−1dy

)2

.

Using (ii) of Lemma E.1, (158) follows.

- Consider j 6= i. Since we have from the definitions (11) and (45) of κ(d, y) and
F0(d, y), (

∂dκ(d, y)
0

)
= − 2κ0

(p− 1)(1− d2)
F0(d, y), (160)

we use (151) and the fact that dj = − tanh ζj hence ζ ′j = − d′j
1−d2

j
, to write∣∣∣∣d′jπdiλ ( ∂dκ(dj)

0

)∣∣∣∣ ≤ C|d′j |
1− d2

j

∣∣∣πdiλ (F0(dj)
∣∣∣ ≤ CJ̄ |ζ ′j | (161)

where J̄(s) is defined in (55). Using (152), (153), (155), (157), (158), (161) and (56), we
write for all i = 1, .., k (starting with λ = 0 and then λ = 1),

|ζ ′i| ≤ C|ζ ′i|‖q‖H + CJ + C‖q‖2H + CJ̄
∑
j 6=i
|ζ ′j |, (162)∣∣∣αi1′ − αi1∣∣∣ ≤ C|ζ ′i|‖q‖H + CJ + C‖q‖2H + CJ̄

∑
j 6=i
|ζ ′j |, (163)
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Since ‖q‖H + J → 0 (see (i) of Lemma 3.4), summing up (162) in i, we get,

k∑
i=1

|ζ ′i| ≤ CJ + C‖q‖2H.

Plugging this in (162), we get ∣∣∣αi1′ − αi1∣∣∣ ≤ CJ + C‖q‖2H,

which closes the proof of (58). This concludes the proof of (i) of Lemma 3.6.

Proof of (ii): Differential inequality satisfied by A−(s)
We proceed in 2 steps: we first project equation (42) with the projector π− defined in

(49), and then use that equation to write a differential inequality for A− = ϕ(q−, q−).

Step 2.1 : Projection of equation (42) with π−
In this claim, we project equation (42) with the projector π− defined in (49):

Claim C.1 (A partial differential inequality for q−) For s large enough, we have∥∥∥∥∥∂sq− − Lq− −
k∑
i=1

πdi1 (q)
(

0
ViF1,1(di)

)
−
(

0
f(q1)

)
−
(

0
R

)∥∥∥∥∥
H

≤ CJ + C‖q‖2H

where J(s) is defined in (23).

Proof: Applying the projector π− defined in (49) to equation (42), we write

π− (∂sq) = π− (Lq)−
k∑
i=1

eid
′
iπ−

(
∂dκ(di)
0

)
+ π−

(
0
f(q1)

)
+ π−

(
0
R

)
. (164)

In the following, we will estimate each term appearing in this identity.
- Proceeding as for estimate (213) in [12] in the case of one soliton, one can straight-

forwardly control the left-hand term as follows:

‖π−(∂sq)− ∂sq−‖H ≤ CJ‖q‖H + C‖q‖3H. (165)

- We claim that∥∥∥∥∥π−(Lq)− Lq− −
k∑
i=1

π
di(s)
1 (q)

(
0
ViF1,1(di(s), ·)

)∥∥∥∥∥
H

≤ C‖q(s)‖2H + o(J) as s→∞.

(166)
Indeed, applying the operator L to (52) on the one hand, and using (49) with r = Lq on
the other hand, we write

Lq =
k∑
i=1

π
di(s)
1 (q)LF1(di(s), ·) + Lq−

=
k∑
i=1

π
di(s)
1 (Lq)F1(di(s), ·) +

k∑
i=1

π
di(s)
0 (Lq)F0(di(s), ·) + π−(Lq).
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Therefore,

π−(Lq)−Lq− =
k∑
i=1

π
di(s)
1 (q)LF1(di(s), ·)−πdi(s)1 (Lq)F1(di(s), ·)−

k∑
i=1

π
di(s)
0 (Lq)F0(di(s), ·).

(167)
Since we have from (36) and (47), πdλ(Ldr) = φ(Wλ(d, ·), Ldr) = φ(L∗dWλ(d, ·), r) = λπdλ(r),
using this with (43) and (46) gives for λ = 0 or 1,

LFλ(di(s), ·) = Ldi(s)Fλ(di(s), ·) +
(

0
ViFλ,1(di(s), ·)

)
= λFλ(di(s), ·) +

(
0
ViFλ,1(di(s), ·)

)
(168)

π
di(s)
λ (Lq) = π

di(s)
λ (Ldi(s)q) + π

di(s)
λ

(
0
Viq1

)
= λπ

di(s)
λ (q) + π

di(s)
λ

(
0
Viq1

)
.(169)

Using (167), (168) and (169) together with (158) and (46), we get (166).

- Using the definition (49) of the operator π−, we see that

π−

(
∂dκ(di, ·)
0

)
=

(
∂dκ(di, ·)
0

)
(170)

−
k∑
j=1

π
dj
1

(
∂dκ(di, ·)
0

)
F1(dj , ·)−

k∑
j=1

π
dj
0

(
∂dκ(di, ·)
0

)
F0(dj , ·).

Using (160), it follows from the orthogonality relation (48) that for λ = 0 or 1,

πdiλ

(
∂dκ(di, ·)
0

)
= − 2κ0

(p− 1)(1− d2)
πdiλ (F0(di, ·)) = δλ,0

(
∂dκ(di, ·)
0

)
.

Therefore, it follows from (170) that

π−

(
∂dκ(di, ·)
0

)
= −

∑
j 6=i

π
dj
1

(
∂dκ(di, ·)
0

)
F1(dj , ·)−

∑
j 6=i

π
dj
0

(
∂dκ(di, ·)
0

)
F0(dj , ·).

Using (161), (46) and (58), we see that∥∥∥∥d′i(s)π−( ∂dκ(di(s), ·)
0

)∥∥∥∥
H
≤ C

√
J(s)|ζ ′i(s)| ≤ C

√
J(s)

(
‖q(s)‖2H + J(s)

)
. (171)

- From definition (49) of the operator π−, (46), (157) and (155), we have∥∥∥∥π−( 0
f(q1)

)
−
(

0
f(q1)

)∥∥∥∥
H
≤ C

k∑
λ=1,2; i=1

∣∣∣∣πdi(s)λ

(
0
f(q1)

)∣∣∣∣ ≤ C‖q(s)‖2H,(172)

∥∥∥∥π−( 0
R

)
−
(

0
R

)∥∥∥∥
H
≤ C

k∑
λ=1,2; i=1

∣∣∣∣πdi(s)λ

(
0
R

)∣∣∣∣ ≤ CJ(s). (173)
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Using (164), (165), (166), (171), (172) and (173) closes the proof of Claim C.1.

Step 2.2: A differential inequality on A−(s)
By definition (55) of α−(s), it holds that

A′−(s) = ϕ(∂sq−, q−)− p(p− 1)
2

k∑
i=1

eid
′
iIi (174)

with

Ii =
∫ 1

−1
∂dκ(di)|K|p−2 (q−,1)2 ρdy and K =

k∑
j=1

ejκ(dj).

Using (150), (i) of Claim B.1 and the definition (9) of the norm in H, we see that

|Ii| ≤
C

1− d2
i

∫ 1

−1
κ(di)|K|p−2dy‖q−,1(1− y2)

1
p−1 ‖2L∞ ≤

C

1− d2
i

Ji‖q−‖2H (175)

with Ji defined in (156). Using (174), (175), (v) of Lemma E.1, (58) and (52)∣∣∣∣12A′−(s)− ϕ(∂sq−, q−)
∣∣∣∣ ≤ C‖q‖2H (‖q‖2H + J

)
. (176)

Since ‖q−‖H ≤ C min
(
‖q‖H, J̄‖q‖H +

√
|A−|

)
from (52) and (53), we use (51) and Claim

C.1 to estimate ϕ(∂sq−, q−) in the following:∣∣∣∣ϕ(∂sq−, q−)− ϕ(Lq−, q−)−
∫ 1

−1
q−,2f(q1)ρdy −

∫ 1

−1
q−,2Gρ(y)dy

∣∣∣∣
≤ C‖q−‖H

(
J + ‖q‖2H

)
≤ CJ

√
|A−|+ CJJ̄ + C‖q‖3H

≤ CJ
√
|A−|+ C‖q‖3H + C

k−1∑
m=1

(h(ζm+1 − ζm))2 (177)

where h is defined in (35) and

G(y, s) =
k∑
i=1

αi1(s)Vi(y, s)F1,1(di(s), y) +R(y, s). (178)

In the following, we estimate every term of (177) in order to finish the proof of (59).
- Arguing as in page 107 of [12], we write

ϕ(Lq−, q−) = − 4
p− 1

∫ 1

−1
q2
−,2

ρ

1− y2
dy. (179)

- Since we have from the definitions (11) and (45) of κ(d, y) and F1(d, y),

F1,1(d, y) = F1,2(d, y) ≤ Cκ(d, y), (180)
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using (52) and (157), we write∣∣∣∣∫ 1

−1
q−,2f(q1)ρdy −

∫ 1

−1
q2f(q1)ρdy

∣∣∣∣ ≤ C k∑
i=1

|αi1|
∫ 1

−1
κ(di)|f(q1)|ρdy ≤ C‖q‖3H. (181)

If we introduce

F(q1) =
∫ q1

0
f(ξ)dξ =

|K + q1|p+1

p+ 1
− |K|

p+1

p+ 1
− |K|p−1Kq1 −

p

2
|K|p−1q2

1,

then it is easy to see that

|F(q1)| ≤ C|q1|p+1 + Cδ{p≥2}|K|p−2|q1|3. (182)

Introducing R− = −
∫ 1

−1
F(q1)ρdy and using equation (42), we write

R′− +
∫ 1

−1
q2f(q1)ρdy = R′− +

∫ 1

−1
∂sq1f(q1)ρdy +

k∑
i=1

d′i

∫ 1

−1
∂dκ(di)f(q1)ρdy (183)

=
k∑
i=1

d′i

∫ 1

−1
(∂dκ(di)f(q1)− ∂diF(q1)) ρdy =

p(p− 1)
2

k∑
i=1

d′i

∫ 1

−1
∂dκ(di)|K|p−2q2

1ρdy.

Therefore, using (181) and (183), arguing as for (175), using (v) of Lemma E.1 and
(58), we write∣∣∣∣∫ 1

−1
q2,−f(q1)ρdy +R′−

∣∣∣∣ ≤ C‖q‖3H + C

k∑
i=1

|d′i|
1− d2

i

Ji‖q‖2H ≤ C
(
‖q‖3H + J‖q‖2H

)
.(184)

Note that from (182), the Hölder inequality and Claim B.1, we have∣∣∣∣∫ 1

−1
F(q1)ρdy

∣∣∣∣ ≤ C

∫ 1

−1
|q1|p+1ρdy + Cδ{p≥2}

∫ 1

−1
|K|p−2|q1|3ρdy

≤ C‖q‖p+1
H + Cδ{p≥2}

(∫ 1

−1
|q1|p+1ρdy

) 3
p+1
(∫ 1

−1
|K|p+1ρdy

) p−2
p+1

≤ C‖q‖p+1
H + Cδ{p≥2}‖q‖3H ≤ C‖q‖

p̄+1
H (185)

where p̄ = min(p, 2).

- Using the Cauchy-Schwartz inequality, we write∣∣∣∣∫ 1

−1
q−,2Gρdy

∣∣∣∣ ≤ 1
p− 1

∫ 1

−1
q2
−,2

ρ

1− y2
dy + C

∫ 1

−1
G2ρ(1− y2)dy. (186)

¿From the definition (178) of G, we need to handle R and ViF1,1. We start by R first.
We claim that

|R| ≤ C
k∑
j=1

κ(dj(s), y)p−11{yj−1(s)<y<yj(s)}
∑
l 6=j

κ(dl(s), y) (187)
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where

y0 = −1, yj = tanh
(
ζj + ζj+1

2

)
if j = 1, .., k − 1 and yk = 1. (188)

In particular, we have

−1 = y0 < −d1 < y1 < −d2 < ... < yj < −dj < yj+1 < ... < −dk < yk = 1

and κ(dj(s), yj+1(s)) = κ(dj+1(s), yj+1(s)) for j = 1, ..., k−1 (to see this, just use the fact

that κ(d, y)(1− y2)
1
p−1 = κ0 cosh−

2
p−1 (ξ − ζi) if y = tanh ξ).

To prove (187), we take y ∈ (yj−1(s), yj(s)) and set X = (
∑

l 6=j elκ(dl(s), y))/ejκ(dj(s), y).
From the fact that ζj+1(s)− ζj(s)→∞, we have |X| ≤ 2 hence

||1 +X|p−1(1 +X)− 1| ≤ C|X|

and for y ∈ (yj−1(s), yj(s)) and s large,

||K|p−1K − ejκ(dj(s), y)p| ≤ Cκ(dj(s), y)p−1
∑
l 6=j

κ(dl(s), y).

Since for all y ∈ (yj−1(s), yj(s)), κ(dj(s), y) ≥ κ(dl(s), y) if l 6= j, this concludes the proof
of (187).
Using (187), we see that∫ 1

−1
R2ρ(1− y2)dy ≤ C

k∑
j=1

∑
l 6=j

∫ yj

yj−1

κ(dj)2(p−1)κ(dl)2ρ(1− y2)dy ≤ C
k−1∑
m=1

h(ζm+1 − ζm)2

(189)
where h is defined in (35).
Now, we handle ViF1,1. Using (159), (180) and (i) of Lemma E.1, we see that∫ 1

−1
(ViF1,1(di))

2 ρ(1− y2)dy ≤ C
∑
j 6=i

∫ 1

−1
κ(di)2κ(dj)2(p−1)ρ(1− y2)dy

+ Cδ{p≥2}
∑
j 6=i

∫ 1

−1
κ(di)2(p−1)κ(dj)2ρ(1− y2)dy → 0 as s→∞.

Hence, using (54), we see that(
αi1
)2 ∫ 1

−1
(ViF1,1(di))

2 ρ(1− y2)dy = o
(
‖q‖2H

)
. (190)

Gathering (176), (177), (179), (184), (186), (178), (189) and (190), we get to the conclusion
of (59). Note that the estimate for R−(s) is given in (185).

Proof of (iii): An additional estimate
We prove estimate (61) here. The proof is the same as in the case of one soliton treated

in [12], except for the term involving the interaction term R(y, s) (42). Therefore, arguing
exactly as in pages 111 and 112 of [12], we write

d

ds

∫
q1q2ρdy ≤ −

9
10
α2
− + CJ2 + C

∫ 1

−1
q2
−,2

ρ

1− y2
dy + C

k∑
i=1

|αi1|2 +
∫ 1

−1
q1Rρdy.
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Since we have from the Cauchy-Schwartz inequality, (i) of Claim B.1, (52) and (189)∣∣∣∣∫ 1

−1
q1Rρdy

∣∣∣∣ ≤ (∫ 1

−1
q2

1

ρ

1− y2
dy

) 1
2
(∫ 1

−1
R2(1− y2)ρdy

) 1
2

≤ C‖q‖H
(∫ 1

−1
R2(1− y2)ρdy

) 1
2

≤ 1
10

(
α2
− +

k∑
i=1

(αi1)2

)
+ C

k−1∑
i=1

h(ζi+1 − ζi)2

where h is defined in (35), this concludes the proof of (61) and the proof of Lemma 3.6.

D A continuity result in the selfsimilar variable

We prove Claim 4.5 here. Consider ε0 > 0 and from (98), fix t̃ close enough to T (x0) so
that

‖wx0(s0)− w∞‖L2
ρ
≤ ε0 where s0 = − log(T (x0)− t̃). (191)

Note from (97) and the continuity of x 7→ T (x) that u(x, t̃) is well defined for all x ∈
[x̄, x0 + (T (x0) − t̃)) for some x̄ < x0 − (T (x0) − t̃). Therefore, using the selfsimilar
transformation (5), we see that

w(·, s0) ∈ L2(ȳ, 0) where ȳ =
x̄− x0

T (x0)− t̃
< −1. (192)

We aim at proving that for x′ close enough to x0, we have∥∥∥∥( wx′(s̃0(x′))
∂swx′(s̃0(x′))

)
−
(
w∞
0

)∥∥∥∥
H
≤ 6ε0 where s̃0(x′) = − log(T (x′)− t̃). (193)

For simplicity, we will only prove that

‖wx′(s̃0(x′))− w∞‖L2
ρ
≤ 2ε0, (194)

provided that x0 − x′ is small. The estimates involving ∂ywx′(s̃0(x′)) and ∂swx′(s̃0(x′))
follow in the same way.
Using the selfsimilar transformation (6), we write

∀ỹ ∈ (−1, 1), wx′(ỹ, s̃0(x′)) = θ
2
p−1wx0(y, s0) where y = ỹθ + ξ, (195)

θ =
1

1 + es̃0(x′)(T (x0)− T (x′))
→ 1 and ξ = (x′ − x0)es̃0(x′)θ → 0 as x′ → x0. (196)

Therefore, performing a change of variables, we write for x0 − x′ small enough,

‖wx′(s̃0(x′))− w∞‖2L2
ρ

=
∫ 1

−1
|wx′(ỹ, s̃0(x′))− w∞(ỹ)|2ρ(ỹ)dỹ

=
∫ θ+ξ

−θ+ξ

∣∣∣∣θ 2
p−1wx0(y, s0)− w∞

(
y − ξ
θ

)∣∣∣∣2 ρ(y − ξθ
)
dy

θ
.
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Since we have from (196), (193) and the fact that x 7→ T (x) is 1-Lipschitz,

θ + ξ =
1 + (x′ − x0)es̃0(x′)

1 + es̃0(x′)(T (x0)− T (x′))
=
T (x′)− t̃+ x′ − x0

T (x0)− t̃
≤ 1,

it follows that

‖wx′(s̃)− w∞‖2L2
ρ

=
∫ 1

ȳ
g(θ, ξ, y)dy

where ȳ < −1 is defined in (192) and

g(θ, ξ, y) =
1{−θ+ξ<y<θ+ξ}

θ

∣∣∣∣θ 2
p−1wx0(y, s0)− w∞

(
y − ξ
θ

)∣∣∣∣2 ρ(y − ξθ
)
. (197)

We claim that in order to conclude, it is enough to prove that for x0 − x′ small enough,

∀y ∈ (−θ + ξ, θ + ξ), g(θ, ξ, y) ≤ g̃(y) for some g̃ ∈ L1(ȳ, 1). (198)

Indeed, since we have from (196) that

∀y ∈ (ȳ, 1), g(θ, ξ, y)→ g(1, 0, y) as x′ → x0,

we use (198) to apply the Lebesgue Theorem and obtain that

‖wx′(s̃0(x′))− w∞‖2L2
ρ

=
∫ 1

ȳ
g(θ, ξ, y)dy →

∫ 1

−1
g(1, 0, y)dy = ‖wx0(s0)− w∞‖2L2

ρ

as x′ → x0. Using (191), we see that for x0 − x′ small enough, (194) holds. It remains to
prove (198) in order to conclude.
If −θ + ξ ≤ y ≤ 0, then we have ρ(y−ξθ ) ≤ 1. Using (197), (196), (192) and the definition
(99) of w∞, we write for x0 − x′ small enough:

g(θ, ξ, y) ≤ C(|wx0(y, s0)|2 + ‖w∞‖2L∞(−1,1)) ∈ L
1(ȳ, 0).

If 0 ≤ y ≤ θ + ξ, then we have from (196), ρ(y−ξθ ) ≤ C(1 − y−ξ
θ )

2
p−1 = C(1−y+ξ

θ )
2
p−1 ≤

C(1− y)
2
p−1 ≤ Cρ(y). Therefore, using (197) and (191), we write

g(θ, ξ, y) ≤ C(|wx0(y, s0)|2 + ‖w∞‖2L∞(−1,1))ρ(y) ∈ L1(0, 1).

Thus, (198) holds and so does (194).
Since the same technique works for

∥∥∥∂ywx′(s̃0(x′))− dw∞
dy

∥∥∥
L2
ρ(1−y2)

and ‖∂swx′(s̃0(x′))‖L2
ρ
,

estimate (193) follows in the same way. This concludes the proof of Claim 4.5.

E A table for integrals involving the solitons

In this section, we estimate integrals involving the solitons.
Recalling that y = −di(s) = tanh ζi(s) is the center of the i-th soliton κ(di(s), y), we
introduce the following “separators” between the solitons:

y0 = −1, yj = tanh
(
ζj + ζj+1

2

)
if j = 1, .., k − 1 and yk = 1 (199)
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Note in particular that we have

−1 = y0 < −d1 < y1 < −d2 < ... < yj < −dj < yj+1 < ... < −dk < yk = 1

and κ(dj(s), yj+1(s)) = κ(dj+1(s), yj+1(s)) for j = 1, ..., k−1 (to see this, just use the fact

that κ(d, y)(1− y2)
1
p−1 = κ0 cosh−

2
p−1 (ξ − ζi) if y = tanh ξ).

In the following lemma, we estimate various integrals involving the solitons κ(di(s), y):

Lemma E.1 (A table of integrals involving the solitons) We have the following
estimates as s→∞:

(i) If i 6= j, α > 0, β > 0 and I1 =
∫ 1

−1
κ(dj)ακ(di)β(1− y2)

α+β
p−1
−1
dy, then:

for α = β, I1 ∼ C0|ζi − ζj |e−
2α
p−1
|ζi−ζj |;

for α 6= β, I1 ∼ C0e
− 2
p−1

min(α,β)|ζi−ζj | for some C0 = C0(α, β) > 0.

(ii) If i 6= j, α > 0, β > 0 and I2 ≡
∫ yj

yj−1

κ(dj)ακ(di)β(1− y2)
α+β
p−1
−1
dy, then:

for α = β, I2 ≤ C|ζj+1 − ζj |e−
2β
p−1
|ζj+1−ζj | + C|ζj−1 − ζj |e−

2β
p−1
|ζj−1−ζj |;

for α > β, I2 ≤ Ce−
2β
p−1
|ζj+1−ζj | + Ce

− 2β
p−1
|ζj−1−ζj |;

for β > α, I2 ≤ Ce−
(α+β)
p−1

|ζj+1−ζj | + Ce
− (α+β)

p−1
|ζj−1−ζj |.

(iii) Let Ai,j,l =
∫ yj

yj−1

y + di
1 + ydi

κ(di)κ(dj)p−1κ(dl)ρdy with l 6= j.

If i = j, then Ai,i,l ∼ sgn(l − j)c′′′1 e
− 2
p−1
|ζl−ζi| for some c′′′1 > 0.

If j 6= i, then Ai,j,l = o(J) where J is defined in (23).

(iv) If l 6= j, then Bi,j,l ≡
∫ yj

yj−1

κ(di)κ(dj)p−p̄κ(dl)p̄ρdy = o(J) (with p̄ = min(p, 2)).

(v) For any i = 1, .., k, it holds that Ji ≡
∫ 1

−1
κ(di)|K|p−2dy ≤ C where K(y, s) is

defined in (42).

Proof: (i) With the change of variables y = tanh ξ, we write

I1 = κα+β
0

∫
R

cosh−
2α
p−1 (ξ − ζj) cosh−

2β
p−1 (ξ − ζi)dξ.

¿From symmetry, we can assume that α ≥ β and ζi > ζj . Using the change of variables
z = ξ − ζj , we write

I1 = κα+β
0

∫
R

cosh−
2α
p−1 (z) cosh−

2β
p−1 (z + ζj − ζi)dz.

When α > β, we get from Lebesgue’s Theorem I1 ∼ Ce−
2β
p−1

(ζi−ζj).
When α = β, we write from symmetry and Lebesgue’s Theorem

I1 = 2κα+β
0

∫ ζi−ζj
2

−∞
cosh−

2β
p−1 (z) cosh−

2β
p−1 (z + ζj − ζi)dz ∼ C(ζi − ζj)e−

2β
p−1

(ζi−ζj).
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(ii) Since I2 ≤ I1 and |ζj − ζi| ≥ min(|ζj+1− ζj |, |ζj − ζj−1|), the result follows from (i)
if α ≥ β. When α < β, we assume that ζi > ζj , the other case being parallel. Using the
change of variables y = tanh ξ then z = ξ − ζj , we write

I2 = κα+β
0

∫ (ζj+1−ζj)

2

−
(ζj−ζj−1)

2

cosh−
2α
p−1 (z) cosh−

2β
p−1 (z + ζj − ζi)dz

∼ e
− 2β
p−1

(ζi−ζj)
∫ (ζj+1−ζj)

2

−∞
cosh−

2α
p−1 (z)e

2β
p−1

z
dz

∼ Ce
− 2β
p−1

(ζi−ζj)e
2(β−α)
p−1

.
ζj+1−ζj

2 ≤ Ce−
(α+β)
p−1

(ζj+1−ζj)

since ζi − ζj ≥ ζj+1 − ζj , which yields the result.

(iii) If i = j, then using the change of variables y = tanh ξ, we write

Ai,i,l = κp+1
0

∫ ζi+ζi+1
2

ζi−1+ζi
2

cosh−
2p
p−1 (ξ − ζi) tanh(ξ − ζi) cosh−

2
p−1 (ξ − ζl)dξ

= κp+1
0

∫ (ζi+1−ζi)
2

− (ζi−ζi−1)

2

cosh−
2p
p−1 (z) tanh(z) cosh−

2
p−1 (z + ζi − ζl)dz ∼ θc1”e−

2
p−1
|ζl−ζi|

as s→∞, where θ = sgn(l − j), with

c1” =
κp+1

0

2
2
p−1

∫
R

cosh−
2p
p−1 (z) tanh(z)e

2z
p−1dz

=
κp+1

0

2
2
p−1

∫ ∞
0

cosh−
2p
p−1 (z) tanh(z)(e

2z
p−1 − e−

2z
p−1 )dz > 0.

Now, if j 6= i, then we have from the Cauchy-Schwartz inequality, (ii) and the definition
(23) of J(s),

Ai,j,l ≤

(∫ yj

yj−1

κ(dj)p−1κ(di)2ρdy

)1/2(∫ yj

yj−1

κ(dj)p−1κ(dl)2ρdy

)1/2

= o(J).

(iv) If i = j, then the result follows from (ii). If i 6= j, using the Hölder inequality
with P = p̄+ 1 and Q = p̄+1

p̄ , (ii) and the definition (23) of J(s), we write

Bi,j,l ≤

(∫ yj

yj−1

κ(di)p̄+1κ(dj)p−p̄ρdy

) 1
p̄+1
(∫ yj

yj−1

κ(dl)p̄+1κ(dj)p−p̄ρdy

) p̄
p̄+1

= o(J).

(v) Using the change of variables y = tanh ξ, we write

Ji = κp−1
0

∫
R

cosh−
2
p−1 (ξ − ζi)|K̄(ξ, s)|p−2dξ where K̄(ξ, s) =

k∑
j=1

ei cosh−
2
p−1 (ξ − ζj).

(200)
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If p ≥ 2, then |K̄(ξ, s)| ≤ C and |Ji(s)| ≤ C.
If p < 2 and the ej are the same, then |K̄(ξ, s)| ≥ cosh−

2
p−1 (ξ − ζi) and |Ji(s)| ≤∫

R cosh−2(ξ − ζi)dξ ≤ C.
It remains to treat the delicate case where p < 2 with the ej not all the same. Taking
advantage of the decoupling in the sum of the solitons (see (44)), we write

Ji = κp−1
0

k∑
j=1

∫ θj+A

θj−1+A
cosh−

2
p−1 (ξ − ζi)|K̄(ξ, s)|p−2dξ (201)

where θ0 = −∞, θj = ζj+ζj+1

2 if j = 1, .., k − 1, θk =∞ and A = A(p) is fixed such that

e
2A
p−1 ≥ 2e−

2A
p−1 . (202)

This partition isolates each soliton in the definition of K̄(ξ, s). It is shifted by A since
K̄(ξ, s) may be zero for some zj(s) ∼ θj(s) if ejej+1 = −1, giving rise to a singularity in
|K̄(ξ, s)|p−2, integrable though delicate to control.
Consider some j = 1, ..., k − 1.
If ej = ej+1, then we have from (44) and (202) for all ξ ∈ (θj−1 + A, θj + A), |K̄(ξ, s)| ≥
C(A) cosh−

2
p−1 (ξ − ζj) and cosh−

2
p−1 (ξ − ζi) ≤ C(A) cosh−

2
p−1 (ξ − ζj), hence∫ θj+A

θj−1+A
cosh−

2
p−1 (ξ − ζi)|K̄(ξ, s)|p−2dξ ≤ C(A)

∫ θj+A

θj−1+A
cosh−2(ξ − ζj)dξ ≤ C(A). (203)

If ej = −ej+1, then K̄(zj(s), s) = 0 with zj(s) ∼ θj(s), which makes |K̄(ξ, s)|p−2 singular
at ξ = zj(s). For this we split the integral over the interval (θj−1 + A, θj + A) into two
parts, below and above θj −A:
- the part on the interval (θj−1 + A, θj − A) is bounded by the same argument as in the
case ej = ej+1;
- the part on the interval (θj − A, θj + A). Since we have from the definition (200) of
K̄(ξ, s)

∂ξK̄(ξ, s) = − 2
p− 1

k∑
l=1

el sinh(ξ − ζl) cosh−
2
p−1
−1(ξ − ζl),

it follows that for all ξ ∈ (θj−A, θj +A), |∂ξK̄(ξ, s)| ≥ C(A)e−
2
p−1

(θj−ζj) = C(A)e−
ζj+1−ζj
p−1

for some C(A) > 0, hence

|K̄(ξ, s)|p−2 = |K̄(ξ, s)− K̄(zj(s), s)|p−2 ≤ C(A)|ξ − zj(s)|p−2e
− p−2
p−1

(ζj+1−ζj).

Therefore, since for all ξ ∈ (θj − A, θj + A), cosh−
2
p−1 (ξ − ζi) ≤ C(A) cosh−

2
p−1 (ξ − ζj) ≤

C(A) cosh−
2
p−1 (θj − ζj) ≤ C(A)e−

ζj+1−ζj
p−1 , it follows that∫ θj+A

θj−A
cosh−

2
p−1 (ξ − ζi)|K̄(ξ, s)|p−2dξ ≤ C(A)e−(ζj+1−ζj)

∫ θj+A

θj−A
|ξ − zj(s)|p−2dξ

≤ C(A)e−(ζj+1−ζj) (204)

because zj(s) ∼ θj(s) as s→∞. Therefore, (v) follows from (201), (203) and (204).

51



References

[1] S. Alinhac. Blowup for nonlinear hyperbolic equations, volume 17 of Progress in
Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc.,
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