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Abstract

We introduce the Swan class of an ¢-adic etale sheaf on a variety over a local
field. It is a generalization of the classical Swan conductor measuring the wild
ramification and is defined as a O-cycle class supported on the reduction. We
establish a Riemann-Roch formula for the Swan class.

Let K be a complete discrete valuation field of characteristic 0. We assume that
the residue field F' is a perfect field of characteristic p > 0.

Let U be a separated scheme of finite type over K and F be an f¢-adic sheaf on U
where ¢ is a prime different from p. The etale cohomology H}(Ug,F) with compact
support defines an (-adic representation of the absolute Galois group Gx = Gal(K /K).
We will give a formula for the alternating sum Sw H}(Ug, F) of the Swan conductor.
In the case where U is smooth over K and F is a smooth sheaf on U, it takes the form

Sw H}(Ug,F) —rank F x Sw H}(Ug, Q) = deg SwF.

We will have a relative version of the formula for an arbitrary sheaf F and an
arbitrary morphism U — V. The general version will be formulated by introducing a
map

%U : Ko(U,Fg) _— F(]G(UF)@.

Here Ky(U, E) denotes the Grothendieck group of constructible Fy-sheaves on U and
FyG(Ur)qg denotes the dimension O-part of the Grothendieck group of coherent modules
on the reduction of U whose precise definition will be given later. Note that the
reduction modulo ¢ defines a natural map Ko(U,Q,) — Ko(U,F,). In the case U =
Spec K, we have

Ko(Spec K,F;) = Ko(Repg,. (Fr)), FoG(Spec Kp)g =G(F)g=Q
and, for an F-representation V of G, we have
S_Wspec K(V) = SW(V)

The main result in this talk is the following.
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Theorem 1 Let f: U — V be a morphism of separated schemes of finite type over
K. Then, the diagram

Ko(UF) =2 RG(Tr)o

5| Js

Ko(V,F) 2 ma(Ve)g

18 commutative.

First, we define the group FyG(Ur)g and the map Swy : Ko(U, Fy) — FoG(Ur)g.

For a noetherian scheme X, the Grothendieck group of the category of coherent O x-
modules is denoted by G(X). Let F,,G(X) C G(X) denote the topological filtration
generated by the classes of modules of dimension of support at most n.

Let U be a separated scheme of finite type over K. We define Cy to be the category,
whose objects are proper schemes X over the integer ring O containing U as a dense
open subscheme. A morphism X’ — X in Cy is a morphism X’ — X over Ok inducing
the identity on U. We put

(0.1) FoG(Ur) = lim ¢, FG(X 7).

The transitions maps are proper push-forwards.

If U = Spec K, Spec Ok is the initial object of Cgpec x by the valuative criterion
and consequently we have FyG(Spec Ky) = Z.

For amap f: U — V of separated schemes of finite type over K, the push-forward
map

is defined. In particular, taking V = Spec K, the degree map
(0.3) deg : [bG(Ur) —— 7Z

is defined.
For a finite flat map f : U — V of separated schemes of finite type over K, the flat
pull-back map

is defined by the flattening theorem of Raynaud-Gruson.

The Grothendieck group Ko(U,TF,) is generated by the classes of smooth sheaves on
smooth subschemes. Thus, we first define Swy (F) assuming U is smooth over K and
F is a smooth Fy-sheaf on U. Let V — U be a finite etale Galois covering of Galois
group G trivializing F.

We put

Sw

naive 1 o T TT
=1 D —fl(To, AV oy - TP (02 M) € FyG(Ur) g, )-
UGG(p)



Here G,y C G denotes the set of elements of order a power of p and Tr5" (o : M) denotes
the Brauer trace of the Fy-representation of G corresponding to F. If U = Spec K and
V' = Spec L, then the term — f,((I',, Av))l‘?gXKv is the Swan character Swy, k(o) and
the above formula is nothing but the classical definition of the Swan conductor.

We expect that the naive Swan class Sw (F) € FoG(Ur)g¢ ) in fact lies in
FyG(Ur)g. Since we do not know this in general, we define the Swan class Sw(F)
to be the image of Sw (F) by the natural projection FoG(Ur)a,e) — FoG(Ur)g
induced by @anf@(cpn) /Q-

A first approximation of ((I', AV))I‘SgXKV is the intersection product (I'y, Ay )y« vy if
we pretend that V is a smooth variety over F', that IV admits a smooth compactification
Y and that the action of o is extended to on Y. This approximation requires the
following three modifications.

1. Log blow-up: We further assume that the complement Y \ V = (J, D; is
a divisor with simple normal crossings. Then, we replace Y xg Y by the blow-up
(Y xpY) at Dy x Dy,Dy X Dy, ..., D, X D,.

2. Alteration: Since we do not know if there exists a smooth compactification Y,
we consider a proper surjective generially finite morphism g : W — V and a smooth
compactification W C Z such that the complement Z \ W is a divisor with simple
normal crossings. We consider the intersection product in (Z xg Z)" and ﬁ G-

3. Localized intersection product. Since our schemes are defined over O but not
over F'. We need to use a new intersection theory introduced in [1] which is briefly
recalled below.

The localized intersection product ((I'y, Ay))
using an alteration. We consider a diagram

log
VXK

v with the log diagonal is defined

W —— Z

(0.5) v l

U — X
of schemes over Ok satisfying the following conditions:
(0.5.1) X is an object of Cy such that U C X is the complement of a Cartier divisor B.

(0.5.2) Z is a proper regular scheme over Ok containing W as the complement of a
divisor D with simple normal crossings.

(0.5.3) The proper map g : W — V is generically finite of constant degree [W : V.

We consider the log self-product (Z x ¢, Z)™~ and the log diagonal closed immersion
Ay : 7 — (Z xo, Z)~. Its generic fiber Z — (Zx Xk Zk)™ is a regular immersion



of codimension d. We give a local description. Assume Z = Spec A and D is defined
by [I,c;ti- Then, we have

(Z X0, 2)~ = A®0, A[lUF e D]/t;@1-U(1®t) (i € 1))
and the log diagonal map is defined by the map
A®o, AU (i€ D]/t @1 -U;(1@t;) (iel)) — A

sendinga® 1 and 1®atoa € A and U; to 1 for i € I.
Let d be the dimension of U. We define the logarithmic localized intersection
product

((A2)Fro, 2t FaniG((Z %o, Z)7) — FoG(Zr)
by
([FLADE, e = (~1)i([Tory 7™ (F,04)] - [Toro s (F.0,)

(Z><OKZ)N q+1

for a coherent Oz ox zy~-module F, by taking an arbitrary integer ¢ > d.
The localized intersection product ((I'y, AV))I‘SgXKV € F,G(Vg)g is defined as

1
(W V]

9:(((9 % 9T, A2) G, 21

by taking a lifting (¢ X g)*I'y € Fu1G((Z X0, Z)~) of (g x g)*T, € FyG(W x i W).

We define Sw(F) in the general case. The Grothendieck group Ko(U,F,) is gen-
erated by the classes [F] of smooth sheaves F on smooth subschemes Z. Their re-
lations are generated by [F| = [F'] + [F/F’] for smooth subsheaves F' C F and
[F] = [Fz] + [Fz 2] for smooth closed subschemes Z’ C Z. Thus the follwing propo-
sition implies that the map Ko(U,F,) — FoG(Ur)q is well-defined.

Proposition 2 (excision) Let V. — U be a finite etale Galois covering of smooth
schemes over K and o be an element of the Galois group. Let U' C U be a smooth
closed subscheme and U" be the complement. We put V' =U' xyV and V" = U" xy V.
Then we have

(T, Ay))% = ((Tapy, Av)) + ((Topy., Ayn)) %,
We sketch the proof of Theorem 1. We will prove
Swy RfAF = f.SwyF.
We may put the following additional assumptions by devissage.

e F/-sheaf F on U is smooth.



e The scheme V' is smooth over K.
e Either of the following holds.
(0) U — V is finite and étale.

(1) U — V is a smooth curve. More precisely, there exists a proper smooth
curve X — V of genus g and a divisor D C X finite etale over V' of degree
d such that U = X \ D and 29 — 2+ d > 0.

In the case (0), it is an analogue of the induction formula for the Swan conductor
and proved in exactly the same way.
To prove the case (1), we consider a commutative diagram
f/

U/ V/

Lo

v v

of separted smooth schemes of finite type over K where the vertical arrows are finite

etale Galois coverings. Let GG and G’ be the Galois groups respectively. We may further
assume that the pull-back of RfiF, to V' is constant. Then, it suffices to show that

F(Lo, Ay))™8 = Te™ (0" : RFFe) - (Tor, Ayr))®

for an element o € G of order a power of p.
By alteration, this follows from an associativity formula for localized intersection
product and from the log Lefschetz trace formula below.

Theorem 3 Let L be a complete discrete valuation field and X and X' be a proper
and strictly semi-stable scheme purely of relative dimension d over the integer ring Op.
Let D C X and D' C X' be divisors with simple normal crossings relative to Oy, and
U=Xp\ D and U = X} \ D} be the complements in the generic fiber.

We consider X and X' as log schemes with the log structure Mx = 5.0 NOx and
Mx = .05, N Ox: where j: U — X and j': U — X' are the open immersions. Let
P be an fs-monoid and P — T'(X,Mx) and P — T'(X', M x+) be frames.

Let T be a closed subscheme of U x;, U'. Assume that the closure T of T in (XL xr
X1 satisfies Ty, N D(Ll)l crpn D(LQ)'.

Let f: Xy — X[ be a morphism of log schemes compatible with the frames and
i Xy — (X xo, X')™ be the log graph map. Let [T € K((X %0, X')™) be an element
lifting [Or] € K((Xp, x1 X})™) and 7;[1:] € K(X:) be the pull-back.

Let T o f.: Hyy, (X7, Qo) — Hi, (X5, Qr) denote the composition

H*

log,c
(0.6) F*l
Hlt)g,c(Xfa Qf) A H:(UE,QZ)

(X5, Q) —L— Hy, (XLQ) —— HX (UL Q)

log,c



Then, we have

(0.7) Tr(I o f.: legc(Xg, Q) = degv}[r]
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